
Proceedings of the 15th International Conference on Parsing Technologies, pages 122–127,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Coarse-To-Fine Parsing for Expressive Grammar Formalisms

Christoph Teichmann and Alexander Koller
Saarland University, Saarbrücken

{cteichmann|koller}@coli.uni-saarland.de

Jonas Groschwitz
Macquarie University, Sydney

jonas.groschwitz@students.mq.edu.au

Abstract

We generalize coarse-to-fine parsing to
grammar formalisms that are more ex-
pressive than PCFGs and/or describe lan-
guages of trees or graphs. We evaluate
our algorithm on PCFG, PTAG, and graph
parsing. While we achieve the expected
performance gains on PCFGs, coarse-to-
fine does not help for PTAG and can even
slow down parsing for graphs. We discuss
the implications of this finding.

1 Introduction

Coarse-to-fine (CTF) parsing (Charniak et al.,
2006) is one of the most effective pruning tech-
niques for PCFG parsing. Its basic idea is to sim-
plify a grammar by systematically merging non-
terminals together. One then parses the input with
the simple grammar, and uses statistics calculated
from the resulting parse chart to constrain parsing
with the original grammar. This can speed up pars-
ing by an order of magnitude at no loss in accuracy
(Charniak et al., 2006; Petrov and Klein, 2007).

We present an algorithm for CTF parsing for
grammar formalisms that are more expressive than
PCFGs – to our knowledge, for the first time.
More precisely, we extend CTF parsing to In-
terpreted Regular Tree Grammars (IRTGs, Koller
and Kuhlmann (2011)), a very general grammar
formalism which captures PCFGs, tree-adjoining
grammars (TAGs, Joshi and Schabes (1997)),
hyperedge replacement graph grammars (HRGs,
Chiang et al. (2013)), and many others. Our direct
application of CTF to expressive grammar formal-
ism contrasts with related work (van Cranenburgh,
2012; Zhang and Krieger, 2011) which limits en-
tries for the parse chart of the expressive formal-
ism using the parse chart of a PCFG approxima-
tion.

We then evaluate our generalized CTF algo-
rithm on a number of grammar formalisms. On
PCFGs, we obtain the expected speedups. How-
ever, we observe no speedups for TAG parsing
compared to unpruned parsing, and HRG parsing
on abstract meaning representations (Banarescu
et al., 2013) is even slowed down by CTF. We dis-
cuss these findings and show how the efficacy of
CTF parsing relies on specific properties of PCFG
grammars derived from treebanks. Because these
properties do not depend on the specifics of our
formalism, they would generalize to formalism
specific implementations of CTF for TAG or HRG.

2 Interpreted Regular Tree Grammars

Interpreted Regular Tree Grammars (IRTGs,
Koller and Kuhlmann (2011)) generalize a wide
range of grammar formalisms, including (prob-
abilistic) context-free grammars (PCFGs), tree-
adjoining grammars (Joshi and Schabes, 1997;
Koller and Kuhlmann, 2012), hyperedge replace-
ment grammars (Chiang et al., 2013; Groschwitz
et al., 2015), as well as synchronous and trans-
ducer versions of these formalisms. They achieve
this by distinguishing carefully between the gener-
ation of grammatical derivation trees and the way
in which these derivation trees are interpreted as
values of some algebra.

Formally, a (monolingual) IRTG G = (G, h,A)
consists of a weighted regular tree grammar (RTG,
(Comon et al., 2007)) G over some signature Σ
of node labels, an algebra A over some signature
∆ into which the derivation trees are interpreted,
and a tree homomorphism h : TΣ → T∆ that
maps derivation trees into terms over the algebra.
The RTG G generates a language L(G) ⊆ TΣ of
derivation trees. Based on these, the language of
the IRTG, L(G) = {Jh(t)KA | t ∈ L(G)}, is ob-
tained by mapping each derivation tree t ∈ L(G)

122



into a term h(t) over the algebra, and then evalu-
ating this term in the algebra.

Fig. 1 shows a simple IRTG. The RTG G is
shown on the left; it derives, among others, the
derivation tree t = r1(r4, r2(r6, r5)) ∈ L(G).
The tree homomorphism shown on the right maps
this to the term h(t) = ∗(john, ∗(loves,mary)).
By evaluating this term over a string algebra A
which interprets the symbol ∗ as string concate-
nation, we obtain “John loves Mary” ∈ L(G). For
simplicity we will identify rules of G with their
labels, i.e. we simply write r1 for the first rule in
Fig. 1.

IRTGs can capture different grammar for-
malisms by varying the algebra into which deriva-
tion trees are interpreted. For instance, TAG re-
quires a string algebra with a string wrapping op-
eration (Koller and Kuhlmann, 2012). It is also
possible to extend the IRTG formalism in order to
allow for multiple homomorphisms and algebras,
which is useful for mapping between inputs and
outputs and can be used e.g. in semantic parsing
(Koller, 2015).

Grammars from different formalisms also tend
to vary in the complexity of the homomorphism h.
For instance, all binary rules of a PCFG in CNF
map to simple concatenation (cf. r1, r2 in Fig. 1).
By contrast, IRTG encodings of TAG grammars
can use h to associate entire elementary trees with
a single rule.

Parsing for IRTGs proceeds in three steps. First,
given an input object w ∈ A, we compute a
decomposition grammar Dw which generates all
terms overA that evaluate to w. Then we compute
the inverse homomorphism (invhom) ofDw, i.e. an
RTG Iw with L(Iw) = {t ∈ TΣ | h(t) ∈ L(Dw)}.
This RTG thus describes all derivation trees that
are interpreted to w. Finally, we intersect Iw with
G - the RTG from G, obtaining an RTG M –
the parse chart – which compactly describes the
grammatically correct derivation trees. Similar to
intersection constructions for e.g. finite state au-
tomata, the nonterminals of M are pairs AJ of
nonterminals A of G and J of Iw and M has rules
of the form A0J0 → r(A1J1, . . . , AnJn).

When the rules of G are assigned weights, as
in Fig. 1, we can use the Viterbi algorithm to ex-
tract the highest-weight derivation tree from M .
We can also compute inside and outside weights
in(AJ) and out(AJ) for every nonterminal in M
as usual.

S→ r1(NP, VP) [1] h(r1) = ∗(x1, x2)
VP→ r2(VP, NP) [0.5] h(r2) = ∗(x1, x2)
VP→ r3(VP, NP) [0.1] h(r3) = ∗(to, ∗(x1, x2))
NP→ r4 [0.5] h(r4) = john
NP→ r5 [0.5] h(r5) = mary
VP→ r6 [0.4] h(r6) = loves

Figure 1: An example IRTG.

3 Coarse-to-fine parsing for IRTGs

Coarse-to-fine parsing for PCFGs. In PCFG
parsing, CTF parsing is an established pruning
technique for computing the best parse tree of a
sentence w given a PCFG GF . We assume a fine-
to-coarse map C, which maps the nonterminal
symbols of GF into a set of coarse-grained non-
terminal symbols, potentially making two nonter-
minals of GF the same. By merging rules of GF

that now have the same nonterminals on the left
and right hand side, we obtain a smaller PCFG
GC (the coarse grammar). For instance, if we
have C(S) = C(NP) = C(VP) = HP, then the
rules S → NP VP and VP → VP NP are both
mapped to the same rule, HP → HP HP. The
fine-to-coarse mapping may have multiple levels,
providing increasingly coarse-grained grammars.

CTF parsing then proceeds by parsing w with
respect to GC and computing the inside and out-
side probabilities of all edges in the (coarse) parse
chart. Edges whose probabilities are too low are
pruned away. The others are refined into edges for
a parse chart with respect to GF . Thus if an edge
HP[2−7] → HP[2−3] HP[3−7] in the coarse
chart (describing a split of the substring from 2
to 7 at position 3) is sufficiently likely, it will be
refined into both S[2−7] → NP[2−3] VP[3−7]
and VP[2−7]→ VP[2−3] NP[3−7]. The Viterbi
parse tree of this fine chart will then be a parse tree
of w with respect to GF .

Coarsification for IRTGs. We generalize this
procedure to IRTGs. In doing this, we need to
pay special attention to the fact that the rules of
an IRTG may differ not only in their nonterminal
symbols, but also in their homomorphic interpre-
tations. As mentioned above, this is prevalent in
expressive grammar formalisms, such as TAG.

We define two rules A0 → r1(A1, . . . , An) and
B0 → r2(B1, . . . , Bn) of an IRTG to be equiv-
alent with respect to a fine-to-coarse map C iff
C(Ai) = C(Bi) for all i and h(r1) = h(r2), i.e.
both rules are interpreted in the same way by the

123



input homomorphism. Using the mapping C from
above, we find that r1 and r2 in Fig. 1 are equiva-
lent to each other, but not to r3.

We can then partition the rules of a fine-grained
IRTG GF into their equivalence classes, and build
a coarse-grained IRTG GC over the same algebra
with one rule for each equivalence class. Let R =
{r1, . . . , rk} be an equivalence class containing
the fine-grained rule A0 → r1(A1, . . . , An). Then
GC will contain the rule H0 → R(H1, . . . ,Hn),
where Hi = C(Ai) for all i, and hC(R) =
hF (r1). The choice of r1 among the elements
of R does not matter, because equivalent rules
have the same homomorphic image and map to the
same coarse-grained nonterminals. In this paper,
we will simply let the weight of the coarse rule
be the sum of the weights of the fine rules in or-
der to set the inside score of an item in a coarse
chart to approximately the sum of the weights of
the finer items it represents; if suitable data is
available, these weights could also be re-estimated
from a treebank (Charniak et al., 2006; Petrov
and Klein, 2007). In the example, we obtain
HP → R1(HP,HP) and HP → R2(HP,HP)
with R1 = {r1, r2} and R2 = {r3}. This con-
struction generalizes easily to multiple CTF levels.

Coarse-to-fine parsing with IRTGs. Given this
precomputation, we can now perform coarse-
to-fine parsing. Given an input object w, we
first compute a complete parse chart MC us-
ing the coarse-grained IRTG GC , e.g. using one
of the parsing algorithms of Groschwitz et al.
(2016). The entries e of this chart are rules
H0J0 → R(H1J1, . . . ,HnJn), such that H0 →
R(H1, . . . ,Hn) is a rule of GC and the invhom
grammar Iw contains a rule J0 → r(J1, . . . , Jn)
for one, and thus all, r ∈ R.

We compute in(AJ) and out(AJ) for every
nonterminal AJ of MC , and use them to calculate
a score

s(e) = out(H0J0)·w(R)·in(H1J1)·. . .·in(HnJn)

for each chart entry e, where w(R) is the rule
weight in GC . We let Z = in(HJ) be the total in-
side weight of the start nonterminal of MC , which
combines the start nonterminal H of GC and the
start nonterminal J of Iw.

Then we refine the coarse-grained chart MC

into a fine-grained chart MF . If s(e) < θ·Z for
some fixed threshold θ, we discard e. Otherwise,
we add an entry A0J0 → r(A1J1, . . . , AnJn) to

MF for each rule A0 → r(A1, . . . ,A1) in the fine-
grained IRTG GF with r ∈ R.

If we have k coarse-to-fine levels (k−1 = coars-
est, 0 = finest), we repeat this refinement step k−1
times to obtain a chart for the original IRTG and
then find the best derivation using Viterbi decod-
ing.

4 Evaluation

Using this algorithm, we can do CTF parsing
for all grammar formalisms that can be encoded
as IRTGs. We evaluate it on PCFG, TAG, and
graph parsing, using the efficient algorithms of
Groschwitz et al. (2016) to compute the coarsest
charts. These algorithms are lazy and try to avoid
computing rules of the inverse homomorphism
grammar which cannot participate in a derivation.
This means that the number of rules in the inverse
automaton differs depending on the grammar with
which we are parsing. The evaluation grammars
and fine-to-coarse mappings are available as sup-
plementary material for this paper, and our coarse-
to-fine parser is implemented as part of the Alto
Toolkit.1

PCFG evaluation. First, we reproduce the
known result that CTF parsing speeds up PCFG
parsing. We read off a PCFG from the parse trees
of the WSJ portion of the Penn Treebank (Sec-
tions 02–21), using the gold POS tags as termi-
nal symbols; binarize it with the “inside” binariza-
tion strategy of Klein and Manning (2003); and
convert it to an IRTG. This yields an IRTG gram-
mar with 23817 rules and 8202 nonterminals, of
which 8131 were created during binarization. We
then parsed the sentences in Section 23 of up to
40 words, both without pruning and with the CTF
parser (longer sentences were infeasible with the
unpruned parser). For CTF we used the four-
level fine-to-coarse mapping from Charniak et al.
(2006) and a threshold of θ = 10−5. We also ap-
ply the fine-to-coarse mapping to the nonterminals
introduced during binarization. If the nonterminal
‘NP’ is mapped to ‘HP’ for the level k, then a non-
terminal ‘NP〉〉NP’ – which is created during bina-
rization to represent a sequence of two ‘NP’ chil-
dren, signified with the 〉〉 notation – would cor-
respond to a nonterminal ‘HP〉〉HP’ on the level

1Alto is available at https://bitbucket.org/
tclup/alto and the grammars and fine-to-coarse map-
pings used are available at https://bitbucket.
org/tclup/alto/downloads/coarse_to_fine_
experiments_grammars_and_mappings.zip

124



Approach f-score time invhom sat
PCFG
Unpruned 73.7 1230 2190 0.22
CTF 73.9 58 2260 –
TAG
Unpruned 70.9 11258 159203 0.03
CTF:10−5 51.8 11178 159203 –
CTF:10−9 68.5 11198 159203 –

Table 1: Results for PCFG and TAG parsing, with
mean runtime (in ms), invhom rules used in the
chart, and saturation per sentence.

k. The results are shown in Table 1 (top): For
IRTG encodings of treebank PCFGs, we obtain a
20x speedup at no loss in f-score.

TAG evaluation. To assess the efficacy of
CTF parsing on more expressive grammar formal-
ism, we first evaluated it on the probabilistic TAG
grammar induced from WSJ Section 00 by Chen
and Vijay-Shanker (2004), binarized with the “in-
side” strategy and converted to an IRTG. To avoid
data sparsity issues, we also evaluated the gram-
mar on Section 00, thus f-scores should be read
with care. We used a variant of the four-level fine-
to-coarse mapping from Charniak et al. (2006),
which always preserves the distinction between
nonterminals at the root of initial trees and those
at the root of auxiliary trees.2 We tried the thresh-
old values θ = 10−5 and θ = 10−9. The re-
sults are shown in Table 1 (bottom). Unexpect-
edly, while CTF pruning with these thresholds al-
ready reduces the f-score, the parsing time barely
improves.

HRG evaluation. We also evaluated CTF on
parsing Abstract Meaning Representation (AMR)
graphs with hyperedge replacement grammars
(HRGs, Chiang et al. (2013)). We use the HRG
grammar of Groschwitz et al. (2015), which was
induced from the “Little Prince” AMR corpus (Ba-
narescu et al., 2013) and converted to an IRTG.
This grammar describes how a graph can be con-
structed from atomic parts. It uses complex non-
terminal symbols such as N0{0, 1, 2}, indicating
that the nonterminal should derive a subgraph with
three sources 0, 1, and 2 (these describe nodes
at which further edges can be added during the
derivation), and the 1-source should be the AMR’s
“root” node. The symbol before the curly brack-

2For full details on the mappings used throughout the pa-
per see the supplementary data.

Approach best % time invhom sat
Unpruned 100.0 622 9042 0.04
Self 100.0 640 – –
– Level 1 – 629 8963 0.04
– Level 0 – 7 12 0.03

Unsplit 95.8 751 – –
– Level 1 – 739 9930 0.05
– Level 0 – 9 13 0.04

Unroot 96.0 3279 – –
– Level 1 – 3245 35476 0.12
– Level 0 – 31 13 0.03

Both 88.8 3926 – –
– Level 2 – 3887 34353 0.13
– Level 1 – 36 15 0.05
– Level 0 – 1 9 0.04

Table 2: Results for HRG parsing, with mean
percent best found, runtime (in ms), invhom rules
used in the chart, and saturation per graph.

ets can be one of N0 or N1, to allow the grammar
to make finer distinctions beyond the source infor-
mation. In total, the grammar has 39 nonterminals
and 13681 rules.

We tried a number of fine-to-coarse mappings
in parsing Groschwitz et al.’s corpus. The “Un-
split” mapping removes the distinction between
N0 and N1, so the above nonterminal coarsifies
to N{0, 1, 2}. “Unroot” removes the marking
of the root source, i.e. coarsifies to N0{0, 1, 2}.
“Both” applies the two in sequence, i.e. coarsifies
to N{0, 1, 2}. As a sanity check, we also looked
at a “Self” mapping, which “coarsifies” every non-
terminal to itself. We used an aggressive pruning
threshold of θ = 10−2.

The results are shown in Table 2. Because we do
not have access to gold standard derivation trees in
this dataset, we report the percentage of sentences
on which a CTF parser produced the same Viterbi
derivation tree as the unpruned parser (“best %”).
We find that the Unsplit and Unroot mappings pro-
duce high-quality parses. However, in striking
contrast to the PCFG case, all nontrivial mappings
make the parser slower than the unpruned one – in
the case of Unroot and Both, dramatically so.

5 Discussion

The fact that we find no speed improvements for
TAG parsing and observe slowdowns for HRG
parsing when we use CTF is a surprising nega-
tive result. To understand it, we first note that it
is a result about CTF parsing in general and not

125



about our implementation: We do obtain the ex-
pected performance gains on PCFGs, and the Self
mapping yields comparable HRG performance to
the unpruned parser. IRTGs allow us to use the
same infrastructure for CTF parsing with TAGs
and HRGs which we used for CTF parsing with
PCFGs. There are systematic structural differ-
ences between the PCFG, PTAG, and HRG gram-
mars which explain the differences in the useful-
ness of CTF.

One difference is the number of nonterminals
from which a substructure can be derived. In
treebank-induced PCFGs, most substrings of suf-
ficient length can be derived from almost every
phrasal nonterminal (Klein and Manning, 2001).
This is reflected in a measure called saturation,
which we formalize as the number of chart non-
terminals (A0, J0) that occur in the edges of the
chart, divided for comparability by the total num-
ber of nonterminals A in GC and the number of
invhom nonterminals J used in the chart. We
only compute this measure for nonterminals A0

that were present in the grammar before bina-
rization. For the unpruned PCFG parser, we ob-
tain a mean saturation of 0.22, confirming Klein
and Manning’s findings. By contrast, mean sat-
uration is 0.04 for the unpruned HRG parser and
0.03 for the unpruned TAG parser. Thus, the TAG
and HRG grammars are more restrictive than the
PCFG. The TAG grammar only derives each sub-
string from a few nonterminals as each lexical an-
chor determines the root of its elementary tree; in
the HRG, the annotation for the nonterminals en-
codes what sources are available for a merge oper-
ation. This leaves little room for CTF to increase
parsing speed.

A second difference between the HRG and
PCFG grammars is that only a small fraction of
all of a graph’s subgraphs can be derived from any
nonterminal with the HRG grammar in the first
place. This would be comparable to a setting for
PCFG parsing for which most spans are ungram-
matical. This is quantified by the “invhom” col-
umn in Table 2, which shows the mean number
of rules of the invhom grammar that are enumer-
ated during parsing; for HRGs, each of these de-
scribes how to split a subgraph into parts. The
“Unroot” and “Both” mappings delete source in-
formation, which substantially increases the num-
ber of subgraph combinations the parser explores.
PCFGs tend not to rule out many subspans, which

is not a problem as the growth of subspans is
only quadratic in the length of any sentence be-
ing parsed. For HRG parsing the number of
possible subgraphs grows with a larger exponent,
which depends on the grammar, and this means
that parsing is only feasible as long as many
small subgraphs can be identified as ungrammat-
ical and many larger subgraphs are never consid-
ered. When ruling out substructures is a key ele-
ment of efficient parsing, then pruning techniques
other than CTF are needed for speed-ups, because
the coarser grammars will generally be more per-
missive and therefore increase parsing times. This
also makes it clear that the slowdown under CTF
parsing is not a result of the particular implemen-
tation, as the number of substructures that need to
be considered will be a bottleneck for any parser.

6 Conclusion

In this paper, we have defined an algorithm for
coarse-to-fine parsing with IRTG grammars and,
for the first time, applied CTF parsing to grammar
formalisms that are more expressive than PCFGs.
However, we have not observed the expected ef-
ficiency gains for such grammars, as fewer rules
are equivalent and nonterminals are more informa-
tive, at least in the grammars used in our evalua-
tion. Indeed, treebank PCFGs are especially well-
suited to CTF parsing because they have many
rules which only concatenate strings without in-
troducing any terminal symbols and their nonter-
minals can derive almost arbitrary substrings. Nei-
ther is true for the TAG or HRG grammars we
used.

Our results offer guidance on grammar require-
ments for successful use of CTF parsing and pro-
vide a general algorithm that will work when they
are met. In the future, it would be interesting to ex-
tend CTF parsing to work in the absence of these
requirements, e.g. by broadening the notion of rule
equivalence, or by giving feedback from the fine
level to the coarser levels in a priority search.

Acknowledgements We thank the anonymous
reviewers for their comments. We are grateful to
Johannes Gontrum for some early implementation
work and to Mark Johnson for discussions about
the paper. This work was supported by the DFG
grant KO 2916/2-1. Jonas Groschwitz was sup-
ported by a Macquarie University Research Excel-
lence Scholarship.

126



References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse. http://www.aclweb.org/anthology/W13-
2322.

Eugene Charniak, Mark Johnson, Micha Elsner,
Joseph Austerweil, David Ellis, Isaac Haxton,
Catherine Hill, R. Shrivaths, Jeremy Moore,
Michael Pozar, and Theresa Vu. 2006. Multi-
level coarse-to-fine PCFG parsing. In Proceed-
ings of the Human Language Technology Confer-
ence of the North American Chapter of the ACL.
http://www.aclweb.org/anthology/N06-1022.pdf.

John Chen and K. Vijay-Shanker. 2004. Automatic ex-
traction of TAGs from the Penn Treebank. In New
developments in parsing technology, Springer, pages
73–89.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and
Kevin Knight. 2013. Parsing graphs with
hyperedge replacement grammars. In Pro-
ceedings of the 51st Annual Meeting of the
Association for Computational Linguistics.
https://www.aclweb.org/anthology/P/P13/P13-
1091.pdf.

Hubert Comon, Max Dauchet, Rémi Gilleron, Flo-
rent Jacquemard, Denis Lugiez, Sophie Tison, Marc
Tommasi, and Christof Löding. 2007. Tree Au-
tomata techniques and applications. published
online - http://tata.gforge.inria.fr/.
http://tata.gforge.inria.fr/.

Jonas Groschwitz, Alexander Koller, and Mark John-
son. 2016. Efficient techniques for parsing with tree
automata. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics. http://aclweb.org/anthology/P16-1192.

Jonas Groschwitz, Alexander Koller, and Christoph
Teichmann. 2015. Graph parsing with S-graph
Grammars. In Proceedings of the 53rd An-
nual Meeting of the Association for Compu-
tational Linguistics and the 7th International
Joint Conference on Natural Language Processing.
http://www.aclweb.org/anthology/P15-1143.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
Adjoining Grammars. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages,
Springer-Verlag, volume 3.

Dan Klein and Christopher D. Manning. 2001. Pars-
ing with treebank grammars: Empirical bounds,
theoretical models, and the structure of the Penn
Treebank. In Proceedings of 39th Annual Meeting
of the Association for Computational Linguistics.
http://aclweb.org/anthology/P/P01/P01-1044.pdf.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: fast exact viterbi parse selection. In
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology.
https://doi.org/10.3115/1073445.1073461.

Alexander Koller. 2015. Semantic construc-
tion with graph grammars. In Proceed-
ings of the 11th International Conference
on Computational Semantics. pages 228–238.
http://anthology.aclweb.org/W/W15/W15-0127.pdf.

Alexander Koller and Marco Kuhlmann. 2011.
A generalized view on parsing and transla-
tion. In Proceedings of the 12th Interna-
tional Conference on Parsing Technologies.
http://www.aclweb.org/anthology/W11-2902.

Alexander Koller and Marco Kuhlmann. 2012.
Decomposing TAG algorithms using simple
algebraizations. In Proceedings of the 11th
International Workshop on Tree Adjoining
Grammars and Related Formalisms (TAG+11).
http://aclweb.org/anthology/W/W12/W12-
4616.pdf.

Slav Petrov and Dan Klein. 2007. Improved in-
ference for unlexicalized parsing. In Human
Language Technologies 2007: The Confer-
ence of the North American Chapter of the
Association for Computational Linguistics.
http://www.aclweb.org/anthology/N/N07/N07-
1051.

Andreas van Cranenburgh. 2012. Efficient parsing with
linear context-free rewriting systems. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics.
http://aclweb.org/anthology/E12-1047.

Yi Zhang and Hans-Ulrich Krieger. 2011. Large-
scale corpus-driven pcfg approximation of an
hpsg. In Proceedings of the 12th Inter-
national Conference on Parsing Technologies.
http://www.aclweb.org/anthology/W11-2923.

127


