Effective Online Reordering with Arc-Eager Transitions

Ryosuke Kohita

Hiroshi Noji

Yuji Matsumoto

Graduate School of Information Science
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{kohita.ryosuke.kj9, noji, matsu}@is.naist.jp

Abstract

We present a new transition system with
word reordering for unrestricted non-
projective dependency parsing. Our sys-
tem is based on decomposed arc-eager
rather than arc-standard, which allows
more flexible ambiguity resolution be-
tween a local projective and non-local
crossing attachment. In our experiment
on Universal Dependencies 2.0, we find
our parser outperforms the ordinary swap-
based parser particularly on languages
with a large amount of non-projectivity.

1 Introduction

A dependency tree as illustrated in Figure 1 is
called a non-projective tree, which contains dis-
continuous subtrees and is informally remarked
with crossing arcs (arcs from ideay to talkings
and from whos to tog). Comparing to the class
of projective trees, which has a weak equivalence
to the context-free grammars (Gaifman, 1965),
parsing non-projective trees is generally involved.
This is particularly the case for transition-based
dependency parsing; contrary to the graph-based
approaches, in which a simple spanning-tree al-
gorithm is capable of handling them (McDon-
ald et al., 2005), due to the incremental nature,
transition-based parsers need some extra mecha-
nisms to find crossing arcs.

There are several attempts to handle crossing
arcs in transition-based parsers. Among them
online reordering with swap (Nivre, 2009) has a
number of appealing properties, of which the most
notable is that it inherits the standard architecture
of the transition systems using a stack and buffer
while covering all types of crossing arcs. This
simplicity allows us to incorporate the ideas de-
veloped for the standard projective parsers, such

88

as neural network architectures (Chen and Man-
ning, 2014; Dyer et al., 2015), and joint modeling
with other phenomena (Hatori et al., 2011; Hon-
nibal and Johnson, 2014), with a minimal effort.
Such extensions with swap include a recent non-
projective neural parser (Straka et al., 2015) and
joint system with POS tagging (Bohnet and Nivre,
2012). Other approaches often employ additional
data structures with non-trivial transitions (Cov-
ington, 2001; Choi and McCallum, 2013; Pitler
and McDonald, 2015), which interfere with the
transparency to the standard systems, or cannot
handle all crossing arcs (Attardi, 2006).

Despite the popularity of the swap system, to
our knowlege there is little work focusing on the
swap mechanism, or the transition system itself,
apart from the original proposal (Nivre, 2009;
Nivre et al., 2009). In other words, we are still
unsure whether the current swap mechanism is the
best strategy for handling crossing arcs with word
reordering.

In this work, we present a dependency parser
with a new transition system that employs swap-
based reordering but in a different manner from
the existing one (Nivre, 2009) built on the arc-
standard system. As we discuss (Section 2.2), in
Nivre’s transition system, choosing a correct swap
transition is sometimes hard due to the parser’s
preference to local attachments. The proposed
system (Section 3) alleviates this difficulty by al-
lowing a swap transition for a token that is already
linked on the stack. As we will see, it can be seen
as an extension to the arc-eager system (Nivre,
2003) while we divide each attachment transition
into two more primitive operations as in the di-
vided formulation of Gémez-Rodriguez and Nivre
(2013). The divided system is more flexible, and
by operating swap on this we can deal with the is-
sue of reordering at an appropriate step.

On this transition system we implement a pars-

Proceedings of the 15th International Conference on Parsing Technologies, pages 88-98,
Pisa, Italy; September 20-22, 2017. (©)2017 Association for Computational Linguistics

ing model with the stack LSTMs (Dyer et al.,
2015) (Section 4). We extensively examine
the utility of new transition system (Section 5)
with the recently released Universal Dependencies
(UD) 2.0 dataset, which contains more than 60
treebanks with varying degree of non-projectivity,
and find that our system is superior to the ordi-
nary swap system particularly for languages with
a larger amount of non-projectivity.

2 Background

We first introduce some notations and the concept
of transition systems (Section 2.1), and then de-
scribe the existing swap-based transition system of
Nivre (2009) (Section 2.2).

2.1 Transition System

We focus in this paper on a standard transition sys-
tem operating on a triple called a configuration
¢ = (0,0, A), where o is a stack, (3 is a buffer,
and A is a set of labeled arcs. See Nivre (2008) for
the other variants and overview. In a configuration
i-th token in a sentence is denoted by its index
while 0 denotes the special root token. Following
the standard notations, by o|i and j|3, we mean
1 and j are the top-most tokens of the stack and
buffer, respectively. We use ¢ 4 jor (i,l,7) to
denote an arc from 7 to j with label /.

Given a sentence of length n, the system be-
gins parsing with the initial configuration cg
([0],11,2,3,...n],) where only the root token is
on the stack, all inputs are on the buffer, and the set
of arcs is empty. Parsing finishes when it reaches
a terminal configuration, in which any transitions
cannot be performed, and the set of arcs A defines
a labeled dependency tree. The system continues
to make a transition decision at each step under
the current configuration until it reaches a termi-
nal configuration.

2.2 Arc-Standard Swap

Arc-standard swap system (ASS) (Nivre, 2009)
is the most popular transition system for non-
projective dependency parsing, which can handle
arbitrary crossing arcs. ASS rows in Table 1 show
the set of transitions, in which LA, RA, and SH are
the transitions of the arc-standard system, which
can only produce a projective tree by linking two
adjacent tokens on the top of the stack. Swap (SW)
is the key transition to support non-projectivity,
which reorders the top two tokens on the stack by

&9

moving the second top token back to the buffer.
Reducing a reordered token by LA or RA means
we create subtrees that are non-adjacent with each
other, i.e., crossing arcs.

One potential issue in ASS is its tendency to
prefer local attachments due to the mechanism of
LA and RA, which at the same time reduce the de-
pendent token. This is problematic in that because
crossing arcs often involve a longer dependency
arc, if two tokens on the stack are locally likely to
be connected, choosing correct SW rather than LA
and RA is quite difficult.

To see an example, let us consider the configu-
ration in Figure 2 (¢ = (o|who|talking,to|3, A)),
which occurs when parsing the sentence in Fig-
ure 1. The correct action here is SW to create a
crossing arc talkings oL, whos. However, at this
point LA is a more likely transition since talkings

oL, whos is a typical arc in a relative clause. The
problem is that since LA reduces talking, we will
miss the arc whos —=5 tog if we choose LA rather
than SW.

3 New System: Stay-Eager Swap

Now we describe our proposed transition system,
which we call Stay-Eager Swap (SES). We first
present the transitions and its advantage (Section
3.1), and then discuss oracles (Section 3.2) and
some improvements (Section 3.3).

3.1 Transition System

SES rows in Table 1 show the set of transitions
of the new system. To understand the mechanism,
we first note that without SW, this system looks
very much similar to the arc-eager transition sys-
tem (Nivre, 2003). The main difference from the
original one is in the attaching transitions, which
we call STAY-LEFT (SL) and STAY-RIGHT (SR)
and do not reduce a dependent token, but just es-
tablish an arc between two tokens on the stack top
and buffer top. Specifically, this system is identi-
cal to the divided arc-eager transition system with
the primitive operations in Gémez-Rodriguez and
Nivre (2013); in the arc-eager system, LEFT-ARC
first builds an arc and then reduces the top of the
stack, i.e., it is a combination of SL — RD (re-
duce) in our system, while RIGHT-ARC builds an
arc and shift the top token of the buffer, i.e., it can
be seen as SR — SH.!

' To make this system without SW to fully mimic the
original arc-eager system, we need a constraint to prohibit

punct

ROOTy haves ideay

L

nos

whos

D

tog

yousg talkings

arer
ROOT PRON VERB DET NOUN PRON PRON AUX VERB ADP PUNCT

Figure 1: A non-projective sentence.

Transition ‘ Current configuration =- Resulting configuration ‘ Condition
LEFT-ARC; (LA) | (o]il, B, A) = (oli, B, AU{GLDY) | i#0
ASS RIGHT-ARC; (RA) | (dlilj, B, A) = (oli, B, AU{(E-5)})
SHIFT (SH) (o, 1|8, A) = (oli, B, A
SWAP (SW) (alilg, B, A) = (a4, 1B, A) 0<i<y
STAY-LEFT; (SL) (oli, 418, A) = (oli, 418, AU{{y, LD} PiAOAN(,i) g AN S ¢ A
STAY-RIGHT; (SR) (U‘Z]|ﬁ~ A) = (‘7'7”]|ﬁv AU{(i,l,j)}) (7’]) ¢ A/\j = (¢ A
SES SHIFT (SH) (o, i|8, A) = (oli, B, A
REDUCE (RD) (oli, B, A) = (o, B8, A) (i) €A
SWAP (SW) (oli, 418, A) = (o, jli|B, A) 0<i<y
AUX UNSHIFT (UN) (o, 1, 4) = (o, [i], A) (i) ¢ A
RIGHT-ROOT (RR) | ([0,7] [, A) = ([0], I, Au{(0,ro0t,i)}) | (-,-,i) ¢ AA(0,root,i) ¢ A

Table 1: The set of transitions for arc-standard swap (ASS) and stay-eager swap (SES). -
i) ¢ AmeansVj.Vh.(j, h,i) ¢ A(i’s headis unspecified). i — j ¢ A

means an arbitrary value, e.g., (-, -,

in conditions

means a path from ¢ to 5 does not exist, which is needed to guarantee acyclicity.

|dea_ talklng

Stack

[dea who, talkmg - /
SW $ |dea talkmg m

M talkmg to, . —} talklng to, .

....... 1“

ta\kmg who to, .

Figure 2: A configuration difficult for ASS
(above), which fails when LA is selected (SW is
correct). Our system avoides this difficulty by first
attaching who to talking (SL) and then SW (be-
low). Dotted arcs are correct arcs yet unattached.

We allow SW at an arbitrary point. This means
we can insert SW just after SL and SR, by which
we can alleviate the difficulty with an attachment
vs. swap transitions discussed in Section 2.2. Fig-

SL — SH and SR — RD, which cause a configuration never
reached by the original one. For simplicity we do not impose
such constraint. Rather, since our oracles prefer RD over SH
by default it is not uncommon to explore such configurations
during training.

90

ure 2 shows how our system can swap after resolv-
ing local projective attachments.

3.2 Static and Non-static Oracles

An oracle for a transition system is a function from
a configuration to the action that leads to a given
dependency tree. Before discussing in details, we
first note that our system suffers from the spuri-
ous ambiguity as in the arc-eager system (Gold-
berg and Nivre, 2012), which means an oracle for
some configurations is not unique.

Table 2 shows a specific oracle, which checks
for each action in descending order whether the
current configuration satisfies the condition, and
select the first found one. 2 3

The priority of attaching transitions over SW is also
helpful to avoid unnecessary SW transitions for nested non-
projective structures. For example in Figure 1, if fog has a
child node x4 5 at the left to whos and SW is preferred than
SL and SR, it causes an additional crossing between ralkings
— whos and fog — x4.5. This is not the case for our ora-
cle because talkinge — whos has been already attached and
1sCross(i, 7) ignores such attached arcs.

3The function isCross(i, j) for SW could be defined like
ASS style which reorders by projective order (Nivre, 2009).
However their projective orders are different: for example in
Figure 1, while tog comes up at sixth word for ASS, whos
goes down at eighth word for SES. In this paper, we could
not reach the detailed description and formal definition of
projective order for SES, but they are the one of important

Transition [Configuration Condition

STAY-LEFT;, (s, 418, A) (4,1,1) € Ag

STAY-RIGHT; | (oli,j|8,A) (i,1,5) € A,

SWAP (oli, 418, A) isCross(i, j)

REDUCE (oli, B,A) (1) € AANVRNG.((3,h,j) € Ag — (i,h,j) € A)
SHIFT (o, 71B,A) ViVIL((4,1,i) € AgNj<i)— (j,l,i) e A

! isCross(i, j) returns true if 4 and j are two endpoints of two crossing arcs yet unattached.

Formally: (3b.b € B A ((b,-,i) € Ag A (b,

4))

Table 2: A static oracle for our transition system. A, is the set of gold arcs.

= e

ROOT, elokuvaa; ldhdetddns tekeméddns Maltalley .

Figure 3: A non-projective sentence of Finnish.

t Transition Stack Buffer Added Arc
0 0] 1,2,3,4,5]

1 SH 0,1] 2,3,4,5]

2 SW 0] 2,1,3,4,5]

3 SR 0] 2,1,3,4,5] (0, root, 2)
4 SH 0,2] 1,3,4,5]

5 SH 0,2,1] [3,4,5]

6 SL 0,2,1] [3,4,5] (3, 0bj, 1)

7 RD 0, 2] 3,4,5]

8 SR 0,2] 3,4,5] (2, xcomp, 3)
9 SH 0,2,3] [4,5]

10 RD 0,2] 4, 5]

11 SR 0,2] 4, 5] (2, nmod, 4)
12 SH 0,2,4] [5]

13 SR 0,2,4] [5] (4, punct, 5)
14 RD 0, 2] 5]

15 SH 0,2,5]]

16 RD 0, 2]]

17 RD 0]]

Table 3: Static oracle transitions by our system for
the sentence in Figure 3.

This is a static oracle in that it is a determinis-
tic function given a configuration. Table 3 shows
the oracle transitions by this for the sentence in
Figure 3. In addition to the static oracle, we also
try a partially non-static oracle, which occasion-
ally prefers SH over RD when both are applica-
ble. Specifically, for this oracle when both condi-
tions for SH and RD are satisfied we choose SH
with some probability. This allows the parser to
learn the transitions that postpone RD when pos-
sible, but stochastically, which we found effective
in many languages in practice. This is a partially
non-static oracle since it does not postpone the
other transitions such as SL and SR. Designing

future works.

91

)¢A\/(,,b) EAQ/\(iv'7b) ¢

A(3s.seaA((s,,]) € Ag A (s, ,j)§§A\/(]77)€ Ag A (7,-,8) & A)).

- means an arbitrary value.

such oracle could also be possible; for example, in
Figure 2, we can also build the gold tree by SW
followed by SH and SR. We leave such fully non-
static oracle as well as the dynamic oracle (Gold-
berg and Nivre, 2012) as a future work.

3.3 Auxiliary transitions

Our system employs the following two additional
transitions (AUX in Table 1), which can be applied
in restricted conditions.

UNSHIFT The arc-eager system is not guaran-
teed to output a single rooted tree, i.e., it may keep
unconnected tree fragments in the stack while the
buffer is empty (Nivre, 2008). Then, a parser
becomes stack because no actions are permissi-
ble before reaching a terminal configuration, and
our system suffers from the same issue. To es-
cape from this, we employ the same hack as Nivre
and Ferndndez-Gonzdlez (2014) and add a special
transition UN, which pushes back the stack top
node to the empty buffer. We only apply UN at de-
coding. It is deterministically chosen in the con-
figuration ¢ = ([n],[], A ¢ (-,-,n)), so does not
have any associated score.

RIGHT-ROOT This is our new transition to im-
prove the root attachment accuracy for arc-eager.
The arc-eager system attaches the sentence root
to the special ROOT eagerly immediately after it
collects all its left dependents, but this decision
is sometimes hard for some types of garden-path.
The purpose of RR is to postpone the decision of
this root token until the terminal configuration, as
in the arc-standard system.

To be concrete, during training, we allow the
parser to select SH with some probability when the
gold transition is SR,,.:. This eventually leads to
a terminal configuration where the sentence root
token not attached to ROOT remains on the stack.
RR is used only for this configuration, also dur-
ing decoding. Note that unlike UN, the parser ex-

plores this transition during training and learns the
parameters associated with it. We hope by this
the parser becomes capable of postponing the de-
cision on the root token during decoding when it
seems ambiguous locally. We use this transition
only with the non-static oracle.

4 Parser Model

A model of a transition-based parser calculates
the score of each transition at the current config-
uration. Our model is basically the stack-LSTM
parser (Dyer et al., 2015)*, which we slightly
customize from the original architecture (Section
4.2). In this work we focus our attention on the
incremental setting, in which the model is not able
to access the full tokens in the buffer. With re-
gard for transition-based parsers this is practically
a more important scenario where the graph-based
parser is not applicable.

4.1 Stack-LSTM parser

We first briefly describe the original model in Dyer
et al. (2015) designed for the arc-standard system.
For a configuration ¢; at time ¢, the parser main-
tains the three vector representations, s; that en-
codes the stack, b; the buffer, and a; the action
history. Each of them is modeled with a stack
LSTM, an LSTM that supports push and pop op-
erations by keeping the representations of interme-
diate time steps. The stack LSTM for s; is left-to-
right while that for b, is right-to-left. a; encodes
the entire action history from the initial action to
the last action. Using these representations we en-
code the configuration into a single vector:

Pt = ReLU(W/sy; by ai] +ey),

where W is the parameters. Here and the follow-
ings e, denotes a bias vector.

Using this the probability for each valid transi-
tion z; is obtained with restricted softmax:

exp(glpr + ¢z,)
Y eAe) P& P+)

p(ztlpt) = >

where g, is the parameters and ¢, is the bias term
for action z. The set .A(c;) returns the set of valid
transitions on ¢;. After each transition we update

“Please refer Ballesteros et al. (2015), Ballesteros et al.
(2016), Ballesteros et al. (2017) for the latest version which
is sophisicated in some architectures (e.g. character informa-
tion, dynamic oracle).

92

St+1, bey1, and az41 accordingly following the
new configuration.

For the buffer, each element of the LSTM is a
token representation, which Dyer et al. (2015) ob-
tains from the word and POS embeddings. by is
then the last output of the LSTM.

For the stack, each element of the LSTM is a
compositional representation of a subtree, or a to-
ken if it is just a shifted one. The subtree repre-
sentation of the stack element is updated in a re-
cursive manner. In Dyer et al. (2015) when LA or

RA builds an arc h - d, the representation h for
the subtree rooted at / is updated by:

h' = tanh(Ulh; d;1] + ey,), (D

in which d is the representation for the subtree
rooted at d, 1 is the label embeddings. s; is then
updated by popping the top two elements of the
stack LSTM, h and d, and pushing h'.

4.2 Modifications

We modify the above basic architecture in the fol-
lowing three ways.

Configuration encoding This is a restriction
that we impose on the model. While the original
model exploits the entire sentence for the buffer
representation b; using the LSTM, this violates
our assumption of incrementality, the main advan-
tage of the transition-based parsers. We thus avoid
to use b, and instead use the representations of top
three nodes on the buffer: b1l;, b2;, and b3;. We
also use the representations of the top three nodes
(subtrees) on the stack, s1;, s2;, and s3;, which
we found effective. The new encoding is:

0 = W{s;; a;;814; 524583, bly; b2, b3y + e,
p: = ReLU(o).

Token representation Many languages in UD
are annotated with XPOS, fine language specific
tags, as well as FEATS, the morphological fea-
tures. We utilize the embeddings of these features,
initialized randomly. We also add character em-
beddings, which we obtain from character-level
bidirectional LSTMs. Our token representation is:

x = ReLU(V]w; t; tx; f; wep] + €x),

where w, t, tx, and f are word, POS, XPOS, and
FEAT embeddings, respectively. w; is the out-
put of linear mapping from the concatenation of
the last hidden states of the forward and backward
character-level LSTMs.

Composition This is the only modification
needed to obtain the stack representation in our
stay-eager transition system. The subtree repre-
sentation in Dyer et al. (2015) is fully composi-
tional in that h in Eq. 1 encodes the entire subtree
with the recursive network. This is possible es-
sentially because of the bottom-up nature of the
arc-standard system. Unfortunatelly the same en-
coding is not straightforward in our system due to
its arc-eager property, in which the right arcs are
constructed top-down (Nivre, 2004). In this work,
we give up the full compositionality of the original
model, and simply mimic Eq. 1 with the following
equation:

2)

We update the node representation of both of the
stack top and the buffer top. This means that apart
from the original model we also update the de-
pendent node with composition. In the equation,
¢’ is the updated representation of the head or
the dependent after SR or SL, which is originally
c. For example, after SL, since the stack top be-
comes dependent, its representation (d) is updated
to tanh(U[h;d;r;d] + ep). Note that without ¢
in Eq. 2, the representations of two updated nodes
are identical. The role of c is thus to distinguish
the two updates for h and d.

¢’ = tanh(Ulh; d;1;c] + ep).

S Experiment

Data We use the 63 treebanks in 45 languages in
Universal Dependencies 2.0 (Nivre et al., 2017),
which are distributed with the training data in
the recent shared task in CoNLL 2017 (Zeman
et al., 2017).5 Following the shared task, we fo-
cus on real world parsing and assume the raw in-
put text. For all preprocessing (sentence segman-
tion, tokenization, and tagging), we use UDpipe
1.1 (Straka et al., 2015). We report the official F1
LAS used in the shared task.

Baseline To make a comparison between transi-
tion systems fair, we implement the arc-standard
lazy swap (ASS) parser (Nivre et al., 2009) with
almost the same settings as our stay-eager swap
(SES) parser including our network architecture
(Section 4.2).5 We also report the scores of UD-

3For small treebanks without the development set, we ran-
domly divide the training data at 1:9 ratio for development
and training.

% This baseline is competitive to or stronger than the
original implementation of Dyer et al. (2015), which also

93

pipe 1.1, the baseline system in the shared task, al-
though the results may not be directly comparable
as they tune several settings including the oracle
and learning rate etc. for each language.

Settings Our network sizes are: 100 dimen-
sional word embeddings and LSTMs, 50 dimen-
tional POS, XPOS, and FEATS embeddings, and
20 dimensional action and label embeddings, and
32 dimensional character embeddings and bi-
LSTMs. We do not use any pre-trained embed-
dings. We use Adam (Kingma and Ba, 2014) for
the optimizer, and set the learning decay of 0.08
and the dropout ratio in LSTMs of 0.33.

In addition to the greedy search, we also try
beam search for learning and decoding (beam size
is 8). Note that due to swap, each transition se-
quence may have a different number of actions.
We alleviate this inconsistency by ranking with the
average scores (Honnibal and Johnson, 2014).7

For non-static oracles, we set both probabilities
to postpone RD and SR, to 0.33, which works
well for the development set.

Results The main results are shown in the left
columns of Table 4. Comparing to ASS, our non-
static SES achieves the higher LAS on average,
regardless of search method. In more detail, it is
on about half treebanks (27 for greedy and 28 for
beam search) that the score improvements from
ASS are more than 0.5 points. Also the static SES
is not stronger, suggesting that non-static explo-
ration during training is important for our system.
Focusing on the results on only non-projective
sentences (right columns), the score improve-
ments get larger: the average LAS difference be-
tween non-static SES and SAS is 1.54 points with
greedy search, and 1.18 points with beam search.
To further inspect the parser behaviors on non-
projective and projective sentences, we next com-
pare the average LAS on a subset of treebanks,
which we divide into four groups according to

implements arc-standard swap (https://github.com/clab/Istm-
parser). Example UAS on development sets (with gold tags)
are: Arabic: 80.83 (Dyer et al.) vs. 82.01 (ours); English:
86.71 (Dyer et al.) vs. 85.28 (ours); and German: 82.87 (Dy-
ers et al.) vs. 84.45 (ours). Both employ greedy search. Note
that our system does not use the buffer LSTM.

7 For learning, we find the following heuristics inspired by
max-violation (Huang et al., 2012) works well. Our training
is basically local with cross-entropy while for each sentence
we calculate the max violation point by beam search and use
only the prefix until that point. Although this is simpler than
global structured learning (Andor et al., 2016), it provides
some improvements with much faster training time.

All sentences Only non-projective sentences
Language Non-proj ratio ASS ' SES ' UDpipe ASS ' SES ' UDpipe
static non-static static non-static
gre 64.40% 49.18 (51.28) 50.00 (53.04) 50.10 (53.85) 56.04 | 45.54 (47.54) 46.57 (49.89) 46.73 (50.72) 52.83
la 47.50% 37.78 (37.82) 38.32(42.50) 41.22(43.27) 4377 | 32.64 (32.19) 32.76(37.60) 35.51(37.31) 3822
gre_proiel 37.92% 60.67 (63.74) 60.92 (64.69) 60.66 (63.77) 6522 | 54.57 (58.37) 56.15(60.58) 56.61 (60.28) 60.77
la_ittb 35.87% 72.29 (75.20) 71.98 (75.01) 72.61(75.64) 7698 | 67.07 (71.10) 67.56 (70.56) 67.31(72.03) 72.14
eu 31.80% 66.61 (67.67) 65.68 (67.66) 65.74 (68.96) 69.15 | 58.98 (60.01) 58.15(60.86) 58.49(62.21) 61.46
en_lines 29.54% 70.37 (72.16) 71.71(72.59) 71.98 (73.02) 7294 | 65.07 (66.96) 66.86 (67.30) 66.12 (67.69) 67.83
la_proiel 28.30% 50.56 (54.38) 53.71(54.72) 53.87 (56.18) 57.54 | 45.80(48.98) 48.52(50.37) 48.98 (51.44) 53.22
nl_lassysmall 28.13% 76.48 (76.25) 77.35(77.78) 77.63 (77.83) 78.15 | 71.76(71.58) 73.90(74.52) 75.36 (73.88) 74.12
pt 23.69% 77.12 (78.01) 74.89(75.49) 75.07(77.75) 82.11 | 71.06(72.42) 70.01 (70.87) 69.54 (71.37) 77.04
de 23.23% 65.11 (66.94) 63.35(66.64) 65.13 (66.83) 69.11 | 62.30 (64.51) 61.90 (64.53) 62.83(64.99) 66.66
gl_treegal 23.00% 62.51 (63.78) 64.09 (63.66) 64.55 (64.48) 6582 | 60.51(62.51) 63.38(62.28) 63.23(62.94) 64.30
nl 22.92% 64.56 (65.69) 62.87 (66.86) 64.26 (67.99) 68.90 | 61.52(63.79) 61.66(67.03) 63.07 (66.33) 68.30
got 22.67% 54.07 (57.40) 55.46 (57.71) 56.66 (58.25) 59.81 | 47.04 (50.99) 48.73(52.13) 49.44 (52.28) 53.45
hu 21.60% 61.64 (62.72) 60.61 (62.44) 61.94 (63.45) 64.30 | 56.79 (57.83) 56.18(59.95) 57.22(60.18) 60.05
S 18.93% | 58.50(60.41) 61.17 (62.77) 60.66(63.62) 62.76 | 51.25(54.44) 53.23 (58.40) 54.44 (58.57) 5621
ur 18.88% 7591 (76.70) 75.46 (76.46) 75.85(76.49) 76.69 | 69.50 (71.22) 69.61 (70.69) 70.06 (71.38) 71.45
sv_lines 18.38% 71.48 (72.77) 71.18 (72.58) 72.14(73.95) 7429 | 63.43 (65.56) 64.90(65.77) 65.84 (67.05) 67.24
et 16.87% 56.02 (56.26) 56.33 (56.57) 56.10(57.64) 58.79 | 48.12(47.91) 47.88(49.42) 49.42(51.05) 52.32
da 16.46% 70.23 (72.03) 69.63 (70.24) 70.38 (72.31) 73.38 | 65.05(67.83) 64.30(66.07) 66.11 (69.15) 68.27
sl 15.99% 78.58 (79.85) 78.72(79.49) 78.72(79.95) 81.15 | 75.18(75.59) 75.11(76.73) 74.11(78.28) 78.56
cs_cltt 15.76% 68.78 (68.66) 69.97 (70.06) 70.52 (71.30) 71.64 | 63.95(64.15) 65.82(66.12) 66.69 (65.85) 68.59
cs_cac 12.74% 79.92 (81.56) 80.10 (81.20) 79.42(81.18) 82.46 | 74.47(75.43) 75.16(76.38) 74.52(76.76) 77.34
hi 12.53% 85.29 (85.82) 84.22(85.56) 84.38(85.79) 86.77 | 82.05(82.56) 81.06(83.35) 81.98(83.40) 83.54
sl_sst 12.18% 41.45(42.67) 42.40 (44.15) 41.69 (44.40) 46.45 | 36.06 (37.91) 38.79 (41.10) 37.76 (40.71) 4245
tr 12.10% 52.67 (51.56) 52.00(52.54) 52.78(52.49) 53.19 | 41.88(41.97) 42.46(43.23) 44.68 (41.59) 4250
cs 11.98% 77.82 (80.43) 78.13(79.62) 78.01(80.36) 82.87 | 73.57(77.03) 74.95(77.10) 74.54(77.69) 80.47
el 11.62% 76.89 (78.31) 76.67 (77.72) 77.73 (78.67) 79.26 | 76.56 (75.36) 76.02(77.34) 75.66(77.22) 77.52
ar 11.62% 63.79 (64.80) 64.97 (65.04) 64.27 (64.74) 6530 | 55.58 (57.69) 57.65(57.57) 56.82(57.21) 58.24
kk 11.56% 21.83 (21.75) 18.43(19.59) 20.08 (22.84) 24.51 | 15.65 (15.49) 11.85(12.41) 12.86(15.44) 16.46
fr 11.54% 78.05 (79.52) 77.70 (78.86) 77.97 (79.43) 80.75 | 75.14(75.59) 72.99 (76.50) 74.52(77.18) 78.03
ca 10.94% 82.94 (83.86) 83.28 (84.02) 83.40(84.33) 85.39 | 78.01(78.83) 78.35(79.40) 78.97(78.76) 80.07
ga 10.13% 58.58 (60.29) 60.50 (61.30) 61.34 (62.03) 61.52 | 56.14 (59.11) 58.89(59.45) 59.89(59.89) 60.34
es 10.09% 79.48 (80.42) 79.64 (80.81) 79.71(80.49) 81.47 | 77.14(78.49) 76.83(78.69) 78.49 (78.33) 79.57
E 9.74% | 76.66(78.25) 77.51(78.34) 77.75(78.92) 79.88 | 73.01(74.78) 71.07 (74.48) 73.96 (74.17) 76.16
es_ancora 9.65% 81.43(83.18) 81.99(82.88) 81.72(83.21) 83.78 | 75.74(77.31) 76.56 (77.04) 75.22(78.09) 77.37
ko 9.61% 73.70 (74.24) 72.11(72.80) 72.33(73.39) 59.09 | 65.50 (65.22) 63.02(65.09) 63.02(64.12) 47.56
ru 9.48% 71.08 (73.84) 72.49 (73.33) 72.17(74.85) 74.03 | 58.79 (61.80) 62.84 (62.17) 62.84 (64.24) 63.31
ru_syntagrus 9.21% 83.89(85.33) 84.26 (84.95) 84.17(85.42) 86.76 | 78.42(79.55) 78.97(80.03) 79.16(80.42) 82.24
no_nynorsk 9.20% 78.69 (79.52) 78.26 (78.78) 78.13(79.56) 81.56 | 72.62(74.25) 74.88 (73.71) 74.01(75.90) 77.23
hr 9.17% 73.74 (76.08) 73.47 (75.63) 73.61(75.41) 77.18 | 67.63(70.20) 64.86(71.32) 66.58 (70.73) 72.12
fr_sequoia 8.77% 77.22 (78.69) 77.09 (77.61) 78.19 (79.16) 79.98 | 73.91(73.91) 74.58(73.42) 73.29(76.05) 76.35
uk 7.95% 57.85(58.67) 58.97(59.84) 59.80(61.23) 60.76 | 50.63 (52.37) 52.42(53.51) 52.10(55.04) 54.55
no_bokmaal 7.63% 79.81(80.69) 79.75(80.37) 80.36 (81.31) 83.27 | 73.00(73.28) 73.28 (74.01) 73.37 (75.40) 76.98
fa 7.17% 74.83 (77.89) 74.61(77.42) 7594 (77.87) 79.24 | 67.59 (73.42) 69.42(72.61) 72.95(74.64) 74.78
fi_ftb 7.02% 70.95 (73.15) 71.07 (72.03) 71.30(72.75) 74.03 | 61.66 (66.13) 66.01 (67.56) 65.12 (68.04) 66.85
v 6.64% 55.54(57.10) 54.50 (56.76) 56.47 (57.35) 59.95 | 46.56 (47.83) 48.62(49.25) 49.49 (50.20) 53.83
fi 6.24% 71.55 (72.37) 70.45(72.62) 71.53(72.18) 73.75 | 65.95(67.94) 68.26 (68.74) 68.31 (67.56) 65.79
id 5.75% 71.48 (73.78) 72.17 (74.16) 72.49 (74.04) 74.61 | 62.20(67.20) 64.43 (66.49) 65.50 (67.38) 66.13
R 4.98% | 83.06(84.68) 83.61 (84.30) 83.74(84.92) 8528 | 73.86(77.20) 74.47(76.29) 7579 (75.08) 7791
pt_br 4.90% 83.59 (84.39) 83.38(83.92) 83.35(84.04) 8536 | 74.86(76.47) 73.24(75.25) 75.40(75.35) 76.57
ug 4.78% 31.54(34.02) 33.09(33.04) 34.40(34.57) 34.18 | 23.49(25.44) 24.01(23.23) 25.83(27.13) 25.05
sk 4.34% 70.13 (70.76) 70.76 (70.99) 70.71 (70.69) 72.75 | 62.65 (64.85) 66.80 (64.59) 63.81 (68.35) 68.35
fr_partut 4.25% 75.86 (76.47) 76.81(77.10) 77.43(77.97) 77.38 | 70.48 (71.01) 71.01(75.07) 69.60 (72.60) 70.13
en_partut 4.00% 71.00 (72.61) 71.04 (72.43) 71.78 (73.44) 73.64 | 65.95(68.11) 66.52 (67.39) 66.95(69.40) 68.97
en 3.71% 72.53 (73.56) 72.51(73.81) 72.29(73.90) 75.84 | 59.12(61.13) 58.95(63.04) 62.66 (61.95) 63.96
vi 3.25% 36.37(36.37) 36.11(37.00) 36.68 (37.47) 37.47 | 32.17(31.98) 33.72(33.14) 35.27 (31.98) 31.59
bg 2.87% 81.24 (82.02) 79.92(81.32) 80.58(81.79) 83.64 | 80.00 (79.67) 76.49 (80.67) 77.66 (78.66) 80.33
sV 2.30% 74.09 (74.67) 73.65(74.29) 74.24(75.35) 76.73 | 69.94 (66.34) 68.42(69.53) 69.94 (69.67) 71.19
he 1.83% 55.02 (56.58) 54.91(56.21) 56.33(56.90) 57.23 | 55.34(59.92) 52.29(56.11) 61.07 (61.45) 61.45
zh 1.40% 53.55(55.23) 51.65(53.94) 51.93(53.11) 57.40 | 42.11(47.24) 42.88(45.70) 45.96 (45.19) 50.58
pl 0.27% 76.80 (78.02) 77.70 (78.09) 77.26 (77.75) 78.78 | 66.67 (68.75) 81.25(81.25) 83.33(70.83) 66.67
gl 0.00% 76.16 (77.43) 77.24(77.68) 77.04(78.35) 77.31 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00
ja 0.00% 71.47 (72.38) 63.91(68.59) 66.96 (71.77) 72.21 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00
Average. 13.76% 67.59 (68.93) 67.56 (68.88) 68.05(69.55) 70.34 | 59.51(61.18) 60.28 (61.98) 61.05(62.36) 62.75

Table 4: LAS of all sentences and of only non-projective sentences ordered by the ratio of non-projective
sentences in the test data. The scores in brackets are the results with beam search.

94

SES

Sentence Non-proj ratio ASS - - UDpipe
static non-static
HIGH 62.07 (63.79) 62.21 (64.34) 62.96 (65.09) 66.42
All MID 67.27 (68.30) 67.39 (68.35) 67.64 (69.05) 69.93
LOW 73.23 (74.85) 73.25 (74.50) 73.73 (75.11) 75.19
VERYLOW 67.49 (68.61) 67.09 (68.18) 67.65 (68.80) 69.68
HIGH 66.38 (67.91) 66.13 (67.92) 66.85 (68.80) 70.25
Projective MID 68.35 (69.27) 68.32(69.14) 68.59 (69.90) 70.81
LOW 74.17 (75.73) 74.09 (75.31) 74.57 (75.87) 76.06
VERYLOW 67.91 (68.96) 67.46 (68.53) 68.01 (69.14) 70.07
HIGH 57.19 (59.20) 58.02 (60.61) 58.60 (60.98) 62.17
Non-projective MID 62.04 (63.27) 62.41(63.99) 63.02 (64.50) 65.22
LOW 66.21 (68.35) 67.28 (68.63) 67.66 (69.47) 68.75
VERYLOW 59.74 (61.39) 60.77 (62.40) 62.56 (62.13) 62.52

' HIGH (20%-) : grc, la, grc_proiel, la_ittb, eu, en_lines, la_proiel, nl_lassysmall, pt, de, gl_treegal,

nl, got, and hu.

2 MID (10%-20%) : cu, ur sv_lines, et, da, sl, cs_cltt, cs_cac, hi, sl_sst, tr, cs, el, ar, Kk, fr, ca, ga,

and es.
SLoW (5%-10%) :
no_bokmaal, fa, fi_ftb, lv, fi, and id.

ro, es_ancora, ko, ru, ru_syntagrus, no_nynorsk, hr, fr_sequoia, uk,

4 VERYLOW (0%-5%) : it, pt_br, ug, sk, fr_rtut, en_partut, en, vi, bg, sv, he, zh, and pl.
3 ol and ja are excluded when calculating the scores of “non-projective only” (bottom rows), as
these treebanks only contain projective sentences in their test data.

Table 5: The average LAS on all, only projective, and only non-projective sentences on the grouped
treebanks according to the ratio of non-projective sentences in the test set. The scores in brackets are the

results with beam search.

the ratio of non-projective sentences (Table 5).
When evaluating on all sentences (top rows), we
can see the larger improvements by the non-static
SES in HIGH, MID, and LOW groups (having non-
negligible non-projectivity), which confirms the
above results. Interestingly, for projective sen-
tences only (mid rows) the scores of SES do not
degrade comparing to ASS, or rather improves in
all cases. This suggests our transition system also
helps to recover the projective arcs.

6 Discussion

While the ordinary reordering-based transition
system is built on the arc-standard system, we
choose arc-eager as our basic architecture. One
reason for this is that decomposing the arc-
standard system is more involved than arc-eager;
Go6mez-Rodriguez and Nivre (2013) observe the
RIGHT-ARC in arc-standard would be divided
into four transitions including a nontrivial UN-
SHIFT operation. Otherwise, we need two dif-
ferent reduce operations for each direction, which
complicates the system and learning.

Though we have seen the empirical advantage,
in terms of the reordering strategy our approach
may not be optimal. Consider the sentence in Fig-
ure 4, which we borrow from Nivre et al. (2009).
Our system needs more swap transitions than the
Nivre et al.’s swap-lazy system for this sentence.

95

| |

Figure 4: Another non-projective sentence.

In Nivre et al.’s system, swapping Who; and did>
occurs after yous is reduced as a dependent of
didy. In our system, due to the right top-down na-
ture of arc-eager, we need to build ROOTy — did>
before didy — yous. This means we also need an
additional swap between Who; and yous.

Past work shows that a smaller number of swap
transitions improves accuracies (Bjorkelund and
Nivre, 2015), and thus it is an important future
work to revise our system to minimize the nec-
essary swap transitions. Another direction might
be to incorporate our idea to postpone swap tran-
sitions into the arc-standard system, possibly with
the divided system as we did for arc-eager.

In our system each word is once attached,
shifted, and reduced, so the total number of tran-
sitions is 3n plus the number of swap transitions.
This is greater than Nivre et al.’s system, though
we expect this additional cost is not substantial
comparing to the other techniques, e.g., beam

search with larger beam sizes.

7 Conclusion

We have shown for incremental non-projective
parsing, explicitly separating the attachment and
reduce transitions alleviates the difficulty of lo-
cal decisions, and leads to higher parsing accura-
cies for both projective and crossing arcs. Non-
projectivity is prevalent in multilingual parsing be-
yond the popular languages in the current NLP
such as English and Chinese. Also incremental
parsing is essential for many online applications,
in particular the speech-oriented systems. In this
paper, we proposed an alternative to the popular
approach for incremental non-projective parsing.
There are much rooms for improvements, and this
is our first step of reconsidering the optimal mech-
anism to handle crossing arcs incrementally.

Acknowledgements

This work was supported by JST CREST Grant
Number JPMJCR1513, Japan.

References

Daniel Andor, Chris Alberti, David Weiss, Aliak-
sei Severyn, Alessandro Presta, Kuzman Ganchey,
Slav Petrov, and Michael Collins. 2016. Glob-
ally normalized transition-based neural networks.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 2442-2452.
http://www.aclweb.org/anthology/P16-1231.

Giuseppe Attardi. 2006.
tilanguage non-projective
In Proceedings of the Tenth Conference on
Computational — Natural Language Learning
(CoNLL-X). Association for Computational
Linguistics, New York City, pages 166-170.
http://www.aclweb.org/anthology/W/WO06/W06-
2922.

Experiments with a mul-
dependency parser.

Miguel Ballesteros, Chris Dyer, Yoav Goldberg, and
Noah A Smith. 2017. Greedy transition-based de-
pendency parsing with stack Istms. Computational
Linguistics .

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with Istms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Lisbon, Portugal,
pages 349-359. http://aclweb.org/anthology/D15-
1041.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration im-
proves a greedy stack Istm parser. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2005-2010.
https://aclweb.org/anthology/D16-1211.

Anders Bjorkelund and Joakim Nivre. 2015. Non-
deterministic oracles for unrestricted non-projective
transition-based dependency parsing. In Pro-
ceedings of the 14th International Conference on
Parsing Technologies. Association for Computa-
tional Linguistics, Bilbao, Spain, pages 76-86.
http://www.aclweb.org/anthology/W15-2210.

Bernd Bohnet and Joakim Nivre. 2012. A
transition-based system for joint part-of-speech tag-
ging and labeled non-projective dependency pars-
ing. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning. Association for Computational
Linguistics, Jeju Island, Korea, pages 1455-1465.
http://www.aclweb.org/anthology/D12-1133.

Dangi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language

Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740-750.
http://www.aclweb.org/anthology/D14-1082.

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with selec-
tional branching. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Sofia, Bulgaria, pages
1052—-1062. http://www.aclweb.org/anthology/P13-
1104.

Michael A. Covington. 2001. A fundamental algorithm
for dependency parsing. In In Proceedings of the
39th Annual ACM Southeast Conference. pages 95—
102.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334-343.
http://www.aclweb.org/anthology/P15-1033.

Haim Gaifman. 1965. Dependency sys-
tems and phrase-structure systems. In-
formation and Control 8(3):304 — 337.

https://doi.org/http://dx.doi.org/10.1016/S0019-
9958(65)90232-9.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for arc-eager dependency parsing. In Proceed-
ings of COLING 2012. The COLING 2012 Orga-
nizing Committee, Mumbai, India, pages 959-976.
http://www.aclweb.org/anthology/C12-1059.

Carlos Go6mez-Rodriguez and Joakim Nivre.

2013. Divisible transition systems and
multiplanar dependency parsing. Com-
putational Linguistics 39(4):799-845.

http://www.aclweb.org/anthology/J/J13/J13-
4002.pdf.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2011. Incremental joint pos tagging
and dependency parsing in chinese. In Proceedings
of 5th International Joint Conference on Natural
Language Processing. Asian Federation of Natural
Language Processing, Chiang Mai, Thailand, pages
1216-1224. http://www.aclweb.org/anthology/I11-
1136.

Matthew Honnibal and Mark Johnson. 2014. Joint
incremental disfluency detection and depen-
dency parsing. Transactions of the Associ-
ation for Computational Linguistics 2:131-142.
https://transacl.org/ojs/index.php/tacl/article/view/234.

Liang Huang, Suphan Fayong, and Yang Guo.
2012. Structured perceptron with inexact search.

97

In Proceedings of the 2012 Conference of the
North American Chapter of the Association for
Computational Linguistics: ~ Human Language
Technologies. Association for Computational
Linguistics, Montréal, Canada, pages 142-151.
http://www.aclweb.org/anthology/N12-1015.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Ryan McDonald, Fernando Pereira, Kiril Ribarov,
and Jan Hajic. 2005. Non-projective depen-
dency parsing using spanning tree algorithms.
In Proceedings of Human Language Technol-
ogy Conference and Conference on Empirical
Methods in Natural Language Processing. As-
sociation for Computational Linguistics, Van-
couver, British Columbia, Canada, pages 523-
530. http://www.aclweb.org/anthology/H/HO5/HO5-
1066.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT). pages 149-160.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Frank Keller, Stephen
Clark, Matthew Crocker, and Mark Steedman, edi-
tors, Proceedings of the ACL Workshop Incremental
Parsing: Bringing Engineering and Cognition To-
gether. Association for Computational Linguistics,
Barcelona, Spain, pages 50-57.

Joakim Nivre. 2008. Algorithms for deter-
ministic incremental dependency parsing.
Computational Linguistics 34(4):513-553.
http://www.aclweb.org/anthology/J/J08/J08-
4003.pdf.

Joakim Nivre. 2009. Non-projective dependency
parsing in expected linear time. In Proceed-
ings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP. Association for Computa-
tional Linguistics, Suntec, Singapore, pages 351—
359. http://www.aclweb.org/anthology/P/P09/P09-
1040.

Joakim Nivre, Zeljko Agi¢, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Cristina
Bosco, Gosse Bouma, Sam Bowman, Aljoscha Bur-
chardt, Marie Candito, Gauthier Caron, Giilsen
Cebirolu Eryiit, Giuseppe G. A. Celano, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok
Cho, Silvie Cinkova, Car Coltekin, Miriam Con-
nor, Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Marhaba Eli, Ali

Elkahky, TomaZ Erjavec, Richard Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Claudia Fre-
itas, Katarina GajdoSova, Daniel Galbraith, Mar-
cos Garcia, Filip Ginter, lakes Goenaga, Koldo
Gojenola, Memduh Gokrmak, Yoav Goldberg,
Xavier Gémez Guinovart, Berta Gonzales Saave-
dra, Matias Grioni, Normunds Grizitis, Bruno Guil-
laume, Nizar Habash, Jan Haji¢, Jan Haji¢ jr.,
Linh Ha M, Kim Harris, Dag Haug, Barbora
Hladka, Jaroslava Hlavacova, Petter Hohle, Radu
Ion, Elena Irimia, Anders Johannsen, Fredrik
Jgrgensen, Hiiner Kagkara, Hiroshi Kanayama,
Jenna Kanerva, Tolga Kayadelen, Viclava Ket-
tnerovd, Jesse Kirchner, Natalia Kotsyba, Si-
mon Krek, Sookyoung Kwak, Veronika Laippala,
Lorenzo Lambertino, Tatiana Lando, Phng L& Hng,
Alessandro Lenci, Saran Lertpradit, Herman Le-
ung, Cheuk Ying Li, Josie Li, Nikola Ljubesic,
Olga Loginova, Olga Lyashevskaya, Teresa Lynn,
Vivien Macketanz, Aibek Makazhanov, Michael
Mandl, Christopher Manning, Ruli Manurung,
Citalina Maranduc, David MarecCek, Katrin Marhei-
necke, Héctor Martinez Alonso, André Martins,
Jan Masek, Yuji Matsumoto, Ryan McDonald,
Gustavo Mendonga, Anna Missild, Verginica Mi-
titelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shunsuke
Mori, Bohdan Moskalevskyi, Kadri Muischnek,
Nina Mustafina, Kaili Miiiirisep, Pinkey Nain-
wani, Anna Nedoluzhko, Lng Nguyn Th, Huyn
Nguyn Th Minh, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Petya Osenova, Lilja
@vrelid, Elena Pascual, Marco Passarotti, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Martin
Popel, Lauma Pretkalnia, Prokopis Prokopidis, Ti-
ina Puolakainen, Sampo Pyysalo, Alexandre Rade-
maker, Livy Real, Siva Reddy, Georg Rehm,
Larissa Rinaldi, Laura Rituma, Rudolf Rosa, Davide
Rovati, Shadi Saleh, Manuela Sanguinetti, Baiba
Saulite, Yanin Sawanakunanon, Sebastian Schus-
ter, Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Atsuko Shimada,
Muh Shohibussirri, Natalia Silveira, Magia Simi,
Radu Simionescu, Katalin Simké, Maria Simkova,
Kiril Simov, Aaron Smith, Antonio Stella, Jana Str-
nadova, Alane Suhr, Umut Sulubacak, Zsolt Szanto,
Dima Taji, Takaaki Tanaka, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Zdenka UreSova, Larraitz Uria, Hans Uszko-
reit, Gertjan van Noord, Viktor Varga, Veronika
Vincze, Jonathan North Washington, Zhuoran Yu,
Zden€k Zabokrtsk}’/, Daniel Zeman, and Hanzhi
Zhu. 2017. Universal dependencies 2.0 CoNLL
2017 shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre and Daniel Fernandez-Gonzalez. 2014.

Arc-eager parsing with the tree constraint. Compu-
tational linguistics 40(2):259-267.

Joakim Nivre, Marco Kuhlmann, and Johan Hall.

98

2009. An improved oracle for dependency pars-
ing with online reordering. In Proceedings
of the 1lith International Conference on Parsing
Technologies (IWPT’09). Association for Compu-
tational Linguistics, Paris, France, pages 73-76.
http://www.aclweb.org/anthology/W09-3811.

Emily Pitler and Ryan McDonald. 2015. A

linear-time transition system for crossing inter-
val trees. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 662—
671. http://www.aclweb.org/anthology/N15-1068.

Milan Straka, Jan Haji¢, Jana Strakova, and jr.

Jan Haji¢. 2015. Parsing universal dependency tree-
banks using neural networks and search-based ora-
cle. In I4th International Workshop on Treebanks
and Linguistic Theories (TLT 2015). IPIPAN, IPI-
PAN, Warszawa, Poland, pages 208-220.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-

jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Vaclava Kettnerova, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
sild, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martinez Alonso,
Cagr Coltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuo-
ran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonca, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. Conll 2017 shared task:
Multilingual parsing from raw text to universal de-
pendencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies. Association for Compu-
tational Linguistics, Vancouver, Canada, pages 1—
19. http://www.aclweb.org/anthology/K/K17/K17-
3001.pdf.

