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Abstract

Neural part-of-speech  tagging has
achieved competitive results with the
incorporation of character-based and
pre-trained word embeddings. In this
paper, we show that a state-of-the-art
bi-LSTM tagger can benefit from using
information from morphosyntactic lex-
icons as additional input. The tagger,
trained on several dozen languages, shows
a consistent, average improvement when
using lexical information, even when also
using character-based embeddings, thus
showing the complementarity of the dif-
ferent sources of lexical information. The
improvements are particularly important
for the smaller datasets.

1 Introduction

Part-of-speech tagging is now a classic task in nat-
ural language processing. Its aim is to associate
each “word” with a morphosyntactic tag, whose
granularity can range from a simple morphosyn-
tactic category, or part-of-speech (hereafter PoS),
to finer categories enriched with morphological
features (gender, number, case, tense, mood, per-
son, etc.).

The use of machine learning algorithms trained
on manually annotated corpora has long become
the standard way to develop PoS taggers. A large
variety of algorithms have been used, such as (in
approximative chronological order) bigram and
trigram hidden Markov models (Merialdo, 1994;
Brants, 1996, 2000), decision trees (Schmid, 1994;
Magerman, 1995), maximum entropy Markov
models (MEMMs) (Ratnaparkhi, 1996) and Con-
ditional Random Fields (CRFs) (Lafferty et al.,
2001; Constant and Tellier, 2012). Recently, neu-
ral approaches have reached very competitive ac-
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curacy levels, improving over the state of the art in
a number of settings (Plank et al., 2016).

As a complement to annotated training corpora,
external lexicons can be a valuable source of infor-
mation. First, morphosyntactic lexicons provide a
large inventory of (word, PoS) pairs. Such lexical
information can be used in the form of constraints
at tagging time (Kim et al., 1999; Haji¢, 2000) or
during the training process as additional features
combined with standard features extracted from
the training corpus (Chrupata et al., 2008; Gold-
berg et al., 2009; Denis and Sagot, 2012).

Second, lexical information encoded in vector
representations, known as word embeddings, have
emerged more recently (Bengio et al., 2003; Col-
lobert and Weston, 2008; Chrupata, 2013; Ling
et al., 2015; Ballesteros et al., 2015; Miiller and
Schiitze, 2015). Such representations, often ex-
tracted from large amounts of raw text, have
proved very useful for numerous tasks including
PoS tagging, in particular when used in recurrent
neural networks (RNNs) and more specifically in
mono- or bi-directional, word-level or character-
level long short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997; Ling et al.,
2015; Ballesteros et al., 2015; Plank et al., 2016).

Character-level embeddings are of particular in-
terest for PoS tagging as they generate vector rep-
resentations that result from the internal character-
level make-up of each word. It can generalise
over relevant sub-parts such as prefixes or suf-
fixes, thus directly addressing the problem of un-
known words. However, unknown words do not
always follow such generalisations. In such cases,
character-level models cannot bring any advan-
tage. This is a difference with external lexicons,
which provides information about any word it con-
tains, yet without any quantitative distinction be-
tween relevant and less relevant information.

Therefore, a comparative assessment of the ad-
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vantages of using character-level embeddings and
external lexical information is an interesting idea
to follow. However, the inclusion of morphosyn-
tactic information from lexicons into neural PoS
tagging architecture, as a replacement or com-
plement to character-based or pre-computed word
embeddings, remains to be investigated. In this
paper, we describe how such an inclusion can
be achieved and show, based on experiments us-
ing the Universal Dependencies corpora (version
1.3), that it leads to significant improvements over
Plank et al.’s (2016) state-of-the-art results.

2 Baseline bi-LSTM tagger

As shown by Plank et al. (2016), state-of-the-art
performance can be achieved using a bi-LSTM ar-
chitecture fed with word representations. Optimal
performance is achieved representing words using
the concatenation of (i) a word vector « built us-
ing a word embedding layer, called its word em-
bedding, and (ii) a representation ¢ of the word’s
characters, called its character-based embedding
built using a character-level bi-LSTM, which is
trained jointly with the word-level layers. Fur-
ther improvements can be obtained on most but
not all languages by initialising the word embed-
ding layer with pre-computed word embeddings.
We refer to Plank et al. (2016) for further details.

3 Integrating lexical information

We extend this bi-LSTM architecture with an ad-
ditional input layer that contains token-wise fea-
tures obtained from a lexicon. The input vector
[ for a given word is an n-hot vector where each
active value corresponds to one of the possible la-
bels in the lexicon. For instance, the English word
house, which is both a singular noun and a verb in
its base form, will be associated to a 2-hot input
vector. Words that are not in the lexicon are rep-
resented in the form of a zero vector. Note there
is no need for the morphosyntactic features to be
harmonized with the tagset to predict.

Figure 1 shows how the output of this input
layer is concatenated to that of the two baseline
input layers, i.e. the word embedding « and (if
enabled) the character-based embedding ¢. The re-
sult of this concatenation feeds the bi-LSTM layer.

4 Data

We use the Universal Dependencies (UD) datasets
for our experiments. In order to facilitate compar-
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Figure 1: Schema of our extension of Plank
et al.’s (2016) bi-LSTM tagging architecture for
integrating external morphosyntactic lexical infor-
mation. This schema concerns a single word, here
“this.” Connections of the word-level LSTM cell
to its counterparts for the preceeding and follow-
ing word are represented with grey arrows.

ison with Plank et al.’s (2016), we performed our
experiments on the version 1.3 of UD (Nivre et al.,
2016).

Lexicons Our sources of lexical information we
used are twofold. The first one is the Apertium?
and the Giellatekno® projects. We used Aper-
tium morphological lexicons whenever available.
For other languages, we downloaded the corre-
sponding monolingual part of OPUS’s OpenSub-
titles2016 corpus, tokenised it, extracted the 1
million most frequent tokens, and retrieved all
their morphological analyses by the correspond-
ing morphological analyser provided by Apertium
(or, failing that, Giellatekno). All these analyses
were then gathered in the form of a lexicon. In
a second step, we converted all lexicons obtained
using manually crafted rules, so that each lexical
entry contains a (inflected) wordform, a lemma, a
Universal PoS,* and morphological features from
the Universal Features.> We then created two vari-
ants of the lexicons obtained: a coarse variant in
which labels are Universal PoS, and a full variant

*https://svn.code.sf.net/p/apertium/svn/languages
*https://victorio.uit.no/langtech/trunk/langs
“http://universaldependencies.org/u/pos/all.html
Shttp://universaldependencies.org/u/feat/all. html



Name #entries  #tags | TTR PG
(x10%)

ar Apertium 651 15 yes
bg Multext-East 53 12 0.18  yes
ca Apertium 379 13 0.06 yes
cs Apertium 1,875 15 0.10  yes
da Apertium 683 15 0.19  yes
de DeLex 465 52 | 0.18 yes
el Apertium 47 12 0.20  yes
en Apertium 127 12 0.09 yes
es Leffe 756 34 0.12  yes
et GiellateknoMA 44 12 0.23 yes
eu Apertiumgy 53 14 0.22 yes
fa PerLex 512 37 0.10  yes
fi GiellateknoMA 228 13 0.29  yes
fr Lefif 539 25 0.11 yes
ga inmdb 114 32 026  yes
gl Apertium 241 12 0.12 no
grc  Diogenes 1,314 18 0.20 no
he Apertium 268 16 0.12  yes
hi Apertium 159 14 0.05 yes
hr HML 1,361 22 0.21 yes
id Apertiumgyy 12 38 0.18 no
it Apertium 278 14 0.10  yes
kk ApertiumMA 434 16 | 048 no
la Diogenes 562 16 0.31 no
v Apertium 314 14 0.33 no
nl Alpino lexicon 81 65 0.14  yes
no Apertium 2,470 13 0.11 yes
p! Apertium 1,316 15 0.31 yes
pt Apertium 159 155 0.13 yes
ro Multext-East 378 14 0.18 no
ru Apertium 4,401 16 0.32 no
sl Apertium 654 14 024  yes
sV Saldo 1,215 214 | 0.17  yes
tr ApertiumMA 417 14 0.32 no
zh Apertium 8 13 0.16 no

Table 1: Dataset information. Best per-language
lexicon along with its size and number of tags
over the UD1.3 corpora. “MA” stands for
morphological-analyser-based lexicon. Lexicons
based on Apertium and Giellatekno data are in
their coarse version unless full is indicated. Other
lexicons have been adapted from available re-
sources.! We also provide the type-token ratio of
the corpus (TTR) and whether there were available
Polyglot embeddings (PG) to initialize 0.

in which labels are the concatenation of the Uni-
versal PoS and Universal Features.

We also took advantage of other existing lexi-
cons. For space reasons, we are not able to de-
scribe here the language-specific transformations
we applied to some of these lexicons. See Ta-
ble 1 and its caption for more information. We de-
termine the best performing lexicon for each lan-
guage based on tagging accuracy on the develop-
ment set. In the remainder of this paper, all infor-
mation about the lexicons (Table 1) and accuracy
results are restricted to these best performing lexi-
cons.

Coverage information on the test sets for both
the training data and the best external lexicon for
each dataset is provided in Table 2.
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Lang Coverage (%)

OOTC  OOTC,inLex. = OOLex
ar 8,0 1,0 55,0
bg 12,3 4,6 32,6
ca 49 2,5 20,5
cs 7,0 2,9 31,7
da 15,6 73 29,0
de 11,9 53 15,1
el 134 2,0 52,7
en 9,1 2,6 26,1
es 73 3,5 11,3
et 16,9 1.4 48,9
eu 17,8 2,3 57,7
fa 8,2 2.9 31,0
fi 24,4 4,0 46,0
fr 5.7 3,0 9,9
ga 22,8 72 66,5
il 9,9 59 14,9
gre 17,9 13,6 57,6
he 10,9 5,1 28,4
hi 4.6 1,6 17,4
hr 20,9 15,1 16,5
id 13,8 2.4 38,3
it 57 34 214
kk 40,5 30,7 23,0
la 26,4 234 35
Iv 36,3 16,9 42,6
nl 18,8 44 27,6
no 11,2 4,0 33,0
pl 23,1 9,1 38,9
pt 8,6 3,0 29,2
ro 12,1 6,8 33,1
ru 26,0 15,5 38,7
sl 19,9 11,1 28,7
sV 14,9 10,4 10,4
tr 24,8 13,3 25,6
zh 12,5 0,5 66,5

Table 2: Coverage of the training set and of the
best lexicon on the test set for each dataset of the
UD 1.3 corpora. “OOTC” stands for “out of train-
ing corpus” and OOLex for “out of (external) lex-
icon”. The “O0OTC, in Lex.” column displays the
percentage of words that are not in the training cor-
pus but are covered by the lexicon. Best improve-
ments are expected for these words.

Pre-computed embeddings Whenever avail-
able and following Plank et al. (2016), we per-
formed experiments using Polyglot pre-computed
embeddings (Al-Rfou et al., 2013). Languages for
which Polyglot embeddings are available are indi-
cated in Table 1.

We trained our tagger with and without
character-based embeddings, and with or with-
out Polyglot-based initialisation (when available),
both without lexical information and with lexicon
information from all available lexicons, resulting
in 4 to 12 training configurations.



Language Baseline With best lexicon Gain when using
(no lexicon) (selected on dev, cf. Tab. 1) best lexicon

W w+Eé wWp+c | W41 w+E+l Wp+E+1 | W) @+ EH)  @p + S+
Arabic (ar) 93.90 95.99 96.20 94.58 96.05 96.22 +0.68 +0.06 +0.02
Bulgarian (bg) 94.50 98.11 97.62 96.29 98.30 97.86 +1.79 +0.18 +0.24
Catalan (ca) 96.14 98.03 98.17 97.58 98.21 98.26 +1.44 +0.18 +0.09
Czech (cs) 95.93 98.03 98.10 96.74 98.46 98.41 +0.81 +0.43 +0.31
Danish (da) 90.16 95.41 95.62 94.20 96.24 96.14 +4.04 +0.83 +0.53
German (de) 87.94 92.64 92.96 91.52 93.08 93.18 +3.58 +0.44 +0.23
Greek (el) 95.62 97.76 98.22 96.03 97.67 98.17 +0.41 -0.09 -0.05
English (en) 91.12 94.38 94.56 92.97 94.63 94.70 +1.85 +0.25 +0.14
Spanish (es) 93.10 94.96 95.27 94.62 94.84 95.07 +1.52 -0.11 -0.20
Estonian (et) 90.73 96.10 96.40 90.07 96.14 96.66 -0.65 +0.04 +0.26
Basque (eu) 88.54 94.34 95.07 88.52 94.78 95.03 -0.02 +0.44 -0.04
Persian (fa) 95.57 96.39 97.35 96.22 97.09 97.35 +0.65 +0.71 +0.00
Finnish (fi) 87.26 94.84 95.12 88.67 94.87 95.13 +1.40 +0.03 +0.01
French (fr) 94.30 95.97 96.32 95.92 96.71 96.28 +1.62 +0.74 -0.04
Irish (ga) 86.94 89.87 91.91 88.88 91.18 91.76 +1.94 +1.31 -0.16
Galician (gl) 94.78 96.94 — 95.72 97.18 — +0.94 +0.24 —
Ancient Greek (grc) 88.69 94.40 — 89.76 93.75 — +1.07 -0.65 —
Hebrew (he) 92.82 95.05 96.57 94.11 95.53 96.76 +1.29 +0.48 +0.19
Hindi (hi) 95.55 96.22 95.93 96.22 96.50 96.95 +0.67 +0.28 +1.02
Croatian (hr) 86.62 95.01 95.93 93.53 96.29 96.34 +6.91 +1.28 +0.41
Indonesian (id) 89.07 92.78 93.27 91.17 92.79 92.89 +2.11 +0.02 -0.38
Italian (it) 95.29 97.48 97.77 97.54 97.81 97.88 +2.26 +0.33 +0.11
Kazakh (kk) 72.74 76.32 — 82.28 82.79 — +9.54 +6.47 —
Latin (la) 85.18 92.18 — 90.63 93.29 — +5.44 +1.12 —
Latvian (Iv) 78.22 89.39 — 83.56 91.07 — +5.35 +1.68 —
Dutch (nl) 84.91 89.97 87.80 85.20 90.69 89.85 +0.29 +0.72 +2.05
Norwegian (no) 93.65 97.50 97.90 95.80 97.72 97.96 +2.15 +0.22 +0.07
Polish (pl) 87.99 96.21 96.90 90.81 96.40 97.02 +2.83 +0.18 +0.13
Portuguese (pt) 93.61 97.00 97.27 94.76 96.79 97.11 +1.15 -0.21 -0.16
Romanian (ro) 92.63 95.76 — 94.49 96.26 — +1.86 +0.51 —
Russian (ru) 84.72 95.73 — 93.50 96.32 — +8.79 +0.60 —
Slovene (sl) 83.96 97.30 95.27 94.07 97.74 95.44 10.11 +0.44 +0.17
Swedish (sv) 92.06 96.26 96.56 95.61 97.03 97.00 +3.55 +0.77 +0.44
Turkish (tr) 87.02 93.98 — 90.03 93.90 — +3.01 -0.08 —
Chinese (zh) 89.17 92.99 — 89.29 93.04 — +0.12 +0.05 —
Macro-avg. 90.01 94.61 — 92.60 95.18 — +2.59 +0.57 —
Macro-avg. w/embed | 91.43 95.52 95.77 93.52 95.91 95.98 +2.09 +0.38 +0.21

Table 3: Overall results. PoS accuracy scores are given for each language in the baseline configura-
tion (the same as Plank et al., 2016) and in the lexicon-enabled configuration. For each configuration,
scores are given when using word embeddings only (), word and character-based embeddings (i + ¢©),
and word and character-based embeddings with initialisation of word embeddings with Polyglot vectors
(Wp + ¢). The last columns show the difference between lexicon-enabled and baseline configurations.

S Experimental setup

We use as a baseline the state-of-the-art bi-LSTM
PoS tagger bilty, a freely available® and “sig-
nificantly refactored version of the code originally
used” by Plank et al. (2016). We use its standard
configuration, with one bi-LSTM layer, character-
based embeddings size of 100, word embedding
size of 64 (same as Polyglot embeddings), no mul-
titask learning,” and 20 iterations for training.

We extended bilty for enabling integration of
lexical morphosyntactic information, in the way
described in the previous section.

SBouma et al., 2000; Oliver and Tadié, 2004; Heslin,
2007; Borin et al., 2008; Molinero et al., 2009; Sagot, 2010;
Erjavec, 2010; Sagot and Walther, 2010; Méchura, 2014;
Sagot, 2014.

Shttps://github.com/bplank/bilstm-aux

"Plank et al.’s (2016) secondary task—predicting the fre-
quency class of each word—results in better OOV scores
but virtually identical overall scores when averaged over all
tested languages/corpora.
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For each lexicon-related configuration, we
trained three variants of the tagger: (i) a vari-
ant without using character-based embeddings and
standard (zero) initialisation of word embeddings
before training, (ii) a variant with character-based
embeddings and standard initialisation of word
embeddings, and (iii) when Polyglot embeddings
are available for the language at hand, a variant
with character-based embeddings and initialisa-
tion of the word embeddings with the Polyglot
embeddings. This is deliberately similar to Plank
et al.’s (2016) experimental setup, in order to fa-
cilitate the comparison of results.®

8Note that we discarded alternative UD 1.3 corpora
(e.g. nl_lassysmall vs. nl), as well as corpora for lan-
guages for which we had neither a lexicon nor Polyglot em-
beddings (Old Church Slavonic, Hungarian, Gothic, Tamil).



lang w(py + ¢+ T Awrtwpy + ¢
OOTC  OOTC in Lex. OOTC  OOTC in Lex.
ar 82,09 94,78 -0,53 -0,51
bg 92,79 96,84 +4,67 +0,98
ca 94,21 98,38 +0,31 -0,11
cs 90,84 96,82 +5,21 +0,57
da 88,54 95,03 +3,17 +0,70
de 86,05 87,00 +3,32 +0,41
el 89,22 96,52 -1,97 -0,90
en 78,23 89,31 +3,89 +1,02
es 76,34 79,33 -1,21 -1,12
et 88,24 94,80 -1,62 -0,70
eu 82,02 93,26 -0,09 -0,41
fa 84,94 95,34 -1,22 -0,76
fi 85,31 92,03 -0,76 -0,95
fr 85,50 86,35 +2,25 +0,43
ga 77,43 89,09 -0,34 -1,77
gl 85,20 91,21 +21,73 +5,60
gre 83,71 94,40 425,16 +2,00
he 81,36 92,25 -5,81 -2,61
hi 78,91 93,84 4,22 -0,78
hr 90,74 88,66 +1,50 +0,44
id 86,07 90,72 -1,29 -0,55
it 89,15 96,46 +1,12 -0,43
kk 76,89 52,59 423,53 -2,96
la 84,51 88,89  +28,95 +10,53
v 80,98 83,64  +35,13 +15,83
nl 69,49 78,60  +12,75 +8,19
no 92,44 96,97 -0,24 -0,48
pl 90,48 93,95 -2,65 -2,04
pt 88,13 95,69 +0,19 -0,60
ro 88,39 9547 423,18 +3,71
ru 90,49 93,80  +40,87 +13,05
sl 93,31 95,77 +11,56 +4,41
Y 92,43 93,31 +3,88 -0,47
tr 85,33 87,33  +26,68 +9,13
zh 78,30 92,08 424,97 +5,07
Macro avg. 85,37 90,87 +8,06 +1,83

Table 4: Accuracy of the best system using a lexi-
con for words out of the training corpus (OOTC),
and for words out of the training corpus that are
present in the lexicon (OOTC in Lex.), as well
as difference between the best system and the
baseline without lexicon for these two subsets of
words.

6 Results

Our results show that using lexical information as
an additional input layer to a bi-LSTM PoS tagger
results in consistent improvements over 35 cor-
pora. The improvement holds for all configura-
tions on almost all corpora. As expected, the great-
est improvements are obtained without character-
based embeddings, with a macro-averaged im-
provement of +2.56, versus +0.57 points when
also using character-based embeddings. When
also using pre-computed embeddings, improve-
ments are only slightly lower. External lexical in-
formation is useful as it covers both words with an
irregular morphology and words not present in the
training data.

The improvements are particularly high for the
smaller datasets; in the @ + ¢ setup, the three lan-
guages with the highest improvements when using
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a lexicon are those with smallest datasets.

Table 4 shows the accuracy of the best sys-
tem, compared with the baseline, for words not in
the training data (OOTC), and for whose that are
present in the lexicon but not in the training data
(OOTC in Lex).

While lexicon coverage is an important, it is not
the only factor. we observe the improvements are
much larger for the smaller datasets like Kazakh
(kk) or Russian (ru). However, the improvement
is smaller for words that are not in the training
data but are nevertheless present in the lexicon,
which indicates that the contribution of the lexi-
con features to PoS prediction is not limited to the
words that are covered by the lexicon but spreads
throught the contexts by means of the bi-LSTM ar-
chitecture. Moreover, we argue that the presence
of the lexicon features aids compensate for charac-
ter embeddings fit on smaller datasets, which are
not necessarily more trustworthy.

7 Conclusion

Our work shows that word embeddings and exter-
nal lexical information are complementary sources
of morphological information, which both im-
prove the accuracy of a state-of-the-art neural part-
of-speech tagger. It also confirms that both lexical
information and character-based embeddings cap-
ture morphological information and help part-of-
speech tagging, especially for unknown words.

Interestingly, we also observe improvements
when using external lexical information together
with character-based embeddings, and even when
initialising with pre-computed word embeddings.
This shows that the use of character-based embed-
dings is not sufficient for addressing the problem
of out-of-vocabulary words.

Further work includes using lexicons to tag
finer-grained tag inventories, as well as a more
thorough analysis on the relation between lexicon
and training data properties.

Another natural follow-up to the work presented
here would be to examine the interplay between
lexical features and more complex neural archi-
tectures, for instance by using more than one bi-
LSTM layer, or by embedding the n-hot lexicon-
based vector before concatenating it to the word-
and character-based embeddings.
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