
IWPT 2017

15th International Conference on
Parsing Technologies

Proceedings of the Conference

September 20–22, 2017
Pisa, Italy



Sponsored by:

c©2017 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-73-9

ii



Preface

Welcome to the 15th International Conference on Parsing Technologies (IWPT 2017) in Pisa, Italy.
IWPT 2017 continues the tradition of biennial conferences organized by SIGPARSE, the Special Interest
Group on Natural Language Parsing of the Association for Computational Linguistics (ACL), serving as
the primary specialized forum for research on natural language parsing.

This year, for the first time, IWPT is co-located with the International Conference on Dependency
Linguistics (DepLing), and will feature joint sessions meant to foster communication and collaboration
between the two closely related communities. As part of their joint programs, DepLing and IWPT will
host the First Shared Task on Extrinsic Parser Evaluation (EPE 2017), which has separate organizers,
program committee and proceedings.

IWPT 2016 received 26 valid submissions (11 long and 15 short papers). Each submission was reviewed
by three members of the program committee, and finally 5 long and 13 short papers were accepted for
presentation. The conference will feature two invited speakers, Vera Demberg (Saarland University) and
David Hall (Semantic Machines), and a conference dinner on September 21.

We are indebted to a number of people whose work made the conference possible. First and foremost, we
thank the members of the local organization committee, whose outstanding contributions involved every
aspect of hosting both DepLing and IWPT: Giuseppe Attardi (University of Pisa), Felice Dell’Orletta
(ILC-CNR, Pisa), Alessandro Lenci (University of Pisa), Simonetta Montemagni (ILC-CNR, Pisa), and
Maria Simi (University of Pisa). We thank the members of the program committee for their in-depth and
constructive reviews, and the program chairs of DepLing (Simonetta Montemagni and Joakim Nivre)
and EPE (Stephan Oepen) for their help and support with various aspects of the conference, including
design of the joint portion of our programs. Finally, we thank the Associazione Italiana di Linguistica
Computazionale (AILC) for its generous financial support.

Enjoy the conference!

Kenji Sagae (General Chair) and Yusuke Miyao (Program Chair)

iii





Organizers:

Kenji Sagae, UC Davis, United States (General Chair)
Yusuke Miyao, National Institute of Informatics, Japan (Programme Chair)
Giuseppe Attardi, University of Pisa, Italy (Local Organizer)
Felice Dell’Orletta, ILC-CNR, Pisa, Italy (Local Organizer)
Alessandro Lenci, University of Pisa, Italy (Local Organizer)
Simonetta Montemagni, ILC-CNR, Pisa, Italy (Local Organizer)
Maria Simi, University of Pisa, Italy (Local Organizer)

Programme Committee:

Željko Agić, IT University of Copenhagen
Miguel Ballesteros, IBM Research
Anders Björkelund, IMS, Stuttgart
Philippe Blache, LPL CNRS
Harry Bunt, Tilburg University
Xavier Carreras, Naver Labs
John Carroll, University of Sussex
Wanxiang Che, Harbin Institute of Technology
David Chiang, University of Notre Dame
Stephen Clark, University of Cambridge
Berthold Crysmann, CNRS, Laboratoire de linguistique formelle
Michael Elhadad, Ben Gurion University
Federico Fancellu, University of Edinburgh
Carlos Gómez-Rodríguez, Universidade da Coruña
Sadao Kurohashi, Kyoto University
Yuji Matsumoto, Nara Institute of Science and Technology
Yusuke Miyao, National Instutite of Informatics
Mark-Jan Nederhof, University of St Andrews
Giorgio Satta, University of Padova
Natalie Schluter, IT University of Copenhagen
Djamé Seddah, Université Paris Sorbonne (Paris IV)
Hiroyuki Shindo, Nara Institute of Science and Technology
Weiwei Sun, Peking University
Christoph Teichmann, Saarland University
Ivan Titov, University of Edinburgh / University of Amsterdam
Daniel Zeman, Charles University
Yi Zhang, Nuance Communications GmbH
Yue Zhang, Singapore University of Technology and Design
Hai Zhao, Shanghai Jiao Tong University

v





Keynote 1: Syntactic processing in humans: time course, shallow
processing and processing failure

Vera Demberg
Saarland University, Germany

Abstract

Human syntactic processing is generally remarkably robust and accurate. In this talk, I will go through
some recent psycholinguistic research on sentence processing which can give us a glimpse into how
human parsing works. This talk will focus on some crucial properties (such as incrementality and pre-
diction), but will also highlight some informative cases of where humans struggle to analyse a sentence
correctly. I will also briefly describe current psycholinguistic frameworks for modelling human process-
ing, which try to account for these cases.

Biography

Vera Demberg is professor for Computer Science and Computational Linguistics at Saarland University,
Saarbrcken, Germany. From 2010 till 2016, she held a position as an independent research group leader
at the Cluster of Excellence ”Multimodal Computing and Interaction”, Saarland University. She received
her PhD in 2010 from the University of Edinburgh, for which she was awarded the Glushko Disserta-
tion Prize by the Cognitive Science Society and the runner-up prize of the CPHC / BCS Distinguished
Dissertations Competition. Her research interests include psycholinguistic experimental research and
computational modelling on human sentence processing at the levels of syntax, thematic role assign-
ment, event cognition and coherence relations in discourse.

vii





Keynote 2: What good is a grammar anyway?

David Hall
Semantic Machines, United States

Abstract

Until recently, a large fraction of constituency parsing research consisted of finding clever ways of “aug-
menting” a base treebank grammar with extra information to work around the limitations of dynamic
programming-based parsing algorithms. Nowadays, the art of grammar engineering for statistical pars-
ing is slipping away, as neural network models are now able to easily obtain state of the art performance
with basically no grammar engineering. What’s going on? In this talk, I’ll explore this trend and reflect
on the importance of grammar in the modern era. Along the way, I’ll also touch on some related issues
affecting parsing (both syntactic and semantic) that I’ve encountered in my time in industry and discuss
a few lessons learned.

Biography

David Hall is a senior research scientist working on conversational computing at Semantic Machines. He
received his PhD in Computer Science from UC Berkeley advised by Dan Klein. He is the recipient of
the 2012 Google PhD Fellowship in Natural Language Processing, an NSF graduate research fellowship,
the 2011 EECS Outstanding Graduate Student Instructor award, the journal Language’s 2016 best paper
award, and a distinguished paper at EMNLP 2012. He has authored fifteen publications at top confer-
ences and has built and released numerous software systems, including a fast GPU-based constituency
parser, state-of-the-art parsers for ten languages, the Breeze scientific computing library, and the award-
winning Overmind StarCraft agent. He has a B.S. and M.S. from Stanford University, both in Symbolic
Systems.

ix





Table of Contents

Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency
Analysis

Daisuke Kawahara, Yuta Hayashibe, Hajime Morita and Sadao Kurohashi . . . . . . . . . . . . . . . . . . . . . 1

Dependency Language Models for Transition-based Dependency Parsing
Juntao Yu and Bernd Bohnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Lexicalized vs. Delexicalized Parsing in Low-Resource Scenarios
Agnieszka Falenska and Özlem Çetinoğlu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Improving neural tagging with lexical information
Benoît Sagot and Héctor Martínez Alonso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Prepositional Phrase Attachment over Word Embedding Products
Pranava Swaroop Madhyastha, Xavier Carreras and Ariadna Quattoni . . . . . . . . . . . . . . . . . . . . . . . . 32

L1-L2 Parallel Dependency Treebank as Learner Corpus
John Lee, Keying Li and Herman Leung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Splitting Complex English Sentences
John Lee and J. Buddhika K. Pathirage Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Hierarchical Word Structure-based Parsing: A Feasibility Study on UD-style Dependency Parsing in
Japanese

Takaaki Tanaka, Katsuhiko Hayashi and Masaaki Nagata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Leveraging Newswire Treebanks for Parsing Conversational Data with Argument Scrambling
Riyaz A. Bhat, Irshad Bhat and Dipti Sharma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Using hyperlinks to improve multilingual partial parsers
Anders Søgaard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Correcting prepositional phrase attachments using multimodal corpora
Sebastien Delecraz, Alexis Nasr, Frederic Bechet and Benoit Favre . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Exploiting Structure in Parsing to 1-Endpoint-Crossing Graphs
Robin Kurtz and Marco Kuhlmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Effective Online Reordering with Arc-Eager Transitions
Ryosuke Kohita, Hiroshi Noji and Yuji Matsumoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Arc-Hybrid Non-Projective Dependency Parsing with a Static-Dynamic Oracle
Miryam de Lhoneux, Sara Stymne and Joakim Nivre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Encoder-Decoder Shift-Reduce Syntactic Parsing
Jiangming Liu and Yue Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Arc-Standard Spinal Parsing with Stack-LSTMs
Miguel Ballesteros and Xavier Carreras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Coarse-To-Fine Parsing for Expressive Grammar Formalisms
Christoph Teichmann, Alexander Koller and Jonas Groschwitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xi



Evaluating LSTM models for grammatical function labelling
Bich-Ngoc Do and Ines Rehbein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xii



Conference Programme

Wednesday, September 20, 2017

08:30–09:30 Registration

09:30–11:00 Depling Long Talk Session

11:00–11:30 Break

11:30–12:00 Report on the CoNLL 2017 Shared Task on "Multilingual Parsing from Raw
Text to Universal Dependencies"

12:00–13:00 First Shared Task on Extrinsic Parser Evaluation (EPE 2017)

13:00–14:30 Lunch

14:30–16:00 First Shared Task on Extrinsic Parser Evaluation (EPE 2017)

16:00–16:30 Break

16:30–18:00 Joint Depling & IWPT Panel Discussion

xiii



Thursday, September 21, 2017

08:30–09:30 Registration

09:30–10:00 Opening

10:00–11:00 Keynote 1

10:00–11:00 Syntactic processing in humans: time course, shallow processing and processing
failure
Vera Demberg

11:00–11:30 Break

11:30–13:00 Long and short talks

11:30–12:00 Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphologi-
cal and Dependency Analysis
Daisuke Kawahara, Yuta Hayashibe, Hajime Morita and Sadao Kurohashi

12:00–12:20 Dependency Language Models for Transition-based Dependency Parsing
Juntao Yu and Bernd Bohnet

12:20–12:40 Lexicalized vs. Delexicalized Parsing in Low-Resource Scenarios
Agnieszka Falenska and Özlem Çetinoğlu

12:40–13:00 Improving neural tagging with lexical information
Benoît Sagot and Héctor Martínez Alonso

13:00–14:30 Lunch

xiv



Thursday, September 21, 2017 (continued)

14:30–16:00 Long and short talks

14:30–15:00 Prepositional Phrase Attachment over Word Embedding Products
Pranava Swaroop Madhyastha, Xavier Carreras and Ariadna Quattoni

15:00–15:20 L1-L2 Parallel Dependency Treebank as Learner Corpus
John Lee, Keying Li and Herman Leung

15:20–15:40 Splitting Complex English Sentences
John Lee and J. Buddhika K. Pathirage Don

15:40–16:00 Hierarchical Word Structure-based Parsing: A Feasibility Study on UD-style De-
pendency Parsing in Japanese
Takaaki Tanaka, Katsuhiko Hayashi and Masaaki Nagata

16:00–16:30 Break

16:30–17:30 Short talks

16:30–16:50 Leveraging Newswire Treebanks for Parsing Conversational Data with Argument
Scrambling
Riyaz A. Bhat, Irshad Bhat and Dipti Sharma

16:50–17:10 Using hyperlinks to improve multilingual partial parsers
Anders Søgaard

17:10–17:30 Correcting prepositional phrase attachments using multimodal corpora
Sebastien Delecraz, Alexis Nasr, Frederic Bechet and Benoit Favre

xv



Friday, September 22, 2017

08:30–09:30 Registration

09:30–10:00 IWPT Business Meeting

10:00–11:00 Keynote 2

10:00–11:00 What good is a grammar anyway?
David Hall

11:00–11:30 Break

11:30–13:00 Long and short talks

11:30–12:00 Exploiting Structure in Parsing to 1-Endpoint-Crossing Graphs
Robin Kurtz and Marco Kuhlmann

12:00–12:30 Effective Online Reordering with Arc-Eager Transitions
Ryosuke Kohita, Hiroshi Noji and Yuji Matsumoto

12:30–12:50 Arc-Hybrid Non-Projective Dependency Parsing with a Static-Dynamic Oracle
Miryam de Lhoneux, Sara Stymne and Joakim Nivre

13:00–14:30 Lunch

xvi



Friday, September 22, 2017 (continued)

14:30–16:00 Long and short talks

14:30–15:00 Encoder-Decoder Shift-Reduce Syntactic Parsing
Jiangming Liu and Yue Zhang

15:00–15:20 Arc-Standard Spinal Parsing with Stack-LSTMs
Miguel Ballesteros and Xavier Carreras

15:20–15:40 Coarse-To-Fine Parsing for Expressive Grammar Formalisms
Christoph Teichmann, Alexander Koller and Jonas Groschwitz

15:40–16:00 Evaluating LSTM models for grammatical function labelling
Bich-Ngoc Do and Ines Rehbein

16:00–16:30 Closing

xvii





Proceedings of the 15th International Conference on Parsing Technologies, pages 1–10,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Automatically Acquired Lexical Knowledge Improves
Japanese Joint Morphological and Dependency Analysis

Daisuke Kawahara and Yuta Hayashibe1 and Hajime Morita2 and Sadao Kurohashi
Graduate School of Informatics, Kyoto University

{dk, kuro}@i.kyoto-u.ac.jp
hayashibe@fairydevices.jp, hmorita@jp.fujitsu.com

Abstract

This paper presents a joint model for mor-
phological and dependency analysis based
on automatically acquired lexical knowl-
edge. This model takes advantage of rich
lexical knowledge to simultaneously re-
solve word segmentation, POS, and de-
pendency ambiguities. In our experiments
on Japanese, we show the effectiveness of
our joint model over conventional pipeline
models.

1 Introduction

Morphological analysis, i.e., word segmentation,
POS tagging and lemmatization, is the first step for
processing unsegmented languages such as Chi-
nese and Japanese. Words segmented by a mor-
phological analyzer are usually fed into subse-
quent analyzers, such as dependency parsers and
predicate-argument structure (PAS) analyzers, in
a pipeline manner. One problem with this pipeline
process is that errors in morphological analysis are
propagated to the subsequent steps. In morpholog-
ical analysis, it is also difficult in some cases to de-
termine word segmentations without syntactic and
structural knowledge, which could be available at
the step of dependency or PAS analysis.

For instance, the Japanese phrase “あるかない”
in Sentence (1) can be segmented into (2a) or
(2b).3

(1) 可能性
possibility

が
NOM

あるかないか
or
分から
know

ない
not

1The second author is now affiliated with Fairy Devices
Inc.

2The third author is now affiliated with Fujitsu Laborato-
ries Ltd.

3In this paper, we use the following abbreviations:
NOM (nominative), ACC (accusative), DAT (dative),
LOC (locative), ABL (ablative), and TOP (topic marker).

(2) a. ある
exist

/
/
か
or

/
/
ない
not

b. あるか
walk

/
/
ない
not

In this case, (2a) is the correct segmentation,
which means “whether a possibility exists,” while
the incorrect segmentation (2b) is meaningless: “a
possibility does not walk.” It might be possible
to select the correct segmentation if a morpholog-
ical analyzer could look up selectional preference
knowledge of the predicates “exist” and “walk.”

Thus far, several models have been proposed
for joint morphological and dependency analy-
sis, but the performance improvement is not sta-
ble among target languages. For Chinese joint
analysis, where the parsing accuracy of a baseline
pipeline model is around 80%, an F1 improvement
of around 2% was reported (Hatori et al., 2012;
Zhang et al., 2014). For Japanese joint analysis,
where the parsing accuracy of a pipeline model
is around 90%, there have been no studies that
report a significant improvement (Tawara et al.,
2015). One of the reasons for such instability is
that most of these joint models are trained only
on a small-scale treebank, which consists of sev-
eral tens of thousands of sentences. These mod-
els do not make use of large-scale external lexi-
cal knowledge. Since it is necessary to use lexical
knowledge of selectional preferences to address
the abovementioned ambiguities, these joint mod-
els cannot solve such ambiguities in many cases.

This paper proposes a joint model for morpho-
logical and dependency analysis based on auto-
matically acquired lexical knowledge. The lexical
knowledge includes case frames acquired from a
large-scale raw corpus, which provide useful clues
to resolve morphological and syntactic ambigui-
ties. In our experiments on Japanese corpora, we
show a significant improvement over conventional

1



pipeline models.
The remainder of this paper is organized as fol-

lows. Section 2 summarizes previous joint models
for morphological and dependency analysis. Sec-
tion 3 describes our method for constructing lexi-
cal knowledge. Section 4 illustrates our idea and
describes our joint analysis model in detail. Sec-
tion 5 is devoted to our experiments. Finally, sec-
tion 6 gives the conclusions.

2 Related Work

Some variants of transition-based parsing meth-
ods have been proposed for joint POS tagging and
parsing (Bohnet and Nivre, 2012; Bohnet et al.,
2013; Wang and Xue, 2014) and joint Chinese
word segmentation, POS tagging, and dependency
parsing (Hatori et al., 2012; Zhang et al., 2014).
As an external knowledge source, Hatori et al.
(2012) used a word dictionary extracted mainly
from Wikipedia, but it did not provide lexical
knowledge for resolving syntactic ambiguities.

Lattice parsing methods have been proposed for
Hebrew and Arabic (Goldberg and Tsarfaty, 2008;
Goldberg et al., 2009; Green and Manning, 2010;
Goldberg and Elhadad, 2011). These methods first
generate a word lattice and then apply PCFG pars-
ing to the word lattice. Starting with a word lattice,
the methods of Wang et al. (2013) and Zhang et al.
(2015) select the best parse using dual decomposi-
tion and the randomized greedy algorithm, respec-
tively. Of these methods, Goldberg et al. (2009)
incorporated an external morphological lexicon,
which does not provide selectional preferences.

As a different method from lattice parsing, Qian
and Liu (2012) trained separate models for Chi-
nese word segmentation, POS tagging, and con-
stituency parsing. They proposed a unified decod-
ing algorithm that combines the scores from these
three models. This is a purely supervised method
that does not use lexical knowledge.

As dependency parsing models using lexical
knowledge, there have been semi-supervised ap-
proaches that use knowledge of word classes, lexi-
cal preferences or selectional preferences acquired
from raw corpora (e.g., (van Noord, 2007; Koo
et al., 2008; Chen et al., 2009; Zhou et al., 2011;
Bansal and Klein, 2011)). However, these depen-
dency parsing models cannot be applied to joint
morphological and dependency analysis.

For Japanese, Morita et al. (2015) proposed a
morphological analyzer that jointly performs seg-

mentation and POS tagging using recurrent neural
network language models, but does not perform
dependency parsing. We employ this morpholog-
ical analyzer, JUMAN++4, as a pre-processor to
generate word lattice (described in Section 4.1).
Kawahara and Kurohashi (2006) proposed a prob-
abilistic model for Japanese dependency parsing
and PAS analysis based on case frames automat-
ically compiled from a large raw corpus, which
are also used as a source of selectional preferences
in our model (described in Section 3.1). Kudo
and Matsumoto (2002), Sassano (2004), Iwatate
(2012) and Yoshinaga and Kitsuregawa (2014)
proposed supervised models for Japanese depen-
dency parsing without using external knowledge
sources. These models need a 1-best output of
segmentation and POS tagging as an input, and
are not a joint model of morphological analysis
and dependency parsing. We adopt KNP5 and
CaboCha6 as baseline dependency parsers, which
are implementations of Kawahara and Kurohashi
(2006) and Sassano (2004), respectively.7

Tawara et al. (2015) proposed a joint model for
Japanese morphological analysis and dependency
parsing without lexical knowledge. However, they
failed to achieve significant improvements over
conventional pipeline methods.

To the best of our knowledge, there have been
no joint models of morphological and dependency
analysis that use large-scale lexical knowledge
which includes selectional preferences.

3 Lexical Knowledge Acquisition

In our joint analysis model, we use the following
three types of lexical knowledge automatically ac-
quired from a large raw corpus: case frames, cooc-
currence probabilities of noun-noun / predicate-
predicate dependencies, and word embeddings.
We deeply utilize case frames in our joint model

4http://nlp.ist.i.kyoto-u.ac.jp/EN/?JUMAN++
5http://nlp.ist.i.kyoto-u.ac.jp/?KNP
6https://taku910.github.io/cabocha/
7As baseline parsers, we did not use J.DepP (http:

//www.tkl.iis.u-tokyo.ac.jp/˜ynaga/jdepp/) and the
tournament model proposed by Iwatate (2012). J.DepP is an
implementation of Yoshinaga and Kitsuregawa (2014), which
uses the same shift-reduce model as CaboCha with a similar
feature set. It was also empirically proved by the author of
CaboCha that the tournament model of Iwatate (2012) did
not significantly outperform the shift-reduce model. Iwatate
(2012) further improved the performance of a single parser
using parser stacking. This kind of parser combination tech-
nique is complementary to our model and can be incorporated
into our model in the future.

2



and also consider these resources as features in our
scoring function described in Section 4.2. Below,
we describe the methods for constructing each of
the resources, which are basically based on previ-
ous work.

3.1 Case Frames
We use case frames to evaluate the plausibility of
PASs. Case frames are predicate-specific semantic
frames like PropBank (Palmer et al., 2005), which
are distinguished for each predicate sense or us-
age. Although PropBank was elaborated by hand
and does not have frequency information, we auto-
matically compile large-scale case frames that re-
flect real predicate uses.

Each predicate has several case frames that are
semantically distinguished. Each case frame con-
sists of case slots, each of which consists of word
instances that can be filled. Examples of Japanese
case frames are shown in Table 1. Case frames are
the source of selectional preferences, which are
compiled by aggregating PASs for each predicate
usage.

We adapted the method of Kawahara et al.
(2014) to Japanese case frame compilation. They
proposed an unsupervised method for compiling
English case frames from a large raw corpus. The
procedure for inducing case frames is as follows:

1. apply dependency parsing to a raw corpus
and extract PASs for each predicate from the
automatic parses,

2. merge the PASs that have presumably the
same meaning based on the assumption of
one sense per collocation to get a set of initial
frames, and

3. apply clustering to the initial frames based
on the Chinese Restaurant Process (Aldous,
1985) to produce predicate-specific case
frames.

While the original method used Stanford depen-
dency labels as the representations of case slots,
we use case-marking postpositions in Japanese,
such as “が” (NOM), “を” (ACC), and “に”
(DAT). At Step 1, we apply the morphological and
dependency analyzers, JUMAN++ and KNP, to
the raw corpus. To alleviate the influence of errors
in segmentations, POS tags and dependencies, we
extract only reliable PASs that have no syntactic
ambiguities. At Step 2, the PASs that have pre-
sumably the same meaning are identified by cou-

CS instances
が necessity:297865, case:190109, · · ·

ある:1 に thing:40, me:29, trend:29, · · ·
(exist:1) time <time>:398

が interest:34236, confidence:21326, · · ·
ある:2 に point:702, way:490, me:442, · · ·

(exist:2) で feeling:70, aspect:58, · · ·
が possibility:121867

ある:3 に price:23, myself:20, you:18, · · ·
(exist:3) で step:4, influence:4, · · ·

...
...

...
が person:57, I:13, · · ·

あるく:1 を road:24236, trail:4066, · · ·
(walk:1) から parking:175, station:88, · · ·

が I:35, parade:27, · · ·
あるく:2 を city:13548, town:5336, park:3264, · · ·
(walk:2) で alone:464, feeling:74, · · ·

が person:60, cat:24, · · ·
あるく:3 を inside:18858, top:9969, bottom:1769, · · ·
(walk:3) で alone:216, barefoot:198, · · ·

...
...

...

Table 1: Acquired case frames for the Japanese
verbs “ある” (exist) and “あるく” (walk). CS de-
notes case slots, such as “が” (NOM), “を” (ACC),
“に” (DAT), “で” (LOC), and “から” (ABL). In-
stances in each CS are originally Japanese words
but expressed only in English due to space limita-
tion. The number following each word denotes its
frequency.

pling a predicate and the closest argument. That
is, PASs are distinguished by predicate-argument
pairs, such as “道をあるく” (walk road) and “町
をあるく” (walk city).

We crawled the Web to obtain a large-scale
Japanese Web corpus. As a result, we extracted
10 billion Japanese sentences without duplicates
from three billion Web pages. We automatically
compiled case frames from these sentences and
acquired case frames for approximately 100,000
predicates. Examples of acquired case frames are
shown in Table 1.

3.2 Cooccurrence Probabilities of Noun-noun
/ Predicate-predicate Dependencies

To evaluate dependencies that cannot be captured
by PASs, cooccurrence statistics of these depen-
dencies are collected from a large raw corpus.
For such dependencies, we consider noun-noun
and predicate-predicate dependencies. Noun-
noun dependencies cover the dependency relations
between nouns including compound nouns and
predicate-predicate dependencies are the depen-
dency relations between predicates.

3



We collect noun-noun and predicate-predicate
dependencies from automatic parses and calcu-
late cooccurrence probabilities of these dependen-
cies. We acquired these probabilities from au-
tomatic parses of 1.6 billion Japanese Web sen-
tences, which are a part of the Japanese Web cor-
pus constructed for case frame compilation.

3.3 Word Embeddings

To detect coordinate structures, which cover a
large proportion of dependency relations in a sen-
tence, it is important to capture similarities be-
tween words and word sequences. In this paper,
we employ word embeddings to calculate similar-
ities between words and word sequences.

We trained word embeddings using 100 million
Japanese Web sentences by word2vec8 (Mikolov
et al., 2013) using skip-gram and negative sam-
pling. The dimension of word embeddings was
set to 500. To calculate the similarity between two
words, we compute the cosine measure between
the embeddings of these words.

4 Joint Morphological and Dependency
Analysis based on Automatically
Acquired Lexical Knowledge

4.1 Joint Analysis Model

We deal with dependencies between base phrases,
which are the dependency unit defined in the an-
notation guidelines of the Japanese treebanks de-
scribed in Section 5.1. A base phrase consists
of a content word and zero or more function
words. Although the traditional dependency unit
for Japanese is bunsetsu, which can contain more
than one content word,9 we adopt base phrase
dependencies instead of bunsetsu dependencies.
This is because base phrase dependencies are ba-
sically based on bunsetsu dependencies but ex-
tended to consider the dependencies inside com-
pound nouns. Hereafter, we call base phrases sim-
ply phrases.

We adopt the widely used CKY algorithm for
our joint analysis model. In our model, a cell in
the CKY table corresponds to a span of characters
in the input sentence. This model outputs the best
parse tree, which contains all the disambiguated
results of words, phrases, and dependencies. The

8https://code.google.com/p/word2vec/
9A bunsetsu consists of one or more content words and

zero or more function words. A compound noun containing
multiple content words constitutes a bunsetsu.

procedure of our joint analysis model is described
below.

1. Projection of candidate words onto the CKY
table

First, a word lattice is generated using a morpho-
logical analyzer. All the words included in the
word lattice are projected onto the CKY table.

For instance, in Figure 1, the input sentence is
“可能性があるかないか.” The possible words for
this sentence are projected as described in Figure
1(a). For example, the span “あるか” has the fol-
lowing three possible word cells: “ある” (exist),
“か” (or), and “あるか” (walk).

2. Generation of phrases

Possible phrases are generated on the CKY table
using POS-based phrase chunking rules. These
rules are extracted from the Japanese dependency
parser KNP. Because there are ambiguities in
words and POS tags, there are also ambiguities
in phrases. Each of the generated phrases is re-
garded as the smallest sub-tree consisting of only
one phrase.

In Figure 1, by concatenating words in Fig-
ure 1(a) using the phrase chunking rules, the light
blue cells in Figure 1(b) are generated as candidate
phrases. For example, the span “あるか” has the
following two possible phrases: “あるか” (walk)
and “ある /か” (exist or).

3. Merging neighboring sub-tree pairs

Neighboring sub-tree pairs are merged to generate
a new possible sub-tree. This process is iterated in
a bottom-up manner, and finally possible trees for
the whole input sentence are generated.

In general, there can be multiple sub-trees that
correspond to the same span. When merging two
spans with multiple sub-trees, it is necessary to
consider all the possible combinations of these
sub-trees. New sub-trees generated by merging are
ranked by the scoring function described in Sec-
tion 4.2 and only top-b sub-trees are kept for the
subsequent process, where b is the beam width.

Different from the usual CKY algorithm for de-
pendency parsing, we perform PAS analysis for
each cell whose head is a predicate. This analysis
is done using the method of Kawahara and Kuro-
hashi (2006), which is the process of matching be-
tween the arguments in the span and each of the
case frames of the predicate. The best-matching

4



! !"
#$%&&'()*+

"

,
#-./01*+

2
#345+

6 67
#*8'&/+

679
#:.);+

7

9
#%1+

< <=
#-%/+

=

9
#%1+

(a) Projection of candidate words onto the CKY table

! !"
#$%&&'()*+

!",-
#$%&&'(')'./+

!",
-,0

#$%&&'(')'./,1
234+

"

-
#56.78*+

0
#234+

9 9:
#*;'&.+

<=,
>:=

9:=,
?@
#A%5B.1
C6)D+

9:=,
?@,=
#A%5B.1
C6)D1%8+

:

=
#%8+

? ?@
#5%.+

?@,=
#5%.1%8+

@

=
#%8+

9:,=
#*;'&.1%8+

9:=
#C6)D+

(b) Generation of phrases

! !"
#$%&&'()*+

!",-
#$%&&'(')'./+

!"#
$#%

&'())*+*,*-.#/
0123

"

-
#01.23*+

4
#567+

8 89
#*:'&.+

;<,
=9<

9

<
#%3+

> >?
#0%.+

45#6
&7(-/(83

?

<
#%3+

9:#6
&;<*)-/ (83

9:6
&=>,?3

9:#6#
45#6
&;<*)-/(8/
7(-3

!"#$#
%#9:#
6#45#
6

&@%3*ABCDE

&@%3*ABFDG

!"#$%&'(#)%*!" +%,-$./01

# !"#$% 23$$-4-5-.6&'(')*+

$ !,-.% /0123&(4567893:;&(<5 8=>&')56???

% !@#A% 9B3/&C561D;:>3D23&C56 ???
???

!EF3BF306G6

/=991H1:1B863I19B9%

!.F36D>7H306;=::=E1DJ63G2F6E=0K673GD961B96;03L>3D28?%

(c) Generation process of the tree for “可能/性/が/ある/か/
ない/か” (correct analysis)

! !"
#$%&&'()*+

!",-
#$%&&'(')'./+

!"#
$#%

&'())*+*,*-.#/
0123

"

-
#01.23*+

4
#567+

8 89
#*:'&.+

;<,
=9<

9

<
#%3+

> >?
#0%.+

45#6
&7(-/(83

?

<
#%3+

9:#6
&;<*)-/ (83

9:6
&=>,?3

9:6#
45#6
&@(7A-/
=>,?/(83

!"#$#
%#9:6
#45#6

&@%3*ABCDE

&@%3*ABCFDG

!"#$%&'(#)%*!"# +,#-./01

! !"#$% &'()*+,-./0 1,23/0444

" !566% (*78,9:93;/0 <(7=>,:?;;/0444

#$ !5@A% &7(B=+C,2.-/0 )<7<=*+,DD/0444

444

!70&*))=E=>=<F08*')0

+*<0G7>B0*(%

(d) Generation process of the tree for “可能/性/が/あるか/
ない/か” (incorrect analysis)

Figure 1: Illustration of our joint analysis model.

case frame with the highest score is selected ac-
cording to the scoring function.

For example, Figure 1(c) shows the
merging process for the interpretation
“可能/性/が/ある/か/ない/か” (whether a possi-
bility exists), and Figure 1(d) shows the merging
process for “可能/性/が/あるか/ない/か” (pos-
sibility does not walk). The best-matching case
frame “ある:3” (exist:3) was selected for the
interpretation in Figure 1(c), and the case frame
“あるく:1” (walk:1) was selected in Figure 1(d),

respectively.

4. Selection of the tree with the highest score
The tree with the highest score is selected as an
output from the candidate trees for the whole input
sentence using the following equation:

ŷ = argmax
y∈Y

score(y), (1)

where ŷ is the output tree, and Y is the candidate
trees for the input sentence. The scoring function
score(y) is defined in Section 4.2.

5



Word feature
· Marginal score of morphological analysis
Phrase features
· Word 2,3-grams in a phrase
· # of phrases in a sentence
· Words at a phrase boundary
· # of predicates
· A predicate representation
Dependency features
· A dependency label
· Content/function words and punctuations of a modifier
· Content/function words and punctuations of a head
· Distance between a modifier and its head
Features derived from lexical knowledge
· # of predicates that do not have case frames
· Probabilities calculated based on case frames

(case frame/slot generating probability, etc.)
· A cooccurrence probability between nouns
· A cooccurrence probability between predicates
· Content word similarity between a modifier and its head
· Similarity of word sequences for coordination

Table 2: Features.

In Figure 1, the upper-right corner cell of the
CKY table, which keeps the interpretations of the
whole input sentence, contains two possible trees
illustrated in Figures 1(c) and 1(d). Our algo-
rithm selects the tree of 1(c), which has the high-
est score. Here, selectional preferences from case
frames tell that “ある” (exist) is more likely to take
the nominative filler “可能性” (possibility) than
“あるく” (walk).

4.2 Scoring Function and Training
The score of a tree for the input sentence x is de-
fined as the weighted sum of features. This score
is calculated using the following scoring function:

score(y) =
∑

i

(wi · ϕi (x, y)) , (2)

where ϕi is a feature function corresponding to
feature i, and wi is a weight of feature i. This scor-
ing function is also used for calculating the score
of a sub-tree, which is constructed at an interme-
diate step of parsing, i.e., an intermediate cell built
at Step 3.

Table 2 lists the features used, which include
words constituting a phrase, dependencies be-
tween phrases, and the plausibility of a PAS mea-
sured by case frames. The basic features that are
not derived from lexical knowledge (the upper part
of Table 2) are based on the features used in the
CaboCha parser.10

10Although the features for dependency parsing in
CaboCha were designed for bunsetsu dependency parsing, we
found out that these features are also compatible with base-
phrase dependency parsing.

Corpus Training Test
NEWS 2,727 articles 200 articles

(36,623 sentences) (1,783 sentences)
WEB 4,427 articles 700 articles

(13,853 sentences) (2,195 sentences)

Table 3: Statistics of the treebanks.

We use the following learning procedure. First,
the feature weights are initialized, and the word
lattice for each sentence in a training corpus is
input. A sentence is analyzed using the method
described in Section 4.1 with a beam width of b,
and candidate trees for this sentence are obtained.
The tree with the highest dependency score (UAS)
against the gold tree is regarded as a positive in-
stance, and the remaining candidate trees are re-
garded as negative instances. The feature weights
are optimized using the training instances gener-
ated from all the sentences in the training cor-
pus. We adopt candidate selection learning and
optimize the feature weights using L-BFGS. The
above procedure is iterated several times to obtain
the final feature weights.

5 Experiments

5.1 Experimental Settings

In our experiments, we used the Kyoto Uni-
versity Text Corpus11 (Kawahara et al., 2002)
(NEWS) and the Kyoto University Web Document
Leads Corpus12 (Hangyo et al., 2012) (WEB) as
Japanese treebanks. NEWS consists of news ar-
ticles and WEB consists of web pages in various
domains. We split these into training and test sets
as shown in Table 3. We merged the training sets
of NEWS and WEB to generate a training set in
our experiment and conducted evaluations on each
test set of NEWS and WEB.

For the parser input, we used the Japanese
morphological analyzer JUMAN++ (Morita et al.,
2015) to generate a word lattice. We did not use
all possible words in the lexicon of JUMAN++,
but converted the N-best output of JUMAN++ to
a word lattice to speed up parsing. This is rea-
sonable because the segmentation accuracy of JU-
MAN++ is between 98%–99% and its N-best out-
put contains only plausible words. N-best out-
puts were obtained using the option –autoN of JU-

11http://nlp.ist.i.kyoto-u.ac.jp/EN/

?KyotoUniversity\%20Text\%20Corpus
12http://nlp.ist.i.kyoto-u.ac.jp/EN/?KWDLC

6



Input
Model

Word Phrase Dependency
Data Morph output Seg POS All pSeg UAS LAS

NEWS

1-best

KNP 99.38 98.97 97.50 98.35 89.68 87.98
CaboCha 99.38 98.97 97.50 96.17 89.06 -

KNP+CaboCha 99.38 98.97 97.50 98.35 91.00 -

Our model wo/LK
99.38 98.97 97.50 98.38 89.89 88.20

N-best 99.37 98.98 97.51 98.39 90.40 88.73
1-best

Our model
99.38 98.97 97.50 98.39 91.26 89.54

N-best 99.38 99.00 97.54 98.44 91.61 89.91

WEB

1-best

KNP 98.45 97.91 96.34 96.30 87.87 85.61
CaboCha 98.45 97.91 96.34 92.65 86.14 -

KNP+CaboCha 98.45 97.91 96.34 96.30 89.05 -

Our model wo/LK
98.45 97.91 96.34 96.13 88.36 86.12

N-best 98.48 97.93 96.39 96.26 88.79 86.52
1-best

Our model
98.45 97.91 96.34 96.11 89.54 87.27

N-best 98.53 97.99 96.45 96.31 89.82 87.53

Table 4: Evaluation results. “wo/LK” means “without lexical knowledge.”

MAN++, which increases N proportionally to the
length of the input sentence. We applied 10-way
jackknifing to the training set and analyzed the test
set using a model trained on the whole training set.

To train our joint model, we used Classias13

with L1 regularization. We set the beam width b
of our model to 10 for both training and testing.

For comparison, we adopted the latest versions
of KNP and CaboCha, both of which are widely
used Japanese dependency parsers. KNP is an im-
plementation of Kawahara and Kurohashi (2006),
which accepts the 1-best output of morphological
analysis, applies rule-based phrase chunking and
performs probabilistic labeled dependency pars-
ing based on case frames. In KNP, we used
the same case frames compiled in this paper.
CaboCha is an implementation of Sassano (2004),
which accepts the 1-best output of morphologi-
cal analysis, applies CRF-based phrase chunking
and performs transition-based unlabeled depen-
dency parsing using SVM. The training of CRF
and SVM was conducted using the training data in
this paper. Because phrase chunking in CaboCha
was designed to identify bunsetsu, we also tested
KNP+CaboCha for fair comparison, which identi-
fies phrases using KNP and parses using CaboCha.
Since KNP and CaboCha are not a joint model
and accept only the 1-best output of morphological
analysis, we fed the 1-best morphological analy-
sis into KNP and CaboCha. We fed both 1-best
and N-best morphological analysis outputs into

13http://www.chokkan.org/software/classias/

our model for comparison. We also tested our
model without the automatically acquired lexical
knowledge.

We measured the performance of each sys-
tem using the F1-scores of the following aspects:
word segmentation (Seg), “segmentation + POS”
(POS), “segmentation+ POS + fine-grained POS +
base form” (All), phrase segmentation (pSeg), and
unlabeled/labeled dependency attachment score
(UAS/LAS). For the dependency labels, the fol-
lowing four labels are defined in the treebanks: D
(dependency), P (parallel), I (incomplete parallel),
and A (apposition).

5.2 Results and Discussion
Table 4 lists the evaluation results. In this ta-
ble, the accuracies in bold of “our model with N-
best input” are significantly higher than the other
models. Statistical testing was conducted using
the bootstrap method (Efron and Tibshirani, 1986,
1993) at p < 0.01.

The following is typical examples improved by
our joint model.

(3) a. あの
that

店
shop

は
TOP

で もの×
LOC thing

が
NOM

よく
often

見つかる
found

b. あの
that

店
shop

は
TOP

でもの○
bargain

が
NOM

よく
often

見つかる
found

In this example, (3a) is the incorrect output of the

7



Seg POS All pSeg UAS LAS
1-best 97.01 95.26 94.51 94.21 86.87 85.52
N-best 97.38 95.63 95.13 94.44 87.84 86.49

Table 5: Results on a corpus with ambiguities.

baseline systems, and (3b) is the correct output
of our joint model. Here, case frames tell that
the verb “見つかる” (be found) is likely to take
“でもの” (bargain) as its nominative.

(4) a. お いや×
(prefix) nasty

めい
niece

と
ABL

わかれる
part

b. おい や○
nephew and

めい
niece

と
ABL

わかれる
part

In this example, (4a) is the incorrect output of the
baseline systems, and (4b) is the correct output of
our joint model. In this case, “わかれる” (part)
is likely to take people including “おい” (nephew)
and “めい” (niece) as the ablative fillers. Also,
because “おい” (nephew) and “めい” (niece) are
judged to be similar by the word embeddings,
these are recognized as a coordinate structure.

In Table 4, while the dependency accuracies
were improved well, the improvements in morpho-
logical analysis (Seg, POS, and All) and phrase
segmentation (pSeg) were moderate, even though
most of them were significant. In Japanese, the
same word segments can have multiple possible
words with the same POS and base form, which do
not influence the segmentation and POS accuracy.
For example, consider the following sentence.

(5) 皮
rind
を
ACC

むく
peel/turn

The verb “むく” is represented as two possible
words with different meanings “peel” and “turn,”
both of which appear in the N-best output of
morphological analysis. Although “peel” is cor-
rect, this kind of meaning difference is not dis-
tinguished in the evaluation of segmentation and
POS tagging.14 However, such ambiguities are
resolved based on lexical knowledge in our joint
analysis model, and this disambiguation leads to
the improvement of case frame selection and de-
pendency parsing.

To further verify the improvements in morpho-
14If this verb “むく” is written using a Chinese character,

such as “向く” (turn) and “剥く” (peel), this kind of ambigu-
ity does not occur. However, there are many uses of words
without using Chinese characters, especially on Web texts.

logical analysis, we manually annotated 50 sen-
tences with various morphological ambiguities us-
ing the same annotation criteria as NEWS and
WEB. We tested our model given 1-best and N-
best morphological analysis with lexical knowl-
edge. Table 5 shows the results. The joint model
(N-best) outperformed the pipeline model (1-best)
in terms of all the measures by a large margin.

6 Conclusion

This paper proposed a joint model for morpho-
logical and dependency analysis based on au-
tomatically acquired lexical knowledge. This
model takes advantage of rich lexical knowledge
to jointly resolve word segmentation, POS, and
dependency ambiguities. In our Japanese exper-
iments, we succeeded in showing the effective-
ness of our joint model over conventional pipeline
models.

In the future, we will try to incorporate lexi-
cal knowledge into a neural network-based model
for joint morphological and dependency analysis.
By doing this, we can automatically consider fea-
ture combinations as the polynomial kernel used in
CaboCha. We also plan to integrate PAS analysis
including zero anaphora resolution into our joint
model.

References
David Aldous. 1985. Exchangeability and related top-

ics. École d’Été de Probabilités de Saint-Flour XIII
―1983 pages 1–198.

Mohit Bansal and Dan Klein. 2011. Web-scale
features for full-scale parsing. In Proceedings
of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, pages 693–702.
http://www.aclweb.org/anthology/P11-1070.

Bernd Bohnet and Joakim Nivre. 2012. A
transition-based system for joint part-of-speech tag-
ging and labeled non-projective dependency pars-
ing. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-

8



guage Learning. Association for Computational
Linguistics, Jeju Island, Korea, pages 1455–1465.
http://www.aclweb.org/anthology/D12-1133.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky,
Richárd Farkas, Filip Ginter, and Jan Hajič. 2013.
Joint morphological and syntactic analysis for richly
inflected languages. Transactions of the Asso-
ciation for Computational Linguistics 1:415–428.
http://www.aclweb.org/anthology/Q13-1034.

Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchi-
moto, and Kentaro Torisawa. 2009. Improv-
ing dependency parsing with subtrees from
auto-parsed data. In Proceedings of the 2009
Conference on Empirical Methods in Natural
Language Processing. Association for Compu-
tational Linguistics, Singapore, pages 570–579.
http://www.aclweb.org/anthology/D/D09/D09-
1060.

Bradley Efron and Robert Tibshirani. 1986. Bootstrap
methods for standard errors, confidence intervals,
and other measures of statistical accuracy. Statis-
tical science 1(1):54–75.

Bradley Efron and Robert J. Tibshirani. 1993. An Intro-
duction to the Bootstrap. Chapman and Hall/CRC.

Yoav Goldberg and Michael Elhadad. 2011. Joint He-
brew segmentation and parsing using a PCFGLA
lattice parser. In Proceedings of the 49th
Annual Meeting of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, Portland, Oregon, USA, pages 704–709.
http://www.aclweb.org/anthology/P11-2124.

Yoav Goldberg and Reut Tsarfaty. 2008. A sin-
gle generative model for joint morphological seg-
mentation and syntactic parsing. In Proceed-
ings of ACL-08: HLT . Association for Computa-
tional Linguistics, Columbus, Ohio, pages 371–379.
http://www.aclweb.org/anthology/P/P08/P08-1043.

Yoav Goldberg, Reut Tsarfaty, Meni Adler, and
Michael Elhadad. 2009. Enhancing unlexical-
ized parsing performance using a wide coverage
lexicon, fuzzy tag-set mapping, and EM-HMM-
based lexical probabilities. In Proceedings of
the 12th Conference of the European Chapter of
the ACL (EACL 2009). Association for Computa-
tional Linguistics, Athens, Greece, pages 327–335.
http://www.aclweb.org/anthology/E09-1038.

Spence Green and Christopher D. Manning. 2010.
Better Arabic parsing: Baselines, evaluations,
and analysis. In Proceedings of the 23rd In-
ternational Conference on Computational Lin-
guistics (Coling 2010). Coling 2010 Organiz-
ing Committee, Beijing, China, pages 394–402.
http://www.aclweb.org/anthology/C10-1045.

Masatsugu Hangyo, Daisuke Kawahara, and Sadao
Kurohashi. 2012. Building a diverse docu-
ment leads corpus annotated with semantic rela-
tions. In Proceedings of the 26th Pacific Asia

Conference on Language, Information, and Com-
putation. Faculty of Computer Science, Univer-
sitas Indonesia, Bali,Indonesia, pages 535–544.
http://www.aclweb.org/anthology/Y12-1058.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint ap-
proach to word segmentation, POS tagging, and
dependency parsing in Chinese. In Proceed-
ings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Jeju Island, Korea, pages 1045–1053.
http://www.aclweb.org/anthology/P12-1110.

Masakazu Iwatate. 2012. Development of pairwise
comparison-based Japanese dependency parsers and
application to corpus annotation. Ph.D dissertation
at Nara Institute of Science and Technology.

Daisuke Kawahara and Sadao Kurohashi. 2006.
A fully-lexicalized probabilistic model for
Japanese syntactic and case structure analy-
sis. In Proceedings of the Human Language
Technology Conference of the NAACL, Main
Conference. Association for Computational Lin-
guistics, New York City, USA, pages 176–183.
http://www.aclweb.org/anthology/N/N06/N06-
1023.

Daisuke Kawahara, Sadao Kurohashi, and Koiti
Hasida. 2002. Construction of a Japanese relevance-
tagged corpus. In Proceedings of the 3rd Inter-
national Conference on Language Resources and
Evaluation. pages 2008–2013. http://www.lrec-
conf.org/proceedings/lrec2002/pdf/302.pdf.

Daisuke Kawahara, Daniel Peterson, Octavian
Popescu, and Martha Palmer. 2014. Induc-
ing example-based semantic frames from a
massive amount of verb uses. In Proceed-
ings of the 14th Conference of the European
Chapter of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Gothenburg, Sweden, pages 58–67.
http://www.aclweb.org/anthology/E14-1007.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In
Proceedings of ACL-08: HLT . Association for Com-
putational Linguistics, Columbus, Ohio, pages 595–
603. http://www.aclweb.org/anthology/P/P08/P08-
1068.

Taku Kudo and Yuji Matsumoto. 2002. Japanese
dependency analysis using cascaded chunk-
ing. In Proceedings of the 6th Conference
on Natural Language Learning. pages 63–69.
http://www.aclweb.org/anthology/W/W02/W02-
2016.pdf.

Tomas Mikolov, Chen Kai, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In Proceedings of Workshop
at International Conference on Learning Represen-
tations.

9



Hajime Morita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2015. Morphological analysis for unseg-
mented languages using recurrent neural network
language model. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 2292–2297.
http://aclweb.org/anthology/D15-1276.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics
31(1):71–106.

Xian Qian and Yang Liu. 2012. Joint Chi-
nese word segmentation, POS tagging and pars-
ing. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning. Association for Computational
Linguistics, Jeju Island, Korea, pages 501–511.
http://www.aclweb.org/anthology/D12-1046.

Manabu Sassano. 2004. Linear-time dependency
analysis for Japanese. In Proceedings of Coling
2004. COLING, Geneva, Switzerland, pages 8–14.
http://www.aclweb.org/anthology/C04-1002.

Yuki Tawara, Ai Azuma, and Yuji Matsumoto. 2015.
Japanese morphological analysis using dependency
information (in Japanese). In IPSJ 2015-NL-220.
pages 1–7.

Gertjan van Noord. 2007. Using self-trained
bilexical preferences to improve disambigua-
tion accuracy. In Proceedings of the Tenth
International Conference on Parsing Tech-
nologies. Association for Computational Lin-
guistics, Prague, Czech Republic, pages 1–10.
http://www.aclweb.org/anthology/W/W07/W07-
2201.

Zhiguo Wang and Nianwen Xue. 2014. Joint POS
tagging and transition-based constituent parsing in
Chinese with non-local features. In Proceed-
ings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 733–742.
http://www.aclweb.org/anthology/P14-1069.

Zhiguo Wang, Chengqing Zong, and Nianwen Xue.
2013. A lattice-based framework for joint Chi-
nese word segmentation, POS tagging and pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 623–627.
http://www.aclweb.org/anthology/P13-2110.

Naoki Yoshinaga and Masaru Kitsuregawa. 2014.
A self-adaptive classifier for efficient text-stream
processing. In Proceedings of COLING 2014,
the 25th International Conference on Compu-
tational Linguistics: Technical Papers. Dublin

City University and Association for Computational
Linguistics, Dublin, Ireland, pages 1091–1102.
http://www.aclweb.org/anthology/C14-1103.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Character-level Chinese dependency
parsing. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Association for Com-
putational Linguistics, Baltimore, Maryland, pages
1326–1336. http://www.aclweb.org/anthology/P14-
1125.

Yuan Zhang, Chengtao Li, Regina Barzilay, and Ka-
reem Darwish. 2015. Randomized greedy infer-
ence for joint segmentation, POS tagging and de-
pendency parsing. In Proceedings of the 2015 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 42–52.
http://www.aclweb.org/anthology/N15-1005.

Guangyou Zhou, Jun Zhao, Kang Liu, and Li Cai.
2011. Exploiting web-derived selectional prefer-
ence to improve statistical dependency parsing. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Portland, Oregon, USA, pages 1556–
1565. http://www.aclweb.org/anthology/P11-1156.

10



Proceedings of the 15th International Conference on Parsing Technologies, pages 11–17,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Dependency Language Models for Transition-based Dependency Parsing

Juntao Yu
University of Birmingham

Birmingham, UK
j.yu.1@cs.bham.ac.uk

Bernd Bohnet
Google

London, UK
bohnetbd@google.com

Abstract

In this paper, we present an approach
to improve the accuracy of a strong
transition-based dependency parser by ex-
ploiting dependency language models that
are extracted from a large parsed corpus.
We integrated a small number of features
based on the dependency language mod-
els into the parser. To demonstrate the
effectiveness of the proposed approach,
we evaluate our parser on standard En-
glish and Chinese data where the base
parser could achieve competitive accuracy
scores. Our enhanced parser achieved
state-of-the-art accuracy on Chinese data
and competitive results on English data.
We gained a large absolute improvement
of one point (UAS) on Chinese and 0.5
points for English.

1 Introduction

In recent years, using unlabeled data to improve
natural language parsing has seen a surge of in-
terest as the data can easy and inexpensively be
obtained, cf. (Sarkar, 2001; Steedman et al., 2003;
McClosky et al., 2006; Koo et al., 2008; Søgaard
and Rishøj, 2010; Petrov and McDonald, 2012;
Chen et al., 2013; Weiss et al., 2015). This is in
stark contrast to the high costs of manually la-
beling new data. Some of the techniques such
as self-training (McClosky et al., 2006) and co-
training (Sarkar, 2001) use auto-parsed data as
additional training data. This enables the parser
to learn from its own or other parser’s annota-
tions. Other techniques include word clustering
(Koo et al., 2008) and word embedding (Bengio
et al., 2003) which are generated from a large
amount of unannotated data. The outputs can be
used as features or inputs for parsers. Both groups

of techniques have been shown effective on syn-
tactic parsing tasks (Zhou and Li, 2005; Reichart
and Rappoport, 2007; Sagae, 2010; Søgaard and
Rishøj, 2010; Yu et al., 2015; Weiss et al., 2015).
However, most word clustering and the word em-
bedding approaches do not consider the syntactic
structures and most self-/co-training approaches
can use only a relatively small additional training
data as training parsers on a large corpus might be
time-consuming or even intractable on a corpus of
millions of sentences.

Dependency language models (DLM) (Shen
et al., 2008) are variants of language models based
on dependency structures. An N-gram DLM is
able to predict the next child when given N-1 im-
mediate previous children and their head. Chen
et al. (2012) integrated first a high-order DLM
into a second-order graph-based parser. The DLM
allows the parser to explore high-order features
but not increasing the time complexity. Follow-
ing Chen et al. (2012), we adapted the DLM
to transition-based dependency parsing. Our ap-
proach is different from Chen et al. (2012)’s in a
number of important aspects:

1. We applied the DLM to a strong parser that
on its own has a competitive performance.

2. We revised their feature templates to inte-
grate the DLMs with a transition-based sys-
tem and labeled parsing.

3. We used DLMs in joint tagging and parsing,
and gained up to 0.4% on tagging accuracy.

4. Our approach could use not only single DLM
but also multiple DLMs during parsing.

5. We evaluated additionally with DLMs ex-
tracted from higher quality parsed data which
two parsers assigned the same annotations.

11



Overall, our approach improved upon a compet-
itive baseline by 0.51% for English and achieved
state-of-the-art accuracy for Chinese.

2 Related work

Previous studies using unlabeled text could be
classified into two groups by how unlabeled data
is used for training.

The first group uses unlabeled data (usually
parsed data) directly in the training process as
additional training data. The most common ap-
proaches in this group are self-/co-training. Mc-
Closky et al. (2006) applied first self-training to
a constituency parser. This was later adapted to
dependency parsing by Kawahara and Uchimoto
(2008) and Yu et al. (2015). Compared to the
self-training approach used by McClosky et al.
(2006), both self-training approaches for depen-
dency parsing need an additional selection step to
predict high-quality parsed sentences for retrain-
ing. The basic idea behind this is similar to Sagae
and Tsujii (2007)’s co-training approach. Instead
of using a separately trained classifier (Kawahara
and Uchimoto, 2008) or confidence-based meth-
ods (Yu et al., 2015), Sagae and Tsujii (2007)
used two different parsers to obtain the additional
training data. Sagae and Tsujii (2007) shows that
when two parsers assign the same syntactic anal-
ysis to sentences then the parse trees have usually
a higher parsing accuracy. Tri-training (Zhou and
Li, 2005; Søgaard and Rishøj, 2010) is a variant of
co-training which involves a third parser. The base
parser is retrained on additional parse trees that the
other two parsers agreed on.

The second group uses the unlabeled data in-
directly. Koo et al. (2008) used word clusters
built from unlabeled data to train a parser. Chen
et al. (2008) used features extracted from short
distance relations of a parsed corpus to improve
a dependency parsing model. Suzuki et al. (2009)
used features of generative models estimated from
large unlabelled data to improve a second order
dependency parser. Their enhanced models im-
proved upon the second order baseline models by
0.65% and 0.15% for English and Czech respec-
tively. Mirroshandel et al. (2012) used the rela-
tive frequencies of nine manually selected head-
dependent patterns calculated from parsed French
corpora to rescore the n-best parses. Their ap-
proach gained a labeled improvement of 0.8%
over the baseline. Chen et al. (2013) combined

meta features based on frequencies with the ba-
sic first-/second-order features. The meta features
are extracted from parsed annotations by counting
the frequencies of basic feature representations in
a large corpus. With the help of meta features,
the parser achieved the state-of-the-art accuracy
on Chinese. Kiperwasser and Goldberg (2015)
added features based on the statistics learned from
unlabeled data to a weak first-order parser and they
achieved 0.7% improvement on the English data.
Word embeddings that represent words as high di-
mensional vectors are mostly used in neural net-
work parsers (Chen and Manning, 2014; Weiss
et al., 2015) and play an important role in those
parsers. The approach most close to ours is re-
ported by Chen et al. (2012) who applied a high-
order DLM to a second-order graph-based parser
for unlabeled parsing. Their DLMs are extracted
from an English corpus that contains 43 million
words (Charniak, 2000) and a 311 million word
corpus of Chinese (Huang et al., 2009) parsed by
a parser. From a relatively weak baseline, addi-
tional DLM-based features gained 0.6% UAS for
English and an impressive 2.9% for Chinese.

3 Our Approach

Dependency language models were introduced by
Shen et al. (2008) to capture long distance rela-
tions in syntactic structures. An N-gram DLM
predicts the next child based on N-1 immediate
previous children and their head. We integrate
DLMs extracted from a large parsed corpus into
the Mate parser (Bohnet et al., 2013). We first
extract DLMs from a corpus parsed by the base
model. We then retrain the parser with additional
DLM-based features.

Further, we experimented with techniques to
improve the quality of the syntactic annotations
which we use to build the DLMs. We parse the
sentences with two different parsers and then se-
lect the annotations which both parsers agree on.
The method is similar to co-training except that we
do not train the parser directly on these sentences.

We build the DLMs with the method of Chen
et al. (2012). For each child xch, we gain the prob-
ability distribution Pu(xch|H), where H refers
N − 1 immediate previous children and their head
xh. The previous children for xch are those who
share the same head with xch but closer to the head
word according to the word sequence in the sen-
tence. Let’s consider the left side child xLk in the

12



< NODLM , φ(Pu(s0)), φ(Pu(s1)), label >
< NODLM , φ(Pu(s0)), φ(Pu(s1)), label, s0 pos >
< NODLM , φ(Pu(s0)), φ(Pu(s1)), label, s0 word >
< NODLM , φ(Pu(s0)), φ(Pu(s1)), label, s1 pos >
< NODLM , φ(Pu(s0)), φ(Pu(s1)), label, s1 word >
< NODLM , φ(Pu(s0)), φ(Pu(s1)), label, s0 pos, s1 pos >
< NODLM , φ(Pu(s0)), φ(Pu(s1)), label, s0 word, s1 word >

Table 1: Feature templates which we use in the
parser.

train dev test
PTB 2-21 22 23
CTB5 001-815, 886-931, 816-885,

1001-1136 1148-1151 1137-1147

Table 2: Our data splits for English and Chinese

dependency relations (xLk...xL1, xh, xR1...xRm)
as an example, the N-1 immediate previous chil-
dren for xLk are xLk−1..xLk−N+1. In our ap-
proach, we estimate Pu(xch|H) by the relative fre-
quency:

Pu(xch|H) =
count(xch, H)∑
x′

ch
count(x′ch, H)

(1)

By their probabilities, the N-grams are sorted in
a descending order. We then used the thresholds
of Chen et al. (2012) to replace the probabilities
with one of the three classes (PH,PM,PL) ac-
cording to their position in the sorted list, i.e. the
N-grams whose probability has a rank in the first
10% receives the tag PH , PM refers probabilities
ranked between 10% and 30%, probabilities that
ranked below 30% are replaced with PL. During
parsing, we use an additional class PO for rela-
tions not presented in the DLM. In the preliminary
experiments, the PH class is mainly filled by un-
usual relations that only appeared a few times in
the parsed text. To avoid this, we configured the
DLMs to only use elements which have a mini-
mum frequency of three, i.e. count(xch, H) ≥
3. Table 1 shows our feature templates, where
NODLM is an index which allows DLMs distin-
guish from each other, s0, s1 are the top and the
second top of the stack, φ(Pu(s0/s1)) refers the
coarse label of probabilities Pu(xs0/s1

|H) (one of
the PH,PM,PL, PO), s0/s1 pos, s0/s1 word
refer to the part-of-speech tag, word form of
s0/s1, and label is the dependency label between
the s0 and the s1.

4 Experimental Set-up

For our experiments, we used the Penn English
Treebank (PTB) (Marcus et al., 1993) and Chinese
Treebank 5 (CTB5) (Xue et al., 2005). For En-
glish, we follow the standard splits and used Stan-
ford parser 1 v3.3.0 to convert the constituency
trees into Stanford style dependencies (de Marn-
effe et al., 2006). For Chinese, we follow the
splits of Zhang and Nivre (2011), the constituency
trees are converted to dependency relations by
Penn2Malt2 tool using head rules of Zhang and
Clark (2008). Table 2 shows the splits of our data.
We used gold segmentation for Chinese tests to
make our work comparable with previous work.
We used predicted part-of-speech tags for both
languages in all evaluations. Tags are assigned
by base parser’s internal joint tagger trained on
the training set. We report labeled (LAS) and
unlabeled (UAS) attachment scores, punctuation
marks are excluded from the evaluation.

For the English unlabeled data, we used the
data of Chelba et al. (2013) which contains around
30 million sentences (800 million words) from
the news domain. For Chinese, we used Xin-
hua portion of Chinese Gigaword 3 Version 5.0
(LDC2011T13). The Chinese unlabeled data we
used consists of 20 million sentences which is
roughly 450 million words after being segmented
by ZPar4 v0.7.5. The word segmentor is trained
on the CTB5 training set. In most of our exper-
iments, the DLMs are extracted from data anno-
tated by our base parser. For the evaluation on
higher quality DLMs, the unlabeled data is ad-
ditionally tagged and parsed by Berkeley parser
(Petrov and Klein, 2007) and is converted to de-
pendency trees with the same tools as for gold
data.

We used Mate transition-based parser with its
default setting and a beam of 40 as our baseline.

5 Results and Discussion

Combining different N-gram DLMs. We first
evaluated the effects of adding different number
of DLMs. Let m be the DLMs we used in the ex-
periments, e.g. m=1-3 refers all three (unigram,
bigram and trigram) DLMs are used. We evaluate

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html
3We excluded the sentences of CTB5 from Chinese Giga-

word corpus.
4https://github.com/frcchang/zpar

13



with both single and multiple DLMs that extracted
from 5 million sentences for both languages. We
started from only using unigram DLM (m=1) and
then increasing them until the accuracy drops. Ta-
ble 3 shows the results with different DLM set-
tings. The unigram DLM is most effective for
English, which improves above the baseline by
0.38%. For Chinese, our approach gained a large
improvement of 1.16% with an m of 1-3. Thus,
we use m=1 for English and m=1-3 for Chinese
in the rest of our experiments.

Exploring DLMs built from corpora of dif-
ferent size and quality. To evaluate the influ-
ence of the size and quality of the input corpus for
building the DLMs, we experiment with corpora
of different size and quality.

We first evaluate with DLMs extracted from the
different number of single-parsed sentences. We
extracted DLMs start from a 5 million sentences
corpus and increase the size of the corpus in step
until all of the auto-parsed sentences are used. Ta-
ble 4 shows our results on English and Chinese de-
velopment sets. For English, the highest accuracy
is still achieved by DLM extracted from 5 million
sentences. While for Chinese, we gain the largest
improvement of 1.2% with DLMs extracted from
10 million sentences.

We further evaluate the influence of DLMs ex-
tracted from higher quality data. The higher
quality corpora are prepared by parsing unlabeled
sentences with the Mate parser and the Berke-
ley parser and adding the sentences to the corpus
where both parsers agree. For Chinese, only 1
million sentences that consist of 5 tokens in av-
erage had the same syntactic structures assigned
by the two parsers. Unfortunately, this amount is
not sufficient for the experiments as their average
sentence length is in stark contrast with the train-
ing data (27.1 tokens). For English, we obtained 7
million sentences with an average sentence length
of 16.9 tokens.

To get a first impression of the quality, we
parsed the development set with the two parsers.
When the parsers agree, the parse trees have an
accuracy of 97% LAS, while the labeled scores
of both parsers are around 91%. This indicates
that parse trees where both parsers return the same
tree have a higher accuracy. The DLM extracted
from 7 million higher quality English sentences
achieved a higher accuracy of 91.56% which out-
perform the baseline by 0.51%.

m 0 1 2 3 1-2 1-3 1-4
English 91.05 91.43 91.14 91.22 91.27 91.26 N/A
Chinese 78.95 79.85 79.42 79.06 79.97 80.11 79.73

Table 3: Effects (LAS) of different number of
DLMs for English and Chinese. m = 0 refers the
baseline.

Size 0 5 10 20 30
English 91.05 91.43 91.38 91.13 91.28
Chinese 78.95 80.11 80.15 79.72 N/A

Table 4: Effects (LAS) of DLMs extracted from
different size (in million sentences) of corpus.
Size = 0 refers the baseline.

Main Results on Test Sets. We applied the
best settings tuned on the development sets to the
test sets. The best setting for English is the un-
igram DLM derived from the double parsed sen-
tences. Table 5 presents our results and top per-
forming dependency parsers which were evaluated
on the same English data set. Our approach with
40 beams surpasses our baseline by 0.46/0.51%
(LAS/UAS) 5 and is only lower than the few best
neural network systems. When we enlarge the
beam, our enhanced models achieved similar im-
provements. Our semi-supervised result with 150
beams are more competitive when compared with
the state-of-the-art. We cannot directly compare
our results with that of Chen et al. (2012) as
they evaluated on an old Yamada and Matsumoto
(2003) format. In order to have an idea of the
accuracy difference between our baseline and the
second-order graph-based parser they used, we
include our baseline on Yamada and Matsumoto
(2003) conversion. As shown in table 5 our base-
line is 0.62% higher than their semi-supervised re-
sult and this is 1.28% higher than their baseline.
This confirms our claim that our baseline is much
stronger.

For Chinese, we extracting the DLMs from 10
million sentences parsed by the Mate parser and
using the unigram, bigram and the trigram DLMs
together. Table 6 shows the results of our approach
and a number of best Chinese parsers. Our system
gained a large improvement of 0.93/0.98% 6 for la-
beled and unlabeled attachment scores when using
a beam of 40. When larger beams are used our ap-
proach achieved even larger improvement of more
than one percentage point for both labeled and un-

5Significant in Dan Bikel’s test (p < 10−3).
6Significant in Dan Bikel’s test (p < 10−5).

14



System Beam POS LAS UAS
Zhang and Nivre (2011) 32 97.44 90.95 93.00
Bohnet and Kuhn (2012) 80 97.44 91.19 93.27
Martins et al. (2013) N/A 97.44 90.55 92.89
Zhang and McDonald (2014) N/A 97.44 91.02 93.22
Chen and Manning (2014)† 1 N/A 89.60 91.80
Dyer et al. (2015)† 1 97.30 90.90 93.10
Weiss et al. (2015)† 8 97.44 92.05 93.99
Andor et al. (2016)† 32 97.44 92.79 94.61
Dozat and Manning (2017)† N/A N/A 94.08 95.74
Liu and Zhang (2017)† N/A N/A 95.20 96.20
Chen et al. (2012) Baseline * 8 N/A N/A 92.10
Chen et al. (2012) DLM * 8 N/A N/A 92.76
Our Baseline * 40 97.33 92.44 93.38
Our Baseline 40 97.36 90.95 93.08

80 97.34 91.05 93.28
150 97.34 91.05 93.29

Our DLM 40 97.38 91.41 93.59
80 97.39 91.47 93.65
150 97.42 91.56 93.74

Table 5: Comparing with top performing parsers
on English. (* means results that are evaluated
on Yamada and Matsumoto (2003) conversion. †
means neural network-based parsers)

System Beam POS LAS UAS
Hatori et al. (2011) 64 93.94 N/A 81.33
Li et al. (2012) N/A 94.60 79.01 81.67
Chen et al. (2013) N/A N/A N/A 83.08
Chen et al. (2015) N/A 93.61 N/A 82.94
Our Baseline 40 93.99 78.49 81.52

80 94.02 78.48 81.58
150 93.98 78.96 82.11

Our DLM 40 94.27 79.42 82.51
80 94.39 79.79 82.79
150 94.40 80.21 83.28

Table 6: Comparing with top performing parsers
on Chinese.

labeled accuracy when compared to the respec-
tive baselines. Our scores with the default beam
size (40) are competitive and are 0.2% higher
than the best reported result (Chen et al., 2013)
when increasing the beam size to 150. Moreover,
we gained improvements up to 0.42% for part-of-
speech tagging on Chinese tests.

6 Conclusion

In this paper, we applied dependency language
models (DLM) extracted from a large parsed cor-
pus to a strong transition-based parser. We in-
tegrated a small number of DLM-based features
into the parser. We demonstrate the effectiveness
of our DLM-based approach by applying our ap-
proach to English and Chinese. We achieved sta-
tistically significant improvements on labeled and
unlabeled scores of both languages. Our parsing
system improved by DLMs outperforms most of

the systems on English and is competitive. For
Chinese, we gained a large improvement of one
point and our accuracy is 0.2% higher than the best
reported result. In addition to that, our approach
gained an improvement of 0.4% on Chinese part-
of-speech tagging.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics. pages 2442–
2452.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3:1137–1155.
http://dl.acm.org/citation.cfm?id=944919.944966.

Bernd Bohnet and Jonas Kuhn. 2012. The best of
both worlds – a graph-based completion model for
transition-based parsers. In Proceedings of the 13th
Conference of the European Chpater of the Associ-
ation for Computational Linguistics (EACL). pages
77–87.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky,
Richárd Farkas Filip Ginter, and Jan Hajic. 2013.
Joint morphological and syntactic analysis for richly
inflected languages. Transactions of the Associta-
tion for Computational Linguistics 1.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the First Meeting of
the North American Chapter of the Association for
Computational Linguistics (NAACL). pages 132–
139.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Philipp Koehn. 2013. One
billion word benchmark for measuring progress in
statistical language modeling. Computing Research
Repository (CoRR) abs/1312.3005:1–6.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Empirical Methods in Natural Language
Processing (EMNLP).

Wenliang Chen, Youzheng Wu, and Hitoshi Isahara.
2008. Learning reliable information for depen-
dency parsing adaptation. In Proceedings of the
22nd International Conference on Computational
Linguistics-Volume 1. Association for Computa-
tional Linguistics, pages 113–120.

Wenliang Chen, Min Zhang, and Haizhou Li. 2012.
Utilizing dependency language models for graph-
based dependency parsing models. In Proceedings
of the 50th Annual Meeting of the Association for

15



Computational Linguistics: Long Papers-Volume 1.
Association for Computational Linguistics, pages
213–222.

Wenliang Chen, Min Zhang, and Yue Zhang.
2013. Semi-supervised feature transformation
for dependency parsing. In Proceedings of
the 2013 Conference on Empirical Methods in
Natural Language Processing. Association for
Computational Linguistics, pages 1303–1313.
http://aclweb.org/anthology/D13-1129.

Wenliang Chen, Min Zhang, and Yue Zhang.
2015. Distributed feature representations for
dependency parsing. IEEE/ACM Trans. Au-
dio, Speech and Lang. Proc. 23(3):451–460.
https://doi.org/10.1109/TASLP.2014.2365359.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC).

Timothy Dozat and Christopher Manning. 2017.
Deep biaffine attention for neural dependency
parsing. In Proceedings of the 5th Interna-
tional Conference on Learning Representations.
https://openreview.net/pdf?id=Hk95PK9le.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2011. Incremental joint pos tagging
and dependency parsing in chinese. In Proceedings
of 5th International Joint Conference on Natural
Language Processing. Asian Federation of Natural
Language Processing, Chiang Mai, Thailand, pages
1216–1224. http://www.aclweb.org/anthology/I11-
1136.

Liang Huang, Wenbin Jiang, and Qun Liu. 2009.
Bilingually-constrained (monolingual) shift-reduce
parsing. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP). pages 1222–1231.

Daisuke Kawahara and Kiyotaka Uchimoto. 2008.
Learning reliability of parses for domain adaptation
of dependency parsing. In IJCNLP. volume 8.

Eliyahu Kiperwasser and Yoav Goldberg. 2015. Semi-
supervised dependency parsing using bilexical con-
textual features from auto-parsed data. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for

Computational Linguistics, Lisbon, Portugal, pages
1348–1353. http://aclweb.org/anthology/D15-1158.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In
Proceedings of the 46th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). pages
595–603.

Zhenghua Li, Min Zhang, Wanxiang Che, and
Ting Liu. 2012. A separately passive-aggressive
training algorithm for joint POS tagging and
dependency parsing. In Proceedings of COL-
ING 2012. The COLING 2012 Organizing
Committee, Mumbai, India, pages 1681–1698.
http://www.aclweb.org/anthology/C12-1103.

J. Liu and Y. Zhang. 2017. In-Order Transition-based
Constituent Parsing. ArXiv e-prints .

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics 19:313–330.

A. Martins, M. Almeida, and N. A. Smith. 2013. ”turn-
ing on the turbo: Fast third-order non-projective
turbo parsers”. In Annual Meeting of the Associa-
tion for Computational Linguistics - ACL. volume -,
pages 617 – 622.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference. pages
152–159.

Seyed Abolghasem Mirroshandel, Alexis Nasr, and
Joseph Le Roux. 2012. Semi-supervised depen-
dency parsing using lexical affinities. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers - Vol-
ume 1. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACL ’12, pages 777–785.
http://dl.acm.org/citation.cfm?id=2390524.2390634.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proceedings of Hu-
man Language Technologies: The Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics (NAACL HLT).
pages 404–411.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Roi Reichart and Ari Rappoport. 2007. Self-training
for enhancement and domain adaptation of statistical
parsers trained on small datasets. In ACL. volume 7,
pages 616–623.

Kenji Sagae. 2010. Self-training without reranking for
parser domain adaptation and its impact on semantic
role labeling. In Proceedings of the 2010 Workshop

16



on Domain Adaptation for Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 37–44.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency
parsing and domain adaptation with LR models and
parser ensembles. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007. pages 1044–
1050.

Anoop Sarkar. 2001. Applying co-training methods
to statistical parsing. In Proceedings of the Second
Meeting of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL).
pages 175–182.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008.
A new string-to-dependency machine translation al-
gorithm with a target dependency language model.
ACL-08: HLT page 577.

Anders Søgaard and Christian Rishøj. 2010. Semi-
supervised dependency parsing using generalized
tri-training. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics.
Association for Computational Linguistics, Strouds-
burg, PA, USA, COLING ’10, pages 1065–1073.
http://dl.acm.org/citation.cfm?id=1873781.1873901.

Mark Steedman, Rebecca Hwa, Miles Osborne, and
Anoop Sarkar. 2003. Corrected co-training for sta-
tistical parsers. In Proceedings of the International
Conference on Machine Learning (ICML). pages
95–102.

Jun Suzuki, Hideki Isozaki, Xavier Carreras, and
Michael Collins. 2009. An empirical study
of semi-supervised structured conditional mod-
els for dependency parsing. In Proceedings
of the 2009 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Singapore, pages 551–
560. http://www.aclweb.org/anthology/D/D09/D09-
1058.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of ACL
2015. pages 323–333.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The Penn Chinese Treebank: Phase
structure annotation of a large corpus. Journal of
Natural Language Engineering 11:207–238.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT). pages
195–206.

Juntao Yu, Mohab Elkaref, and Bernd Bohnet. 2015.
Domain adaptation for dependency parsing via self-
training. In Proceedings of the 14th International
Conference on Parsing Technologies. Association
for Computational Linguistics, Bilbao, Spain, pages
1–10. http://www.aclweb.org/anthology/W15-2201.

Hao Zhang and Ryan McDonald. 2014. Enforcing
structural diversity in cube-pruned dependency pars-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 656–
661. http://www.aclweb.org/anthology/P/P14/P14-
2107.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP). pages
562–571.

Yue Zhang and Joakim Nivre. 2011. Transition-based
parsing with rich non-local features. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics (ACL).

Zhi-Hua Zhou and Ming Li. 2005. Tri-training:
Exploiting unlabeled data using three classifiers.
Knowledge and Data Engineering, IEEE Transac-
tions on 17(11):1529–1541.

17



Proceedings of the 15th International Conference on Parsing Technologies, pages 18–24,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Lexicalized vs. Delexicalized Parsing in Low-Resource Scenarios

Agnieszka Falenska and Özlem Çetinoğlu
Institute for Natural Language Processing

University of Stuttgart
{falenska,ozlem}@ims.uni-stuttgart.de

Abstract

We present a systematic analysis of lexi-
calized vs. delexicalized parsing in low-
resource scenarios, and propose a method-
ology to choose one method over another
under certain conditions. We create a
set of simulation experiments on 41 lan-
guages and apply our findings to 9 low-
resource languages. Experimental results
show that our methodology chooses the
best approach in 8 out of 9 cases.

1 Introduction

The recent CoNLL Shared Task on Parsing Uni-
versal Dependencies (CoNLL-ST) (Zeman et al.,
2017) gave researchers the opportunity to study
dependency parsing on a wide selection of tree-
banks. While the ultimate goal remained the same,
i.e., achieving the best accuracy in predicting the
head and dependency label of a token, the start-
ing point changed from one group of languages to
another, depending on the available resources.

In the surprise languages scenario, participants
were given a very small training treebank, no de-
velopment set, relatively accurate POS tags for
the test set, and little or no parallel data.1 When
parallel data is not available, many of the stan-
dard cross-lingual parsing techniques (e.g. an-
notation projection (Hwa et al., 2005; McDon-
ald et al., 2011); treebank translation (Tiedemann
and Agić, 2016); utilizing cross-lingual word clus-
ters (Täckström et al., 2012) or word embeddings

1This is due to the CoNLL-ST rules that restricted the use
of parallel resources to OPUS (Tiedemann, 2012). But ac-
tually no or little parallel data is not an unrealistic assump-
tion. Among four surprise languages, three of them have
only Linux distro translations in OPUS, none are part of the
135-language Watchtower Corpus (Agić et al., 2016) (but
two have a few documents on the Watchtower website), and
none are part of the 100-language Edinburgh Bible Corpus
(Christodouloupoulos and Steedman, 2015).

(Duong et al., 2015; Guo et al., 2015)) become im-
possible to apply.

Delexicalized parsing (Zeman and Resnik,
2008) provides a suitable alternative, while it does
not require parallel data. The central idea is to
train a source-side parser without any lexical fea-
tures, i.e., typically using only POS tags, and
then use this trained parser to parse a target, low-
resource language that shares the same POS tag
set. No gold trees are required on the target side,
and only POS tags have to be predicted prior to
parsing. Given the simplicity of this method, sev-
eral CoNLL-ST participants have chosen delex-
icalized approaches, not only for surprise lan-
guages but also for the other CoNLL-ST scenario
– small languages2. In this scenario, as opposed
to the surprise languages, the small training tree-
banks were the only source of gold POS tags.

When the data for training POS taggers is small
– as for the small languages scenario as well as
for many upcoming UD treebanks3 – the delexi-
calized methods might be affected by poor POS
accuracy. On the other hand, there are some gold
trees for those scenarios and it is possible to train
lexicalized parsers on them. Could there be cases
in which such a low-resource lexicalized parser is
preferred over a delexicalized one?

The central question we examine is whether we
can find cases where a low-resource lexicalized
parser achieves better accuracy than a delexical-
ized one. As a related problem, we investigate the
following case: when there is a new language to
parse, with no treebank but with the chance to pre-
dict POS tags, should one pursue a delexicalized
parsing or invest in some tree annotation?

Our goal is to investigate those questions sys-

2The set of small treebanks with no development sets.
3For instance, currently there are 17 upcom-

ing treebank projects within Universal Dependencies
http://universaldependencies.org/#upcoming-ud-treebanks.

18



tematically in low-resource settings and to find the
conditions under which one strategy leads to better
results than the other. While our scenarios origi-
nate from the CoNLL-ST, our approach should be
applicable to other settings. For example, our con-
clusions might prove helpful in developing early
parsing models of a new treebank or in deciding
how to proceed when there is a large gold POS
tagged corpus but no trees (e.g. Echelmeyer et al.
(2017) present a Middle High German corpus with
20,000 tokens of gold POS, no trees, and no appar-
ent parallel data). They can also help plan resource
creation. While POS annotation can be relatively
fast (Garrette and Baldridge, 2013), creating tree-
banks is costly (Zeman and Resnik, 2008; Souček
et al., 2013). The decision of building a large POS
annotated corpus vs. a small treebank in a lim-
ited time, could depend on whether delexicalized
models would work well for a target language.

2 Methodology

We compare low-resource lexicalized vs. delex-
icalized parsing in two settings used for surprise
and small languages scenarios of the CoNLL-ST.
In the first scenario, we assume the existence of
a small treebank, and an external POS-annotated
corpus – larger than the treebank – to train a POS
tagger (EXTPOS). In the second scenario, only
the treebank exists, thus the gold POS tags neces-
sary to train a tagger must be extracted from the
treebank (TBPOS). In both cases, we change the
treebank sizes to observe the difference in accu-
racy between lexicalized and delexicalized pars-
ing. While the POS accuracy is not affected from
the treebank size in EXTPOS, it changes with the
size of the treebank in TBPOS.

We employ multi-source delexicalized parsing
(McDonald et al., 2011) in both scenarios. We fol-
low Rosa and Žabokrtský (2015) and Agić (2017)
in combining sources by blending (also known
as reparsing) (Sagae and Lavie, 2006). Unlike
in their original study, we apply blending on la-
beled arcs. We also employ weighted blending
by assigning weights to sources based on lan-
guage/treebank similarity measures.

2.1 Similarity Measures

We employ two measures of similarity between
languages used in previous work:

KLpos: Rosa and Žabokrtský’s (2015) KL di-
vergence metric (Kullback and Leibler, 1951) be-

tween POS trigrams. Instead of their smoothing,
we use Laplace smoothing with α = 0.01.

WALS: Agić’s (2017) Hamming distance be-
tween each language’s feature vectors from The
World Atlas of Language Structures (WALS)
(Dryer and Haspelmath, 2013). For languages
with no WALS entry, or for languages with less
than 10 features in common, WALS is not defined.

2.2 Weights

We use three methods employing aforementioned
similarity measures for weighting source lan-
guages while blending:

R&Z15: Rosa and Žabokrtský’s (2015) KLpos

calculation between the gold POS tags of the
source and target training data, and their KL−4

weighting.
A17: Agić’s (2017) combined weighting that

calculates KLpos between the gold POS tags of the
source training data and the predicted POS tags of
the target development data, and then combines it
with WALS.

LAStgt: We utilize gold trees as a source of
weights for the blender. We parse the target train-
ing trees with the source delexicalized parsers and
use their LAS as weights. Moreover, we rank the
sources and take the n-best giving the best blended
accuracy. n is tuned for every treebank and every
training size separately on the training data.

3 Experimental Setup

Data We use the Universal Dependencies v2.0
treebanks (Nivre et al., 2016) released for the
CoNLL-ST (Nivre et al., 2017). We use all the
treebanks except domain-specific4 ones as sources
(46 languages). As targets we take two groups of
languages from the CoNLL-ST that correspond to
the two settings we experiment with:

Surprise languages: Kurmanji (kmr), Upper
Sorbian (hsb), North Sami (sme), Buryat (bxr).
Each language contains a small sample of gold
training data (see Table 1) and its test set is pro-
vided with POS tags predicted by a system trained
on a data set much larger than the training data.
Those languages represent the EXTPOS setting.

Small languages: Latin (la), Irish (ga),
Ukrainian (uk), Kazakh (kk), Uyghur (ug). They
have small treebanks (especially Kazakh and

4Some languages have multiple UD treebanks, often from
different domains. In such cases we chose the canonical tree-
bank for a language.

19



0 200 400 600 800 1000 1200 1400 1600
Training data size in #tokens

35

40

45

50

55

60

65

av
er

ag
e

L
A

S

LEX

R&Z15
A17
LAStgt

(a) Average parsing accuracy. The average cutting
point is marked by the red dot.

0 1000 2000 3000 4000 5000
Training data size in #tokens

20

30

40

50

60

70

80

L
A

S

ar

bg ca

cs (8k)da

de

el

en

es

et

eu
fa

fi

fr

he

hi hr

hu

id

it (5k)

ja

ko

lv

nl

pl

pt (13k)

roru

sk (18k)
sl (5k)

sv

tr

ur

vi

zh

cu

gl

got

grc

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40

Best source distance by WALS

(b) Cutting points for all targets. Points which fall far right are moved left
and their corresponding training sizes are given in brackets. cross (X): no
WALS entry. circle size ∼ number of most similar sources (WALS < 0.2).

Figure 1: Parsing accuracies for EXTPOS scenario.

Uyghur), with no additional POS data. They cor-
respond to the TBPOS setting.

The 9 target treebanks do not contain develop-
ment sets, so as to not compromise our test sets,
we set those languages aside as test cases. We
perform analysis on simulated low-resource lan-
guages instead. For this purpose we use the sub-
set of source treebanks that has a development set
(41 languages). For each of them we sample small
training treebanks starting with only 100 tokens.

Tools To train POS taggers, we employ Mar-
MoT (Müller et al., 2013). In EXTPOS, POS tag-
gers are trained on the whole treebanks, where in
TBPOS, training is done only on small samples.
We use Universal Part of Speech tags (UPOS) in
all experiments.

For parsing, we use a beam-search transition-
based parser (Björkelund and Nivre, 2015).5

Delexicalized parsers (DELEX), and lexicalized
parsers (LEX) for TBPOS are trained on gold
POS tags. For EXTPOS lexicalized parsers are
trained on 5-fold jackknifed POS tags for better
performance (we sample the small treebanks after
performing jackknifing). We blend delexicalized
models’ outputs via methods described in Section
2.2. In presenting the experimental results, we re-
fer to these DELEX models with their weighting
scheme, namely R&Z15, A17, and LAStgt.

Evaluation We use labeled attachment score
(LAS) as the evaluation metric and evaluate using
the script provided by the CoNLL-ST organizers.

5We also experimented with the graph-based parser Mate
(Bohnet, 2010) to test our hypotheses on a different parsing
architecture. We achieved results parallel to the transition-
based parser, thus we only present one set of results.

4 Results and Analysis

We apply LEX and DELEX to our artificially cre-
ated low-resource languages and analyze the re-
sults for EXTPOS and TBPOS scenarios.

4.1 The EXTPOS Scenario

Figure 1(a) shows average results for EXTPOS.
We observe that DELEX methods using POS tags
as weight source (A17 and R&Z15) achieve on av-
erage 55% LAS. Both of them are surpassed by
LEX when gold trees are available for only 750 to-
kens (which corresponds to 40 sentences for the
used treebanks). Creating weights from gold trees
(LAStgt) instead of POS tags improves the per-
formance but the improvement is modest and LEX

trained on only 1,100 tokens (avg. 55 sentences)
outperforms it. We find this small number surpris-
ing, and investigate it further.

Instead of looking at averages we analyze target
languages separately. We call the point in which
LEX surpasses LAStgt (the red dot in Figure 1(a))
a cutting point and plot the cutting points for all
the target languages separately (Figure 1(b)). We
note that most of the languages do not fall around
the average cutting point of 1,100 tokens. Instead
they can be grouped into three clusters: 10 lan-
guages on the far left for which LEX trained on
even less than 500 tokens (avg. 25 sentences) is
better than DELEX; 9 languages on the far right
for which even 3,400 tokens (avg. 176 sentences)
is not enough to surpass DELEX; and the middle
part. In order to explain this distribution we take a
look at the target languages characteristics.

We use WALS to measure the distance between
languages (we normalize WALS by the number of

20



0 200 400 600 800 1000 1200 1400 1600
Training data size in #tokens

15

20

25

30

35

40

45

LEX

R&Z15
A17
LAStgt

(a) Average parsing accuracy. The average cutting
point is marked by the red dot.

0 500 1000 1500 2000 2500 3000
Training data size in #tokens

0

10

20

30

40

50

60

L
A

S

ar

bg

ca

cs

cu

da

de
el

en

es

et

eu
fa

fi

fr

gl
got

grc

he
hi

hr

id

it

ja

ko

lv

nl
pl

pt

ro ru

sk
sl sv

tr

ur

vi

zh
45 50 55 60 65 70 75 80 85

POS accuracy

(b) Cutting points for all target languages.

Figure 2: Parsing accuracies for TBPOS scenario.

common features). For every target we select the
best source according to WALS and represent its
distance by color (the darker the circle the more
similar the best source is). The number of good
sources (WALS < 0.2) is represented by size (the
bigger the circle the more good sources exist). For
example, Korean’s (ko) best source according to
WALS is Urdu with a distance of 0.27 and its cir-
cle is light and small. In contrast, Slovenian (sl)
for which five good sources exist (among which
Ukrainian has the smallest distance of 0.03) is rep-
resented by a dark and big circle.

In Figure 1(b) we can observe a pattern among
the two border groups. The left group tends to
have small and light circles which means that there
is no good source for them. When we look at the
languages which fall into this group (like Arabic
(ar) and Vietnamese (vi)) we see that they come
from language families less represented among the
source languages. The far right circles in compar-
ison are bigger and darker which means that they
fit well into the set of existing source languages.
Indeed many Slavic languages fall here.

4.2 The TBPOS Scenario

Figure 2(a) shows average results for TBPOS. As
expected the accuracy of parsers drops due to
lower POS accuracy. Other than the LAS scores,
there are two major differences between those two
plots. In this setting, POS taggers are trained on
tags coming from the treebanks and POS accuracy
changes with the data size. That is why the A17
and R&Z15 lines are not flat any more. The dif-
ference between them is once again very slight and
LAStgt outperforms both of them for all data sizes.

As the second major difference to EXTPOS,

LEX quickly outperforms DELEX methods at
around 250 tokens. We show the breakdown of
this cutting point by target language in Figure 2(b).
The shades of the circles denote the POS accuracy
(the darker the more accurate). In this case, the
circles are placed in a smaller area with an upper
limit of 3,100 tokens. Note that the source lan-
guage similarity is not shown in this plot, yet it
still affects the underlying distribution of targets.
Comparing to Figure 1(b), the relative placement
of the languages is almost the same. The dense
distribution also causes a more homogeneous scat-
ter making the groupings less visible.

4.3 Overall Picture

Delexicalized models use only POS tags as fea-
tures and therefore are more influenced by low
POS tagging accuracy than lexicalized parsers.
That is why the choice which method to apply de-
pends strongly on the existing resources.

In EXTPOS in order for DELEX to work better
than LEX good sources must exist. If the target
belongs to an underrepresented language family,
even a very small sample of gold trees is enough
for LEX to achieve better results. In contrast, if the
target is similar to many sources DELEX can help
even if the target gold data exists. In that case,
the gold trees can be exploited for example as a
source for weights for blending. For all our targets
regardless of existing sources, having a treebank
bigger than 18,000 tokens is enough for LEX to
give higher accuracies than any DELEX model.

In TBPOS on average LEX outperforms DELEX

even when trained on only few gold sentences.
The only situation when using other sources might
help is when there are many similar sources and

21



gold trees for more than 1,000 tokens (avg. 50
sentences). In that case, the POS tagging accu-
racy is able to reach a reasonable 70% and DELEX

achieves comparable performance to LEX. But al-
ready having a treebank bigger than only 3,100 to-
kens (avg. 160 sentences) is enough for LEX to
work better for all our targets.

5 Application to Test Languages

We use findings from Section 4 to decide which
test languages should employ DELEX methods.

In EXTPOS all the treebanks have less than
500 tokens and according to Figure 1(a) DELEX

methods might be a good choice. We compare the
test languages with the breakdown in Figure 1(b).
Buryat is a Mongolic language and does not have
any close relatives among the source languages.
For Kurmanji there is only one similar language
– Persian. Therefore for both of those languages
the cutting point would likely occur quickly and
DELEX would give no or very little improvement
over LEX. On the contrary, North Sami is Finno-
Ugric and Finnish and Estonian should be good
sources for it. Upper Sorbian is Slavic and its fam-
ily is well represented (e.g. by Czech or Polish).
Therefore DELEX should work very well for them.

In TBPOS, most of the languages are much big-
ger than 3,100 tokens and for none of them DELEX

should help. Kazakh is smaller than the threshold
of 1,000 tokens. Most probably POS tagging accu-
racy for it would be poor and LEX should be a bet-
ter choice to overcome that. The only language for
which DELEX methods might help is Uyghur. But
it is a language for which not many good sources
exist, the closest being Turkish. Most probably
LEX is also a better choice in this case.

To test our hypotheses, we apply all the meth-
ods to the test languages and present results in
Table 1. For languages not present in WALS
(Kazakh, Uyghur) A17 uses only KLpos. We do
not apply R&Z15 to the surprise languages since
their POS tagging training data is not available6.
We see that our intuition was right in 8 out of 9
cases. For all the small languages LEX performs
better. For the surprise languages as expected Up-
per Sorbian and North Sami gain from DELEX the
most – 9.22 and 6 points LAS respectively when
compared to LAStgt. For Kurmanji LEX trained on
only 242 tokens (20 sentences) gives 2.12 points

6Their test sets were annotated via jackknifing by the
CoNLL-ST organizers to mimic EXTPOS scenario.

size POS LEX R&Z15 A17 LAStgt

Sm
al

l

la 18184 84.41 41.02 33.62 35.06 35.06
ga 13826 89.99 64.66 41.75 42.17 44.54
uk 12846 88.58 64.81 62.20 58.46 63.67
ug 1662 74.96 34.81 21.04 20.72 30.11
kk 529 58.48 26.55 21.49 24.49 26.17

Su
rp

ri
se

hsb 460 90.30 49.59 – 57.09 58.81
kmr 242 90.04 40.94 – 38.82 38.17
bxr 153 84.12 28.06 – 29.07 32.01
sme 147 86.81 29.8 – 33.44 35.80

Table 1: Results on the test languages.

LAS more than the best DELEX. Surprisingly, for
Buryat both DELEX methods outperform LEX.

6 Conclusion

In this paper we looked into lexicalized vs. delex-
icalized parsing in cases where there are few trees
for targets, POS tagging accuracies for the test set
vary, and no reasonable amount of parallel data be-
tween source and target languages is available. To
systematically compare these two approaches and
to observe under what circumstances one is more
favorable than the other, we created a simulation
scenario of 41 low-resource languages and applied
our findings to a set of 9 real low-resource targets.

We found out that lexicalized parsing can sur-
pass delexicalized methods even when trained on
very few sentences, so one should not be deceived
by the small size of a target treebank. By ana-
lyzing the typological relations between the source
and target languages, and the accuracy of POS tag-
ging it is possible to develop intuition about which
of two methods to apply to a new language. For 8
out of 9 test languages our findings hold true.

In our experiments we assumed specific con-
straints on existing resources, e.g., no parallel data
between source and target languages. If some par-
allel data is available, other transfer parsing ap-
proaches should be taken into comparison. For
instance, Agić et al. (2016) analyze a related sce-
nario where parallel data is available but no gold
trees. They show that projecting POS and depen-
dency annotations from multiple source languages
outperforms single-best delexicalized parsing as
well as blending. Whether such a method would
be a preferable choice when a small amount of
gold trees is available is a venue to explore.

Acknowledgments

This project is funded by the Deutsche
Forschungsgemeinschaft (DFG) via the SFB
732, projects D2 and D8 (PI: Jonas Kuhn).

22



References
Željko Agić. 2017. Cross-lingual parser selection

for low-resource languages. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies. Gothenburg Sweden, pages 1–10.

Željko Agić, Anders Johannsen, Barbara Plank, Hc-
tor Martnez Alonso, Natalie Schluter, and Anders
Søgaard. 2016. Multilingual projection for parsing
truly low-resource languages. Transactions of the
Association for Computational Linguistics 4:301–
312.

Anders Björkelund and Joakim Nivre. 2015. Non-
deterministic oracles for unrestricted non-projective
transition-based dependency parsing. In Proceed-
ings of the 14th International Conference on Parsing
Technologies. Association for Computational Lin-
guistics, Bilbao, Spain, pages 76–86.

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proc. of
COLING.

Christos Christodouloupoulos and Mark Steedman.
2015. A massively parallel corpus: the bible in
100 languages. Language resources and evaluation
49(2):375.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig. http://wals.info/.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015. A neural network model for low-
resource universal dependency parsing. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Lisbon, Portugal, pages
339–348.

Nora Echelmeyer, Nils Reiter, and Sarah Schulz. 2017.
Ein PoS-Tagger fur das Mittelhochdeutsche . In

Book of Abstracts of DHd 2017 . Bern, Switzerland.
https://doi.org/10.18419/opus-9023.

Dan Garrette and Jason Baldridge. 2013. Learning a
part-of-speech tagger from two hours of annotation.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, Atlanta,
Georgia, pages 138–147.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of ACL-IJCNLP. Beijing, China,
pages 1234–1244.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural language engineering 11(3):311–325.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The Annals of Mathe-
matical Statistics pages 79–86.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the conference on empir-
ical methods in natural language processing. Asso-
ciation for Computational Linguistics, pages 62–72.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order CRFs for morpholog-
ical tagging. In Proceedings of EMNLP. Seattle,
Washington, USA, pages 322–332.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick,
Cristina Bosco, Gosse Bouma, Sam Bowman,
Marie Candito, Gülşen Cebirolu Eryiit, Giuseppe
G. A. Celano, Fabricio Chalub, Jinho Choi, Çar
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Tomaž Erjavec, Richárd Farkas, Jen-
nifer Foster, Cláudia Freitas, Katarı́na Gajdošová,
Daniel Galbraith, Marcos Garcia, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökrmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds
Grūzītis, Bruno Guillaume, Nizar Habash, Jan
Hajič, Linh Hà M, Dag Haug, Barbora Hladká,
Petter Hohle, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşkara, Hiroshi
Kanayama, Jenna Kanerva, Natalia Kotsyba, Simon
Krek, Veronika Laippala, Phng Lê Hng, Alessan-
dro Lenci, Nikola Ljubešić, Olga Lyashevskaya,
Teresa Lynn, Aibek Makazhanov, Christopher Man-
ning, Cătălina Mărănduc, David Mareček, Héctor
Martı́nez Alonso, André Martins, Jan Mašek,
Yuji Matsumoto, Ryan McDonald, Anna Mis-
silä, Verginica Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Amir More, Shunsuke Mori, Bo-
hdan Moskalevskyi, Kadri Muischnek, Nina Musta-
fina, Kaili Müürisep, Lng Nguyn Th, Huyn Nguyn
Th Minh, Vitaly Nikolaev, Hanna Nurmi, Stina
Ojala, Petya Osenova, Lilja Øvrelid, Elena Pascual,
Marco Passarotti, Cenel-Augusto Perez, Guy Per-
rier, Slav Petrov, Jussi Piitulainen, Barbara Plank,
Martin Popel, Lauma Pretkalnia, Prokopis Proko-
pidis, Tiina Puolakainen, Sampo Pyysalo, Alexan-
dre Rademaker, Loganathan Ramasamy, Livy Real,
Laura Rituma, Rudolf Rosa, Shadi Saleh, Manuela
Sanguinetti, Baiba Saulīte, Sebastian Schuster,
Djamé Seddah, Wolfgang Seeker, Mojgan Seraji,
Lena Shakurova, Mo Shen, Dmitry Sichinava, Na-
talia Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Mária Šimková, Kiril Simov, Aaron Smith,
Alane Suhr, Umut Sulubacak, Zsolt Szántó, Dima
Taji, Takaaki Tanaka, Reut Tsarfaty, Francis Tyers,
Sumire Uematsu, Larraitz Uria, Gertjan van No-
ord, Viktor Varga, Veronika Vincze, Jonathan North

23



Washington, Zdeněk Žabokrtský, Amir Zeldes,
Daniel Zeman, and Hanzhi Zhu. 2017. Universal
dependencies 2.0. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Linguistics,
Charles University. http://hdl.handle.net/11234/1-
1983.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016).

Rudolf Rosa and Zdeněk Žabokrtský. 2015. Klcpos3
- a language similarity measure for delexicalized
parser transfer. In Proceedings of ACL-IJCNLP.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In Proceedings of NAACL. pages 129–
132.

Milan Souček, Timo Järvinen, and Adam LaMontagne.
2013. Managing a multilingual treebank project. In
Proceedings of the Second International Conference
on Dependency Linguistics (DepLing 2013). Charles
University in Prague, Matfyzpress, Prague, Czech
Republic, Prague, Czech Republic, pages 292–297.
http://www.aclweb.org/anthology/W13-3732.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for direct
transfer of linguistic structure. In Proceedings of
the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies. Montreal, Canada,
NAACL HLT ’12, pages 477–487.

Jörg Tiedemann. 2012. Parallel data, tools and in-
terfaces in opus. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Thierry Declerck,
Mehmet Ugur Dogan, Bente Maegaard, Joseph Mar-
iani, Jan Odijk, and Stelios Piperidis, editors, Pro-
ceedings of the Eight International Conference on
Language Resources and Evaluation (LREC’12). Is-
tanbul, Turkey.

Jörg Tiedemann and Željko Agić. 2016. Synthetic tree-
banking for cross-lingual dependency parsing. Jour-
nal of AI Research 55(1):209–248.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martı́nez Alonso,

Çağr Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran
Yu, Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
nadová, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonca, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. Conll 2017 shared task: Multilingual
parsing from raw text to universal dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. Association for Computational Linguistics,
Vancouver, Canada, pages 1–19.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In Proceedings of the IJCNLP-08 Workshop
on NLP for Less Privileged Languages. Hyderabad,
India.

24



Proceedings of the 15th International Conference on Parsing Technologies, pages 25–31,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Improving neural tagging with lexical information

Benoı̂t Sagot and Héctor Martı́nez Alonso
Inria

Paris, France
{benoit.sagot,hector.martinez-alonso}@inria.fr

Abstract

Neural part-of-speech tagging has
achieved competitive results with the
incorporation of character-based and
pre-trained word embeddings. In this
paper, we show that a state-of-the-art
bi-LSTM tagger can benefit from using
information from morphosyntactic lex-
icons as additional input. The tagger,
trained on several dozen languages, shows
a consistent, average improvement when
using lexical information, even when also
using character-based embeddings, thus
showing the complementarity of the dif-
ferent sources of lexical information. The
improvements are particularly important
for the smaller datasets.

1 Introduction

Part-of-speech tagging is now a classic task in nat-
ural language processing. Its aim is to associate
each “word” with a morphosyntactic tag, whose
granularity can range from a simple morphosyn-
tactic category, or part-of-speech (hereafter PoS),
to finer categories enriched with morphological
features (gender, number, case, tense, mood, per-
son, etc.).

The use of machine learning algorithms trained
on manually annotated corpora has long become
the standard way to develop PoS taggers. A large
variety of algorithms have been used, such as (in
approximative chronological order) bigram and
trigram hidden Markov models (Merialdo, 1994;
Brants, 1996, 2000), decision trees (Schmid, 1994;
Magerman, 1995), maximum entropy Markov
models (MEMMs) (Ratnaparkhi, 1996) and Con-
ditional Random Fields (CRFs) (Lafferty et al.,
2001; Constant and Tellier, 2012). Recently, neu-
ral approaches have reached very competitive ac-

curacy levels, improving over the state of the art in
a number of settings (Plank et al., 2016).

As a complement to annotated training corpora,
external lexicons can be a valuable source of infor-
mation. First, morphosyntactic lexicons provide a
large inventory of (word, PoS) pairs. Such lexical
information can be used in the form of constraints
at tagging time (Kim et al., 1999; Hajič, 2000) or
during the training process as additional features
combined with standard features extracted from
the training corpus (Chrupała et al., 2008; Gold-
berg et al., 2009; Denis and Sagot, 2012).

Second, lexical information encoded in vector
representations, known as word embeddings, have
emerged more recently (Bengio et al., 2003; Col-
lobert and Weston, 2008; Chrupała, 2013; Ling
et al., 2015; Ballesteros et al., 2015; Müller and
Schütze, 2015). Such representations, often ex-
tracted from large amounts of raw text, have
proved very useful for numerous tasks including
PoS tagging, in particular when used in recurrent
neural networks (RNNs) and more specifically in
mono- or bi-directional, word-level or character-
level long short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997; Ling et al.,
2015; Ballesteros et al., 2015; Plank et al., 2016).

Character-level embeddings are of particular in-
terest for PoS tagging as they generate vector rep-
resentations that result from the internal character-
level make-up of each word. It can generalise
over relevant sub-parts such as prefixes or suf-
fixes, thus directly addressing the problem of un-
known words. However, unknown words do not
always follow such generalisations. In such cases,
character-level models cannot bring any advan-
tage. This is a difference with external lexicons,
which provides information about any word it con-
tains, yet without any quantitative distinction be-
tween relevant and less relevant information.

Therefore, a comparative assessment of the ad-

25



vantages of using character-level embeddings and
external lexical information is an interesting idea
to follow. However, the inclusion of morphosyn-
tactic information from lexicons into neural PoS
tagging architecture, as a replacement or com-
plement to character-based or pre-computed word
embeddings, remains to be investigated. In this
paper, we describe how such an inclusion can
be achieved and show, based on experiments us-
ing the Universal Dependencies corpora (version
1.3), that it leads to significant improvements over
Plank et al.’s (2016) state-of-the-art results.

2 Baseline bi-LSTM tagger

As shown by Plank et al. (2016), state-of-the-art
performance can be achieved using a bi-LSTM ar-
chitecture fed with word representations. Optimal
performance is achieved representing words using
the concatenation of (i) a word vector ~w built us-
ing a word embedding layer, called its word em-
bedding, and (ii) a representation ~c of the word’s
characters, called its character-based embedding
built using a character-level bi-LSTM, which is
trained jointly with the word-level layers. Fur-
ther improvements can be obtained on most but
not all languages by initialising the word embed-
ding layer with pre-computed word embeddings.
We refer to Plank et al. (2016) for further details.

3 Integrating lexical information

We extend this bi-LSTM architecture with an ad-
ditional input layer that contains token-wise fea-
tures obtained from a lexicon. The input vector
~l for a given word is an n-hot vector where each
active value corresponds to one of the possible la-
bels in the lexicon. For instance, the English word
house, which is both a singular noun and a verb in
its base form, will be associated to a 2-hot input
vector. Words that are not in the lexicon are rep-
resented in the form of a zero vector. Note there
is no need for the morphosyntactic features to be
harmonized with the tagset to predict.

Figure 1 shows how the output of this input
layer is concatenated to that of the two baseline
input layers, i.e. the word embedding ~w and (if
enabled) the character-based embedding ~c. The re-
sult of this concatenation feeds the bi-LSTM layer.

4 Data

We use the Universal Dependencies (UD) datasets
for our experiments. In order to facilitate compar-

Figure 1: Schema of our extension of Plank
et al.’s (2016) bi-LSTM tagging architecture for
integrating external morphosyntactic lexical infor-
mation. This schema concerns a single word, here
“this.” Connections of the word-level LSTM cell
to its counterparts for the preceeding and follow-
ing word are represented with grey arrows.

ison with Plank et al.’s (2016), we performed our
experiments on the version 1.3 of UD (Nivre et al.,
2016).

Lexicons Our sources of lexical information we
used are twofold. The first one is the Apertium2

and the Giellatekno3 projects. We used Aper-
tium morphological lexicons whenever available.
For other languages, we downloaded the corre-
sponding monolingual part of OPUS’s OpenSub-
titles2016 corpus, tokenised it, extracted the 1
million most frequent tokens, and retrieved all
their morphological analyses by the correspond-
ing morphological analyser provided by Apertium
(or, failing that, Giellatekno). All these analyses
were then gathered in the form of a lexicon. In
a second step, we converted all lexicons obtained
using manually crafted rules, so that each lexical
entry contains a (inflected) wordform, a lemma, a
Universal PoS,4 and morphological features from
the Universal Features.5 We then created two vari-
ants of the lexicons obtained: a coarse variant in
which labels are Universal PoS, and a full variant

2https://svn.code.sf.net/p/apertium/svn/languages
3https://victorio.uit.no/langtech/trunk/langs
4http://universaldependencies.org/u/pos/all.html
5http://universaldependencies.org/u/feat/all.html

26



Name #entries #tags TTR PG
(×103)

ar Apertium 651 15 yes
bg Multext-East 53 12 0.18 yes
ca Apertium 379 13 0.06 yes
cs Apertium 1,875 15 0.10 yes
da Apertium 683 15 0.19 yes
de DeLex 465 52 0.18 yes
el Apertium 47 12 0.20 yes
en Apertium 127 12 0.09 yes
es Leffe 756 34 0.12 yes
et GiellateknoMA 44 12 0.23 yes
eu Apertiumfull 53 14 0.22 yes
fa PerLex 512 37 0.10 yes
fi GiellateknoMA 228 13 0.29 yes
fr Lefff 539 25 0.11 yes
ga inmdb 114 32 0.26 yes
gl Apertium 241 12 0.12 no
grc Diogenes 1,314 18 0.20 no
he Apertium 268 16 0.12 yes
hi Apertium 159 14 0.05 yes
hr HML 1,361 22 0.21 yes
id Apertiumfull 12 38 0.18 no
it Apertium 278 14 0.10 yes
kk ApertiumMA 434 16 0.48 no
la Diogenes 562 16 0.31 no
lv Apertium 314 14 0.33 no
nl Alpino lexicon 81 65 0.14 yes
no Apertium 2,470 13 0.11 yes
pl Apertium 1,316 15 0.31 yes
pt Apertium 159 155 0.13 yes
ro Multext-East 378 14 0.18 no
ru Apertium 4,401 16 0.32 no
sl Apertium 654 14 0.24 yes
sv Saldo 1,215 214 0.17 yes
tr ApertiumMA 417 14 0.32 no
zh Apertium 8 13 0.16 no

Table 1: Dataset information. Best per-language
lexicon along with its size and number of tags
over the UD1.3 corpora. “MA” stands for
morphological-analyser-based lexicon. Lexicons
based on Apertium and Giellatekno data are in
their coarse version unless full is indicated. Other
lexicons have been adapted from available re-
sources.1 We also provide the type-token ratio of
the corpus (TTR) and whether there were available
Polyglot embeddings (PG) to initialize ~w.

in which labels are the concatenation of the Uni-
versal PoS and Universal Features.

We also took advantage of other existing lexi-
cons. For space reasons, we are not able to de-
scribe here the language-specific transformations
we applied to some of these lexicons. See Ta-
ble 1 and its caption for more information. We de-
termine the best performing lexicon for each lan-
guage based on tagging accuracy on the develop-
ment set. In the remainder of this paper, all infor-
mation about the lexicons (Table 1) and accuracy
results are restricted to these best performing lexi-
cons.

Coverage information on the test sets for both
the training data and the best external lexicon for
each dataset is provided in Table 2.

Lang Coverage (%)
OOTC OOTC, in Lex. OOLex

ar 8,0 1,0 55,0
bg 12,3 4,6 32,6
ca 4,9 2,5 20,5
cs 7,0 2,9 31,7
da 15,6 7,3 29,0
de 11,9 5,3 15,1
el 13,4 2,0 52,7
en 9,1 2,6 26,1
es 7,3 3,5 11,3
et 16,9 1,4 48,9
eu 17,8 2,3 57,7
fa 8,2 2,9 31,0
fi 24,4 4,0 46,0
fr 5,7 3,0 9,9
ga 22,8 7,2 66,5
gl 9,9 5,9 14,9
grc 17,9 13,6 57,6
he 10,9 5,1 28,4
hi 4,6 1,6 17,4
hr 20,9 15,1 16,5
id 13,8 2,4 38,3
it 5,7 3,4 21,4
kk 40,5 30,7 23,0
la 26,4 23,4 3,5
lv 36,3 16,9 42,6
nl 18,8 4,4 27,6
no 11,2 4,0 33,0
pl 23,1 9,1 38,9
pt 8,6 3,0 29,2
ro 12,1 6,8 33,1
ru 26,0 15,5 38,7
sl 19,9 11,1 28,7
sv 14,9 10,4 10,4
tr 24,8 13,3 25,6
zh 12,5 0,5 66,5

Table 2: Coverage of the training set and of the
best lexicon on the test set for each dataset of the
UD 1.3 corpora. “OOTC” stands for “out of train-
ing corpus” and OOLex for “out of (external) lex-
icon”. The “OOTC, in Lex.” column displays the
percentage of words that are not in the training cor-
pus but are covered by the lexicon. Best improve-
ments are expected for these words.

Pre-computed embeddings Whenever avail-
able and following Plank et al. (2016), we per-
formed experiments using Polyglot pre-computed
embeddings (Al-Rfou et al., 2013). Languages for
which Polyglot embeddings are available are indi-
cated in Table 1.

We trained our tagger with and without
character-based embeddings, and with or with-
out Polyglot-based initialisation (when available),
both without lexical information and with lexicon
information from all available lexicons, resulting
in 4 to 12 training configurations.

27



Language Baseline With best lexicon Gain when using
(no lexicon) (selected on dev, cf. Tab. 1) best lexicon

~w ~w + ~c ~wP + ~c ~w + ~l ~w + ~c + ~l ~wP + ~c + ~l ~w(+~l) ~w + ~c(+~l) ~wP + ~c(+~l)

Arabic (ar) 93.90 95.99 96.20 94.58 96.05 96.22 +0.68 +0.06 +0.02
Bulgarian (bg) 94.50 98.11 97.62 96.29 98.30 97.86 +1.79 +0.18 +0.24
Catalan (ca) 96.14 98.03 98.17 97.58 98.21 98.26 +1.44 +0.18 +0.09
Czech (cs) 95.93 98.03 98.10 96.74 98.46 98.41 +0.81 +0.43 +0.31
Danish (da) 90.16 95.41 95.62 94.20 96.24 96.14 +4.04 +0.83 +0.53
German (de) 87.94 92.64 92.96 91.52 93.08 93.18 +3.58 +0.44 +0.23
Greek (el) 95.62 97.76 98.22 96.03 97.67 98.17 +0.41 –0.09 –0.05
English (en) 91.12 94.38 94.56 92.97 94.63 94.70 +1.85 +0.25 +0.14
Spanish (es) 93.10 94.96 95.27 94.62 94.84 95.07 +1.52 –0.11 –0.20
Estonian (et) 90.73 96.10 96.40 90.07 96.14 96.66 –0.65 +0.04 +0.26
Basque (eu) 88.54 94.34 95.07 88.52 94.78 95.03 –0.02 +0.44 –0.04
Persian (fa) 95.57 96.39 97.35 96.22 97.09 97.35 +0.65 +0.71 +0.00
Finnish (fi) 87.26 94.84 95.12 88.67 94.87 95.13 +1.40 +0.03 +0.01
French (fr) 94.30 95.97 96.32 95.92 96.71 96.28 +1.62 +0.74 –0.04
Irish (ga) 86.94 89.87 91.91 88.88 91.18 91.76 +1.94 +1.31 –0.16
Galician (gl) 94.78 96.94 — 95.72 97.18 — +0.94 +0.24 —
Ancient Greek (grc) 88.69 94.40 — 89.76 93.75 — +1.07 -0.65 —
Hebrew (he) 92.82 95.05 96.57 94.11 95.53 96.76 +1.29 +0.48 +0.19
Hindi (hi) 95.55 96.22 95.93 96.22 96.50 96.95 +0.67 +0.28 +1.02
Croatian (hr) 86.62 95.01 95.93 93.53 96.29 96.34 +6.91 +1.28 +0.41
Indonesian (id) 89.07 92.78 93.27 91.17 92.79 92.89 +2.11 +0.02 –0.38
Italian (it) 95.29 97.48 97.77 97.54 97.81 97.88 +2.26 +0.33 +0.11
Kazakh (kk) 72.74 76.32 — 82.28 82.79 — +9.54 +6.47 —
Latin (la) 85.18 92.18 — 90.63 93.29 — +5.44 +1.12 —
Latvian (lv) 78.22 89.39 — 83.56 91.07 — +5.35 +1.68 —
Dutch (nl) 84.91 89.97 87.80 85.20 90.69 89.85 +0.29 +0.72 +2.05
Norwegian (no) 93.65 97.50 97.90 95.80 97.72 97.96 +2.15 +0.22 +0.07
Polish (pl) 87.99 96.21 96.90 90.81 96.40 97.02 +2.83 +0.18 +0.13
Portuguese (pt) 93.61 97.00 97.27 94.76 96.79 97.11 +1.15 –0.21 –0.16
Romanian (ro) 92.63 95.76 — 94.49 96.26 — +1.86 +0.51 —
Russian (ru) 84.72 95.73 — 93.50 96.32 — +8.79 +0.60 —
Slovene (sl) 83.96 97.30 95.27 94.07 97.74 95.44 10.11 +0.44 +0.17
Swedish (sv) 92.06 96.26 96.56 95.61 97.03 97.00 +3.55 +0.77 +0.44
Turkish (tr) 87.02 93.98 — 90.03 93.90 — +3.01 –0.08 —
Chinese (zh) 89.17 92.99 — 89.29 93.04 — +0.12 +0.05 —

Macro-avg. 90.01 94.61 — 92.60 95.18 — +2.59 +0.57 —
Macro-avg. w/embed 91.43 95.52 95.77 93.52 95.91 95.98 +2.09 +0.38 +0.21

Table 3: Overall results. PoS accuracy scores are given for each language in the baseline configura-
tion (the same as Plank et al., 2016) and in the lexicon-enabled configuration. For each configuration,
scores are given when using word embeddings only (~w), word and character-based embeddings (~w +~c),
and word and character-based embeddings with initialisation of word embeddings with Polyglot vectors
(~wP + ~c). The last columns show the difference between lexicon-enabled and baseline configurations.

5 Experimental setup

We use as a baseline the state-of-the-art bi-LSTM
PoS tagger bilty, a freely available6 and “sig-
nificantly refactored version of the code originally
used” by Plank et al. (2016). We use its standard
configuration, with one bi-LSTM layer, character-
based embeddings size of 100, word embedding
size of 64 (same as Polyglot embeddings), no mul-
titask learning,7 and 20 iterations for training.

We extended bilty for enabling integration of
lexical morphosyntactic information, in the way
described in the previous section.

5Bouma et al., 2000; Oliver and Tadić, 2004; Heslin,
2007; Borin et al., 2008; Molinero et al., 2009; Sagot, 2010;
Erjavec, 2010; Sagot and Walther, 2010; Měchura, 2014;
Sagot, 2014.

6https://github.com/bplank/bilstm-aux
7Plank et al.’s (2016) secondary task—predicting the fre-

quency class of each word—results in better OOV scores
but virtually identical overall scores when averaged over all
tested languages/corpora.

For each lexicon-related configuration, we
trained three variants of the tagger: (i) a vari-
ant without using character-based embeddings and
standard (zero) initialisation of word embeddings
before training, (ii) a variant with character-based
embeddings and standard initialisation of word
embeddings, and (iii) when Polyglot embeddings
are available for the language at hand, a variant
with character-based embeddings and initialisa-
tion of the word embeddings with the Polyglot
embeddings. This is deliberately similar to Plank
et al.’s (2016) experimental setup, in order to fa-
cilitate the comparison of results.8

8Note that we discarded alternative UD 1.3 corpora
(e.g. nl lassysmall vs. nl), as well as corpora for lan-
guages for which we had neither a lexicon nor Polyglot em-
beddings (Old Church Slavonic, Hungarian, Gothic, Tamil).

28



lang ~w(P ) + ~c + ~l ∆ w.r.t. ~w(P ) + ~c

OOTC OOTC in Lex. OOTC OOTC in Lex.

ar 82,09 94,78 -0,53 -0,51
bg 92,79 96,84 +4,67 +0,98
ca 94,21 98,38 +0,31 -0,11
cs 90,84 96,82 +5,21 +0,57
da 88,54 95,03 +3,17 +0,70
de 86,05 87,00 +3,32 +0,41
el 89,22 96,52 -1,97 -0,90
en 78,23 89,31 +3,89 +1,02
es 76,34 79,33 -1,21 -1,12
et 88,24 94,80 -1,62 -0,70
eu 82,02 93,26 -0,09 -0,41
fa 84,94 95,34 -1,22 -0,76
fi 85,31 92,03 -0,76 -0,95
fr 85,50 86,35 +2,25 +0,43
ga 77,43 89,09 -0,34 -1,77
gl 85,20 91,21 +21,73 +5,60
grc 83,71 94,40 +25,16 +2,00
he 81,36 92,25 -5,81 -2,61
hi 78,91 93,84 -4,22 -0,78
hr 90,74 88,66 +1,50 +0,44
id 86,07 90,72 -1,29 -0,55
it 89,15 96,46 +1,12 -0,43
kk 76,89 52,59 +23,53 -2,96
la 84,51 88,89 +28,95 +10,53
lv 80,98 83,64 +35,13 +15,83
nl 69,49 78,60 +12,75 +8,19
no 92,44 96,97 -0,24 -0,48
pl 90,48 93,95 -2,65 -2,04
pt 88,13 95,69 +0,19 -0,60
ro 88,39 95,47 +23,18 +3,71
ru 90,49 93,80 +40,87 +13,05
sl 93,31 95,77 +11,56 +4,41
sv 92,43 93,31 +3,88 -0,47
tr 85,33 87,33 +26,68 +9,13
zh 78,30 92,08 +24,97 +5,07

Macro avg. 85,37 90,87 +8,06 +1,83

Table 4: Accuracy of the best system using a lexi-
con for words out of the training corpus (OOTC),
and for words out of the training corpus that are
present in the lexicon (OOTC in Lex.), as well
as difference between the best system and the
baseline without lexicon for these two subsets of
words.

6 Results

Our results show that using lexical information as
an additional input layer to a bi-LSTM PoS tagger
results in consistent improvements over 35 cor-
pora. The improvement holds for all configura-
tions on almost all corpora. As expected, the great-
est improvements are obtained without character-
based embeddings, with a macro-averaged im-
provement of +2.56, versus +0.57 points when
also using character-based embeddings. When
also using pre-computed embeddings, improve-
ments are only slightly lower. External lexical in-
formation is useful as it covers both words with an
irregular morphology and words not present in the
training data.

The improvements are particularly high for the
smaller datasets; in the ~w + ~c setup, the three lan-
guages with the highest improvements when using

a lexicon are those with smallest datasets.

Table 4 shows the accuracy of the best sys-
tem, compared with the baseline, for words not in
the training data (OOTC), and for whose that are
present in the lexicon but not in the training data
(OOTC in Lex).

While lexicon coverage is an important, it is not
the only factor. we observe the improvements are
much larger for the smaller datasets like Kazakh
(kk) or Russian (ru). However, the improvement
is smaller for words that are not in the training
data but are nevertheless present in the lexicon,
which indicates that the contribution of the lexi-
con features to PoS prediction is not limited to the
words that are covered by the lexicon but spreads
throught the contexts by means of the bi-LSTM ar-
chitecture. Moreover, we argue that the presence
of the lexicon features aids compensate for charac-
ter embeddings fit on smaller datasets, which are
not necessarily more trustworthy.

7 Conclusion

Our work shows that word embeddings and exter-
nal lexical information are complementary sources
of morphological information, which both im-
prove the accuracy of a state-of-the-art neural part-
of-speech tagger. It also confirms that both lexical
information and character-based embeddings cap-
ture morphological information and help part-of-
speech tagging, especially for unknown words.

Interestingly, we also observe improvements
when using external lexical information together
with character-based embeddings, and even when
initialising with pre-computed word embeddings.
This shows that the use of character-based embed-
dings is not sufficient for addressing the problem
of out-of-vocabulary words.

Further work includes using lexicons to tag
finer-grained tag inventories, as well as a more
thorough analysis on the relation between lexicon
and training data properties.

Another natural follow-up to the work presented
here would be to examine the interplay between
lexical features and more complex neural archi-
tectures, for instance by using more than one bi-
LSTM layer, or by embedding the n-hot lexicon-
based vector before concatenating it to the word-
and character-based embeddings.

29



References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual nlp. In Proc. of the Seventeenth
Conf. on Computational Natural Language Learn-
ing. Sofia, Bulgaria, pages 183–192.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved Transition-based Parsing by Mod-
eling Characters instead of Words with LSTMs.
In Proc. of the 2015 Conf. on Empirical Methods
in Natural Language Processing. Lisbon, Portugal,
pages 349–359.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3(1):1137–1155.

Lars Borin, Markus Forsberg, and Lennart Lönngren.
2008. The hunting of the BLARK - SALDO, a
freely available lexical database for swedish lan-
guage technology. In Resourceful language tech-
nology. Festschrift in honor of Anna Sågvall Hein,
Uppsala University, Uppsala, Sweden, pages 21–32.

Gosse Bouma, Gertjan van Noord, and Rob Mal-
ouf. 2000. Alpino: Wide-coverage computational
analysis of dutch. In Computational Linguistics
in the Netherlands 2000, Selected Papers from the
Eleventh CLIN Meeting, Tilburg, November 3, 2000.
pages 45–59.

Thorsten Brants. 1996. Estimating markov model
structures. In Proc. of the 4th Conf. on Spoken Lan-
guage Processing (ICSLP-96). pages 893–896.

Thorsten Brants. 2000. TnT: A Statistical Part-of-
speech Tagger. In Proc. of the Sixth Conf. on Ap-
plied Natural Language Processing. Seattle, Wash-
ington, USA, pages 224–231.

Grzegorz Chrupała. 2013. Text segmentation with
character-level text embeddings. In Proc. of the
ICML Workshop on Deep Learning for Audio,
Speech and Lang. Processing. Atlanta, Georgia,
USA.

Grzegorz Chrupała, Georgiana Dinu, and Josef van
Genabith. 2008. Learning morphology with mor-
fette. In Proc. of the 6th Language Resource and
Evaluation Conf.. Marrakech, Morocco.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proc. of
the 25th International Conf. on Machine Learning.
Helsinki, Finland, pages 160–167.

Matthieu Constant and Isabelle Tellier. 2012. Eval-
uating the Impact of External Lexical Resources
into a CRF-based Multiword Segmenter and Part-
of-Speech Tagger. In Proc. of LREC’12. Istanbul,
Turkey, pages 646–650.

Pascal Denis and Benoı̂t Sagot. 2012. Coupling an
annotated corpus and a lexicon for state-of-the-art
POS tagging. Language Resources and Evaluation
46(4):721–736.

Tomaž Erjavec. 2010. Multext-east version 4: Multi-
lingual morphosyntactic specifications, lexicons and
corpora. In Proc. of LREC 2010. Valletta, Malta.

Y. Goldberg, R. Tsarfaty, M. Adler, and M. Elhadad.
2009. Enhancing unlexicalized parsing performance
using a wide coverage lexicon, fuzzy tag-set map-
ping, and em-hmm-based lexical probabilities. In
Proc. of the 12th Conf. of the European Chapter of
the ACL. pages 327–335.

Jan Hajič. 2000. Morphological Tagging: Data vs. Dic-
tionaries. In Proc. of ANLP’00. Seattle, Washington,
USA, pages 94–101.

Peter J. Heslin. 2007. Diogenes, version 3.1.
http://www.dur.ac.uk/p.j.heslin/
Software/Diogenes/.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neur. Comp. 9(8):1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

J.-D. Kim, S.-Z. Lee, and H.-C. Rim. 1999. HMM Spe-
cialization with Selective Lexicalization. In Proc.
of the join SIGDAT Conf. on Empirical Methods in
Natural Lang. Processing and Very Large Corpora.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In ICML. pages 282–289.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W.
Black, and Isabel Trancoso. 2015. Finding Function
in Form: Compositional Character Models for Open
Vocabulary Word Representation. In Proc. of the
2015 Conf. on Empirical Methods in Natural Lang.
Processing. Lisbon, Portugal, pages 1520–1530.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. In Proc. of the 33rd Annual
Meeting on ACL. Cambridge, Mass., USA, pages
276–283.

Bernard Merialdo. 1994. Tagging English Text with
a Probabilistic Model. Computational Linguistics
20(2):155–171.

Miguel Ángel Molinero, Benoı̂t Sagot, and Lionel
Nicolas. 2009. A morphological and syntactic wide-
coverage lexicon for Spanish: The leffe. In Proc.
of the 7th conference on Recent Advances in Natu-
ral Language Processing (RANLP 2009). Borovets,
Bulgaria.

Thomas Müller and Hinrich Schütze. 2015. Robust
morphological tagging with word representations.
In Proc. of the 2015 Conf. of the North American
Chapter of the ACL: Human Language Technolo-
gies. Denver, Colorado, USA.

30



Michal Boleslav Měchura. 2014. Irish National Mor-
phology Database: A High-Accuracy Open-Source
Dataset of Irish Words. In Proc. of the Celtic Lan-
guage Technology Workshop at CoLing. Dublin, Ire-
land.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Bengoetxea,
Yevgeni Berzak, Riyaz Ahmad Bhat, Cristina
Bosco, Gosse Bouma, Sam Bowman, Gülşen Ce-
birolu Eryiit, Giuseppe G. A. Celano, Çar Çöltekin,
Miriam Connor, Marie-Catherine de Marneffe,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Timo-
thy Dozat, Kira Droganova, Tomaž Erjavec, Richárd
Farkas, Jennifer Foster, Daniel Galbraith, Sebas-
tian Garza, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gokirmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Nor-
munds Grūzītis, Bruno Guillaume, Jan Hajič, Dag
Haug, Barbora Hladká, Radu Ion, Elena Irimia, An-
ders Johannsen, Hüner Kaşkara, Hiroshi Kanayama,
Jenna Kanerva, Boris Katz, Jessica Kenney, Si-
mon Krek, Veronika Laippala, Lucia Lam, Alessan-
dro Lenci, Nikola Ljubešić, Olga Lyashevskaya,
Teresa Lynn, Aibek Makazhanov, Christopher Man-
ning, Cătălina Mărănduc, David Mareček, Héctor
Martı́nez Alonso, Jan Mašek, Yuji Matsumoto,
Ryan McDonald, Anna Missilä, Verginica Mititelu,
Yusuke Miyao, Simonetta Montemagni, Keiko So-
phie Mori, Shunsuke Mori, Kadri Muischnek, Nina
Mustafina, Kaili Müürisep, Vitaly Nikolaev, Hanna
Nurmi, Petya Osenova, Lilja Øvrelid, Elena Pas-
cual, Marco Passarotti, Cenel-Augusto Perez, Slav
Petrov, Jussi Piitulainen, Barbara Plank, Martin
Popel, Lauma Pretkalnia, Prokopis Prokopidis, Ti-
ina Puolakainen, Sampo Pyysalo, Loganathan Ra-
masamy, Laura Rituma, Rudolf Rosa, Shadi Saleh,
Baiba Saulīte, Sebastian Schuster, Wolfgang Seeker,
Mojgan Seraji, Lena Shakurova, Mo Shen, Na-
talia Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Kiril Simov, Aaron Smith, Carolyn Spadine,
Alane Suhr, Umut Sulubacak, Zsolt Szántó, Takaaki
Tanaka, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Larraitz Uria, Gertjan van Noord, Vik-
tor Varga, Veronika Vincze, Jing Xian Wang,
Jonathan North Washington, Zdeněk Žabokrtský,
Daniel Zeman, and Hanzhi Zhu. 2016. Universal
dependencies 1.3. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Linguistics,
Charles University. http://hdl.handle.net/11234/1-
1699.

Antoni Oliver and Marko Tadić. 2004. Enlarging the
Croatian morphological lexicon by automatic lexi-
cal acquisition from raw corpora. In Proc. of LREC
2004. Lisbon, Portugal, pages 1259–1262.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models
and Auxiliary Loss. In Proc. of the 54th Annual
Meeting of the ACL. Berlin, Germany.

Adwait Ratnaparkhi. 1996. A maximum entropy
model for part-of-speech tagging. In Proc. of In-
ternational Conf. on Empirical Methods in Natural
Language Processing. pages 133–142.

Benoı̂t Sagot. 2010. The lefff, a freely available, accu-
rate and large-coverage lexicon for french. In Proc.
of LREC 2010. Valletta, Malta.

Benoı̂t Sagot. 2014. DeLex, a freely-avaible, large-
scale and linguistically grounded morphological lex-
icon for German. In Language Resources and Eval-
uation Conf.. Reykjavik, Iceland.

Benoı̂t Sagot and Géraldine Walther. 2010. A morpho-
logical lexicon for the Persian language. In Proc. of
LREC 2010. Valletta, Malta.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proc. of Interna-
tional Conf. on New Methods in Language Process-
ing. Manchester, UK.

31



Proceedings of the 15th International Conference on Parsing Technologies, pages 32–43,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Prepositional Phrase Attachment over Word Embedding Products

Pranava Swaroop Madhyastha†∗ Xavier Carreras‡ Ariadna Quattoni‡
†University of Sheffield

p.madhyastha@sheffield.ac.uk
‡Naver Labs Europe

{xavier.carreras,ariadna.quattoni}@naverlabs.com

Abstract

We present a low-rank multi-linear model
for the task of solving prepositional phrase
attachment ambiguity (PP task). Our
model exploits tensor products of word
embeddings, capturing all possible con-
junctions of latent embeddings. Our re-
sults on a wide range of datasets and
task settings show that tensor products
are the best compositional operation and
that a relatively simple multi-linear model
that uses only word embeddings of lexi-
cal features can outperform more complex
non-linear architectures that exploit the
same information. Our proposed model
gives the current best reported perfor-
mance on an out-of-domain evaluation and
performs competively on out-of-domain
dependency parsing datasets.

1 Introduction

The Prepositional Phrase (PP) attachment problem
(Ratnaparkhi et al., 1994) is a classic ambiguity
problem and is one of the main sources of errors
for syntactic parsers (Kummerfeld et al., 2012).

Consider the examples in Figure 1. For the
first case, the correct attachment is the preposi-
tional phrase attaching to the restaurant, the noun.
Whereas, in the second case the attachment site is
the verb went. While the attachments are ambigu-
ous, the ambiguity is more severe when unseen or
infrequent words like Hudson are encountered.

Classical approaches for the task exploit a wide
range of lexical, syntactic, and semantic features
and make use of knowledge resources like Word-
Net and VerbNet (Stetina and Nagao, 1997;
Agirre et al., 2008; Zhao and Lin, 2004).

∗ This work was carried out when the author was a PhD
student at the Universitat Politècnica de Catalunya

I went to the restaurant by the Hudson

prep?

prep?

I went to the restaurant by bike

prep?

prep?

Figure 1: PP Attachment Ambiguity

In recent years, word embeddings have become
a very popular representation for lexical items
(Mikolov et al., 2013; Pennington et al., 2014).
The idea is that the dimensions of a word embed-
ding capture lexical, syntactic, and semantic fea-
tures of words –in essence, the type of information
that is exploited in PP attachment systems. Recent
work in dependency parsing (Chen and Manning,
2014; Lei et al., 2014) suggests that these embed-
dings can also be useful to resolve PP attachment
ambiguities. We follow this last line of research
and investigate the use of word embeddings for
PP attachment. Different from previous works,
we consider several types of compositions for the
vector embeddings corresponding to the words in-
volved in a PP attachment decision. In particu-
lar, our model will define parameters over the ten-
sor product of these embeddings. We control the
capacity of the model by imposing low-rank con-
straints on the corresponding tensor which we for-
mulate as a convex loss minimization.

We conduct experiments on several datasets
and settings and show that this relatively simple
multi-linear model can give performances com-
parable (and in some cases, even superior) than
more complex neural network models that use the
same information. Our results suggest that for the

32



PP attachment problem, exploring product spaces
of dense word representations produces improve-
ments in performance comparable to those ob-
tained by incorporating non-linearities via a neural
network.

Our main contributions are: a) we present a sim-
ple multi-linear model that makes use of tensor
products of word embeddings, capturing all possi-
ble conjunctions of latent embeddings; b) we con-
duct comprehensive experiments of different em-
beddings and composition operations for PP at-
tachment and observe that syntax infused embed-
dings perform significantly better; c) our proposed
simple multi-linear model that uses only word em-
beddings can outperform complex non-linear ar-
chitectures that exploit similar information; d) for
out-of-domain evaluation sets, we observe signif-
icant improvements by using word embeddings
trained from the source and target domains. With
these imrpovements, our tensor products outper-
form state-of-the art dependency parsers on PP at-
tachment decisions.

2 PP Attachment

Ratnaparkhi et al. (1994) first proposed a formula-
tion of PP attachment as a binary prediction prob-
lem. The task is as follows: we are given a four-
way tuple 〈v, o, p,m〉 where v is a verb, o is a
noun object, p is a preposition, and m is a mod-
ifier noun; the goal is to decide whether the prepo-
sitional phrase 〈p,m〉 attaches to the verb v or to
the noun object o.

More recently, Belinkov et al. (2014) proposed
a generalization of PP attachment that considers
multiple attachment candidates. Formally, we are
given a tuple 〈H, p,m〉, where H is a set of can-
didate attachment tokens, and the goal is to de-
cide what is the correct attachment for the 〈p,m〉
prepositional phrase. The binary case corresponds
to H = {v, o}.

In this paper we use the generalized definition.
Given a tuple 〈H, p,m〉, the models we present in
this paper compute the following prediction:

argmax
h∈H

f(h, p,m) , (1)

where f is a function that scores a candidate at-
tachment h for the 〈p,m〉 phrase. Next section
discusses several definitions of f based on tensor
products of word embeddings.

3 Tensor Products for PP Attachment

For any word x in the vocabulary, we denote as
vx ∈ Rn the n-dimensional vector for w, known
as the word embedding of w. We will assume ac-
cess to existing word embeddings for all words in
our data.

Let a ∈ Rn1 and b ∈ Rn2 be two vectors. We
denote as a ⊗ b ∈ Rn1∗n2 the Kronecker product
of the two vectors, which results in a vector that
has one dimension for any two dimensions of the
argument vectors: the product of the i-th coordi-
nate of a times the j-th coordinate of b results in
the (i− 1) ∗ n1 + j coordinate of a⊗ b.

The tensor product model for PP attachment is
as follows (see also Figure 2):

f(h, p,m) = v>h W [vp ⊗ vm] , (2)

whereW ∈ Rn×n2
is a matrix of parameters, tak-

ing the embedding of the attachment candidate h
on the left, and the product of embeddings of the
〈p,m〉 phrase on the right.

This is a multi-linear function: it is a function
that is non-linear on each of the three argument
vectors, but is linear in their product. Thus, our
model is exploiting all conjunctions of latent fea-
tures present in the word embeddings, resulting in
a cubic number of parameters with respect to n.
We note that if we pre-process the word embed-
dings to have a special dimension fixed to 1, then
our model has parameters for each of the word em-
beddings alone, all binary conjunctions between
any two vectors, and all ternary conjunctions.

Equation (2) is a multi-linear tensor written as
a bilinear form. That is, we unfold the tensor into
a matrix W that groups vectors based on the na-
ture of the attachment problem: the vector for the
head candidate is on the left side, while the vectors
for the prepositional phrase are on the right side.
Without any constraints on the parametersW , this
grouping is irrelevant. 1 However, our learning al-
gorithm imposes low-rank constraints on W (see
Section 3.2 below), for which the unfolding of the
tensor becomes relevant.

3.1 Variations of the Tensor

We now discuss variations to the above model. In
all cases we will write our models as bilinear func-

1In fact, we could choose to write a standard linear model
between a weight vector and the Kronecker product of the
three vectors: w · [vh ⊗ vp ⊗ vm].

33



W

h p m

unfolding

Figure 2: The tensor product of word embeddings. Here, h, p, and m are the head, preposition and
modifier of the PP attachment structure, represented by their word embeddings. The tensor product
forms a cube, which we unfold with respect to the head and the prepositional phrase. The resulting
matrix W ∈ Rn×n2

has a row for each head dimension, and a column for each pair of preposition and
modifier dimensions.

tions of the following form:

f(h, p,m) = α(h)>Wβ(p,m) (3)

where α is a representation vector of the at-
tachment, and β is a representation vector of
the prepositional phrase. Setting α(h) = vh and
β(p,m) = vp ⊗ vm gives our basic tensor. These
are the variations:

• Sum and Concatenation: Let us first con-
sider variations of the prepositional phrase
representation. Instead of using the prod-
uct of embeddings, we can consider the
sum β(p,m) = vp + vm, or the concatena-
tion β(p,m) = [vp;vm]. These cases drasti-
cally reduce the expressivity and dimension
of the β vector, from n2 for the product to
n for the sum, or 2n for the concatenation.
Both sum, averaging and concatenation are
common ways to compose word embeddings,
while it is more rare to find compositions
based on the product.

• Preposition Identities: Our basic model is
defined essentially over word embeddings,
and ignores the actual identity of the words in
either sides. However, for PP attachment, it is
common to have parameters for each prepo-
sition, and we can easily model this. Let P
be the set of prepositions, and let ip ∈ R|P|
be an indicator vector for preposition p. We
can then set β(p,m) = ip ⊗ vm. Our model
is now equivalent to writing:

f(h, p,m) = v>hW pvm (4)

where we have one separate parameter matrix
W p ∈ Rn×n per preposition p. This is the
model proposed by Madhyastha et al. (2014).

• Positional Information: Positional informa-
tion often improves syntactic models in gen-
eral, and PP attachment is no exception as
shown by Belinkov et al. (2014). Following
that work, we consider H to be ordered with
respect to the distance of each candidate to
the preposition, and we let δh be the position
of element h (thus δh is 1 if h is the closest
candidate to p, 2 if it’s the 2nd closest, . . . ).
In vector form, let δh ∈ R|H| be a positional
indicator vector for h (i.e. the coordinate δh
is 1). We can now compose the word em-
bedding of h with positional information as
α(h) = δh⊗vh, which is equivalent to writ-
ing:

f(h, p,m) = v>hW δh [vp ⊗ vm] . (5)

A neural network with a weight matrix for
each position was proposed by Belinkov et al.
(2014).

In the experimental section we present an em-
pirical comparison of these variations, essentially
showing that making tensor products of vector
representations effectively results in more accurate
attachment models.

3.2 Low-rank Matrix Learning

To learn the parameters we optimize the logis-
tic loss with nuclear norm regularization (`∗), an
objective that favors matrices W that have low-
rank (Srebro et al., 2004). This regularized ob-
jective has been used in previous work to learn
low-rank matrices (Madhyastha et al., 2014), and
has been shown to be very effective for feature
spaces that are highly conjunctive (Primadhanty

34



et al., 2015), such as those that result from tensor
products of word embeddings.

In our basic model, the number of parameters
is n3 (where n is the size of the individual em-
beddings). If W has rank k, then we can rewrite
W = UV > where U ∈ Rn×k and V ∈ Rn2×k.
Thus the score function can we rewritten as a k-
dimensional inner product between the left and
right vectors projected down to k dimensions. If
k is low, then the score is defined in terms of a few
projected features, which can benefit generaliza-
tion.

Specifically, let T be the training set. We opti-
mize this convex objective:

argmin
W

logistic(T ,W ) + λ‖W ‖? (6)

which combines the logistic loss with the nuclear
norm regularizer (‖W ‖?), weighted by the con-
stant λ. To find the optimum, we follow previous
work and use a simple optimization scheme based
on Forward-Backward Splitting (FOBOS) (Duchi
and Singer, 2009).

We describe FOBOS briefly in Algorithm 1. Es-
sentially the algorithm works by first computing
the gradient of the negative log likelihood function
as can be observed in line 4: ηt is the step size,
and g(W t) is the gradient at time t (we choose
ηt = c/

√
t). Now, for the proximal step. For `2

regularization, the weights are regularized by us-
ing geometric shrinkage (line 6). For nuclear norm
regularization (`∗), first Singular Value Decompo-
sition (SVD) of the weight matrix is performed
followed by iterative shrinkage and thresholding
of the singular values (lines 8 and 9).

This algorithm has fast convergence rates, suffi-
cient for our application. Many other optimization
approaches are possible, for example one could
express the regularizer as a convex constraint and
utilize a projected gradient method which has a
similar convergence rate. Proximal methods are
slightly more simple to implement and we chose
the proximal approach.

For nuclear norm based regularization, we are
required to compute the Singular Value Decompo-
sition of W at each iteration. In practice, for our
experiments, the dimensions ofW were relatively
small, allowing fast SVD computations.

4 Experiments

This section presents experiments using tensor
models for PP attachment. Our interest is to eval-

Algorithm 1: FOBOS Algorithm
Input: Gradient function g
Constants : λ (regularization factor), T (max

iterations) and c (step size)
Output: W t+1

1 W 1 = 0
2 while t < T do
3 ηt = c√

t

4 W t+0.5 = W t − ηtg(W t)
5 if `2 regularizer then
6 W t+1 = 1

1+ηtλ
W t+0.5

7 else if `∗ regularizer then
8 UΣV > = SVD(W t+0.5)

9 Σ̄i,i = max(Σi,i − ηtλ, 0)

10 W t+1 = UΣ̄V >

11 end

uate the accuracy of our models with respect to
the type and size of word embeddings, and with
respect to how these embeddings are composed.
We start describing the data and word embeddings,
and then present results on two settings, binary and
multiple attachments, comparing to the state-of-
the-art in each case.

4.1 Data and Evaluation

We use standard datasets for PP attachment for
two settings: binary and multiple attachments. In
both cases, the evaluation metric is the attachment
accuracy. The details are as follows.

RRR Dataset. This is the classic English dataset
for PP attachment proposed by Ratnaparkhi et al.
(1994) (referred to as RRR dataset), which is
extracted from the Penn TreeBank (PTB). The
dataset contains 20,801 training samples of PP at-
tachment tuples 〈v, o, p,m〉. We preprocess the
data as in previous work (Collins and Brooks,
1999): we lowercase all tokens, map numbers to a
special token NUM and symbols to SYM. We use the
development set from PTB, with 4,039 samples, to
compare various configurations of our model. For
testing, we consider several test sets proposed in
the literature: a) The test set from the RRR dataset,
with 3,097 samples from the PTB. b) The New
York Times test set (NYT) released by (Nakashole
and Mitchell, 2015). It contains 293 test samples.
c) Wikipedia test set (WIKI) by (Nakashole and
Mitchell, 2015). It contains 381 test samples from
Wikipedia. Because the texts are not news articles,
this is an out-of-domain test.

Belinkov et al. (2014) Datasets. We use the
datasets released by Belinkov et al. (2014) for

35



English and Arabic.2 These datasets follow the
generalized version of PP attachment, and each
sample consists of a preposition p, the noun be-
low the preposition m, and a list of possible at-
tachment headsH (which contain candidate nouns
and verbs in the same sentence of the prepositional
phrase). The English dataset is extracted from
PTB, and has 35,359 training samples and 1,951
test samples. The Arabic dataset is extracted from
the SPMRL shared task data (Seddah et al., 2014),
and consists of 40,121 training samples and 3,647
test samples.

4.2 Word Embeddings

As our models exploit pre-trained word embed-
dings, we perform experiments with a variety of
types of word embeddings. We use two word em-
bedding methods and estimate vectors using dif-
ferent data sources. The methods are: (a) Skip-
gram (Mikolov et al., 2013): We use the Skip-
gram model from word2vec, and induce em-
beddings of different dimensionalities: 50, 100
and 300. In all cases we use a window of size
5 during training.3 (b) Skip-dep (Bansal et al.,
2014): This is essentially a Skip-gram model that
uses dependency trees to define the context words
during training, thus it captures syntactic correla-
tions. We trained 50, 100 and 300 dimensional
dependency-based embeddings, using the setting
described in Bansal et al. (2014) however we made
use of TurboParser (Martins et al., 2013) to obtain
dependency trees from the source data 4.

For evaluations on English, we use the follow-
ing data sources to train word embeddings: (a)
BLLIP (Charniak et al., 2000), with ∼1.8 million
sentences and ∼43 million tokens of Wall Street
Journal text (and excludes PTB evaluation sets);
(b) English Wikipedia5, with ∼13.1 million sen-
tences and∼129 million tokens; (c) The New York
Times portion of the GigaWord corpus, with ∼52
million sentences and ∼1, 253 million tokens.

For Arabic, we used pre-trained 100-
dimensional word embeddings from the arTenTen
corpus that are distributed with the data.

2
http://groups.csail.mit.edu/rbg/code/pp.

3In preliminary experiments we tried a window of 2,
which performed worse in our setting. According to Bansal
et al. (2014) with larger context window, words that are
topically-related tend to get closer.

4http://www.cs.cmu.edu/˜ark/
TurboParser

5The corpus and preprocessing script were sourced from
http://mattmahoney.net/dc/textdata.

We created a special unknown vector for unseen
words by averaging the word vectors of least fre-
quent words (i.e., with frequency less than 5). Fur-
ther, we appended a fixed dimension set to 1 to all
word vectors. As explained in Section 3, when
doing tensor compositions, this special dimension
has the effect of keeping all lower-order conjunc-
tions, including each elementary coefficient of the
word embeddings and a bias term.

4.3 Experiments on the Binary Attachment
Setting

This section presents a series of experiments us-
ing the classic binary setting by Ratnaparkhi et al.
(1994).

Comparing Word Embeddings. We start com-
paring word embeddings of different types (Skip-
gram and Skip-dep) trained on different source
data, for different dimensions. For this compar-
ison we use the tensor product model of Eq. 2,
that resolves the attachment using only a product
of word embeddings, and used `∗ regularization.
Table 1 presents the results on the RRR develop-
ment set. Looking at results using Skip-gram, we
observe two clear trends that are expected: results
improve whenever (1) we increase the dimension-
ality of the embeddings (n); and (2) we increase
the size of the corpus used to induce the embed-
dings (BLLIP is the smallest, NYT is the largest).6

When looking at the performance of models using
Skip-dep vectors, which are induced using parse
trees, then the results are better than when using
Skip-gram. This is a signal that syntactic-based
word embeddings favor PP attachment, which af-
ter all is a syntactic disambiguation task. We note
that this was also found by Belinkov et al. (2014).
The peak performance is for Skip-dep using 100
dimensional vectors trained on BLLIP.7 For this
test, we do not see a benefit from training on larger
data.

Comparing Compositions. Our model com-
poses word embeddings using tensor products.
Section 3.1 presents variations that compose the
prepositional phrase (i.e. the preposition and mod-
ifier vectors) in different ways. We now compare

6For this experimental comparison, we also tried
Glove (Pennington et al., 2014), another popular word em-
bedding method, but the results were generally inferior.

7Under the sign test, the difference between the best Skip-
dep and Skip-gram models was significant with p < 0.05, but
other differences between Skip-dep models were not.

36



Word Embedding Accuracy wrt. dimension (n)
Type Source Data n = 50 n = 100 n = 300
Skip-gram BLLIP 83.23 83.77 83.84
Skip-gram Wikipedia 83.74 84.25 84.22
Skip-gram NYT 84.76 85.06 85.15
Skip-dep BLLIP 85.52 86.33 85.97
Skip-dep Wikipedia 84.23 84.39 84.32
Skip-dep NYT 85.27 85.48 –
Skip-gram & Skip-dep BLLIP – 83.44 –

Table 1: Attachment accuracy on the RRR development set for tensor product models using different
word embeddings. We vary the type of word embedding (Skip-gram, Skip-dep), the source data used to
induce vectors (BLLIP, Wikipedia, NYT) and the dimensionality of the vectors (50, 100, 300). The last
row “Skip-gram & Skip-dep” corresponds to the concatenation of two 50-dimensional word embeddings,
for a total of 100 dimensions.

Composition of p and m Tensor Size Acc.
Sum [vp + vm] n× n 84.42
Concatenation [vp;vm] n× 2n 84.94
p Indicator [ip ⊗ vm] n× |P| ∗ n 84.36
Product [vp ⊗ vm] n× n ∗ n 85.52

Table 2: Development accuracy for several ways
of composing the word embeddings of the preposi-
tional phrase. ip ∈ R|P| denotes an indicator vec-
tor for preposition p, where P is the set of prepo-
sitions.

these variants empirically, using Skip-dep vectors
with n = 50 as word embeddings. Table 2 sum-
marizes the accuracy results on the development
set, where we compare: summing the two vectors;
concatenating them; making the product of em-
beddings; or using indicator vectors for the prepo-
sition, which replicates the model by Madhyastha
et al. (2014). The table also shows the size of the
resulting tensor (we note that |P| is 66 for the RRR
data, thus using a 50-dimensional embedding for
p results in a more compact tensor than using p’s
identity). The results show that the product model
is the best of all8, despite the fact that the num-
ber of parameters is cubic in the dimension of the
word embeddings. We observed the same trend for
larger vectors.

Comparison to the State of the Art. We now
present results on the test sets for the binary set-
ting, and compare to the state-of-the-art. The re-
sults are in Table 3, which lists representative and
top-performing methods of the literature, as well

8The differences, though, were not significant under the
sign test.

as our tensor product model running with three
different word embeddings. Two of the repre-
sentative systems we list are the back-off model
by Collins and Brooks (1999), and the neural
model by Belinkov et al. (2014), which composes
word embeddings in a neural fashion. These two
systems use no other information that the lex-
ical items (i.e., explicit words or word embed-
dings). The other two systems, by Stetina and
Nagao (1997) and Nakashole and Mitchell (2015),
use additional features, and most notably seman-
tic information from WordNet or other ontolo-
gies, which has been shown to be beneficial for
PP attachment. In general, the results that our
models obtain are remarkably good, despite the
fact that we only combine word embeddings in a
straightforward way. On the RRR test, with the
exception of the classic result by Stetina and Na-
gao (1997), our method using Skip-dep embed-
dings clearly outperforms any other recent sys-
tem. On the WIKI test our method is clearly the
best, while on the NYT test, our system is be-
hind that of Nakashole and Mitchell (2015) but it
is still competitive. In terms of the embeddings we
use, the table shows that for the RRR test, embed-
dings induced from BLLIP perform clearly bet-
ter, while for the out-of-domain tests, the embed-
dings induced from NYT are slightly better for the
Wikipedia test, and clearly better for the NYT test.

4.4 Experiments on the Multiple Attachment
Setting

We now examine the performance of our models
on the setting and data by Belinkov et al. (2014),
which deals with multiple head candidates. We

37



Test Accuracy
Method Word Embedding RRR WIKI NYT
Tensor product Skip-gram, Wikipedia, n = 100 84.96 83.48 82.13

'' Skip-gram, NYT, n = 100 85.11 83.52 82.65
'' Skip-dep, BLLIP, n = 100 86.13 83.60 82.30
'' Skip-dep, Wikipedia, n = 100 85.01 83.53 82.10
'' Skip-dep, NYT, n = 100 85.49 83.64 83.47

Stetina and Nagao (1997) (*) 88.1 - -
Collins and Brooks (1999) 84.1 72.7 80.9
Belinkov et al. (2014) 85.6 - -
Nakashole and Mitchell (2015) (*) 84.3 79.3 84.3

Table 3: Accuracy results over the RRR, NYT and WIKI test sets. (*) indicates that the system uses
additional semantic features.

perform experiments on both English and Arabic
datasets. For this setting, following Belinkov et al.
(2014), we found necessary to use positional infor-
mation of the head candidate, as described by Eq.
5. Without it the performance was much worse
(possibly because in this data, a large number of
samples attach to the first or second candidate in
the list —about 93% of cases on the English data).

Table 4 presents our results. For English, we
present results for models trained with nuclear-
norm (`∗) and `2 regularization, using 50-
dimensional embeddings. Imposing low-rank on
the product tensor yields some gains with respect
to `2, however the improvements are not drastic.
This is probably because embeddings are already
compressed representations, and even products of
them do not result in overfitting to training. We
obtain a slight gain by using 100-dimensional em-
beddings, which results in an accuracy of 88.4 for
English and 81.1 for Arabic. In any case, one
characteristic of low-rank regularization is the in-
herent compression of the tensor. Figure 3 plots
accuracy versus rank for the tensor working with
50-dimensional embeddings composed with posi-
tional information9: with rank 50 the model ob-
tains 88% of accuracy while reducing the number
of parameters by a factor of 6. For PP attachment,
this has a computational advantage: the prepo-
sitional phrase needs to be projected only once
(from 2,601 dimensions to k, where k is the rank)
for all the head candidates in the sentence.

We compare our method to a series of results
by Belinkov et al. (2014). Their “basic” model

9We consider 7 head positions, and word vectors are 51
dimensions in practicei (with the dummy dimention). Thus,
the unfolded matrix W has 357 rows and 2,601 columns.

Test Accuracy
Arabic English

Tensor product (n=50, `2) - 87.8
Tensor product (n=50, `∗) - 88.3
Tensor product (n=100, `∗) 81.1 88.4
Belinkov et al. (2014) (basic) 77.1 85.4
Belinkov et al. (2014) (syn) 79.1 87.1
Belinkov et al. (2014) (feat) 80.4 87.7
Belinkov et al. (2014) (full) 82.6 88.7
Yu et al. (2016) - 90.3

Table 4: Test accuracy for PP attachment with
multiple head candidates.

uses Skip-gram, and like us, by moving to syn-
tactic vectors (noted “syn”) they observed a gain
in accuracy. However, in this comparable setting,
our model outperforms theirs by 1.3% in English
and 2% in Arabic. They also explored adding stan-
dard features (from WordNet and VerbNet, noted
“feat”), and combining everything (noted “full”),
which then surpasses our results. Very recently, Yu
et al. (2016) has used a tensor model that combines
standard feature templates (again using WordNet)
with word embeddings, with significant improve-
ments; however they do not report results on com-
bining word embeddings only, which is our focus.

Comparison to Dependency Parsers. We now
compare our tensor models to state-of-the-art de-
pendency parsers, specifically looking at PP att-
tachment decisions. For this comparison, we took
the English Web Treebank (WTB) (Petrov and
McDonald, 2012), which has annotated evaluation
sets for five domains, and extracted PP-attachment
tuples using the procedure described by Belinkov

38



PTB Web Treebank Development Web Treebank Test
Test A E N R W Avg A E N R W Avg
(2523) (814) (1025) (969) (783) (1064) (4655) (868) (936) (839) (902) (788) (4333)

Tensor BLLIP 89.0 83.7 80.2 81.9 83.2 85.3 82.8 82.7 82.6 87.4 82.5 86.3 84.2
Tensor BLLIP+WTB 88.9 86.2 81.8 84.1 83.7 86.7 84.5 83.3 85.2 90.1 85.9 86.6 86.1
Stanford 87.3 80.3 79.7 84.5 81.5 84.9 82.3 79.3 79.7 85.7 82.2 83.8 82.0
Turbo 2nd 88.8 84.5 80.1 82.8 83.1 85.1 83.1 83.6 83.7 87.6 84.2 87.8 85.3
Turbo 3rd 88.9 85.1 80.4 83.3 83.3 84.8 83.3 84.2 84.5 87.6 84.4 87.6 85.6

Table 5: Comparison between tensor products and dependency parsers, on PP attachment tuples in the
Penn Treebank test (PTB) and in the English Web Treebank (WTB) evaluation sets – with separate results
for each domain: answers (A), emails (E), newsgroups (N), reviews (R), and weblogs (W). The number
of evaluation instances in each set appears in parenthesis. The tensor products use embeddings trained
on BLLIP and BLLIP+WTB, and for both n = 100.

0 50 100 150 200

rank

0.78

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

`∗ Regularized

Figure 3: Accuracy versus rank of the tensor
model on the English data by Belinkov et al.
(2014). The tensor model uses 50-dimensional
vectors composed with head position, and has size
357× 2, 601.

et al. (2014), resulting in 4,655 tuples on the de-
velopment set and 4,333 tuples on the test set.
We also applied the same procedure to the Penn
Treebank test set, with 2.523 instances.10 We
selected two state-of-the-art dependency parsers
which are publicly available. The first is the
Stanford transition-based neural parser (Chen and
Manning, 2014), which uses word embeddings but
not as products.11 The other is TurboParser (Mar-
tins et al., 2013)12 which offers 2nd and 3rd order
arc-factored models, with grandchildren features
that capture the conjunction of the three words
in a PP-attachment decision, even though those
models do not use word embeddings. We ran

10The evaluation test by (Belinkov et al., 2014) has 1,951
instances. Hence, the results of our models are slightly differ-
ent in this evaluation. We will release our extraction script.

11We used Stanford CoreNLP 3.7.0. We could not deter-
mine the characteristics of the embeddings in the model.

12We used version 2.3, available from http://www.
cs.cmu.edu/˜ark/TurboParser

the parsers on the evaluation sentences, and ex-
tracted the PP-attachment decision from the parse
tree.13 We also evaluated two 100-dimensional
Skip-dep tensor products, one using embeddings
trained on BLLIP, and a second one using em-
beddings trained on BLLIP and the unlabeled data
from the Web Treebank.14

Table 5 presents the results. Comparing the ten-
sor products, using PTB+WTB embeddings gives
an improvement of 1.7% in accuracy on the WTB
development test, for a slight decrease of 0.1% on
the PTB test. This confirms that tensor products of
word embeddings are a valid and simple approach
to domain adaptation.

Comparing to parsers, our best tensor product
performs better in almost all domains, and on av-
erage it performs significantly better in the WTB
evaluation sets.15 First, this confirms that PP at-
tachment decisions are still an important source of
errors of state-of-the-art parsers. And we see that
a specialized model for PP attachment, despite its
simplicity, can improve on these decisions.

Error Analysis. To further understand the per-
formance of the tensor products and parsers on
WTB development set, we consider PP attachment
instances where the words are observed less than
five times in the training data (1,565 cases out of

13We ran all parsing models on correct PoS tags. Thus,
these are optimistic performances. This choice rules out cases
where the parsers fail because of tagging errors, which would
be unfair because our models work on pre-selected head can-
didate lists which depend on correct PoS tags.

14We mixed the unlabeled data from all domains, for a total
of ∼4.7 million sentences and ∼75.5 million tokens.

15Under the sign test, the differences on WTB evaluation
sets between the tensor product on BLLIP+WTB and other
models were significant: TurboParser with p < 0.05, the
Stanford parser with p < 0.01, and the tensor product on
BLLIP with p < 0.01.

39



4,655). The best tensor product obtains an accu-
racy of 84.3% (vs. 84.5%), while the 3rd order
TurboParser gets 83.0% (vs. 83.3%) and the Stan-
ford parser gets 81.3% (vs. 82.3%). The parsers
suffer a drop, while the tensor model does not,
suggesting that the tensor model is able to gener-
alize better to less frequent words. Figure 4 shows
two sample sentences from the Web Treebank that
illustrate two cases of ambiguities. Sentence (a) is
an example of lexical paucity, because the words
of the attached phrase, disintegration with LSD,
are absent in the training set. The tensor model
correctly predicts the attachment, while the parsers
do not. Sentence (b) is an example of sense am-
biguity: the tensor model incorrectly predicts ad-
dress as head of to Senators, which is plausible,
but in this case the sentence is about the return ad-
dress of the letter to Senators, which the parsers
correctly predict. There are clear complementary
benefits between parsers and products of embed-
dings, and these examples suggest combinations
of both.

Came the disintegration of the Beatles ’ minds with LSD . . .

(a) The modifier and correct head are unseen in training.

. . . the return address for the letters to the Senators . . .

(b) The correct head is ambiguous.

Figure 4: Examples from the Web Treebank de-
velopment set, with the attachments predicted by
the tensor product (solid green arc), the Stanford
neural parser (dashed red arc) and the 3rd order
TurboParser (dotted blue arc).

5 Related Work

5.1 Resolving PP Attachment Ambiguity
Several approaches have been proposed for solv-
ing the PP attachment problem, including maxi-
mum likelihood with back-off (Hindle and Rooth,
1993; Collins and Brooks, 1999), and discrimina-
tive training (Ratnaparkhi et al., 1994; Olteanu and
Moldovan, 2005), among others. A key part of
such systems is the representation they use, in the
form of lexical, syntactic and semantic features

of the main words involved in an attachment de-
cision. Crucially, the best performing models are
obtained when exploring conjunctions of such fea-
tures. Some works have also explored using ex-
ternal knowledge resources in the form of ontolo-
gies and syntactic information (Stetina and Na-
gao, 1997; Zhao and Lin, 2004; Nakashole and
Mitchell, 2015).

In our paper, we use word embeddings as the
only source of lexical information. Previous work
has explored word representations as extra fea-
tures (Zhao and Lin, 2004). In our case, we define
a model that exploits all conjunctions of the word
vectors in an attachment decision. Our model is in
fact a generalization of that of Madhyastha et al.
(2014), as described in section 3.1. From that
work, our application to PP attachment differs in
using compact word embeddings as opposed to
sparse distributional vectors. Mitchell and Lapata
(2008) compared a variety of composition opera-
tions, including the tensor product, in the context
of distributional lexical semantics.

Closely related to our work is the approach
by Belinkov et al. (2014), who use neural networks
that compose the embeddings of the words in the
PP attachment structure. Their model composes
word embeddings by first concatenating vectors
and then projecting to a low-dimensional vector
using a non-linear hidden layer. This basic com-
position block is used to define several compo-
sitional models for PP attachment. One differ-
ence is that we represent tensor products of em-
beddings, which result in projected hidden con-
junctions when the tensor has low rank. In con-
trast, projecting concatenated embeddings results
in hidden disjunctions of the input coefficients.

More recently, Yu et al. (2016) have also ex-
plored tensor models for PP attachment. Their fo-
cus is on representing standard feature templates
(which are conjunctions of features of a variety of
sources) as tensors, and on using low-rank con-
straints to favor parameter sharing among tem-
plates. One of their templates is the conjunction
of the head, preposition and modifier (and word
embeddings of these), which is the focus case of
our paper. While there are differences in the way
we learn a low-rank tensor (see below), they show
superior performance, probably due to the combi-
nation of different features. Our experiments, in
contrast, offer a controlled study over different as-
pects of word embeddings and their product.

40



Beyond applications to PP attachment, word
embeddings have been used for a number of pre-
diction tasks. In most cases, embeddings of two
or more words are composed by concatenation –
see (Turian et al., 2010; Chen and Manning, 2014;
Dyer et al., 2015) to name a few, or averaging
(Socher et al., 2011; Huang et al., 2012). Compo-
sitions based on product of embeddings have been
explored in tensor models, which we discuss next.

5.2 Low Rank Tensors in NLP

Using tensors to represent products of elementary
vectors has been a recent trend in NLP. Because
most tasks in NLP benefit from exploiting con-
junctions of elementary features, tensor models
offer the appropriate framework for defining con-
junctive feature spaces. A main benefit of the ten-
sor representation is that it allows to control the
model capacity using low-rank constraints. There
are several ways to define the rank of a tensor,
while for a matrix there is a unique definition. A
natural and simple way to impose low-rank con-
straints on a tensor is by first unfolding the ten-
sor into a matrix, and let the rank of the ten-
sor be the rank the unfolded matrix. With this
one can apply low-rank constraints by regulariza-
tion, using the nuclear norm (which is a convex
relaxation for low-rank regularization). In prac-
tice, this leads to a simple convex optimization
that uses an SVD routine to solve the core part
of the problem. This technique has been used
recently for several problems (Balle and Mohri,
2012; Quattoni et al., 2014; Madhyastha et al.,
2014, 2015; Primadhanty et al., 2015). There are
2d ways to unfold a tensor of d modes. In our
case, we have made the choice based on the ap-
plication: we have grouped the preposition and
modifier together. This choice has a clear com-
putational advantage for the task: at prediction
time, we can first project the prepositional phrase
(which is fixed) to its low-dimensional representa-
tion, and then do the inner product with the projec-
tion of each head candidate. In general, one could
try different unfoldings, or use multiple of them in
a combination.

Another popular approach to low-rank tensor
learning is directly optimizing over a low-rank de-
composition of the tensor, such as the canonical
polyadic or the Tucker forms (Lei et al., 2014;
Fried et al., 2015; Yu et al., 2016). In the Tucker
form, a tensor d modes has one projection matrix

for each of the modes, where each projection ma-
trix is a mapping from the original input vector
space to a low-dimensional one, i.e. an embedding
of the feature of the corresponding mode. One ad-
vantage of this approach is that there is no need to
choose an unfolding. However, the optimization is
non-convex.

6 Conclusion

We have described a simple PP attachment model
based on tensor products of the word vectors in a
PP attachment decision. We have established that
the product of vectors improves over more sim-
ple compositions (based on sum or concatenation),
while it remains computationally manageable due
to the compact nature of word embeddings. In
experiments on standard PP attachment datasets,
our tensor models perform better than other meth-
ods using lexical information only, and are close
in performance to methods using richer feature
spaces. In out-of-domain tests we obtain improve-
ments over state-of-the-art parsers. As our models
only depend on word embeddings, this is a clear
signal that word embeddings are appropriate rep-
resentations to generalize to unseen structures.

By using low-rank constraints during learning
we have observed small improvements over `2 reg-
ularization, but not drastic ones (compared to, for
example, tensor compositions of sparse vectors,
in which case low-rank constraints are generally
much more beneficial). All in all, low-rank con-
straints are essential tools to control the capac-
ity of tensor models. This framework is arguably
more simple than neural compositions, because it
avoids non-linearities and can be optimized with
global routines like SVD. In our PP attachment
experiments, we have obtained some gains in ac-
curacy over the neural models by Belinkov et al.
(2014) that use comparable representations. We
have also obtain improvements over state-of-the-
art dependency parsers.

In NLP, and in syntax in particular, there ex-
ist other paradigmatic lexical attachment ambigui-
ties that, like PP attachment, can be framed within
a particular scope of the dependency tree: adjec-
tives, conjunctions, raising and control verbs, etc..
The tensor product we have presented can serve
as a building block to define dependency parsing
methods that make a central use of products of
word embeddings.

41



References
Eneko Agirre, Timothy Baldwin, and David Martinez.

2008. Improving parsing and pp attachment perfor-
mance with sense information. In ACL. pages 317–
325.

Borja Balle and Mehryar Mohri. 2012. Spectral learn-
ing of general weighted automata via constrained
matrix completion. In Proceedings of Advances in
Neural Information Processing Systems (NIPS) .

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Proceedings of Association
of Computational Linguistics(ACL) Short Papers.

Yonatan Belinkov, Tao Lei, Regina Barzilay, and Amir
Globerson. 2014. Exploring compositional architec-
tures and word vector representations for preposi-
tional phrase attachment. Transactions of the Asso-
ciation for Computational Linguistics 2:561–572.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 2000. BLLIP 1987-
89 WSJ Corpus Release 1, LDC No. LDC2000T43.
Linguistic Data Consortium.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Michael Collins and James Brooks. 1999. Prepo-
sitional phrase attachment through a backed-off
model. In Natural Language Processing Using Very
Large Corpora, Springer, pages 177–189.

John Duchi and Yoram Singer. 2009. Efficient online
and batch learning using forward backward splitting.
Journal of Machine Learning Research 10:2899–
2934.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Daniel Fried, Tamara Polajnar, and Stephen Clark.
2015. Low-rank tensors for verbs in compositional
distributional semantics. In Short Papers of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2015). pages 731–736.

Donald Hindle and Mats Rooth. 1993. Structural am-
biguity and lexical relations. Computational linguis-
tics 19(1):103–120.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1. Association for Com-
putational Linguistics, pages 873–882.

Jonathan K Kummerfeld, David Hall, James R Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of error
types in parser output. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning. Association for Computational
Linguistics, pages 1048–1059.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay,
and Tommi Jaakkola. 2014. Low-rank tensors
for scoring dependency structures. In Proceed-
ings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 1381–1391.
http://www.aclweb.org/anthology/P14-1130.

Pranava Swaroop Madhyastha, Xavier Carreras,
and Ariadna Quattoni. 2014. Learning task-
specific bilexical embeddings. In Proceedings
of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Techni-
cal Papers. Dublin City University and Associa-
tion for Computational Linguistics, pages 161–171.
http://aclweb.org/anthology/C14-1017.

Pranava Swaroop Madhyastha, Xavier Carreras, and
Ariadna Quattoni. 2015. Tailoring word embed-
dings for bilexical predictions: An experimental
comparison. In International Conference on Learn-
ing Representations (Workshop Contribution) .

Andre Martins, Miguel Almeida, and A. Noah Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Associ-
ation for Computational Linguistics, pages 617–622.
http://aclweb.org/anthology/P13-2109.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of Interna-
tional Conference on Learning Representations .

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
the Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). pages
236–244.

Ndapandula Nakashole and Tom M Mitchell. 2015. A
knowledge-intensive model for prepositional phrase
attachment. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics,(ACL). pages 365–375.

42



Marian Olteanu and Dan Moldovan. 2005. Pp-
attachment disambiguation using large context. In
Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 273–280.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. Notes of
the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Audi Primadhanty, Xavier Carreras, and Ariadna Quat-
toni. 2015. Low-rank regularization for sparse con-
junctive feature spaces: An application to named
entity classification. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 126–135.
http://www.aclweb.org/anthology/P15-1013.

Ariadna Quattoni, Borja Balle, Xavier Carreras,
and Amir Globerson. 2014. Spectral regular-
ization for max-margin sequence tagging. In
Tony Jebara and Eric P. Xing, editors, Proceed-
ings of the 31st International Conference on
Machine Learning (ICML-14). JMLR Workshop
and Conference Proceedings, pages 1710–1718.
http://jmlr.org/proceedings/papers/v32/quattoni14.pdf.

Adwait Ratnaparkhi, Jeff Reynar, and Salim Roukos.
1994. A maximum entropy model for prepositional
phrase attachment. In Proceedings of the workshop
on Human Language Technology. Association for
Computational Linguistics, pages 250–255.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the spmrl 2014 shared task on
parsing morphologically-rich languages. In Pro-
ceedings of the First Joint Workshop on Statisti-
cal Parsing of Morphologically Rich Languages and
Syntactic Analysis of Non-Canonical Languages.
Dublin City University, Dublin, Ireland, pages 103–
109. http://www.aclweb.org/anthology/W14-6111.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In In Proceedings of Ad-
vances in Neural Information Processing Systems.
pages 801–809.

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola.
2004. Maximum-margin matrix factorization. In In
proceedings of Advances in Neural Information Pro-
cessing Systems (NIPS). pages 1329–1336.

Jiri Stetina and Makoto Nagao. 1997. Corpus based
pp attachment ambiguity resolution with a semantic
dictionary. In Proceedings of the fifth workshop on
very large corpora.

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and
general method for semi-supervised learning.
In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACL ’10, pages 384–394.
http://dl.acm.org/citation.cfm?id=1858681.1858721.

Mo Yu, Mark Dredze, Raman Arora, and Matthew R.
Gormley. 2016. Embedding lexical features via low-
rank tensors. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 1019–1029.
http://www.aclweb.org/anthology/N16-1117.

Shaojun Zhao and Dekang Lin. 2004. A nearest-
neighbor method for resolving pp-attachment am-
biguity. In Natural Language Processing–IJCNLP
2004, Springer, pages 545–554.

43



Proceedings of the 15th International Conference on Parsing Technologies, pages 44–49,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

L1-L2 Parallel Dependency Treebank as Learner Corpus

John Lee, Keying Li, Herman Leung
Department of Linguistics and Translation

City University of Hong Kong
jsylee@cityu.edu.hk, keyingli3-c@my.cityu.edu.hk, leung.hm@gmail.com

Abstract

This opinion paper proposes the use of
parallel treebank as learner corpus. We
show how an L1-L2 parallel treebank —
i.e., parse trees of non-native sentences,
aligned to the parse trees of their target hy-
potheses — can facilitate retrieval of sen-
tences with specific learner errors. We ar-
gue for its benefits, in terms of corpus re-
use and interoperability, over a conven-
tional learner corpus annotated with error
tags. As a proof of concept, we conduct a
case study on word-order errors made by
learners of Chinese as a foreign language.
We report precision and recall in retriev-
ing a range of word-order error categories
fromL1-L2 tree pairs annotated in the Uni-
versal Dependency framework.

1 Introduction

A parallel treebank consists of multiple treebanks
with alignments at the sentence level, and often
also at the phrase and word levels. Growing in-
terest in parallel treebanks have yielded treebanks
of many language combinations (Čmejrek et al.,
2004; Megyesi et al., 2010; Sulger et al., 2013;
Volk et al., 2017).
So far, there has been no reported attempt to

build an L1-L2 parallel treebank — i.e., parse
trees of sentences written by non-native speak-
ers (henceforth, “L2 sentences”), aligned to parse
trees of their target hypotheses (henceforth, “L1
sentences”). Figure 1 shows an example parse
tree pair in such a treebank. The pair consists of
the parse tree of a Chinese sentence written by a
learner, and the parse tree of its corrected version,
or “target hypothesis”. Although a number of L2
treebanks have been built, they either do not pro-
vide explicit target hypotheses (Ragheb and Dick-

POS tag: PRON VERB NOUN

L2: 我 起床 七點
wo qichuang qidian

L1: 我 七點 起床
wo qidian qichuang
‘I’ ‘7 o’clock’ ‘wake up’

POS tag: PRON NOUN VERB

nsubj

root

obl:tmod

nsubj

root

obl:tmod

Figure 1: An example L1-L2 tree pair, includ-
ing word alignments between the learner sentence
(“L2”) and its target hypothesis (“L1”), and the
parse trees of the two sentences, annotated in Uni-
versal Dependencies for Chinese (Leung et al.,
2016; Lee et al., 2017).

inson, 2014; Nagata and Sakaguchi, 2016), or have
not yet provided parse trees for the target hypothe-
ses (Berzak et al., 2016).
Parallel L1-L2 treebanks can be expected to

serve a number of research agendas. First, they
would support quantitative studies in Contrastive
Interlanguage Analysis (CIA) (Granger, 2015) and
Error Analysis (EA). For CIA, they would enable
comparisons between native and interlanguages
not only on the lexical level but also on the syntac-
tic level. For EA, parallel parse trees would give
more fine-grained characterization of the syntactic
environment in which learner errors occur, which
can inform the design of language teaching peda-

44



gogy. Further, just as parallel treebanks can help
train machine translation (MT) systems (Čmejrek
et al., 2004; Sennrich, 2015), L1-L2 treebanks can
supply sentence pairs to train systems for auto-
matic grammatical error correction (GEC). Indeed,
some GEC systems obtained state-of-the-art re-
sults by casting the task as an MT problem (Ro-
zovskaya and Roth, 2016; Junczys-Dowmunt and
Grundkiewicz, 2014).
In this opinion paper, we focus on demon-

strating how L1-L2 parallel treebanks can bene-
fit learner language analysis. In the next section,
we argue that these treebanks can better facilitate
re-use and interoperability among learner corpora,
because they provide a more precise and flexible
encoding of learner errors. As a proof of concept,
Section 3 presents a case study on identifying dif-
ferent word-order errors in Chinese L1-L2 parallel
trees. Finally, Section 4 concludes.

2 Learner corpora and L1-L2 parallel
treebanks

A major function of a learner corpus is to facili-
tate retrieval of sentences with specific errors. We
first discuss the limitations of the use of error tags
(Section 2.1), and then propose tree search in an
L1-L2 parallel treebank as an alternative approach
(Section 2.2).

2.1 Error tags
Errors in a learner sentence are commonly marked
with error tags. Each tag labels a problematic text
span with an error category, and often also pro-
vides a corrected version of the text span (Izumi
et al., 2005; Zhang, 2009; Yannakoudakis et al.,
2011; Dahlmeier et al., 2013). For example, the
Cambridge Learner Corpus usesXML tags tomark
error categories (Nicholls, 2003), and supplements
the original text with a vertical bar and the target
hypothesis:

He <MV> | is </MV> happy.

The annotation above indicates that the learner
sentence “He happy” lacks the verb “is”, and cat-
egorizes this error as “missing verb” (MV). Despite
their widespread usage, however, error tags alone
do not optimize corpus re-use and interoperability.

2.1.1 Corpus re-use
A major limitation of the error tagging approach
is that learner errors must be pre-categorized. It is

difficult, or perhaps impossible, to develop a ro-
bust and general-purpose error typology that cov-
ers “all” possible types at a suitable level of gran-
ularity. Unless one can foresee research questions
in the future, any tagset is by definition limited in
error coverage and may not be easily reused.
As a concrete example, consider the “incom-

plete sentence” error in English. A typical def-
inition of this error is a sentence without sub-
ject or finite verb, or a stand-alone subordinate
clause (Bram, 1995). The Cambridge Learner Cor-
pus does not enable automatic search for sentences
with this error, however; its closest error category,
MV (“missing verb”), also covers sentences that are
not incomplete, for instance those that are missing
modal verbs.
As another example, consider word-order errors

in Chinese, which Jiang (2009) classified into a
number of categories. It is impossible to directly
search for sentences with these error categories
in current Chinese learner corpora. The widely
used HSK Dynamic Composition Corpus (Zhang,
2009) puts all word-order errors in a single cate-
gory, CJX. The Test of Chinese as a Foreign Lan-
guage Learner Corpus (Lee et al., 2016a), which
was used in the most recent shared task on Chinese
Grammatical Error Diagnosis (Lee et al., 2016b),
annotates the POS involved in word-order errors
but does not providemore fine-grained distinctions
as in Jiang (2009).

2.1.2 Corpus interoperability
Since existing error tagsets vary widely in granu-
larity, it is difficult to combine information from
multiple learner corpora. To cite but a few ex-
amples, NUCLE (Dahlmeier et al., 2013) uses a
tagset with 27 error categories; the NICT Japanese
Learner English Corpus has 46 tags (Izumi et al.,
2005); while different combinations in the Cam-
bridge Learner Corpus tagset can recognize up to
80 types of different errors (Nicholls, 2003).
In general, there is no clear mapping between

these error tagsets. Returning to the incomplete
sentence error as example, the closest category in
NUCLE is “sentence fragment” (SFrag). How-
ever, it applies not only to the kinds of incomplete
sentences described by Bram (1995), but alsomore
broadly to complete sentences that suffer from
stylistic issues, or those that should bemergedwith
their neighbors. As such, SFrag only partially
overlaps with the MV category in the Cambridge
Learner Corpus.

45



2.2 Tree query for learner error retrieval

In view of the limitations of error tags described
above, we propose the use of L1-L2 parallel tree-
bank for learner error retrieval. A search query on
such a treebank, consisting of a pair of parse tree
patterns with alignments (Table 1), can be viewed
as a dynamically defined error category.
The idea of leveraging linguistic annotations to

search for learner errors is not new. As noted
by Reznicek et al. (2013), when both learner sen-
tences and target hypotheses are POS-tagged and
word-aligned, a search query with constraints on
POS and word positions can effectively express an
error category. This approach is becoming more
widely applicable, as more learner corpora are en-
riched with POS annotation (Lüdeling et al., 2008;
Díaz-Negrillo et al., 2010) and enhanced align-
ments (Felice et al., 2016).
Many learner errors, however, cannot be ade-

quately specified with POS alone. Take subject-
verb agreement as an example. It does not suffice
to search for two aligned verbs with different tags
(e.g., VB and VBZ), since the change in conju-
gation may be a result of other errors (e.g., noun
number). The tree query in Table 1(a) provides a
more precise and transparent definition of the er-
ror. It requires the aligned verbs in both the L1
and L2 sentences to have a singular noun (NN) as
subject. Hence, it specifically targets the subject-
verb agreement error where the learner mistakes
the root form of the verb for the third-person sin-
gular present tense. Similarly, to search for Chi-
nese word-order errors involving time expressions,
the tree query in Table 1(b) requires a specific de-
pendency relation between the aligned verbs and
nouns. This requirement helps exclude other er-
rors that exhibit similar POS patterns, for example
violations of the SVO word order.
This proposed approach promotes both corpus

re-use and interoperability. Free from a fixed er-
ror typology, the user may interrogate the corpus
with any suitable tree query, at an arbitrary level
of granularity; the learner corpus is thus re-usable
to the extent that the desired error type can be de-
fined with POS tags and dependency relations. In
terms of interoperability, mappings between er-
ror tagsets are no longer necessary; instead, this
approach requires mappings between POS tagsets
and dependency relations. This is admittedly still
a considerable problem, but one that is arguably
easier to solve, especially with the emergence of

(a) Subject-verb (b) Time expression
agreement error word-order error

L2: NN ... VB

L1: NN ... VBZ

nsubj

nsubj

L2: VERB ... NOUN

L1: NOUN ... VERB

obl:tmod

obl:tmod

Table 1: Tree queries for (a) subject-verb agree-
ment in English (in Stanford Dependencies); and
(b) time expression word-order errors in Chinese
(in Universal Dependencies).

Error type Freq P R
Time Expressions 21.1% 0.92 0.92
Modifiers + V 15.8% 0.50 0.50
Action Series 11.4% 0.65 0.85
Locative Expressions 11.4% 0.91 0.77
Subsidiary Relations 8.8% 1.00 0.80
Beneficiary 7.9% 1.00 0.56
Modifiers + N 7.0% 0.89 1.0
DE position 7.0% 1.00 0.38
Topic-comment 6.1% 0.83 0.71
Question 3.5% 1.00 0.50

Table 2: Precision (P) and recall (R) of the manu-
ally crafted tree queries in retrieving various error
types in the test set. See Jiang (2009) for a descrip-
tion of the error types.

international standards such as Universal Depen-
dencies (Nivre et al., 2016).

3 Case study

As a proof of concept, we conducted a case study
on word-order errors, a frequent error in learner
Chinese (Lee et al., 2016a), and measured the ex-
tent to which the proposed approach succeeded in
retrieving sentences with specific error categories.

3.1 Set-up
At least three taxonomies have been proposed
for Chinese word-order errors, by Yu (1986),
Ko (1997), and Jiang (2009), respectively. We
selected the one by Jiang, the most fine-grained
of the three, with 27 categories grouped under 9
principles. This taxonomy has been applied on
a dataset of 408 sentences, written by students
at various proficiency levels, labelled as levels 1
(least proficient) through 3 (most proficient). We

46



(a) Modifiers + V (Adverb + V)

L2: VERB NOUN/ADV

L1: NOUN/ADV VERB

advmod

advmodL2: 我去第一次中國...
wo qu/VERB diyici/NOUN zhongguo
‘I’ ‘go’ ‘first time’ ‘China’
L1: 我第一次去中國...
wo diyici/NOUN qu/VERB zhongguo
‘I’ ‘first time’ ‘go’ ‘China’
“I go for the first time to China ...”
(b) Action Series (LE position)

L2: VERB le VERB

L1: VERB VERB le
conj

aux

aux
conjL2: 我們去了參觀故宮

women qu/VERB le canguan/VERB gugong
‘we’ ‘go’ LE ‘visit’ ’Forbidden City’
L1: 我們去參觀了故宮
women qu/VERB canguan/VERB le gugong
‘we’ ‘go’ ‘visit’ LE ’Forbidden City’
“We went to visit the Forbidden City”
(c) Locative Expressions (Location + V)

L2: VERB co-verb/ADP NOUN

L1: co-verb/ADP NOUN VERB

case obl

case

obl
L2: 你做什麽在這裡
ni zuo/VERB shenme zai/ADP zheli/NOUN
‘you’ ‘do’ ‘what’ ‘at’ ‘here’
L1: 你在這裡做什麽
ni zai/ADP zheli/NOUN zuo/VERB shenme
‘you’ ‘at’ ‘here’ ‘do’ ‘what’
“What are you doing here?”

Table 3: Examples of L1-L2 tree queries used in the case study (Section 3.1).

focused on the first three principles, namely the
“Greenberg Pattern Principle”, which prescribes
the canonical word order in Chinese; the “Princi-
ple of Modifier Before Head”; and “Temporal Se-
quence”.1 These are the largest and more syntax-
oriented principles, covering a majority of the er-
rors attested in the dataset.
As development set, we used 58 sentence pairs

from Level 1. We manually annotated the learner
sentences with the Universal Dependencies (UD)
scheme for Learner Chinese (Lee et al., 2017),
and the target hypotheses with the UD scheme for
standard Chinese (Leung et al., 2016); we then
performed word alignment between each sentence
pair. Based on the development set and on error
definitions in Jiang (2009), we manually crafted
30 parse tree patterns for 10 error categories un-
der the three principles mentioned above. Table 3
shows some example patterns.
As test set, we drew 114 sentences from Lev-

els 2 and 3, and manually performed similar de-
pendency annotation and word alignment. Com-

1The interested reader is referred to Jiang (2009) for de-
tails about these principles.

pared with those in the development set, these sen-
tences are linguistically more complex and likely
contain more diverse errors, thus ensuring that the
accuracy of the proposed approach is not overesti-
mated.

3.2 Results

We applied the manually crafted tree queries on
the test set, and measured their accuracy in retriev-
ing and distinguishing between sentences with dif-
ferent kinds of word-order errors. As shown in
Table 2, the highest precision was achieved for
the categories “Question”, “DE position”, “Bene-
ficiary” and “Subsidiary Relations” (all at 100%),
since their parse structures are most distinct and
predictable. Precision was lowest for “Modifiers
+ V” (50%). Because of unclear meaning in the
L2 sentences, their parse trees are often prone to
matching similar patterns from other error cate-
gories, such as “Time Expressions”. In certain
cases, the L2 sentence contains multiple errors but
the gold annotation marks only one.
Recall was highest for “Modifiers + N” (100%)

and “Time Expressions” (92%), and lowest for

47



“DE position” (38%). Error analysis revealed that
while the L1 parse patterns were mostly adequate,
the L2 parse patterns were sometimes not suffi-
ciently general to cover the variety of learner us-
age that could produce unexpected parse tree struc-
tures.

4 Conclusion

This opinion paper advocates the use of L1-L2 par-
allel treebank as learner corpus. We have argued
that such a treebank can better facilitate corpus re-
use and interoperability than a fixed error tagset.
We have shown the feasibility of the proposed ap-
proach in a case study, by measuring the accu-
racy of tree queries in distinguishing between fine-
grained categories of word-order errors in learner
Chinese sentences. It is hoped that this paper
will spur development of L1-L2 parallel treebanks.
They in turn should lead to more accurate parsers
for learner text, eventually enabling the proposed
approach to be fully automated.

Acknowledgments

This work was partially supported by a Strategic
Research Grant (Project no. 7004494) from City
University of Hong Kong.

References
Yevgeni Berzak, Jessica Kenney, Carolyn Spadine,

Jing Xian Wang, Lucia Lam, Keiko Sophie Mori,
Sebastian Garza, and Boris Katz. 2016. Universal
Dependencies for Learner English. In Proc. ACL.

Barli Bram. 1995. Write Well, ImprovingWriting Skills.
Kanisius.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a Large Annotated Corpus of
Learner English: The NUS Corpus of Learner En-
glish. In Proc. 8th Workshop on Innovative Use of
NLP for Building Educational Applications.

Ana Díaz-Negrillo, Detmar Meurers, Salvador Valera,
and Holger Wunsch. 2010. Towards Interlanguage
POS Annotation for Effective Learner Corpora in
SLA and FLT. Language Forum 36(1-2):139–154.

Mariano Felice, Christopher Bryant, and Ted Briscoe.
2016. Automatic Extraction of Learner Errors
in ESL Sentences Using Linguistically Enhanced
Alignments. In Proc. COLING.

Sylviane Granger. 2015. Contrastive Interlanguage
Analysis: A Reappraisal. International Journal of
Learner Corpus Research 1(1):7–24.

Emi Izumi, Kiyotaka Uchimoto, and Hitoshi Isahara.
2005. Error Annotation for Corpus of Japanese
Learner English. In Proc. 6th International Work-
shop on Linguistically Interpreted Corpora.

Wenying Jiang. 2009. Acquisition of Word Order in
Chinese as a Foreign Language. In Peter Jordens, ed-
itor, Studies on Language Acqusition 38. De Gruyter
Mouton.

M. Junczys-Dowmunt and R. Grundkiewicz. 2014.
The AMU system in the CoNLL-2014 shared task:
grammatical error correction by data-intensive and
feature-rich statistical machine translation. In Proc.
18th Conference on Computational Natural Lan-
guage Learning: Shared Task.

T. J. Ko. 1997. Acquisition of Word Order in Chinese
as a Foreign Language. PhD Dissertation, Rutgers
University.

John Lee, Herman Leung, and Keying Li. 2017. To-
wards Universal Dependencies for Learner Chinese.
In Proc. Workshop on Universal Dependencies.

Lung-Hao Lee, Li-Ping Chang, and Yuen-Hsien Tseng.
2016a. Developing Learner Corpus Annotation for
Chinese Grammatical Errors. In Proc. International
Conference on Asian Language Processing (IALP).

Lung-Hao Lee, Gaoqi Rao, Liang-Chih Yu, Endong
Xun, Baolin Zhang, and Li-Ping Chang. 2016b.
Overview of NLP-TEA 2016 Shared Task for Chi-
nese Grammatical Error Diagnosis. In Proc. 3rd
Workshop on Natural Language Processing Tech-
niques for Educational Applications.

Herman Leung, Rafaël Poiret, Tak sumWong, Xinying
Chen, KimGerdes, and John Lee. 2016. Developing
Universal Dependencies for Mandarin Chinese. In
Proc. Workshop on Asian Language Resources.

Anke Lüdeling, Seanna Doolittle, Hagen Hirschmann,
Karin Schmidt, and Maik Walter. 2008. Das lern-
erkorpus falko. Deutsch als Fremdsprache 2:67–73.

Beáta Megyesi, Bengt Dahlqvist, Éva Á. Csató, and
Joakim Nivre. 2010. The English-Swedish-Turkish
Parallel Treebank. In Proc. Seventh International
Conference on Language Resources and Evaluation
(LREC). pages 55–60.

Ryo Nagata and Keisuke Sakaguchi. 2016. Phrase
Structure Annotation and Parsing for Learner En-
glish. In Proc. ACL.

Diane Nicholls. 2003. The Cambridge Learner Cor-
pus - error coding and analysis for lexicography and
ELT. In Proc. Computational Linguistics Confer-
ence.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A Multilingual
Treebank Collection. In Proc. LREC.

48



Marwa Ragheb and Markus Dickinson. 2014. Devel-
oping a Corpus of Syntactically-Annotated Learner
Language for English. In Proc. 13th International
Workshop on Treebanks and Linguistic Theories
(TLT).

Marc Reznicek, Anke Lüdeling, and Hagen
Hirschmann. 2013. Competing Target Hypotheses
in the Falko Corpus: A Flexible Multi-Layer Corpus
Architecture. In Ana Díaz-Negrillo, editor, Auto-
matic Treatment and Analysis of Learner Corpus
Data. John Benjamins, Amsterdam, pages 101–123.

Alla Rozovskaya and Dan Roth. 2016. Grammatical
Error Correction: Machine Translation and Classi-
fiers. In Proc. ACL.

Rico Sennrich. 2015. Modelling and Optimizing on
Syntactic N-Grams for Statistical Machine Transla-
tion. Transactions of the Association for Computa-
tional Linguistics 3:169–182.

Sebastian Sulger, Miriam Butt, Tracy Holloway
King, Paul Meurer, Tibor Laczkó, György Rákosi,
Cheikh Bamba Dione, Helge Dyvik, Victoria Rosén,
Koenraad De Smedt, Agnieszka Patejuk, Özlem
Cetinoǧlu, I Wayan Arka, and Meladel Mistica.
2013. ParGramBank: The ParGram Parallel Tree-
bank. In Proc. ACL.

Martin Čmejrek, Jan Cuřín, Jiří Havelka, Jan Hajič,
and Vladislav Kuboň. 2004. Prague Czech-English
Dependency Treebank Syntactically Annotated Re-
sources for Machine Translation. In Proc. EAMT .

Martin Volk, Torsten Marek, and Yvonne Samuelsson.
2017. Building and Querying Parallel Treebanks. In
Silvia Hansen-Schirra, Stella Neumann, and Oliver
Čulo, editors, Annotation, Exploitation and Evalua-
tion of Parallel Corpora. Language Science Press,
Berlin, pages 7–30.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. ANewDataset andMethod for Automatically
Grading ESOL Texts. In Proc. ACL.

Shuhuai Yu. 1986. Word Order and Topic Promi-
nence in the Interlanguage of an Australian Learner
of Chinese. Australian Review of Applied Linguis-
tics 9:83–91.

Baolin Zhang. 2009. The Characteristics and Functions
of the HSK Dynamic Composition Corpus. Interna-
tional Chinese Language Education 4(11).

49



Proceedings of the 15th International Conference on Parsing Technologies, pages 50–55,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Splitting Complex English Sentences

John Lee
Department of Linguistics and Translation

City University of Hong Kong
jsylee@cityu.edu.hk

J. Buddhika K. Pathirage Don∗

Hong Kong Applied Science
and Technology Research Institute
bpathiragedon@astri.org

Abstract

This paper applies parsing technology to
the task of syntactic simplification of En-
glish sentences, focusing on the identifi-
cation of text spans that can be removed
from a complex sentence. We report the
most comprehensive evaluation to-date on
this task, using a dataset of sentences that
exhibit simplification based on coordina-
tion, subordination, punctuation/parataxis,
adjectival clauses, participial phrases, and
appositive phrases. We train a decision
tree with features derived from text span
length, POS tags and dependency rela-
tions, and show that it significantly outper-
forms a parser-only baseline.

1 Introduction

The task of text simplification aims to rewrite a
sentence so as to reduce its complexity, while
preserving its meaning and grammaticality. The
rewriting may involve various aspects, includ-
ing lexical simplification, syntactic simplification,
content deletion, and content insertion for clarifi-
cation. This paper focuses on syntactic simplifica-
tion and, specifically, on splitting a complex sen-
tence into two simpler sentences.1 Consider the
input sentence S in Table 1, a complex sentence
containing a participial phrase, “carrying numer-
ous books”. After removing this phrase from S,
the system generates S2 from the phrase by turning
the participle “carrying” into the finite form “was
carrying”, and by generating the pronoun “he” as
the subject.

A number of systems can already perform
this task (Chandrasekar et al., 1996; Siddharthan,

∗The second author completed this work as a Postdoctoral
Fellow at City University of Hong Kong.

1The simplified sentences can in turn be split iteratively.

S The man, carrying numerous books,
entered the room.

S1 The man entered the room.
S2 He was carrying numerous books.

Table 1: Example input (S) and output sentences
(S1, S2) for the task of syntactic simplification.

2002a; Inui et al., 2003; Belder and Moens, 2010;
Bott et al., 2012; Siddharthan and Angrosh, 2014;
Saggion et al., 2015). While some systems have
undergone task-based evaluations, such as reading
comprehension (Angrosh et al., 2014), most have
adopted holistic assessment, which commonly in-
cludes human ratings on the grammaticality, flu-
ency, meaning preservation, and simplicity of the
system output (Štajner et al., 2016). These ratings
are indeed helpful in indicating the overall quality
of a system; however, the need for human inter-
vention restricts the scale of the evaluations, and
makes direct comparisons difficult. Other systems
have been evaluated with automatic metrics, such
as BLEU and readability metrics (Aluisio et al.,
2010; Narayan and Gardent, 2014), which over-
come the limitations of human ratings, but do not
reveal what aspects of the simplification process
caused the most difficulties.

The contribution of this paper is two-fold. First,
it presents the first publicly available dataset that
facilitates detailed, automatic evaluation on syn-
tactic simplification. Second, we report the results
of a decision tree approach that incorporates parse
features, giving a detailed analysis on its perfor-
mance for various constructs.

2 Previous Work

The phrase-based and syntax-based machine
translation approaches have been used in many
text simplification systems (Vickrey and Koller,

50



Construct Complex sentence example Freq.
Coordination I ate fish and he drank wine. 463

Peter came and saw.
Adjectival clause Peter ate an apple, which was green. 119
Participial phrase Peter, running fast, arrived. 90
Appositive phrase Peter, my friend, ate the apple. 69
Subordination After Peter came, I left. 158

After calling Peter, I left.
Punctuation/Parataxis I ate fish; he drank wine. 155

Peter (twenty years old) is a linguistics major.
Prepositional phrase The final was played at Manchester on 14 May 2008. 16

Table 2: Distribution of syntactic constructs in the test set (Section 3). The complex sentence can be
split into two simpler sentences by (i) removing the text span (italicized); and (ii) transforming the text
span into a new sentence with the referent (underlined). This paper focuses on step (i).

2008; Zhu et al., 2010; Coster and Kauchak, 2011;
Wubben et al., 2012). While these approaches
are effective for lexical substitution and deletion,
they are less so for sentence splitting, sentence re-
ordering, and morphological changes (Bott et al.,
2012; Siddharthan, 2014).

Most syntactic simplification systems start by
analyzing the input sentence via a parse tree,
or a deep semantic representation (Narayan and
Gardent, 2014). For identifying the referent NP
(clause attachment), accuracy can reach 95%;
for identifying clause boundary, accuracy is at
97% when there is punctuation, and 80% in gen-
eral (Siddharthan, 2002b). Noun post-modifiers
can be extracted at an F-measure of 92% (Dor-
nescu et al., 2014; Stanovsky and Dagan, 2016).

Given a syntactic analysis of the input sentence,
the system then applies manually written trans-
formation rules (Siddharthan, 2002a; Belder and
Moens, 2010; Bott et al., 2012; Siddharthan and
Angrosh, 2014; Saggion et al., 2015). These rules
identify specific constructs in a parse tree, such
as the participial phrase in S in Table 1; they
then determine whether the construct should be
split, and if so, generate an independent sentence
from it. For example, Aluı́sio et al. (2008) used
a set of transformation rules to treat 22 syntac-
tic constructs. Siddharthan (2011) used 63 rules,
which handle coordination of both verb phrases
and full clauses, subordination, apposition and
relative clauses, as well as conversion of pas-
sive voice to active voice. Siddharthan and An-
gorsh (2014) used 26 hand-crafted rules for ap-
position, relative clauses and combinations of the
two; as well as 85 rules handle subordination and

coordination.

3 Data

Many evaluation datasets are available for lexi-
cal simplification (Paetzold and Specia, 2016), but
there is not yet any that enables automatic evalu-
ation on syntactic simplification systems. We cre-
ated an annotated dataset for this purpose, based
on the 167,689 pairs of “normal” and simplified
sentences from Wikipedia and Simple Wikipedia
aligned by Kauchak (2013). While a majority of
these pairs are one-to-one alignments, 23,715 of
them are one-to-two alignments.2 These aligned
sentences, in their raw form, can serve as triplets
of S, S1 and S2 (Table 1).

However, as pointed out by Xu et al. (2015),
Wikipedia and Simple Wikipedia contain rather
noisy data; indeed, upon manual inspection, not
all triplets are good examples for syntactic sim-
plification. These fall into two cases. In the first
case, significant content from S is deleted and ap-
pear neither in S1 nor S2; these triplets provide
examples of content deletion rather than splitting.
In the second case, S2 (or S1) consists mostly of
new content. In some instances, S1 (or S2) is so
similar to S that no real splitting occurs. In others,
the new content put into doubt whether the split-
ting of S was motivated by syntactic complexity
alone, or were influenced by the new content. To
reduce the noise, we employed human annotation
to create the test set, and an automatic procedure
to clean up the training set.

2There is no one-to-n alignments for n > 2.

51



<S><ref>The man</ref> <split type="participial">, carrying numerous
books,</split> entered the room.</S>
<S1><ref1>The man</ref1> entered the room.</S1>
<S2><ref2>He</ref2> was carrying numerous books.</S2>

Table 3: Each triplet in our corpus contains a complex sentence (S) and the two shorter sentences (S1,
S2) into which it was re-written.

3.1 Test set

An annotator marked up 1,070 triplets of
(S, S1, S2) in the format shown in Table 3, with
the following items:3

Removed text span The <split> element en-
closes the text span that is removed from S.
This text span usually, though not necessar-
ily, appears in S1 or S2.

Construct Type The type attribute inside the
<split> element indicates the construct
type of the removed text span. Table 2 gives
a list of the construct types and their distribu-
tion.

Re-ordering If the removed text span forms the
basis of S1 (S2), the dest attribute inside the
<split> element takes the value S1 (S2).
This attribute indicates whether sentence re-
ordering has occurred.

Referent There are often referring expressions in
S1 and S2 for an entity in S. For example,
in Table 1, the words “the man” and “he” in
S1 and S2 refer to “the man” in S. These re-
ferring expressions are marked as <ref1>
and <ref2>, and the entity in S is marked
as <ref>.

3.2 Training set

The rest of the triplets form our training instances.
To filter out instances that are not genuine splits
(see above) and to determine the value of dest,
we require at least 75% of the words in either
S1 or S2 to appear in S. To determine the value
of type, we ran the baseline system (Section 4),
which is unsupervised and has relatively high re-
call, on S. Thus, the training set has all the anno-
tations in Table 3, except for <ref>, <ref1>
and <ref2>.

3The annotations on re-ordering and referent were not
used in this study, but will be useful for evaluation on sen-
tence re-generation.

4 Approach

Baseline system. We manually developed tree pat-
terns, in the form of dependency relations and POS
tags, to identify text spans that should be removed
from a complex sentence (Table 4). These pat-
terns are designed to yield high recall but lower
precision. The system parses the input sentence
with the Stanford parser (Manning et al., 2014),
and then performs breadth-first search on the de-
pendency tree for these patterns, returning the first
match it finds. This algorithm removes at most
one text span from each complex sentence; this
assumption is consistent with the material in our
dataset, which was derived from one-to-two sen-
tence alignments.

Proposed system. Even if one of the constructs
in Table 2 is present in a complex sentence, it may
not be appropriate or worthwhile to remove it. To
refine the tree patterns developed for the baseline
system, we trained a decision tree with the scikit-
learn package. For each word in the sentence, the
decision tree considers the features listed in Ta-
ble 5. If the decision tree predicts a split, the text
span headed by the word is removed from the sen-
tence.

5 Evaluation

We evaluate our system’s performance at identify-
ing a text span, if any, in a complex sentence that
should be removed to form an independent sen-
tence.

As expected, the baseline system achieved rela-
tively high recall (0.88) but low precision (0.34),
since it always tries to split a text span that
matches any of the tree patterns in Table 4. The
decision tree was able to substantially increase the
precision (0.63) by learning some useful rules, at
the expense of lower recall (0.72).

Some rules that substantially contributed to the
performance gain are as follows. Consider the rule
that a comma should separate the word from its
parent when the dependency relation is xcomp. It
was able to block the system from mistakenly tak-

52



Coordination Adjectival clause Participial phrase

V* V*

conj / ccomp

N* N*/V*

acl:relcl

N* VBN/VBG

acl

Appositive phrase Subordination Punctuation/Parataxis

N* N*

appos

V* V* V* VBN

advcl xcomp

V* V*

parataxis

Table 4: Manually crafted tree patterns, written in Stanford dependencies (Manning et al., 2014), that
are used in the baseline system. If the pattern exists in S, the text span headed by the child word (e.g.,
VBN/VBG for participial phrases) is to be removed from S.

Feature Description
POS Tag is JJ, N*, VBN, VBG,

or V*?
Parent POS Tag of parent word is JJ, N*,

VBN, VBG, or V*?
Root Parent word is root?
Sibling POS Tag of a sibling word is IN, TO,

WP, WRB, WP$, or WDT?
Child POS Tag of child word is IN, TO,

WP, WRB, WP$, or WDT?
Comma There is a comma between the

word and its parent word?
Det Subject of S is tagged DT?
Length Number of words in text span

Table 5: Features used by the decision tree.

System→ Baseline Proposed
↓ Construct P/R/F P/R/F
Coordination 0.31/0.84/0.45 0.61/0.80/0.69
Adjectival 0.29/0.97/0.45 0.59/0.79/0.68
clause
Participial 0.33/0.90/0.48 0.56/0.58/0.57
phrase
Appositive 0.21/0.91/0.34 0.36/0.56/0.44
phrase
Subordination 0.39/0.84/0.53 0.70/0.74/0.72
Punctuation/ 0.78/0.99/0.87 0.92/0.95/0.93
Parataxis
Overall 0.34/0.88/0.49 0.63/0.72/0.67

Table 6: Precision, recall and F-measure for iden-
tifying the text span to be removed from S.

ing the phrase “conducting at Montreux ...” out
of the sentence “He began conducting at Mon-
treux ...”. Another useful rule was that the par-
ent word in the conj relation must be root; other-
wise, the structure is likely coordinated NPs rather
than coordinated clauses. Further, when the mod-
ifier is tagged as TO (i.e., an infinitive), or when
the subject of the sentence is a determiner (e.g.,
“this”, “that”), no splitting should be done. Fi-
nally, shorter text spans are less likely to be split
up.

Among the different constructs, the proposed
system performed best for punctuation/parataxis,
with precision at 0.92 and recall at 0.95. This con-
struct is not only clearly marked, but also more
consistently split up. The most challenging con-
struct turned out to be appositive phrases, with
precision at 0.36 and recall at 0.56. Many of the
errors trickled down from inaccurate analysis by
the automatic parser, especially mistakes in rela-
tive clause attachment and clause boundary iden-
tification (Siddharthan and Angrosh, 2014).

The precision figures can be viewed as lower
bounds. In post-hoc analysis, we found that many
of the proposed text spans by our system can be
acceptable, but they were not deemed necessary to
be split up by the editors of Simple Wikipedia. Ul-
timately, the decision to split a complex sentence
should be made in consideration of the reader’s
proficiency, but our current dataset does not sup-
port the modelling of this factor.

6 Conclusions and Future Work

We have presented a study on syntactic simplifi-
cation, focusing on the identification of text spans
that should be removed from a complex sentence.

53



We trained a decision tree to learn to recognize
these text spans, using dependencies, POS tags
and text span length as features. Experimental
results showed that it outperformed a parser-only
baseline.

We have reported the most detailed evalua-
tion to-date on this task. This evaluation was
made possible with a new dataset, derived from
Wikipedia and Simple Wikipedia, that covers co-
ordinated clauses, subordinated clauses, punc-
tuation/parataxis, adjectival clauses, participial
clauses, appositive phrases, and prepositional
phrases.

In future work, we plan to investigate the next
steps in syntactic simplification, i.e., sentence re-
ordering and the generation of referring expres-
sions. Our dataset, which traces sentence order
and annotates referring expressions, is well suited
for automatic evaluation for these tasks.

Acknowledgments

This work was partially supported by the Innova-
tion and Technology Fund (Ref: ITS/132/15) of
the Innovation and Technology Commission, the
Government of the Hong Kong Special Adminis-
trative Region.

References
Sandra Aluisio, Lucia Specia, Caroline Gasperin, and

Carolina Scarton. 2010. Readability Assessment for
Text Simplification. In Proc. 5th Workshop on Inno-
vative Use of NLP for Building Educational Appli-
cations. pages 1–9.

Sandra Aluı́sio, Lucia Specia, T. A. Pardo, E. G.
Maziero, and R. P. Fortes. 2008. Towards Brazilian
Portuguese Automatic Text Simplification Systems.
In Proc. 8th ACM Symposium on Document Engi-
neering.

M. A. Angrosh, Tadashi Nomoto, and Advaith Sid-
dharthan. 2014. Lexico-syntactic text simplification
and compression with typed dependencies. In Proc.
COLING.

J. De Belder and M. F. Moens. 2010. Text Simplifi-
cation for Children. In Proc. SIGIR Workshop on
Accessible Search Systems.

Stefan Bott, Horacio Saggion, and David Figueroa.
2012. A Hybrid System for Spanish Text Simplifi-
cation. In Proc.Workshop on Speech and Language
Processing for Assistive Technologies.

R. Chandrasekar, Christine Doran, and B. Srinivas.
1996. Motivations and Methods for Text Simplifi-
cation. In Proc. COLING.

William Coster and David Kauchak. 2011. Learning to
Simplify Sentences using Wikipedia. In Proc. Work-
shop on Monolingual Text-to-Text Generation.

Iustin Dornescu, Richard Evans, and Constantin
Orǎsan. 2014. Relative Clause Extraction for Syn-
tactic Simplification. In Proc. Workshop on Auto-
matic Text Simplification: Methods and Applications
in the Multilingual Society. Dublin, Ireland.

Kentaro Inui, Atsushi Fujita, Tetsuro Takahashi, Ryu
Iida, and Tomoya Iwakura. 2003. Text Simplifica-
tion for Reading Assistance: A Project Note. In
Proc. 2nd International Workshop on Paraphrasing.

David Kauchak. 2013. Improving Text Simplification
Language Modeling using Unsimplified Text Data.
In Proc. ACL.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In Proc. ACL System
Demonstrations. pages 55–60.

Shashi Narayan and Claire Gardent. 2014. Hybrid
Simplification using Deep Semantics and Machine
Translation. In Proc. ACL.

Gustavo H. Paetzold and Lucia Specia. 2016. Bench-
marking Lexical Simplification Systems. In Proc.
LREC.

Horacio Saggion, Sanja Štajner, Stefan Bott, Simon
Mille, Luz Rello, and Biljana Drndarevic. 2015.
Making It Simplext: Implementation and Evaluation
of a Text Simplification System for Spanish. ACM
Transactions on Accessible Computing (TACCESS)
6(4).

Advaith Siddharthan. 2002a. An Architecture for a
Text Simplification System. In Proc. Language En-
gineering Conference (LEC).

Advaith Siddharthan. 2002b. Resolving attachment
and clause boundary ambiguities for simplifying rel-
ative clause constructs. In Proc.Student Workshop,
ACL.

Advaith Siddharthan. 2011. Text Simplification us-
ing Typed Dependencies: A Comparison of the
Robustness of Different Generation Strategies. In
Proc. 13th European Workshop on Natural Lan-
guage Generation.

Advaith Siddharthan. 2014. A Survey of Research on
Text Simplification. International Journal of Ap-
plied Linguistics 165(2):259–298.

Advaith Siddharthan and M. A. Angrosh. 2014. Hy-
brid Text Simplification using Synchronous Depen-
dency Grammars with Hand-written and Automati-
cally Harvested Rules. In Proc. EACL.

Gabriel Stanovsky and Ido Dagan. 2016. Annotating
and Predicting Non-Restrictive Noun Phrase Modi-
fications. In Proc. ACL.

54



David Vickrey and Daphne Koller. 2008. Sentence
Simplification for Semantic Role Labeling. In Proc.
ACL.

Sanja Štajner, Maja Popović, Horacio Saggion, Lu-
cia Specia, and Mark Fishel. 2016. Shared task on
quality assessment for text simplification. In Proc.
LREC.

Sander Wubben, Antal van den Bosch, and Emiel
Krahmer. 2012. Sentence Simplification by Mono-
lingual Machine Translation. In Proc. ACL.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the As-
sociation for Computational Linguistics 3:283–297.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A Monolingual Tree-based Translation Model
for Sentence Simplification. In Proc. ACL.

55



Proceedings of the 15th International Conference on Parsing Technologies, pages 56–60,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Hierarchical Word Structure-based Parsing: A Feasibility Study on
UD-style Dependency Parsing in Japanese

Takaaki Tanaka and Katsuhiko Hayashi and Masaaki Nagata
NTT Comminication Science Laboratories

2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
{tanaka.takaaki,hayashi.katsuhiko,nagata.masaaki }@lab.ntt.co.jp

Abstract

In applying word-based dependency pars-
ing such as Universal Dependencies (UD)
to Japanese, the uncertainty of word seg-
mentation emerges for defining a word
unit of the dependencies. We introduce
the following hierarchical word struc-
tures to dependency parsing in Japanese:
morphological units (a short unit word,
SUW) and syntactic units (a long unit
word, LUW). This paper describes the re-
sults of a feasibility study on the abil-
ity and the effectiveness of parsing meth-
ods based on hierarchical word structure
(LUW chunking+parsing) by comparing
them with methods using single layer
word structure (SUW parsing). We also
show joint analysis of LUW-chunking and
dependency parsing improves the perfor-
mance of identifying predicate-argument
structures, while there is not much differ-
ence between overall results of them.

1 Introduction

Some research has recently been introducing
word-based dependency schemes into Japanese
syntactic parsing from a cross-lingual standpoint
such as Universal Dependencies (UD) (Nivre
et al., 2016; Kanayama et al., 2015; Tanaka et al.,
2016), although syntactic structures are tradition-
ally represented as dependencies between chunks
calledbunsetsus.

However, for languages like Japanese where
words are not segmented by white spaces in
orthography, word-based dependency parsing is
problematic due to difficulties in defining a word
unit. Actually, in Japanese several word unit
standards exists that can be found in corpus an-
notation schemes or in the outputs of morpho-

logical analyzers. The word unit must be more
consistently defined in word-based dependencies
than bunsetsu-based dependencies, since the in-
consistency of word units directly affects the
discordance of the syntactic structure. UD for
Japanese adopted a “short unit word” (SUW) de-
fined for building the Balanced Corpus of Con-
temporary Written Japanese (BCCWJ) (Maekawa
et al., 2014), since the word unit is designed to
maintain internal consistency in the corpus.

An SUW is the smallest token that conveys mor-
phological information, and generally corresponds
to the head word of a morphological analysis dic-
tionary called UniDic, which is compiled based on
linguistic analysis and is used for morphological
analyzers. Even though SUWs are well-organized
as morphological units, they are sometimes too
short to represent syntactic construction. There-
fore, we also introduce another unit named “long
unit word” (LUW), which consists of one or more
SUWs with a single syntactic function, and is also
defined for BCCWJ. For constructing an LUW-
based syntactic structure, we need two types of
analyses: LUW chunking and LUW-based depen-
dency parsing. Note that LUWs include two kinds
of multiwords: lexicalized phrases and institution-
alized phrases (Sag et al., 2001), and for syntactic
parsing, it is essential to discriminate functional
multiwords that are classified into the latter in par-
ticular. Even though a pipeline process is a sim-
ple way of combining these two analyses, it may
cause inconsistency between dependency parsing
and chunking. Therefore, we introduce a joint
analysis method of parsing and chunking to unify
these two analyses by deciding dependency struc-
tures and chunks in the same process.

We describe two methods of hierarchical word-
based parsing in Section3: a pipeline analysis us-
ing a current LUW-chunking method and a joint
analysis method. We present our evaluation of the

56



あなた に ∥ 書面 を ∥ もっ て ∥ 通知 し た
you -DAT document -ACC have -CONJ notification do -PAST

PRON PCS NN PCS VB PCJ NN VB AUX

pobj pobj

dobj

mark

iobj

advcl

aux

aux


PRED: 通知-する

notify
AGENT: ∅
RECIPIENT: あなた (に)

you-DAT
TOPIC: ∅
MANNER: 書面 (を-もっ-て)

in writing


SUW-based structure Predicate argument structure

あなた に ∥ 書面 を-もっ-て ∥ 通知-し た
you -DAT document by mean of notify -PAST

PRON PCS NN PCS VB AUX

pobj pobj

iobj

nmod

aux

あなた に 書面 を -もっ -て 通知 -し た
you -DAT document by mean of notify -PAST

PRON PCS NN PCS VB AUX

pobj

pobj

luw luw

iobj

nmod

luw aux

LUW-based structure (chunks) LUW-based structure (decomposed)
(Someone) notified you in writing.

Figure 1: Examples of word-based dependencies. “luw” is a special dependency type that denotes
intra-dependencies in an LUW. The symbols ‘∥’ denote the borders of bunsetsu chunks.

♯Sent ♯SUW ♯LUW
JP Dep test 2,000 53,193 41,192

train 17,953 497,309 383,797

Table 1: Corpus statistics.

results of hierarchical word-based parsing (LUW-
based) and single layer word-based (SUW-based)
parsing in Section4.

2 Hierarchical Word Dependencies

We employed two levels of word unit definitions
as described in Section1. A sentence is con-
sistently segmented into morphological units of
SUWs, while a syntactic structure is constructed
based on syntactic units of LUWs since compound
nouns and functional multiwords have a single
syntactic function and are usually treated as sin-
gle LUWs. The relationship between SUW and
LUW almost correspond to the one between sin-
gle word and multiword in other language. Note
that an LUW that consists of just an SUW exists,
and about 20% of LUWs belongs to a multiword.

Figure1 shows the differences between SUW-
and LUW-based dependency structures. Note that
the scheme (described in Section4.1) in the fig-
ure is similar to UD, but they differ in the manners
of head selection. For instance, the scheme se-
lects the case particleに -DAT as the head of the
nounあなた you, while UD treats the noun as the
head of the particle. In SUW-based dependencies
(top left), SUW verbもつ have, a component of
functional multiwordを-もっ-て 1 by mean of, is
treated as a main verb, creating a spurious com-
plex structure between a verb and an argument.

1The SUW boundaries in an LUW are denoted by “‘-”, a
symbol that is not actually used in orthography.

The pseudo predicates hinder the extraction oftrue
predicate argument structures as shown in the top
right of the figure. In an LUW-based dependency
structure (bottom left), multiwordを-もっ-て is
considered an LUW with a flat structure, which
clearly indicates the relation between main verb通
知-する notify and argumentあなたに you-DAT.
The conversion from SUW sequences into LUWs
contains ambiguity. For example, sequenceをも
っ て in the sentence, “彼 は その 本 をもって
いる”, lit. He has the book., is not just a single
LUW but three LUWs with a main verb.

The amount of research on Japanese word-
based dependency parsing is much less than
bunsetsu-based parsing. Tanaka and Nagata
(2015) proposed LUW based analysis using a
scheme that resembles Stanford typed dependen-
cies (SD) (de Marneffe and Manning, 2008), how-
ever, they do not treat LUW-chunking problems.
Kato et al.(2017) explored English dependency
parsing models that predict multiword expression
(MWE)-aware structure. We treat broader cate-
gories of multiword in this paper, e.g. LUWs
contain ordinary compound nouns as well as
named entities. The test set has 8,291 multiwords
(LUWs) in 2,000 sentences, while their corpus has
27,949 MWE instances in 37,015 sentences.

3 Analysis Methods

3.1 Pipeline analysis

The pipeline method sequentially runs two analy-
ses; multiword analysis chunks an input SUW se-
quence into an LUW sequence, and parsing analy-
sis constructs LUW-based dependency structures,

57



LUW transition Cond.
ShLUW(p) (σS , σL, β|xk, A, L) ⇒(σS |p⟨xk⟩, σL, β, A, L) |σS | = 0
ReLUWL(r) (σS , σL|p⟨xk⟩|q⟨xm⟩, β, A, L) ⇒(σS , σL|p⟨xk⟩, β, A∪{r(p⟨xk⟩, q⟨xm⟩}, L) |σL| ≥ 2
ReLUWR(r) (σS , σL|p⟨xk⟩|q⟨xm⟩, β, A, L) ⇒(σS , σL|q⟨xm⟩, β, A∪{r(q⟨xm⟩, p⟨xk⟩}, L) |σL| ≥ 2
PopLUW (σS |p⟨xk⟩, σL, β, A, L) ⇒{σS , σL|p⟨xk⟩, β, A, L∪{p⟨x⟩}) |σS | = 1
SUW transition Cond.
ShSUW (σS |p⟨xk⟩, σL, β|xm, A, L) ⇒(σS |p⟨xk⟩|xm, σL, β, A, L)
ReSUWL (σS |p⟨xk⟩|xm, σL, β, A, L) ⇒(σS |p⟨xk⟩, σL, β, A, L∪{ℓ(xk, xm)}) |σS | ≥ 2
ReSUWR (σS |p⟨xk⟩|xm, σL, β, A, L) ⇒(σS |p⟨xm⟩, σL, β, A, L∪{ℓ(xm, xk)} |σS | ≥ 2

xk SUW
p⟨x⟩ POS of an LUW

(head:x)
r(x, y) syntactic dep.

(head:x, rel: r)
ℓ(x, y) internal dep.

in an LUW
Initial state
([], [], [x0, ..., xn], ∅, ∅)
Final state
([], [], [], Af , Lf )

Figure 2: Transitions in our joint parsing algorithm.

as shown in the bottom left of Figure1.
Kozawa et al.(2014) proposed a method that

creates an LUW sequence from an SUW sequence
in two steps: chunking an SUW sequence using
an LUW-chunking model and assigning an LUW
POS to each LUW with an LUW POS estimation
model. LUW chunking is done by assigning each
SUW in a given sequence either a “B” tag or an
“I” tag by a sequence labeling method using CRF.

3.2 Joint analysis

The joint method simultaneously processes an
SUW sequence with LUW chunking and syntac-
tic parsing so that the LUW chunking is consistent
with the syntactic analysis. The method directly
constructs a dependency structure from an SUW
sequence, as shown at the bottom right of Figure
1. LUWs consisting of multiple SUWs such as
を-もっ-て and通知-する are represented as a flat
structure with a special dependency typeluw.

We employed an algorithm based on shift-
reduce parsing and defined two types of transi-
tions: LUW chunking and dependency parsing.
This algorithm is devised by applying a joint anal-
ysis method of word segmentation and depen-
dency parsing in Chinese (Zhang et al., 2014; Ha-
tori et al., 2012), or a method which combines lex-
ical and syntactic analysis (Constant and Nivre,
2016). One of features of our algorithm is that a
shift transition (ShLUW) assigns a leftmost SUW
of an LUW with a POS. We found this obtains bet-
ter scores than a pop transition (PopLUW) does.

Two stacks,σS andσL, are provided for SUWs
to be processed and chunked LUWs respectively.
The algorithm outputs an LUW sequence and an
LUW-based parsed tree to a set of internal depen-
dencies in LUW chunksL, and a set of dependen-
ciesA. A parsing status is represented as quin-
tuple (σS , σL, β, A, L), whereβ is a buffer that
initially contains all SUWs in an input sentence,
(x0, ..., xn). Figure 2 shows transitions used in
our algorithm. The necessary condition for each

JP Dep all deps w/o luw deps
Method UAS LAS UAS LAS
LUW-based SR joint 95.0 91.4 93.7 89.3

Coma + SR single 94.9 91.3 93.5 88.9
Coma + Malt 94.7 91.4 93.3 89.0
Coma + MST 94.9 91.3 93.5 88.9

SUW-based SR single 93.6 89.6 92.3 87.5
Malt 92.9 89.2 90.9 86.7
MST 93.5 89.4 91.8 86.9

Table 2: Parsing results.

JP Dep
Method Pred Args Adnom Adverb Coord
LUW-based
SR joint 76.6 68.5 65.4 66.5
Coma + SR single 75.9 65.9 65.3 65.9
Coma + Malt 75.3 68.2 64.6 65.7
Coma + MST 75.5 65.8 63.4 65.8

SUW-based
SR single 74.2 63.8 60.9 63.5
Malt 73.2 63.5 58.4 59.7
MST 73.2 62.2 58.6 63.9

Table 3: F1 scores of individual categories of de-
pendency types.

action is shown in the rightmost column. The no-
tion |σ| denotes depth of stackσ. For example,
|σS | = 0 represents the condition that stack|σS |
is empty.

4 Evaluation

We compared two LUW-based parsing methods
and an SUW-based parsing method. A simple
SUW-based parsing method directly constructs a
dependency structure without considering LUWs.
The SUW-based method regards “luw” as an ordi-
nary dependency type.

4.1 Setting

Since the current UD Japanese corpora are SUW-
based and do not have complete LUW informa-
tion2, we used another typed word dependency
treebank in Japanese described in (Tanaka and
Nagata, 2015)(JP Dep). JP Dep is annotated
with LUW-based dependencies in accordance with

2They have partly compound word information by an-
notating dependencies with relation types “mwe”(UD1.2),
“fixed”(UD 2.0) and so on.

58



a scheme that resembles SD, and consists of
20,000 sentences (Table1) from a newspaper cor-
pus, Kyoto Corpus (Kurohashi and Nagao, 2003).

SR joint employs a shift-reduce parser based on
dynamic programming (Huang and Sagae, 2010;
Hayashi et al., 2013) that is expanded with LUW-
chunking transitions. We used the features related
to LUW and the function compound words, in ad-
dition to the original features. Moreover, we em-
ploy features with flag where SUW may form an
LUW of a function compound word. The flag be-
comes 1 only if a function compound word that be-
gins with a target SUW exists in dictionaries, and
otherwise is 0. The features are similar to the addi-
tional features used for the joint model (Joint+dict)
proposed in (Kato et al., 2017) in terms of utilizing
lexical knowledge in dictionaries. We chose 12 for
the beam width based on trial results.

For the pipeline methods, we used Comainu
(Coma) (Kozawa et al., 2014) as an LUW chun-
ker that is independent of a syntactic parser. We
compared the following three parsers by combin-
ing them with Comainu: MST Parser (McDonald
et al., 2006), MaltParser (Nivre et al., 2007), and
SR joint without LUW-chunking transition (SR
single). The LUW-chunking model and the LUW-
based dependency parsing models were built with
the training division ofJP Dep.

The SUW-based dependency parsing models
were also trained to directly test the parsing of
the SUW sequence. The model was trained with
LUW-based structures decomposed into SUWs as
a structure shown at the bottom right of Figure1.

4.2 Results

The parsing results are shown in Table2 3. UAS
and LAS are calculated on two conditions: the
scores of all the dependencies (all deps) and only
the scores of the dependencies between LUWs
(w/o luw deps), i.e., ignoring the internal depen-
dencies in LUWs. Since the internal dependen-
cies in LUWs are right-to-left and monotonous
structures, as shown in Figure1, and easier to be
estimated than the inter-LUW dependencies, the
scores of all the dependencies tend to be higher
than those of inter-LUW dependencies.

Overall, the results of LUW-based dependency
parsing outperformed the SUW-based ones as
shown in Table2. Regarding the LUW-based pars-

3 We converted LUW-based dependencies into SUW-
based dependencies by decomposing each LUW into SUWs
with a flat structure to compare the results.

Multiword Freq SR joint SR single
UAS LAS UAS LAS

case particle
に-つい-て about 19 89 58 84 47
と-いう (a bird,) called (swallow) 138 94 58 88 88

conjunctive particle
と-し-て by way of (explanation) 83 84 74 81 74
に-よる-と according to 21 91 71 81 67
に-よっ-て by 12 92 83 75 67

Table 4: Attachment scores of dependencies in-
cluding functional multiwords.

ing results, we found few differences between SR
joint and the pipeline methods. Nevertheless, the
differences between the scores of the inter-LUW
dependencies (w/o luw deps) is larger than those
between the scores of all the dependencies. This
indicates SR joint preferentially obtained better re-
sults of syntactic parsing instead of the results of
LUW chunking. The differences between the re-
sults in the major dependent types are clearer as
shown in Table3. We can see the F1 scores of
the individual categories of the dependency types
in the table, where predicate-argument categories
(Pred Args) include “nsubj,” “dobj,” and “iobj.”
The SR joint improved more than 0.7 points over
the pipeline methods in such major categories as
Pred Args and adverbial modification, while we
found few differences between overall results of
the SR joint methods and the pipeline methods.

Treatment with the functional multiwords of a
parsing method affected the scores of the depen-
dency types in such categories as Pred Args and
adverbial, where they tend to be long-distance de-
pendencies. Table4shows the scores of the depen-
dencies including major functional multiwords,
and we found that SR joint obtained better scores
than SR single as a whole. This suggests the
advantages of identifying functional multiwords
contribute the higher scores of the specific types.

5 Conclusion

We presented methods for processing word depen-
dency parsing by treating hierarchical word struc-
tures by combining LUW chunking and LUW-
based dependency parsing for Japanese syntactic
parsing. LUW-based parsing outperformed the
SUW-based method, and the joint analysis method
is superior to the pipeline methods in identifying
the major syntactic relations.

We are planning to apply our joint analysis
method on an UD corpus for Japanese and other
languages to handle multiword units in syntactic
parsing based on UD schemes.

59



References

Matthieu Constant and Joakim Nivre. 2016. A
transition-based system for joint lexical and syn-
tactic analysis. InProceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics. volume 1 ofACL 2016, pages 161–171.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The stanford typed dependencies repre-
sentation. InProceedings of COLING 2008 Work-
shop on Cross-framework and Cross-domain Parser
Evaluation. pages 1–8.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach
to word segmentation, pos tagging, and dependency
parsing in chinese. InProceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics. volume 1 ofACL 2012, pages 1045–
1053.

Katsuhiko Hayashi, Shuhei Kondo, and Yuji Mat-
sumoto. 2013. Efficient stacked dependency parsing
by forest reranking.Transactions of the Association
for Computational Linguistics1:139–150.

Liang Huang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics. ACL 2010,
pages 1077–1086.

Hiroshi Kanayama, Yusuke Miyao, Takaaki Tanaka,
Shinsuke Mori, Masayuki Asahara, and Sumire Ue-
matsu. 2015. A draft of universal dependencies for
japanese (in japanese). Inthe 21st annual meeting
of the Association for Natural Language Processing.
pages 505–508.

Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto.
2017. English multiword expression-aware depen-
dency parsing including named entities. InPro-
ceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics. volume 2 of
ACL 2017, pages 427–432.

Shunsuke Kozawa, Kiyotaka Uchimoto, and Yoshi-
haru Den. 2014. Adaptation of long-unit-word anal-
ysis system to different part-of-speech target (in
japanese). InJournal of Natural Language Process-
ing. volume 21, pages 379–401.

Sadao Kurohashi and Makoto Nagao. 2003.Building
a Japanese Parsed Corpus – while Improving the
Parsing System, Kluwer Academic Publishers, chap-
ter 14, pages 249–260.

Kikuo Maekawa, Makoto Yamazaki, Toshinobu
Ogiso, Takehiko Maruyama, Hideki Ogura, Wakako
Kashino, Hanae Koiso, Masaya Yamaguchi, Makiro
Tanaka, and Yasuharu Den. 2014. Balanced corpus
of contemporary written Japanese.Language Re-
sources and Evaluation48(2):345–371.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. InProceedings of the
Tenth Conference on Computational Natural Lan-
guage Learning. CoNLL 2006, pages 216–220.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Haji , Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. InProceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation. LREC 2016, pages 1659–1666.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, G̈ulşen Eryǐgit, Sandra K̈ubler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser: A
language-independent system for data-driven depen-
dency parsing.Journal of Natural Language Engi-
neering13(2):95–135.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2001. Multiword
expressions: A pain in the neck for nlp. InProceed-
ings of the 3rd International Conference on Intelli-
gent Text Processing and Computational Linguistics.
CICLing-2002, pages 1–15.

Takaaki Tanaka, Yusuke Miyao, Masayuki Asahara,
Sumire Uematsu, Hiroshi Kanayama, Mori Shin-
suke, and Yuji Matsumoto. 2016. Universal depen-
dencies for Japanese. InProceedings of 10th edition
of the Language Resources and Evaluation Confer-
ence. LREC 2016.

Takaaki Tanaka and Masaaki Nagata. 2015. Word-
based Japanese typed dependency parsing with
grammatical function analysis. InProceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing.
volume 2 ofACL 2015, pages 237–242.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Character-level Chinese dependency
parsing. InProceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics. volume 1 ofACL 2014, pages 1326–1336.

60



Proceedings of the 15th International Conference on Parsing Technologies, pages 61–66,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Leveraging Newswire Treebanks for Parsing Conversational Data with
Argument Scrambling

Riyaz Ahmad Bhat
Department of Computer Science
University of Colorado Boulder

riyaz.bhat@colorado.edu

Irshad Ahmad Bhat
LTRC, IIIT-H, Hyderabad

Telangana, India
irshad.bhat@research.iiit.ac.in

Dipti Misra Sharma
LTRC, IIIT-H, Hyderabad

Telangana, India
dipti@iiit.ac.in

Abstract

We investigate the problem of parsing con-
versational data of morphologically-rich
languages such as Hindi where argument
scrambling occurs frequently. We evalu-
ate a state-of-the-art non-linear transition-
based parsing system on a new dataset
containing 506 dependency trees for sen-
tences from Bollywood (Hindi) movie
scripts and Twitter posts of Hindi mono-
lingual speakers. We show that a depen-
dency parser trained on a newswire tree-
bank is strongly biased towards the canon-
ical structures and degrades when applied
to conversational data. Inspired by Trans-
formational Generative Grammar (Chom-
sky, 1965), we mitigate the sampling bias
by generating all theoretically possible al-
ternative word orders of a clause from the
existing (kernel) structures in the treebank.
Training our parser on canonical and trans-
formed structures improves performance
on conversational data by around 9% LAS
over the baseline newswire parser.

1 Introduction

In linguistics, every language in assumed to have a
basic constituent order in a clause (Comrie, 1981).
In some languages, constituent order is fixed to
define the grammatical structure of a clause and
the grammatical relations therein, while in others,
that convey grammatical information through in-
flection or word morphology, constituent order as-
sumes discourse function and defines the informa-
tion structure of a sentence (Kiss, 1995). Despite
word order freedom, most of the morphologically-
rich languages exhibit a preferred word order in
formal registers such as newswire. Word order al-
ternations are more commonplace in informal lan-

guage use such as day-to-day conversations and
social media content. For statistical parsing, word
order alternations (argument scrambling) are a ma-
jor bottleneck. Given appropriate pragmatic con-
ditions a transitive sentence in a morphologically-
rich language allows n factorial (n!) permutations,
where n is the number of verb arguments and/or
adjuncts. Argument scrambling often leads to
structural discontinuities. Moreover, these scram-
blings worsen the data sparsity problem since
data-driven parsers are usually trained on a limited
size treebank where most of the valid structures
may never show up. More importantly, most of
the available treebanks are built on newswire text
which is more formal (Plank, 2016). The chances
of any deviation from the canonical word order are
smaller, thereby creating sampling bias.

A common solution to address the sampling
bias is to alter the distribution of classes in
the training data by using sampling techniques
(Van Hulse et al., 2007). However, simple sam-
pling techniques such as minority oversampling
may not be a feasible solution for parsing argu-
ment scramblings which are almost non-existent
in the newswire treebanks (see Table 1). Newswire
data usually represent only a sample of possi-
ble syntactic structures and, therefore, suffer from
non-representation of certain classes that encode
valid arc directionalities. In the Hindi dependency
treebank (HTB) (Bhat et al., 2015), for exam-
ple, dependency relations such as source, time and
place are never extraposed. Therefore, we instead
generate training examples for varied arc direc-
tionalities by transforming the gold syntactic trees
in the training data. We experiment with the Hindi
dependency treebank and show that such transfor-
mations are indeed helpful when we deal with data
with diverse word-orders such as movie dialogues.
Our work is in conformity with earlier attempts
where modifying source syntactic trees to match

61



target distributions benefited parsing of noisy, con-
versational data (Van der Plas et al., 2009; Foster,
2010).

S.No. Order Percentage
1 S O V 91.83
2 O S V 7.80
3 O V S 0.19
4 S V O 0.19
5 V O S 0.0
6 V S O 0.0

Table 1: The table shows
theoretically possible or-
ders of Subject (S), Ob-
ject (O) and Verb (V) in
transitive sentences in the
HTB training data with
their percentages of occur-
rence.

2 Sampling Argument Scrambling via
Syntactic Transformations

In (Chomsky, 1965), Noam Chomsky famously
described syntactic transformations which abstract
away from divergent surface realizations of related
sentences by manipulating the underlying gram-
matical structure of simple sentences called ker-
nels. For example, a typical transformation is
the operation of subject-auxiliary inversion which
generates yes-no questions from the correspond-
ing declarative sentences by swapping the subject
and auxiliary positions. These transformations are
essentially a tool to explain word-order variations
(Mahajan, 1990; Taylan, 1984; King, 1995).

We apply this idea of transformations to canoni-
cal structures in newswire treebanks for generating
trees that represent all of the theoretically viable
word-orders in a morphologically-rich language.
For example, we create a dependency tree where
an indirect object is extraposed by inverting its po-
sition with the head verb, as shown in Figure 1.

dī

Ram

ne

Gopal

ko

kitāb .

=⇒
dī

Ram

ne

kitāb Gopal

ko

.

Figure 1: The figure depicts one possible permutation for
the sentence Ram ne Gopal ko kitāb dī. ‘Ram ERG Gopal
DAT book give.’ (Ram gave Gopal a book.). The indirect
object Gopal ko (red, dashed arcs) is postposed by swap-
ping its position with the ditransitive verb dī ‘give’.

Recently, a related approach was proposed by
Wang and Eisner (2016), who employed the con-
cept of creolization to synthesize artificial tree-
banks from Universal Dependency (UD) tree-
banks. They transform nominal and verbal pro-
jections in each tree of a UD language as per the
word-order parameters of other UD language(s)
by using their supervised word-order models. In
single-source transfer parsing, the authors showed

that a parser trained on a target language chosen
from a large pool of synthetic treebanks can sig-
nificantly outperform the same parser when it is
limited to selecting from a smaller pool of natural
language treebanks.

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

11
00

0
12

00
0

13
00

0
14

00
0

15
00

070

75

80

85

90

95

Figure 2: Learning curves plotted against data
size on the X axis and LAS score on the Y axis.

Unlike Wang and Eisner (2016), we do not
choose one word-order for a verbal projection
based on a target distribution, but instead gener-
ate all of its theoretically possible orders. For each
dependency tree, we alter the linear precedence re-
lations between arguments of a verbal projection
in ‘n!’ ways, while keeping their dominance re-
lations intact. However, simply permuting all the
nodes of verbal projections can lead to an over-
whelming number of trees. For example, a data
set of ‘t’ syntactic trees each containing an aver-
age of 10 nodes would allow around t × 10! i.e.,
3 million possible permutations for our training
data size, making training infeasible. Moreover,
we may only need a subset of the permutations
to have a uniform distribution over the possible
word orders. We therefore apply a number of fil-
ters to restrict the permutations. First, we only per-
mute a subset of the training data which is repre-
sentative of the newswire domain. It is often the
case that domain specific constructions are cov-
ered by a limited number of sentences. This can
be seen from the learning curves in Figure 2; the
learning curves flatten out after 4,000 training in-
stances. Second, for each sentence, we only take
the k permutations with the lowest perplexity as-
signed by a language model where k is set to the
number of nodes permuted for each verbal projec-
tion. The language model is trained on a large and
diverse data set (newswire, entertainment, social
media, stories, etc.) Finally, we make sure that the
distribution of the possible word-orders is roughly
uniform or at least less skewed in the augmented
training data.

3 Evaluation Data

For an intrinsic evaluation of the parsing models
on conversational data, we manually annotated de-

62



pendency trees for sentences that represent natural
conversation with at least one structural variation
from the canonical structures of Hindi.1 We used
Bollywood movie scripts as our primary source
of conversational data. Although, dialogues in a
movie are technically artificial, they mimic an ac-
tual conversation. We also mined Twitter posts
of Hindi monolingual speakers. Tweets can of-
ten be categorized as conversational. The data
set was sampled from old and new Bollywood
movies and a large set of tweets of Indian lan-
guage users that we crawled from Twitter us-
ing Tweepy2. For Twitter data, we used an off-
the-shelf language identification system3 to select
Hindi only tweets. From this data, we only want
those dialogues/tweets that contain a minimum of
one argument scrambling. For this purpose we
trained an off-the-shelf convolutional neural net-
work classifier for identifying sentences with ar-
gument scrambling (Kim, 2014).4 We trained the
model using the canonical and transformed tree-
bank data and achieved around∼97% accuracy on
canonical and transformed versions of HTB test
data.5 After automatic identification, we manu-
ally selected 506 sentences from the true positives
for annotation. For POS tagging and dependency
annotation, we used the AnnCorra guidelines de-
fined for treebanking of Indian languages (Bharati
et al., 2009). The data was annotated by an expert
linguist with expertise in Indian language tree-
banking. The annotations were automatically con-
verted to Universal Dependencies (UD) following
UD v1 guidelines for multilingual experimenta-
tion (De Marneffe et al., 2014). Table 2 shows the
distribution of theoretically possible word orders
in transitive sentences in the evaluation set. Un-
like their distribution in the HTB training data, the
word orders in the evaluation set are relatively less
skewed.

S.No. Order Percentage
1 S O V 33.07
2 O S V 23.62
3 O V S 17.32
4 S V O 14.17
5 V O S 9.45
6 V S O 2.36

Table 2: The table shows
theoretically possible or-
ders of Subject, Object
and Verb in transitive
sentences in the Evalu-
ation set with their per-
centages of occurrence.

1HTB’s conversation section has around ∼16,00 sen-
tences taken from fiction which, however, strictly obey
Hindi’s preferred SOV word-order. Therefore, we needed a
new dataset with word-order variations.

2http://www.tweepy.org/
3https://github.com/irshadbhat/litcm
4https://github.com/yoonkim/CNN sentence
5The system often misclassified noisy sentences from

movie scripts and tweets as scrambled.

Most of the movie scripts available online and
the tweets are written in Roman script instead of
the standard Devanagari script, requiring back-
transliteration of the sentences in the evaluation
set before running experiments. We also need nor-
malization of non-standard word forms prevalent
in tweets. We followed the procedure adapted
by Bhat et al. (2017a) to learn a single back-
transliteration and normalization system. We also
performed sentence-level decoding to resolve ho-
mograph ambiguity in Romanized Hindi vocabu-
lary.

4 Experimental Setup

The parsing experiments reported in this paper
are conducted using a non-linear neural network-
based transition system which is similar to (Kiper-
wasser and Goldberg, 2016). The monolin-
gual models are trained on training files of HTB
which uses the Pāninian Grammar framework
(PG) (Bharati et al., 1995), while the multilingual
models are trained on Universal Dependency Tree-
banks of Hindi and English released under version
1.4 of Universal Dependencies (Nivre et al., 2016).

Parsing Models Our underlying parsing method
is based on the arc-eager transition system (Nivre,
2003). The arc-eager system defines a set of con-
figurations for a sentence w1,...,wn, where each
configuration C = (S, B, A) consists of a stack
S, a buffer B, and a set of dependency arcs A. For
each sentence, the parser starts with an initial con-
figuration where S = [ROOT], B = [w1,...,wn]

and A = ∅ and terminates with a configuration C if
the buffer is empty and the stack contains the ROOT.
The parse trees derived from transition sequences
are given by A. To derive the parse tree, the arc-
eager system defines four types of transitions (t):
Shift, Left-Arc, Right-Arc, and Reduce.

We use a non-linear neural network to pre-
dict the transitions for the parser configurations.
The neural network model is the standard feed-
forward neural network with a single layer of hid-
den units. We use 128 hidden units and the RelU

activation function. The output layer uses a soft-
max function for probabilistic multi-class classifi-
cation. The model is trained by minimizing nega-
tive log-likelihood loss with l2-regularization over

6We also experimented with minority oversampling and
instance weighting, however improvments over newswire
were minimal (see §1 for possible reasons).

63



NewswirePG/UD NewswirePG/UD+Transformed NewswirePG/UD NewswireUD+EnglishUD

Data-set Gold POS Auto POS Gold POS Auto POS Gold POS Auto POS
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

NewswirePG 96.41 92.08 94.55 89.51 96.07−0.34 91.75−0.33 94.29−0.26 89.28−0.23 - - - -
ConversationPG 74.03 64.30 69.52 58.91 84.68+10.65 73.94+9.64 79.07+9.55 67.41+8.5 - - - -

NewswireUD 95.04 92.65 93.85 90.59 94.59−0.45 92.03−0.62 93.32−0.53 89.98−0.61 94.56−0.48 91.87−0.78 93.22−0.63 89.72−0.87

ConversationUD 73.23 64.77 68.81 59.43 83.97+10.74 74.61+9.84 78.38+9.57 67.98+8.55 77.73+4.5 68.12+3.35 71.29+2.48 62.46+3.03

Table 3: Accuracy of our different parsing models on conversational data as well as newswire evaluation sets.
Improvements in superscript are over the newswire baseline. 6

the entire training data. We use Momentum SGD
for optimization (Duchi et al., 2011) and apply
dropout (Hinton et al., 2012).

From each parser configuration, we extract fea-
tures related to the top three nodes in the stack,
the top node in the buffer and the leftmost and
rightmost children of the top three nodes in the
stack and the leftmost child of the top node in
the buffer. Similarly to Kiperwasser and Goldberg
(2016), we use two stacked Bidirectional LSTMs
with 128 hidden nodes for learning the feature rep-
resentations over conjoined word-tag sequences
for each training sentence. We use an additional
Bidirectional LSTM (64 nodes) for learning sepa-
rate representations of words over their character
sequences for capturing out-of-vocabulary (OOV)
words at testing time. We use word dropout
with a dropout probability of 0.1 which enables
character embeddings to drive the learning pro-
cess around 10% of the time instead of full word
representations. This is important for evaluation
on noisy data where OOV words are quite fre-
quent. The monolingual models are initialized us-
ing pre-trained 64 dimensional word embeddings
of Hindi, while multilingual models use Hindi-
English bilingual embeddings from Bhat et al.
(2017a)7, while POS embeddings are randomly
initialized within a range of -0.25 to +0.25 with
32 dimensions.

Moreover, we use pseudo-projective transfor-
mations of Nivre and Nilsson (2005) to han-
dle a higher percentage of non-projective arcs in
the evaluation data (6% as opposed to 2% in
the training data). We use the most informative
scheme of head+path to store the transforma-
tion information. Inverse transformations based
on breadth-first search are applied to recover the
non-projective arcs in a post-processing step.

5 Experiments and Results

We ran two experiments to evaluate the effective-
ness of the tree transformations on the parsing

7https://bitbucket.org/irshadbhat/indic-word2vec-
embeddings

of conversational data. In the first, we leverage
the monolingual annotations by applying syntac-
tic transformations; in the second we use a cross-
lingual treebank with diverse word-orders. For
each experiment type, we report results using both
predicted and gold POS tags. The POS taggers are
trained using an architecture similar to the parser’s
with a single layer MLP which takes its input from
Bi-LSTM representation of the focus word (see
Appendix for the results). We used the newswire
parsing models as the baseline for evaluating the
impact of tree transformations and multilingual
annotations. The augmented models are trained
on the union of the original newswire training data
and the transformed trees. We generated 9K trees
from 4K representative sentences (Figure 2) which
were projectivized before applying syntactic trans-
formations to preserve non-projective arcs. Our
results are reported in Table 3.

As the table shows, our newswire models suf-
fer heavily when applied to conversational data.
The parser indeed seems biased towards canonical
structures of Hindi. It could not correctly parse
extraposed arguments, and could not even identify
direct objects if they were not adjacent to the verb.
However, in both gold and predicted settings, our
augmented parsing models produce results that
are approximately 9% LAS points better than the
state-of-the-art baseline newswire parsers (Bhat
et al., 2017b). Our augmented models even pro-
vided better results with UD dependencies. Proba-
bly due to the increased structural ambiguity, aug-
menting transformed trees with the original train-
ing data led to a slight decrease in the results on
the original Hindi test sets in both UD and PG de-
pendencies. Interestingly, our cross-lingual model
also captured certain levels of scrambling which
could be because the English treebank would at
least provide training instances for SVO word or-
der.

6 Conclusion

In this paper, we showed that leveraging for-
mal newswire treebanks can effectively handle

64



argument scrambling in informal registers of
morphologically-rich languages such as Hindi.
Inspired by Chomskyan syntactic tradition, we
demonstrated that sampling bias can be mitigated
by using syntactic transformations to generate
non-canonical structures as additional training in-
stances from canonical structures in newswire. We
also showed that multilingual resources can be
helpful in mitigating sampling bias.

The code of the parsing mod-
els is available at the GitHub reposi-
tory https://github.com/riyazbhat/
conversation-parser, while the data
can be found under the Universal Dependen-
cies of Hindi at https://github.com/
UniversalDependencies/UD_Hindi.

References
Akshar Bharati, Vineet Chaitanya, Rajeev Sangal,

and KV Ramakrishnamacharyulu. 1995. Natu-
ral Language Processing: A Paninian Perspective.
Prentice-Hall of India New Delhi.

Akshar Bharati, DM Sharma S Husain, L Bai,
R Begam, and R Sangal. 2009. Anncorra: Tree-
banks for indian languages, guidelines for annotat-
ing hindi treebank (version–2.0).

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2017a. Joining hands: Exploit-
ing monolingual treebanks for parsing of code-
mixing data. In Proceedings of the 15th Con-
ference of the European Chapter of the As-
sociation for Computational Linguistics: Vol-
ume 2, Short Papers. Association for Computa-
tional Linguistics, Valencia, Spain, pages 324–330.
http://www.aclweb.org/anthology/E17-2052.

Riyaz Ahmad Bhat, Irshad Ahmad Bhat, and
Dipti Misra Sharma. 2017b. Improving transition-
based dependency parsing of hindi and urdu by
modeling syntactically relevant phenomena. ACM
Transactions on Asian and Low-Resource Language
Information Processing (TALLIP) 16(3):17.

Riyaz Ahmad Bhat, Rajesh Bhatt, Annahita Farudi,
Prescott Klassen, Bhuvana Narasimhan, Martha
Palmer, Owen Rambow, Dipti Misra Sharma, Ash-
wini Vaidya, Sri Ramagurumurthy Vishnu, et al.
2015. The Hindi/Urdu treebank project. In Hand-
book of Linguistic Annotation, Springer Press.

Noam Chomsky. 1965. Aspects of the Theory of Syn-
tax, volume 11. MIT press.

Bernard Comrie. 1981. Language universals and lan-
guage typology. Syntax and Morphology .

Marie-Catherine De Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim

Nivre, and Christopher D Manning. 2014. Universal
stanford dependencies: A cross-linguistic typology.
In Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation. vol-
ume 14, pages 4585–92.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul).

Jennifer Foster. 2010. cba to check the spelling in-
vestigating parser performance on discussion forum
posts. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics.
Association for Computational Linguistics, pages
381–384.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580 .

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, pages 1746–
1751. http://www.aclweb.org/anthology/D14-1181.

Tracy Holloway King. 1995. Configuring Topic and
Focus in Russian. Ph.D. thesis, Stanford University.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics
4:313–327.

Katalin É Kiss. 1995. Discourse Configurational Lan-
guages. Oxford University Press.

Anoop Kumar Mahajan. 1990. The A/A-bar Distinc-
tion and Movement Theory. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT).

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Yevgeni Berzak, Riyaz Ahmad Bhat, Eck-
hard Bick, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Gülşen Cebirolu Eryiit,
Giuseppe G. A. Celano, Fabricio Chalub, Çar
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Arantza Diaz de
Ilarraza, Kaja Dobrovoljc, Timothy Dozat, Kira
Droganova, Puneet Dwivedi, Marhaba Eli, Tomaž
Erjavec, Richárd Farkas, Jennifer Foster, Claudia

65



Freitas, Katarı́na Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Moa Gärdenfors, Sebastian Garza, Filip
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh
Gökrmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta Gonzáles Saavedra, Matias Grioni, Nor-
munds Grūzītis, Bruno Guillaume, Jan Hajič, Linh
Hà M, Dag Haug, Barbora Hladká, Radu Ion,
Elena Irimia, Anders Johannsen, Fredrik Jørgensen,
Hüner Kaşkara, Hiroshi Kanayama, Jenna Kanerva,
Boris Katz, Jessica Kenney, Natalia Kotsyba, Si-
mon Krek, Veronika Laippala, Lucia Lam, Phng
Lê Hng, Alessandro Lenci, Nikola Ljubešić, Olga
Lyashevskaya, Teresa Lynn, Aibek Makazhanov,
Christopher Manning, Cătălina Mărănduc, David
Mareček, Héctor Martı́nez Alonso, André Martins,
Jan Mašek, Yuji Matsumoto, Ryan McDonald, Anna
Missilä, Verginica Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Keiko Sophie Mori, Shunsuke
Mori, Bohdan Moskalevskyi, Kadri Muischnek,
Nina Mustafina, Kaili Müürisep, Lng Nguyn Th,
Huyn Nguyn Th Minh, Vitaly Nikolaev, Hanna
Nurmi, Petya Osenova, Robert Östling, Lilja Øvre-
lid, Valeria Paiva, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Slav Petrov, Jussi Piitulainen,
Barbara Plank, Martin Popel, Lauma Pretkalnia,
Prokopis Prokopidis, Tiina Puolakainen, Sampo
Pyysalo, Alexandre Rademaker, Loganathan Ra-
masamy, Livy Real, Laura Rituma, Rudolf Rosa,
Shadi Saleh, Baiba Saulīte, Sebastian Schuster,
Wolfgang Seeker, Mojgan Seraji, Lena Shakurova,
Mo Shen, Natalia Silveira, Maria Simi, Radu
Simionescu, Katalin Simkó, Mária Šimková, Kiril
Simov, Aaron Smith, Carolyn Spadine, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Takaaki Tanaka,
Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Larraitz Uria, Gertjan van Noord, Viktor Varga,
Veronika Vincze, Lars Wallin, Jing Xian Wang,
Jonathan North Washington, Mats Wirén, Zdeněk
Žabokrtský, Amir Zeldes, Daniel Zeman, and
Hanzhi Zhu. 2016. Universal dependencies 1.4.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University
in Prague. http://hdl.handle.net/11234/1-1827.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceedings of
the 43rd Annual Meeting on Association for Com-
putational Linguistics.

Barbara Plank. 2016. What to do about non-standard
(or non-canonical) language in nlp. arXiv preprint
arXiv:1608.07836 .

Eser Erguvanlı Taylan. 1984. The Function of Word
Order in Turkish Grammar, volume 106. Univ of
California Press.

Lonneke Van der Plas, James Henderson, and Paola
Merlo. 2009. Domain adaptation with artificial data
for semantic parsing of speech. In Proceedings of
Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, Com-
panion Volume: Short Papers. Association for Com-
putational Linguistics, pages 125–128.

Jason Van Hulse, Taghi M Khoshgoftaar, and Amri
Napolitano. 2007. Experimental perspectives on
learning from imbalanced data. In Proceedings of
the 24th international conference on Machine learn-
ing. ACM.

Dingquan Wang and Jason Eisner. 2016. The galac-
tic dependencies treebanks: Getting more data by
synthesizing new languages. Transactions of the As-
sociation for Computational Linguistics 4:491–505.
https://transacl.org/ojs/index.php/tacl/article/view/917.

A Supplementary Material

(ScoreLeftArc, ScoreRightArc, ScoreShift, ScoreReduce)

Softmax

Dense (Dropout 0.25)

Feature Template
(s2r , s2l

, s1r , s1l
, s0r ,

s0l
, b0l

, s2, s1, s0, b0)

Bi-LSTM (Dropout 0.25)

Bi-LSTM (Dropout 0.25)

Concat

Character
Bi-LSTM

(Dropout 0.25)

Word
Embeddings

POS
Embeddings

Character
Embeddings

Input Word Sequence Input POS Sequence

y1, y2, . . . , yn

X128

X2816

X256

X256

X160

X64 X64 X32

X32

Word

Word

POS

Figure 3: Parsing Architecture

S.No. Data-set Recall
1. NewswirePG 96.98
2. ConversationPG 91.33
3. NewswireUD 97.59
4. ConversationUD 89.40

Table 4: POS tagging accuracies on PG
and UD evaluation (newswire and con-
verstaion) data.

66



Proceedings of the 15th International Conference on Parsing Technologies, pages 67–71,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Using hyperlinks to improve multilingual partial parsers

Anders Søgaard
Dpt. of Computer Science, University of Copenhagen

http://cst.dk/anders/
soegaard@di.ku.dk

Abstract

Syntactic annotation is costly and not
available for the vast majority of the
world’s languages. We show that some-
times we can do away with less labeled
data by exploiting more readily available
forms of mark-up. Specifically, we re-
visit an idea from Valentin Spitkovsky’s
work (2010), namely that hyperlinks typ-
ically bracket syntactic constituents or
chunks. We strengthen his results by
showing that not only can hyperlinks help
in low resource scenarios, exemplified
here by Quechua, but learning from hy-
perlinks can also improve state-of-the-art
NLP models for English newswire. We
also present out-of-domain evaluation on
English Ontonotes 4.0.

1 Introduction

Syntactic analysis can be used to improve knowl-
edge extraction, speech synthesis, machine trans-
lation, and error correction, for example, but the
quality of syntactic parsers relies heavily on the
quality and amount of available annotated data.
This holds in particular for full syntactic pars-
ing, but even for more robust partial parsers, good
models require large and representative, annotated
corpora.

Such annotated corpora are costly to produce
and generally not available for the vast majority of
the world’s languages. Even for English, resources
are limited, and state-of-the-art parsers for English
newswire are trained on 30 years old newswire
from a single newspaper. When evaluated on more
recent newswire or other newspapers, we observe
significant performance drops.

This is a combination of overfitting and data
scarcity. While more annotated resources can im-

prove this situation, annotation does not seem to
scale with our needs for automated syntactic anal-
ysis, or with the rapid development of modern lan-
guages like English. Hence, we have to consider
other types of data to adapt our models to other
varieties of newswire, or of language, more gener-
ally.

Using (more representative) raw text in com-
bination with (less representative) annotated data
to do semi-supervised learning is challenging, but
occasionally successful. In this paper, we consider
an equally readily available, potential source of
weak supervision, namely hypertext. Consider the
following hypertext:

The violence, which has already been called some
evocative names -- <href>intifada<\ href>,
<href>jihad<\href>, <href>jihad<guerilla
war<\href>, <href>insurrection<\href>,
<href>rebellion<\href>, and <href>civil
war<\href> -- prompts several reflections.

This sentence is a random sentence taken from
the Internet. The mark-up is hyperlinks, refer-
ring the reader to related websites. The hyperlinks
mark passsages of the text highlighting the topics
of the linked websites.

The marked passages are intifada, jihad,
guerilla war, insurrection, rebellion and civil war.
Note that these are not just words, but also phrases.
In this example, they are all noun phrases.

Spitkovsky et al. (2010) also looked at hyper-
links and observed that the vast majority of
marked passages were syntactic constituents such
as noun and verb phrases. He then went on to show
that this data is potentially useful for unsupervised
induction of dependency parsers.

We build directly on this work, but go on to
show that hyperlinks are not just useful for unsu-
pervised induction of NLP models. It is also pos-
sible to improve state-of-the-art supervised NLP
models, by jointly learning to predict hyperlinks
from raw HTML files. Specifically, we show that

67



hard parameter sharing of hidden layers with a
deep bi-LSTM model for predicting hyperlinks is
an efficient regularizer for several state-of-the-art
NLP models.

Contributions Our contributions are as follows:
(a) We revisit the idea of using raw HTML data for
weak supervision of NLP models. (b) We show
that multi-task learning with hyperlink prediction
as an auxiliary task improves performance across
three tasks: syntactic chunking, semantic super-
sense tagging, and CCG supertagging. We also
see improvements on out-of-domain English data,
as well as in experiments with syntactic chunking
with hyperlinks for Quechua.

Related work Hard parameter sharing of hid-
den layers has become a popular approach to
multi-task learning. It was originally introduced
in Caruana (1993), but first applied in NLP in
Collobert et al. (2011), and it was shown, em-
pirically, to be an effective regularizer across
two different NLP tasks in Søgaard and Goldberg
(2016). Using more readily available data re-
sources that are not annotated by linguists, but still
carry linguistic signals, was previously explored
by Klerke et al. (2016) and Plank (2016).

Baxter (2000) shows, in the context of linear
models, that if two problems, P and R, share op-
timal hypothesis classes, then the induction of a
model from a sample of P can efficiently regular-
ize the induction of a model from a sample of R.
This is too strong an assumption for our purposes,
obviously, since even our label sets are different,
but we also have more wiggle-room than heavily
mean-constrained linear models, for example. In
fact, hidden layer sharing relaxes the above as-
sumption quite a bit. We do not need the opti-
mal hypothesis classes to overlap. Hidden layer
sharing can work even with the optimal hypothesis
classes of P and R distinct, if there is a joint repre-
sentation such that P and R both become linearly
separable. Whether this is the case, is an empirical
question.

2 Experiments

Model Our model merges two deep recur-
rent neural networks through hard parameter
sharing. We use three-layered, bi-directional
long short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997), in a way
similar to Søgaard and Goldberg (2016). We op-

timize hyper-parameters on development data for
chunking in a single-task architecture, training for
10 epochs, and using a hidden layer size that is
equal to the embedding layer size. For English,
we use the SENNA word embedding for English
and 50-dimensional hidden layers.1 For Quechua,
we use Polyglot embeddings and 64-dimensional
hidden layers.

In a multi-task learning (MTL) setting, we have
several prediction tasks over the same input space.
In our case, the input is the words in a sentence,
and the different tasks are syntactic chunking, se-
mantic supersense tagging and CCG supertagging.
And hyperlink prediction. Each task has its own
output vocabulary (a task specific tagset), but all
of them map any length n input sequence into a
length n output sequence.

The most common approach to multi-task learn-
ing in NLP these days is to share parameters across
most of the hidden layers of two or more single
task networks. In the k-layers deep bi-LSTM tag-
ger described above this is naturally achieved by
sharing the bi-LSTM part of the network across
tasks, but training a specialized classification tag-
ger ft(vk

i ) for each task t.
Note that this particular kind of multi-task

learning can also be cast as a kind of mean-
constrained matrix regularization. While in some
sense, hard parameter sharing is more heavily reg-
ularized than more traditional approaches to multi-
task learning, such as mean-constrained L2 regu-
larization, we obtain more wiggle room by only
sharing the embedding and LSTM parameters.

Our model is implemented in pyCNN and made
available at:

bitbucket.org/soegaard/hyperlink-iwpt17

English data In our English in-domain experi-
ments, we use three datasets for our target tasks,
namely the Penn Treebank for syntactic chunk-
ing (Marcus et al., 1993), the SemCor corpus for
semantic supersense tagging (Miller et al., 1994;
Ciaramita and Altun, 2006), and the CCGBank2

for CCG super-tagging. See Figure 1 for an exam-
ple of all three layers of annotation. The training
section of the chunking dataset consists of 8936
sentences. SemCor contains 15465 sentences, and
the CCGBank contains 39604 sentences. For our
auxiliary task, for replicability (and as a tribute

1http://ronan.collobert.com/senna/
2LDC2005T13

68



Words: Are prairie dogs conscious

Chunking: B-VP B-NP I-NP B-ADJP
Semcor: O O Animal.N Cognition.ADJ
CCG: (S[adj]\NP))/NP NP NP\NP S[adj]\NP)

Href 0 B-HREF I-HREF O

Figure 1: Examples of linguistic annotation

to Valentin’s seminal work), we use the hypertext
dump used in Spitkovsky et al. (2010), made pub-
licly available,3, which contains 2000 sentences.
To evaluate the robustness of our syntactic chun-
ker, we also evaluate it across multiple domains
using data from Ontonotes 4.0.4

Quechua data We use constituent annotations
of Quechua sentences, from Rios (2015), and con-
vert them into partial annotations. The sentences
are from an autobiography. The training data con-
sists of 1500 sentences, and the test data is 837
sentences. The annotations only provide NP and
VP bracketing, leaving us with five labels. For
our auxiliary task, we use 350 sentences from
Quechua Wikipedia that contain hyperlinks. The
data is made publicly available.5

Balance between tasks Our auxiliary datasets
are relatively small, in the light of hyperlinks be-
ing readily available. In hard parameter sharing,
it is important not to swamp the main task, and as
our learning curve experiments indicate, it would
not be beneficial to sample more auxiliary task
data. Soft parameter sharing approaches may bet-
ter leverage large volumes of hyperlink data. See
discussion of learning curves in §3.

3 Results

In all our experiments, we report averages over
three runs.

English in-sample tests In our first experiment,
we train an LSTM on English newswire and apply
it to English newswire, using the standard datasets
from the English Penn Treebank, Semcor, and the
CCGBank. Our baseline is a single-task LSTM
architecture, with the hyper-parameters suggested
by Søgaard and Goldberg (2016). We verify that
this leads to state-of-the-art performance. In fact,
our single-task baseline is slightly better than the

3
nlp.stanford.edu/valentin/pubs/markup-data.tar.bz2

4LDC2011T03
5
bitbucket.org/soegaard/hyperlink-iwpt17

one used in Søgaard and Goldberg (2016). We
then train the same network architecture with the
hyperlink data from Spitkovsky et al. (2010) as
our auxiliary data.

Using hyperlinks as auxiliary data leads to mod-
erate improvements for syntactic chunking, and
very big improvements for supersense tagging and
CCG supertagging. Where for syntactic chunking,
the error reduction is less than 3%, it is 17% for su-
persense tagging, and 13% for CCG supertagging.

English out-of-sample tests We use syntactic
chunking data from OntoNotes 4.0. The data
includes manually annotated data from several
sources across several domains: newswire, broad-
cast, broadcasted news, and weblogs. We use a
single file for training (WSJ), and a single file for
development (CCTV), and all other files for test-
ing. We have 23 files for testing, spanning we-
blogs from C2E to (English) news from Xinhua.

Performance is generally much lower, because
of the divergence between training and test data.
Whereas before, performance (F1) on test data
was about 95%, cross-domain performance is gen-
erally about 85%. See results in Table 2. The av-
erage gain from multi-task learning remains small,
even when we consider the test domains with high-
est divergence (weblogs).

It is important to note that unlike other experi-
ments using multi-task learning for domain adap-
tation, e.g., Søgaard and Goldberg (2016), our
auxiliary task data is sampled from the domain
of the training data (newswire), not of the test
data. This may effect results quite a bit, and our
results do therefore not contradict the results in
Søgaard and Goldberg (2016) and related work.

Also, note that there are other possible ex-
planations for the differences in performance
gains across target tasks. One possible predic-
tor for multi-task learning gains may for exam-
ple be properties of single-task learning curves,
variance across model parameters, etc. See
Bingel and Søgaard (2017) for work exploring
such predictors of when multi-task learning works

69



English Quechua
Chunking SemCor CCG Chunking

LSTM 0.9543 0.6757 0.9169 0.7169
LSTM w. HREF 0.9555 0.7312 0.9275 0.7283

Err.red. 0.0263 0.1711 0.1276 0.0403

S&G16 (bl) 0.9528 - 0.9104 -
S&G16 (best) 0.9556 - 0.9326 -

Table 1: Improvements in F1 using hyperlinks as auxiliary data across three NLP tasks.
Søgaard and Goldberg (2016) for comparison (S&G16). S&G16 (best) is similar to our hyperlinks
model, but uses POS-tag annotated data for co-supervising the initial LSTM layer instead of hyper-
links data for co-supervising all the hidden layers. Previous work on SemCor assumes gold-standard
POS tags and achieves up to 80% F1-score. We are not aware of previous work on Quechua.

Best on Macro-average Macro-average on weblogs

LSTM 5/22 0.8516 0.8525
LSTM w. HREF 17/22 0.8536 0.8540

Table 2: Small, but consistent improvement for domain adaptation for English chunking

in general.

Learning curve Hard parameter shar-
ing makes models less prone to overfitting
(Søgaard and Goldberg, 2016). Since little la-
beled data means higher variance, this suggests
that multi-task learning is more effective in
scenarios where data is scarce. This, in our case,
would mean that hyperlinks reduce the need for
labeled data.

It is not straight-forward, however, to interpret
standard learning curves that only vary the number
of training data points for the target task, since the
auxiliary task may easily swamp the target task.
Even if we balance auxiliary and target data sets,
results can still be hard to interpret: If we fix the
hyper parameters, the regularization effect of the
auxiliary task reduces with less data, since our
network can effectively memorize the data points
and thereby discriminate between the two tasks
and allocate parts of the network for each task
(Zhang et al., 2017).

When we balance the amount of target and aux-
iliary task data, and reduce the expressivity of our
networks, we observe higher gains (error reduc-
tions of up to 15%) with small amounts of data
(20 ≤ n ≤ 100). The optimal balance between
the target and the auxiliary task seems to favor the
target task. If we subsample the auxiliary data to

be proportionally smaller (n a third of target data),
we see greater and more robust improvements, es-
pecially for small n.

Quechua in-sample tests We train the same
models on the Quechua data. We use the
Wikipedia-trained, 64-dimensional Polyglot em-
beddings6 and use 32-dimensional LSTM layers.
We observe a 4% error reduction, which is higher
than for our English in-sample test, but smaller
than the improvements on the other tasks.

4 Conclusion

Readily available data (HTML mark-up) can
be used to improve partial parsers for low-
resource languages, as well as state-of-the-art par-
tial parsers for English, with improvements that
carry over to new, unseen domains.

Acknowledgements

Thanks to the anonymous reviewers for their com-
ments that helped improve the paper. This re-
search is funded by the ERC Starting Grant LOW-
LANDS No. 313695.

6polyglot.readthedocs.io

70



References
Jonathan Baxter. 2000. A model of inductive bias

learning. Journal of Artificial Intelligence Research
12:149–198.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In EACL.

Rich Caruana. 1993. Multitask learning: a knowledge-
based source of inductive bias. In ICML.

Massimiliano Ciaramita and Yasemin Altun. 2006.
Broad-coverage sense disambiguation and informa-
tion extraction with a supersense sequence tagger. In
Proc. of Proceedings of EMNLP. Sydney, Australia,
pages 594–602.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Research
12:2493–2537.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learning
to predict gaze. In NAACL.

Mitchell Marcus, Mary Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus
of English: the Penn Treebank. Computational Lin-
guistics 19(2):313–330.

George A. Miller, Martin Chodorow, Shari Landes,
Claudia Leacock, and Robert G. Thomas. 1994. Us-
ing a semantic concordance for sense identification.
In Proceedings of the workshop on Human Lan-
guage Technology. Association for Computational
Linguistics, pages 240–243.

Barbara Plank. 2016. Keystroke dynamics as signal for
shallow syntactic parsing. In COLING.

Annette Rios. 2015. A Basic Language Technology
Toolkit for Quechua. Ph.D. thesis, University of
Zurich.

Anders Søgaard and Yoav Goldberg. 2016. Deep mul-
titask learning with low level tasks superviser at
lower layers. In ACL.

Valentin Spitkovsky, Daniel Jurafsky, and Hiyan Al-
shawi. 2010. Profiting from mark-up: Hyper-text
annotations for guided parsing. In ACL.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Ben-
jamin Recht, and Oriol Vinyals. 2017. Understand-
ing deep learning requires rethinking generalization.
In ICLR.

71



Proceedings of the 15th International Conference on Parsing Technologies, pages 72–77,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Correcting prepositional phrase attachments using multimodal corpora

Sebastien Delecraz and Alexis Nasr and Frederic Bechet and Benoit Favre
Aix-Marseille University, CNRS, LIF

firstname.lastname@lif.univ-mrs.fr

Abstract

PP-attachments are an important source of
errors in parsing natural language. We
propose in this article to use data coming
from a multimodal corpus, combining tex-
tual, visual and conceptual information, as
well as a correction strategy, to propose
alternative attachments in the output of a
parser.

1 Introduction

Prepositional phrase attachments (PP-
attachments) are known to be an important
source of errors in parsing natural language. The
main reason being that, in many cases, correct
attachments cannot be predicted accurately based
on pure syntactic considerations: their prediction
ask for precise lexical co-occurrences or non
linguistic knowledge. Such information is usually
not found in treebanks that are limited in their
size and therefore do not model many bi-lexical
phenomena.

In this paper, we propose to combine textual,
conceptual and visual information extracted from
a multimodal corpus to train a PP-attachment cor-
rection model. In order to do so, we have used a
corpus made of pairs (S, P ) where S is a sentence
and P a picture. Some words of S have been man-
ually linked to bounding boxes in P and tagged
with coarse-grained conceptual types. The rela-
tive positions of the boxes in the pictures as well
as conceptual types and the lexical nature of words
involved in a PP-attachment are used as features
for a classifier that classifies a PP-attachment as
either correct or wrong. Given the parse tree T of
S, and a target preposition, its different possible
attachment sites are identified and the classifier is
used to select the most promising one.

Our contributions in this study are the selec-
tion and the manual annotation of a corpus of am-
biguous PP-attachments from the multimodal cor-
pus Flickr30k Entities (Plummer et al., 2017); the
study of the relative importance of different kinds
of features for the PP-attachment resolution prob-
lem, from very specific ones (lexical features) to
very generic ones (spatial features); and the com-
bination of them in a single model for improving
the accuracy of a syntactic dependency parser.

The structure of the paper is the following: sec-
tion 2 presents some related work in the fields of
PP-attachment and multimodal language process-
ing. In section 3 the multimodal corpus is de-
scribed as well as the manual annotation that has
been performed on it. In section 4 the error pre-
diction classifier is described and its performance
evaluated. In section 5, the correction strategy is
described. The experiments are described in sec-
tion 6 and section 7 concludes the paper.

2 Related work

This work is related to two different areas: mul-
timodal language processing through the joint
analysis of image and text describing the same
scene and syntactic parsing through the problem
of prepositional phrase attachment resolution (PP-
attachments).

The joint processing of image and natural lan-
guage is not novel. It has been studied mostly
in the context of natural language generation,
for example for generating a textual description
of a video or an image. Early work (Herzog
and Wazinski, 1994) computes first spatial re-
lations among objects detected in images with
knowledge-based language generation model in
order to generate short descriptions of videos in
limited domains (traffic scenes, soccer matches).
Recently open-domain language generation from

72



Figure 1: Example of the F30kE annotations.

images or videos received a lot of attention
through the use of multimodal deep neural net-
works (Vinyals et al., 2015). Theses models built
a unified representation for both image and lan-
guage features and generate in an end-to-end pro-
cess a text directly from an image, without an ex-
plicit representation (syntactic or semantic) of the
text generated.

For syntactic parsing, the problem of PP-
attachment has a long history in Natural Language
Processing and a wealth of different methods and
sources of information have been used to allevi-
ate it. Giving a overview of this vast body of
literature is well beyond the scope of this paper.
Traditionally, two types of resources have been
used to help resolving PP-attachment, semantic
knowledge bases (Agirre et al., 2008; Dasigi et al.,
2017), and corpora (Rakshit et al., 2016; Mir-
roshandel and Nasr, 2016; Belinkov et al., 2014;
de Kok et al., 2017).

We are not aware of much work using multi-
modal information for PP-attachment. In the most
relevant work that we have found (Christie et al.,
2016), a parser is used to predict the k best parses
for a sentence and this set is re-ranked using visual
information. The main difference with their work
is, in our case, the combined use of lexical, seman-
tic and visual cues as well as the method used (k
best parses v/s parse correction).

3 Data

The multimodal corpus used in this work is
the Flickr30k Entities (F30kE) (Plummer et al.,
2017), an extension of the original Flickr30k
dataset (Young et al., 2014). This corpus is com-
posed of almost 32K images and, for each im-
age, five captions describing the image have been
produced. Besides, every object in the image that
corresponds to a mention in the captions has been
manually identified with a bounding box. Bound-
ing boxes and the mentions in the captions have
been paired together via co-reference links. A
total of 244K such links have been annotated.
Furthermore, each mention in the captions has
been categorized into eight coarse-grained con-
ceptual types using manually constructed dictio-
naries. The types are: people, body parts, animals,
clothing, instruments, vehicles, scene, and other.
One example of the corpus has been reproduced
in Figure 1.

Our goal in this study is to evaluate several set
of features, at the lexical, conceptual and vision
levels, for the PP-attachment task. The F30kE
corpus contains already all these features, but no
syntactic annotation was provided on the image
captions. Focusing on the PP-attachment problem,
we added such annotations with the following pro-
cess: first the whole caption corpus of F30kE was
processed by a Part-Of-Speech tagger (Nasr et al.,
2011); a set of regular expressions on the POS la-
bels were defined in order to select sentences that
contain a preposition that might lead to an am-
biguous PP-attachment; finally all these sentences
were manually processed in order to attach the se-
lected prepositions to their correct syntactic gov-
ernor.

Captions containing ambiguous PP-attachment
have been identified using two simple rules: a
preposition is considered ambiguous if it is pre-
ceded by at least two nouns or a verb and a noun,
in other word, the captions must match one of the
following regular expressions: X* N X* N X*
p X* or X* V X* N X* p X*, where N and
V stand for the POS tags noun and verb, X stand
for any POS tag and p is the target preposition.

22800 captions were selected this way. They
constitute our PP-corpus. This corpus contains
29068 preposition occurrences that have been
manually attached to their syntactic governor. The
PP-corpus has been divided into a train set, made
of 18241 captions (23254 annotated prepositions),

73



a development set, made of 2271 captions (2907
annotated prepositions) and a test set, made of
2288 captions (2907 prepositions).

4 Error Prediction

The train part of the PP-corpus has been used
to train a classifier that predicts whether a PP-
attachment proposed by a parser is correct or not.
The parser used is a standard arc-eager transition
based parser (Nivre, 2003), trained on sections
0−18 of the Penn Treebank (Marcus et al., 1993).
The parser was run on the train set of the corpus
and, for each occurrence of a manually attached
preposition, a negative or a positive example has
been produced depending on whether the parser
has predicted the correct attachment or not. This
data set is composed of 17643 positive and 5611
negative examples. It has been used to train a clas-
sifier that predicts whether the attachment made
by the parser is correct or not.

The classifier used for this task is the Icsiboost
classifier (Favre et al., 2007). This Adaboost clas-
sifier is a combination of weak learners that learn
a threshold for continuous features, and a binary
indicator for discrete ones. Training minimizes
the exponential loss function by greedily select-
ing the best classifier and re-weighting the training
set to focus on misclassified examples. This kind
of classifier has two benefits: models are easier
to interpret than in other families of models, and
the greedy selection of classifier effectively selects
relevant features and is less affected by noise.

Three sets of features have been used to train
the classifier, from the most specific ones (lexi-
cal features) to the most generic ones (spatial fea-
tures). The set T is composed of textual features,
extracted from the captions. The set C is com-
posed of conceptual features, based on the concep-
tual classes associated with boxes or words. Set V
is composed of visual features representing spatial
information about the objects annotated in the im-
age (enriched with bounding boxes).

Let GpD be a PP-attachment where G is the
governor of the preposition p and D its dependent.
We define the functions POS(X) that denote the
POS of word X , LEM(X) its lemma, FCT (X)
its syntactic function, CON(X) the list of its con-
ceptual types, BB(X) its bounding box (in the
case where X is associated with several boxes,
SBB(X) lists this set). DIST (X, Y ) represents
the distance between words X and Y in the sen-

Figure 2: Points of interest from (G) and (D)
boxes.

tence. Here is a detailed description of the features
of the three different categories using the notations
defined above1:

Textual features:
T1 = POS(G)
T3 = POS(D)
T5 = FCT (p)

T2 = LEM(G)
T4 = LEM(D)
T6 = DIST (G, p)

T7 = LEM(G) + LEM(D)
T8 = POS(G) + POS(D)

Conceptual features:
C1 = CON(G) C2 = CON(D)
C3 = CON(G) + CON(D) Eight types of
concept are defined: people, body parts, animals,
clothing, instruments, vehicles, scene, and other.
The value UNK is used if either G or D is not
associated with a type.

Visual features: in Figure 2, we identify two
corners for every bounding box B: Bmin and
Bmax, that are used compute the visual features:

V1 = Dmin
x −Gmin

x

Gmax
x −Gmin

x

V3 = Dmin
y −Gmin

y

Gmax
y −Gmin

y

V5 = |SBB(D)|

V2 = Dmax
x −Gmin

x

Gmax
x −Gmin

x

V4 = Dmax
y −Gmin

y

Gmax
y −Gmin

y

V6 = |SBB(G)|
V7 = Area(BB(D)) / Area(BB(G))

Features V1 . . . V4 describe the relative position
of D box with respect to G box, respectively on
the x and y axis. Features V5 and V6 describe the
number of boxes associated with D and G. V7 is
the ratio of the areas of D and G boxes. In case
of multi-boxing, we compute the distance between
Gmin and Dmin and keep the two closest boxes as
BB(G) and BB(D). When either G or D does
not have a box, the UNK value is used.

It is important to notice that the visual fea-
tures in our study are limited to spatial informa-
tion about bounding boxes. No image analysis of
the content of the boxes is done since this level of

1All feature sets also contain the general feature
LEM(p): the lemma of the preposition.

74



Features Train Dev Test
Baseline 0.76 0.76 0.75
T 0.94 0.90 0.88
C 0.83 0.84 0.83
V 0.78 0.79 0.77
T + C 0.96 0.91 0.90
T + C + V 0.98 0.91 0.89

Table 1: Classifier accuracy by model.

information is covered by the conceptual features
which attach to each box a concept tag related to
its content.

Table 1 details the classification accuracy for
each model trained using different feature com-
binations, on train, development and test sets.
The accuracy is computed on the attachments pre-
dicted by the parser. A baseline has been added
to Table 1 that selects the majority class which is
the positive class, therefore it reflects the accuracy
of the parser for PP-attachment (75% accuracy on
the test set).

As one can see, all four models beat the base-
line. The best features are the lexical ones. This
is expected as they are the most specific ones, re-
quiring a training corpus matching closely the ap-
plication domain. Conceptual features obtain very
good results although they can be considered as
generic since only 8 types of concepts are con-
sidered. The visual features are just slighlty bet-
ter than the baseline (+2%), however we have to
keep in mind that the only information considered
here are spatial features of bounding boxes. Since
not all prepositions in the PP-corpus are related
to spatial positions, and considering the generic-
ity of the features used, obtaining an accuracy of
77% without any lexical or semantic features is an
interesting result.

By combining feature sets we can improve ac-
curacy. The best combination is the textual and the
conceptual features together.

5 Correction Strategy

The classifier developed in the previous section
only checked if a PP-attachment proposed by the
parser is correct or not. In this section we inte-
grate this classifier in a correction strategy in order
to improve the accuracy of our parser. This cor-
rection strategy is inspired from the ideas of An-
guiano and Candito (2011); Attardi and Ciaramita
(2007); Hall and Novák (2005): given a sentence
S, a parse T for S and a target preposition p, a set

Gp of candidate governors for p is identified. The
highest scoring c ∈ Gp is then assigned as the new
governor of p in T .

The set Gp is initialized with g, the ac-
tual governor of p in the parse T . The
following rules are then applied to T and
new potential governors are added to Gp:
1 N ← V → p ⇒ Gp = Gp ∪ {N}
2 N ← P ← V → p ⇒ Gp = Gp ∪ {N}
3 N ′ ← N → p ⇒ Gp = Gp ∪ {N ′}
4 N ′ ← P ← N → p ⇒ Gp = Gp ∪ {N ′}
5 N ′ → X → N → p ⇒ Gp = Gp ∪ {N ′}
6 N → N → p ⇒ Gp = Gp ∪ {N}
7 V → N → p ⇒ Gp = Gp ∪ {V }

Rule 1 is interpreted as follows: if target preposi-
tion p has a verbal governor which has a noun N
as a direct dependent, N is added as a candidate
governor. These rules have been evaluated on our
development corpus. When applying the rules
to the output of the parser, the correct governor
of the manually annotated prepositions is in the
set Gp in 92.28% of the cases. This figure is our
upper bound for PP-attachments.

Given the sentence a man throws a child into
the air at a beach, and target preposition at that
the parser has attached to child, the two rules 4
and 7 apply, yielding Gp = {child, air, throws}

man throws child into air at
4 N P N∗ p
7 V ∗ N p

The correction strategy is the following: given
an attachment GpD produced by the parser, this
attachment is given as input to the error detector.
If the detector predicts the CORRECT class, then
the attachment is kept unchanged. Otherwise, the
set Gp is computed and the element g of the set
that maximizes the score S(gpD, CORRECT) is
selected (i.e. the score that the classifier associates
with the class CORRECT to the given input).

6 Experiments

The results of our experiments on the test set are
detailed in Table 2. The table shows the attach-
ment accuracy for the prepositions that appear at
least 30 times in the corpus. For each of these
prepositions, column two displays its number of
occurrences, column three (BL) shows the attach-
ment accuracy for this preposition in the output
the parser. Columns four (T), five (C), six (V) and
seven (TCV) show the attachment accuracy for the
corrected output for four different configurations

75



Prep Occ BL T C V TCV
into 116 0.89 0.93 0.88 0.89 0.96
with 310 0.65 0.78 0.75 0.66 0.79
through 145 0.95 0.96 0.95 0.95 0.97
behind 35 0.74 0.86 0.83 0.77 0.89
under 58 0.84 0.84 0.86 0.84 0.86
down 41 0.63 0.73 0.63 0.44 0.68
in 369 0.76 0.84 0.81 0.76 0.85
in front of 51 0.90 0.88 0.90 0.90 0.90
outside 35 0.63 0.74 0.74 0.69 0.74
on 143 0.85 0.90 0.89 0.85 0.91
around 59 0.73 0.81 0.73 0.71 0.83
for 168 0.73 0.82 0.77 0.72 0.80
at 63 0.84 0.86 0.90 0.84 0.90
along 50 0.52 0.86 0.76 0.52 0.88
across 49 0.88 0.96 0.88 0.88 0.96
against 31 0.77 0.94 0.84 0.77 0.94
near 159 0.33 0.84 0.83 0.58 0.84
towards 30 0.90 0.93 0.87 0.90 0.90
next to 137 0.89 0.89 0.88 0.89 0.89
by 76 0.84 0.86 0.86 0.84 0.87
of 72 0.93 0.93 0.93 0.93 0.93
over 111 0.66 0.85 0.73 0.66 0.86
during 41 0.71 0.76 0.73 0.71 0.76
from 140 0.76 0.86 0.78 0.76 0.84
TOTAL 2907 0.75 0.85 0.82 0.77 0.86

Table 2: PP-attachment accuracy on the test set
per preposition (only those with at least 30 occur-
rences).

Features Accuracy
Baseline 0.75
T 0.85
C 0.82
V 0.77
T + C 0.86
T + V 0.86
C + V 0.82
T + C + V 0.86

Table 3: PP-attachment accuracy on the test set.

of the error detector: using only one type of fea-
tures (Textual, Conceptual and Visual) and all fea-
tures. The last line gives the attachment accuracy
on all preposition.

As one can see on Table 2, the global accu-
racy of the parser on all PP-attachment is equal
to 75%. This figure is lower than the 86% correct
PP-attachment reported by Anguiano and Candito
(2011) on the Penn Treebank using the same kind
of parser, which does not come as a surprise, given
the different nature of these two corpora. Ta-
ble 3 presents the accuracy of PP-attachment after
correction with different feature set combinations.
Adding conceptual features to textual features im-
prove accuracy, however spatial features have no
impact when used in conjunction with other fea-

ture sets.
Several conclusions can be drawn from these

results: different prepositions have very different
accuracy with the parser, ranging from 95% for
preposition through, to 33% for preposition near.
The correction strategy implemented has a posi-
tive impact on accuracy: changing some attach-
ments proposed by the parser using an error cor-
rector based on limited but specific data is useful.
Similarly as the results obtained on the classifica-
tion accuracy, textual features are the most useful
ones. Used alone, they increase accuracy by 10
points. Although improving accuracy by 2% when
used alone, visual features have no impact when
combined with other feature sets. The positive
impact of visual features is concentrated on three
prepositions in table 2: (near, behind and outside).
It is interesting to note that these prepositions are
mostly locative. It does therefore make sense that
visual features only focusing on spatial informa-
tion have some impact on these prepositions. On
the other extreme, preposition like during that are
mostly temporal are logically not impacted by the
correction.

7 Conclusion

We have proposed in this paper an error correction
strategy for PP-attachment that extracts from a
multimodal corpus features that help predict such
attachments as either correct or not. This classifier
is used to select among the different possible at-
tachment points of a preposition the highest scor-
ing one with respect to the classifier. Experiments
showed that this method increases by 11 absolute
points the correct PP-attachment rate. As expected
the most relevant feature set is the lexical one,
which is the most specific one. Conceptual fea-
tures, although quite generic, obtain results close
to lexical features. Visual features, limited in our
case to spatial information, can improve greatly
the accuracy of pp-attachment when used alone for
some locative preposition, however they have no
impact when mixed with more specific features.

We intend to extended this work in many di-
rections. The first one is the definition of better
visual features. We believe that more useful infor-
mation can be extracted from the image to improve
PP-attachment. We also consider defining a better
correction strategy that will identify more possible
governors to prepositions and, finally, introduce
the new features directly in the parsing model.

76



Acknowledgments

This work has been carried out thanks to the sup-
port of French DGA in partnership with Aix-
Marseille University as part of the “Club des parte-
naires Défense”.

References
Eneko Agirre, Timothy Baldwin, and David Martinez.

2008. Improving parsing and pp attachment perfor-
mance with sense information. In ACL. pages 317–
325.

Enrique Henestroza Anguiano and Marie Candito.
2011. Parse correction with specialized models for
difficult attachment types. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 1222–1233.

Giuseppe Attardi and Massimiliano Ciaramita. 2007.
Tree revision learning for dependency parsing. In
HLT-NAACL. pages 388–395.

Yonatan Belinkov, Tao Lei, Regina Barzilay, and Amir
Globerson. 2014. Exploring compositional architec-
tures and word vector representations for preposi-
tional phrase attachment. Transactions of the Asso-
ciation for Computational Linguistics 2:561–572.

Gordon Christie, Ankit Laddha, Aishwarya Agrawal,
Stanislaw Antol, Yash Goyal, Kevin Kochersberger,
and Dhruv Batra. 2016. Resolving language and
vision ambiguities together: Joint segmentation
& prepositional attachment resolution in captioned
scenes. arXiv preprint arXiv:1604.02125 .

Pradeep Dasigi, Waleed Ammar, Chris Dyer, and Ed-
uard Hovy. 2017. Ontology-aware token embed-
dings for prepositional phrase attachment. arXiv
preprint arXiv:1705.02925 .

Daniël de Kok, Jianqiang Ma, Corina Dima, and Erhard
Hinrichs. 2017. Pp attachment: Where do we stand?
EACL 2017 page 311.

Benoit Favre, Dilek Hakkani-Tür, and Sebastien Cuen-
det. 2007. Icsiboost. http://code.google.
come/p/icsiboost.

Keith Hall and Václav Novák. 2005. Corrective model-
ing for non-projective dependency parsing. In Pro-
ceedings of the Ninth International Workshop on
Parsing Technology. Association for Computational
Linguistics, pages 42–52.

Gerd Herzog and Peter Wazinski. 1994. Visual trans-
lator: Linking perceptions and natural language de-
scriptions. Artificial Intelligence Review 8(2):175–
187.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

Seyed Abolghasem Mirroshandel and Alexis Nasr.
2016. Integrating selectional constraints and subcat-
egorization frames in a dependency parser. Compu-
tational Linguistics .

A. Nasr, F. Béchet, J.F. Rey, B. Favre, and J. Le Roux.
2011. Macaon: An nlp tool suite for processing
word lattices. Proceedings of the ACL 2011 System
Demonstration pages 86–91.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT . Citeseer.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2017. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. International Journal of Com-
puter Vision 123(1):74–93.

Geetanjali Rakshit, Sagar Sontakke, Pushpak Bhat-
tacharyya, and Gholamreza Haffari. 2016. Prepo-
sitional attachment disambiguation using bilin-
gual parsing and alignments. arXiv preprint
arXiv:1603.08594 .

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. pages 3156–3164.

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Transac-
tions of the Association for Computational Linguis-
tics 2:67–78.

77



Proceedings of the 15th International Conference on Parsing Technologies, pages 78–87,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Exploiting Structure in Parsing to 1-Endpoint-Crossing Graphs

Robin Kurtz and Marco Kuhlmann
Department of Computer and Information Science

Linköping University, Sweden
robin.kurtz@liu.se and marco.kuhlmann@liu.se

Abstract

Deep dependency parsing can be cast as
the search for maximum acyclic subgraphs
in weighted digraphs. Because this search
problem is intractable in the general case,
we consider its restriction to the class of 1-
endpoint-crossing (1ec) graphs, which has
high coverage on standard data sets. Our
main contribution is a characterization of
1ec graphs as a subclass of the graphs with
pagenumber at most 3. Building on this we
show how to extend an existing parsing al-
gorithm for 1-endpoint-crossing trees to the
full class. While the runtime complexity
of the extended algorithm is polynomial in
the length of the input sentence, it features
a large constant, which poses a challenge
for practical implementations.

1 Introduction

Motivated by applications in natural language un-
derstanding, recent work in dependency parsing
has targeted ‘deep’ graphs, a term used to refer to
representations that are not necessarily tree-shaped.
Such graphs support intuitive analyses of argument
sharing in control constructions, quantification, and
semantic modification, among others. Data sets of
deep dependency graphs are often derived from the
derivations of expressive grammar formalisms; for
an overview, see Kuhlmann and Oepen (2016).

Deep dependency parsing has been formalized
as the search for maximum acyclic subgraphs in
weighted digraphs (Schluter, 2014; Kuhlmann and
Jonsson, 2015). Because this problem is known
to be intractable in the general case (Guruswami
et al., 2011), it is interesting to identify structural
restrictions on the target graphs that can yield poly-
nomial-time parsing algorithms without sacrificing
too much of the empirical coverage.

Schluter (2015) and Kuhlmann and Jonsson
(2015) propose to address deep dependency pars-
ing under the restriction that the target structures
should be noncrossing, a constraint related to pro-
jectivity as known from syntactic parsing. When
the search space is restricted to the class of non-
crossing graphs, maximum subgraph parsing is pos-
sible in time O(n3), where n is the length of the
input sentence. Unfortunately, the restriction to
noncrossing graphs excludes a large proportion of
the linguistic data. It seems clear that deep depen-
dency parsing, much more than syntactic parsing,
needs algorithms that can handle graphs with cross-
ing arcs.

An interesting weaker restriction than the non-
crossing condition is the restriction to graphs which
are 1-endpoint-crossing (Pitler et al., 2013), a con-
straint originally formulated for tree-shaped graphs.
The maximum 1-endpoint-crossing subtree of a
weighted digraph can be found in time O(n4). In
this paper we show how to generalize this result to
non-trees. This is not straightforward, as the ob-
vious modification of existing algorithm for trees
turns out to be incomplete for general graphs. The
key to a complete algorithm, and our main techni-
cal contribution, is a characterization of 1-endpoint-
crossing graphs as a certain subset of the class of
graphs with pagenumber at most 3 (Section 3). The
exact characterization refers to the restricted pat-
terns in which arcs can cross each other. From this
characterization we obtain an O(n5) algorithm for
general graphs (Section 4). When a certain, rare
type of crossing configurations is ruled out, the run-
time complexity of the algorithm reduces to O(n4),
the same as for trees.

While the runtime of both new algorithms is
polynomial in the length of the input sentence, both
feature large constants, which leads us to discuss
challenges in extending our algorithm into a practi-
cal parser for deep dependency parsing (Section 5).

78



Chief executives and presidents had come and gone

Figure 1: A sample dependency graph (Flickinger et al., 2016, CCD #20604004), drawn as an arc diagram.
Note that each word is meant to represent one endpoint. (We leave some space between different arcs that
share a common endpoint.) To save some space we draw arcs as semi-ellipses rather than semi-circles.
The graph has pagenumber 3 and is 1ec.

2 Background

We start by giving some background on the classes
of graphs that we study in this paper.

2.1 Graph Classes

A dependency graph for a natural language sen-
tence x is an acyclic digraph whose vertices are in
one-to-one correspondence with the words in x.1 A
sample dependency graph is shown in Figure 1. To
draw a dependency graph, we place its vertices on
an invisible line in the plane according to their left-
to-right order, and draw each arc as a semi-circle in
the half-plane bounded by that line. We refer to this
type of drawing as an arc diagram. Given an arc di-
agram of a dependency graph, two arcs of the graph
are said to cross if their corresponding semi-circles
intersect in points other than a common endpoint.

A dependency graph is called noncrossing if
its arc diagram does not feature crossing arcs.
Noncrossing graphs have also been called ‘planar’
(Titov et al., 2009). We can generalize the non-
crossing condition by allowing arcs to be drawn
not only in the half-plane above the vertex line but
also in that below it, or in any of some fixed num-
ber k of half-planes bounded by the vertex line.
This type of graph drawing is known as a book
embedding (Bernhart and Kainen, 1979). (We may
picture the half-planes as the pages of a book, and
the vertex line as the book spine.) The pagenumber
of a graph is the smallest number k for which the
graph has a crossing-free book embedding with
k half-planes (pages). The graph in Figure 1 has
pagenumber 3. Graphs whose pagenumber is at
most k have also been called ‘k-planar’ (Gómez-
Rodrı́guez and Nivre, 2010).

1We restrict our attention to unlabelled dependency graphs.

Our main interest in this paper is in the class of
1-endpoint-crossing graphs. A dependency graph
is called 1-endpoint-crossing (1ec) if for each of
its arcs a, all arcs that cross a share a common
endpoint (Pitler et al., 2013). The graph in Figure 1
is 1ec. The 1ec property was originally formulated
for dependency trees, but the definition carries over
to more general graphs without modifications.

2.2 Empirical Coverage

We assess the emprical coverage of 1ec graphs on
a standard data set, the data used for the 2015 Sem-
Eval Task on Broad-Coverage Dependency Parsing
(Flickinger et al., 2016). This data consists of to-
ken-aligned dependency graphs from four distinct
linguistic traditions, dubbed DM, PAS, PSD, and
CCD. For details about these target representations
we refer to Oepen et al. (2016).

Table 1 gives the percentages of complete graphs
(G) and individual arcs (A) that can be covered un-
der the restriction to noncrossing graphs, graphs
with bounded pagenumber (≤ 2), and 1ec graphs.2

We see that the coverage of 1ec graphs clearly sur-
passes that of noncrossing graphs on all four repre-
sentation types. Noncrossing graphs in fact seem
to be a rather poor match for the data, especially on
CCD, where it rules out more than half of the target
graphs. With respect to pagenumber, even the low
bound at ≤ 2 achieves very highest coverage, the
highest among the three classes considered. The
class 1ec is on average 2.11 percentage points be-
hind in terms of coverage on complete graphs and
0.14 points on individual arcs.

2Arc coverage was calculated using a brute-force algorithm
that removes the minimal number of arcs needed to make the
remaining graph satisfy the relevant property.

79



class DM PAS PSD CCD

nc G 69.29 59.85 65.04 49.53
A 97.63 97.24 96.01 95.83

pn ≤ 2 G 99.46 99.48 97.64 98.33
A 99.97 99.97 99.76 99.89

1ec G 97.30 97.18 95.85 96.16
A 99.83 99.85 99.60 99.75

Table 1: Coverage in terms of complete graphs
(G) and individual arcs (A) for noncrossing graphs,
graphs with pagenumber at most 2, and 1ec graphs.

2.3 Parsing Complexity
While high coverage is desirable, it often goes hand
in hand with high parsing complexity. As already
mentioned in the introduction, the maximum non-
crossing subgraph can be found in time O(n3),
where n is the length of the input sentence. The
corresponding problem for the class of graphs with
pagenumber at most 2 is NP-hard (Kuhlmann and
Jonsson, 2015), which means that the high cov-
erage of this class incurs a considerable price to
pay. The relatively high coverage of 1ec graphs ob-
served in Table 1 suggests that this class of graphs
might strike a good balance between coverage and
complexity.

3 The Structure of 1ec Graphs

In this section we derive the structural character-
ization of 1ec graphs that we will exploit in our
parsing algorithm. Our point of departure is the
result of Pitler et al. (2013, Theorem 1) that 1ec
trees have pagenumber at most 2. This result does
not carry over to general graphs; in fact we have
already seen an empirical example of a 1ec graph
with pagenumber 3 in Figure 1.

Lemma 1 There are 1ec graphs with pagenum-
ber 3. 2

Our first goal is to prove that pagenumber 3 is
also the maximal pagenumber of 1ec graphs. To
show this we will characterize 1ec graphs in terms
of their crossing graphs.

3.1 Pagenumber of 1ec Graphs
The crossing graph of a dependency graph has a
vertex corresponding to each arc, and an edge be-
tween two vertices if and only if the corresponding
arcs cross. The crossing graphs of noncrossing
dependency graphs consist of isolated vertices.

Crossing graphs are interesting because the pa-
genumber of a dependency graph equals the chro-
matic number of its crossing graph, the smallest
number of colours needed to colour the vertices
of the crossing graph in such a way that no two
neighbouring vertices share the same colour. From
a k-colouring of its crossing graph we obtain a
crossing-free k-book embedding of the dependency
graph by placing two arcs on the same page if and
only if their corresponding vertices are coloured
with the same colour. This correspondence has
previously been studied by Gómez-Rodrı́guez and
Nivre (2010) and Kuhlmann and Jonsson (2015),
among others. The following lemma is due to Pitler
et al. (2013, Lemma 2).

Lemma 2 The crossing graphs of 1ec graphs do
not contain triangles (cycles of length 3). 2

PROOF Suppose for the sake of contradiction that
there exists a cycle abca. The arcs a and c must
share an endpoint, as they both cross b. Because
of this, they cannot cross, and therefore cannot be
adjacent in the cycle. �

We use this lemma in the proof of the following:

Lemma 3 The pagenumber of 1ec graphs is at
most 3. 2

PROOF We show that the crossing graph of a 1ec
graph is 3-colourable. To colour the crossing graph,
we separately colour each of its components (also
crossing graphs). We distinguish two cases:

1. The component does not contain a cycle, or
contains cycles of length at most 4. By
Lemma 2, the component does not contain
a triangle, and therefore no odd cycle at all.
We can therefore 2-colour the component by
traversing the component using depth-first
search and assigning to each vertex the op-
posite colour of its parent in the search tree.

2. The length of the shortest cycle in the compo-
nent is at least 5. In the graph theory literature,
our crossing graphs are better known as circle
graphs, and the length of the shortest cycle
in a graph is known as its girth. It has been
shown that every circle graph with girth at
least 5 is 3-colourable (Ageev, 1999).

Thus in each case, 3 colours suffice to colour the
component, and hence the complete graph. �

80



1 2 3 4 5

•
1

• 2

•
3

•
4

•5

•(1, 3)

• (2, 4)

•
(3, 5)

•
(4, 1)

•(2, 5)

Figure 2: Counter-clockwise from top: dependency
graph, chord diagram, crossing graph.

3.2 Isolation Property for Cog Belts

1ec graphs with pagenumber 3 (or subgraphs
thereof) have a characteristic structure reminiscent
of the teeth of a cogwheel; a minimal example is
shown at the top of Figure 2. The proof of Lemma 3
also reveals that these graphs correspond to cycles
of length 5 or more in the crossing graph. Because
of this we will refer to these graphs as cog belts.
Our aim for the remainder of this section is to show
(in Lemma 6) that these structures are ‘isolated’,
in the sense that no arcs other than the arcs in the
cog belt can cross the cog belt. This property will
be the key to the parsing algorithm in Section 4.
To show it we study the relation between crossing
graphs and chord diagrams.

The chord diagram of a dependency graph is
obtained by placing the vertices of the graph on the
boundary of a circle such that their clockwise order
extends the left-to-right order in the original graph,
and drawing each arc of the graph as a chord of the
circle. An example is given in Figure 2. Note that
the chord diagram representation does not contain
information about the direction of the arcs of the de-
pendency graph, and cannot be used to recover the
exact linear positions of the vertices. Importantly
though, we can still read off the crossing graph of
a dependency graph from its chord diagram.

To prove the maximality property, we will reason
about the chord diagram corresponding to a cross-
ing graph. In general, this diagram is not uniquely
determined. However, when we restrict ourselves
to ‘strict’ chord diagrams in which there are ex-
actly twice as many endpoints as there are chords,
then there are certain crossing graphs that have a
unique such chord diagram (up to symmetry).3 In
particular, this holds for cycles of length at least 5.

3These are exactly the graphs that are prime with respect
to split decompositions; see Gabor et al. (1989).

We start by proving a lemma about another type
of graphs with unique strict chord diagrams. A
domino is a graph of the form .

Lemma 4 The crossing graphs of 1ec graphs do
not contain dominoes. 2

PROOF For the sake of contradiction, suppose that
the crossing graph of a 1ec graph G contains a
domino. The arcs that correspond to the vertices
on this domino induce a subgraph of G. We rea-
son about how the chord diagrams for this induced
subgraph could look like. A domino has a unique
‘strict’ chord diagram (Gabor et al., 1989); this di-
agram looks as shown in the left half of Figure 3.
However, this chord diagram cannot be the actual
chord diagram of a 1ec dependency graph. For
example, the chord b is crossed by chords a and
d, but these chords do not share a common end-
point. We can try to ‘repair’ the chord diagram
(without changing the underlying crossing graph)
by merging some of the endpoints; in particular,
we can merge the two endpoints a2 and d1 into
one endpoint that we may refer to as ad, which re-
moves one violation of the 1ec property at chord b.
Eliminating as many violations as possible, we ob-
tain the modified chord diagram in the right half
of Figure 3. However, even in this diagram there
are still some violations left: Apart from a and d,
the chord b is also crossed by e, and this chord
cannot be made to share an endpoint with a and d.
We therefore conclude that the crossing graph of G
does not contain a domino. �

For our next lemma we need some terminology
from geometry. A polygram is a non-convex regu-
lar polygon, drawn by connecting a given number
of points placed at equal distance on the bound-
ary of a circle. Polygrams can be denoted by its
Schläfli symbol {p/q}, where p gives the number
of corners, and q states that each corner should
be connected to its neighbours q steps away. For
example, {5/2} denotes the pentagram in Figure 2.

•
a1

•b1

• c1

• a2

•
d1•

c2

•
e1

•
b2

•f1

•e2

•d2 •
f2

ab

ce

f d

•
a1

• bc

• ad

•
c2

•
e1

•bf

•ed

•
f1

a

b

ce

f

d

Figure 3: Proof of Lemma 4

81



•
1

• 2

• 3

•
4

•
5

•
6

•
7

•8

•9 •

•

•
1

• 2

• 3

•
4

•
5

•
6

•
7

•8

•9 •

•

•
1

• 2

• 3

•
4

•
5

•
6

•
7

•8

•9 •

•

Figure 4: Proof of Lemma 6, illustrated using a cycle of length m = 9. The additional chord (red-dashed)
violates the 1ec property: In the graph on the left, it creates additional endpoints for the chords 13, 29, 35,
and 46; in the graph in the middle, it creates additional endpoints for the chords 46 and 57; in the graph
on the right, the new chord is crossed by 13 and 46, which do not share an endpoint.

Lemma 5 The chord diagram of the subgraph in-
duced by a cycle of length m ≥ 5 in a crossing
graph of a 1ec graph is unique (up to symmetry)
and forms a polygram {m/2}. 2

PROOF Similar to the proof of Lemma 4, we rea-
son about how the chord diagrams for the subgraph
induced by a cycle of length m ≥ 5 in a crossing
graph of a 1ec graph could look like. We illus-
trate our argument using concrete cycles, abcdea
(m = 5) and abcdefa (m = 6). The strict chord
diagrams for these examples look as follows.

•
a1

•
c1

• b1

• d1

•
c2•

e1

•
d2

•
a2

•e2

•b2

a

b

c

de

•
a1

•
c1

•b1

• d1

• c2

•
e1•

d2

•
f1

•
e2

•a2

•f2

•b2

a
b

c

d
e

f

Again, these diagrams cannot be chord diagrams
of 1ec dependency graphs; for example, the chord
b is crossed by chord a and c, which do not have
a common endpoint. The only way to repair the
chord diagrams without changing the underlying
crossing graph is to merge the two endpoints a1 and
c1 into a common endpoint which we shall refer to
as ac, and likewise for all the other chords. This
yields the following (non-strict) chord diagrams:

•
ac

• bd

•
ce

•
ad

•be b

c
d

e

a
•
ac

• bd

•
ce

•
df

•
ea

•fb
b

c

d
e

f

a

The left diagram is the pentagram {5/2}, the right
diagram is the hexagram {6/2} (6 corners, each of
which is connected to the neighbour 2 steps away).

From these examples it is not hard to generalize
to arbitrary values of m: If m is odd, then the chord
diagram for the cycle forms a regular star polygon.
If m is even, then the chord diagram forms a regular
polygon compound consisting of two copies of a
regular, convex (m/2)-gon. �

Pitler et al. (2013, Lemma 3) show that any odd
cycle of length m ≥ 5 in a crossing graph of a 1ec
graph uses at most m vertices in the original graph.
From Lemma 5 we get the stronger result that any
cycle of length m ≥ 5 uses exactly m vertices.

We are now ready to prove the isolation property:

Lemma 6 Any cycle of length m ≥ 5 in a crossing
graph of a 1ec graph forms a connected component
of that graph. 2

PROOF (SKETCH) The proof is by induction on m.
We start by using the construction in the proof of
Lemma 5 to obtain the polygram chord diagram
for the cycle. We then suppose, for the sake of
contradiction, that one of the vertices on the cy-
cle has an incident edge that does not itself belong
to the cycle, and reason about how to update the
chord diagram. The new edge could either go to
another on the cycle or to a new vertex. The second
alternative would require us to add a new chord to
the diagram. However, we can convince ourselves
that any new chord will necessarily violate the 1ec
property (see Figure 4). For the first alternative, we
distinguish three cases: If m = 5, then adding a
‘shortcut’ edge to another vertex on the cycle will
create a triangle, which is ruled out by Lemma 2.
If m = 6, then adding a shortcut will create ei-
ther a triangle or a domino, which is ruled out by
Lemma 4. Finally, if m ≥ 7, then adding a shortcut
will create either a triangle, a domino, or a cycle
of length m ≥ 5, of which we may assume that it
forms a connected component. �

82



4 Parsing Algorithm

In the previous section we have characterized 1ec
graphs in terms of their crossing graphs. In this sec-
tion we will exploit this characterization to show
how to obtain a parsing algorithm for 1ec graphs.
We follow Kuhlmann and Jonsson (2015) in cast-
ing dependency parsing as a maximum subgraph
problem: Given an arc-weighted digraph G, our
aim is to find a subset of arcs with maximum total
weight such that the induced subgraph is 1ec. The
weights of G should be learned from data.

4.1 Relaxed Deduction System for 1ec Trees

To obtain a parsing algorithm for 1ec graphs, an
obvious idea is to take the corresponding algorithm
for trees (Pitler et al., 2013) and ‘relax’ it by delet-
ing all book-keeping that is used to enforce the tree
constraint. We present the resulting algorithm as
a weighted deduction system (Shieber et al., 1995;
Nederhof, 2003). Such a system uses inference
rules to derive information about sets of graphs;
this information is represented by weighted formu-
las called items. Parsing amounts to finding the
derivation of a goal item with maximum weight,
starting from a set of initial items.

We assume that we are given an arc-weighted
digraph G = (V,A) with vertices V = {1, . . . , n}.
Items represent subgraphs of G corresponding to ei-
ther isolated intervals [i, j], where there are no arcs
between vertices in the open interval (i, j) and ver-
tices outside of [i, j], or isolated crossing regions
[i, j] ∪ {x}, where there are i) no arcs between ver-
tices in (i, j) and vertices outside of [i, j]∪{x}, and
ii) no arcs between the external vertex x and ver-
tices in (i, j) that are crossed by arcs with both end-
points in (i, j). Isolated intervals are represented
by items of the form Int [i, j], and isolated crossing
regions are represented by four different types of
items that put a constraint on whether arcs from x
into (i, j) may be crossed by arcs inside of [i, j]
with endpoints at the left border (L[i, j, x]), the
right border (R[i, j, x]), both borders (LR[i, j, x]),
or none of the two borders (N [i, j, x]). The initial
items of the system correspond to one-vertex sub-
graphs and take the form Int [i, i]. The goal item
is Int [1, n], representing the complete graph that
spans all vertices. Finally, the inference rules are
shown in Figure 6. The weight of the item on the
left-hand side of each rule is computed as the sum
of weights of the items on the right-hand side and,
if specified, the weight of a new arc.

1 2 3 4 5 6

Figure 5: Non-completeness for general 1ec graphs.
Splitting the item LR[1, 5, 6] at k = 3 using rule
(11) makes it impossible to retain the arc 2← 4.

4.2 Non-Completeness for General Graphs

A deduction system is correct with respect to a
class of graphs G if each of its derivations denotes
(under an intended interpretation) a graph from G
(soundness), and every graph from G has some
derivation (completeness). While the algorithm
of Pitler et al. (2013) is correct for the class of
1ec trees, it turns out that its relaxed version is
not correct for the full class of 1ec graphs. More
specifically, there are some 1ec graphs that do not
have derivations in the relaxed system.

To illustrate the problem, we consider the cog
belt in Figure 5 and reason backwards, reading
inference rules as rules for decomposing a subgraph
into smaller ones. The only way to decompose the
example graph from an Int item is to instantiate
rule (6) with k = 5. This removes the dashed arc
5→ 1, leaving the rest of the graph inside an LR
item. Now to decompose the LR item we need to
find a ‘split vertex’ k ∈ (1, 5) for rule (11), creating
items L[1, k, 6] and R[k, 5, 6]. However, splitting
the graph in this way makes it impossible to retain
arcs that cover k – and inside the interval (1, 5)
every vertex is covered by some arc. This property
prevents the decomposition of not only the graph
in Figure 5, but more generally every cog belt.

4.3 Correctness for Graphs without Cog Belts

While the relaxed deduction system is not correct
for general 1ec graphs, we can prove that it is cor-
rect for the class of all 1ec graphs that do not con-
tain cog belts. The proof is straightforward but te-
dious, so here we content ourselves with sketching
the structure and giving the most central intuitions.

Soundness To show that every derivation de-
notes a 1ec graph without cog belts, we use induc-
tion over the length of the derivation. The property
obviously holds for the initial items. For the in-
ductive case we need to check that the structural
property is preserved by each rule. This is not hard
to see with respect to the 1ec constraint, which is

83



(1) Int [i, j]← Int [i + 1, j]

(2) Int [i, j]← s[i, j] + Int [i, j]

(3) Int [i, j]← s[i, k] + Int [i, k] + Int [k, j]

(4) Int [i, j]← s[i, k] + R[i, k, l] + Int [k, l] + L[l, j, k]

(5) Int [i, j]← s[i, k] + LR[i, k, l] + Int [k, l] + Int [l, j]

(6) Int [i, j]← s[i, k] + LR[i, k, j] + Int [k, j]

(7) Int [i, j]← s[i, k] + Int [i, l] + L[l, k, i] + N [k, j, l]

(8) Int [i, j]← s[i, k] + R[i, l, k] + Int [l, k] + L[k, j, l]

(9) LR[i, j, x]← R[i, j, x]

(10) LR[i, j, x]← L[i, j, x]

(11) LR[i, j, x]← L[i, k, x] + R[k, j, x]

(12) N [i, j, x]← s[x, k] + N [i, k, x] + Int [k, j]

(13) N [i, j, x]← Int [i, j]

(14) N [i, j, x]← s[i, x] + N [i, j, x]

(15) N [i, j, x]← s[j, x] + N [i, j, x]

(16) L[i, j, x]← Int [i, j]

(17) L[i, j, x]← s[x, k] + L[i, k, x] + Int [k, j]

(18) L[i, j, x]← s[i, k] + L[i, k, x] + Int [k, j]

(19) L[i, j, x]← s[x, k] + Int [i, k] + L[k, j, i]

(20) L[i, j, x]← s[i, x] + L[i, j, x]

(21) L[i, j, x]← s[j, x] + L[i, j, x]

(22) L[i, j, x]← s[i, j] + L[i, j, x]

(23) R[i, j, x]← Int [i, j]

(24) R[i, j, x]← s[x, k] + Int [i, k] + R[k, j, x]

(25) R[i, j, x]← s[j, k] + Int [i, k] + R[k, j, x]

(26) R[i, j, x]← s[x, k] + R[i, k, j] + Int [k, j]

(27) R[i, j, x]← s[i, x] + R[i, j, x]

(28) R[i, j, x]← s[j, x] + R[i, j, x]

(29) R[i, j, x]← s[i, j] + R[i, j, x]

Figure 6: The rules of the ‘relaxed’ deduction system, following the basic rules of Pitler (2013). The
scores for arcs s[i, j] do not specify the arc’s direction (we simply choose the arc with the higher weight).
The indices may not overlap, giving rise to rule (6), the special case of rule (5) for l = j.

inherited from the tree-based system. Showing that
the rule applications cannot result in cog belts is
slightly more complicated. However, we can con-
vince ourselves that the constraints implied by the
item types and the constraints on the accessibil-
ity of vertices implied in the rules are sufficient to
exclude the forbidden structures. In particular, a
derivation cannot ‘remember’ the vertex that would
be needed to close off a cog belt (see Figure 7).

Completeness To show that every 1ec graph
without cog belts can be derived by the system,
we use induction on the size of the graph, where
size is measured as the total number of vertices

1 2 3 4 5 6

Figure 7: When attempting to derive this cog
belt right-to-left we could instantiate rule (8) as
Int [1, 6]←s[1, 3]+R[1, 2, 3]+Int [2, 3]+L[3, 6, 2]
which would add the blue arc. However, the right
endpoint of the red arc (5) is no longer ‘visible’.

and arcs. Graphs with size 1 (one vertex) are repre-
sented by the initial items. For the inductive case
we need to check that every graph which satisfies
the structural property is decomposable by some
rule. We can use the same strategy as Pitler (2013),
who classifies graphs into a number of templates
and for each of those templates shows which rule
can be applied to it. In particular we need to show
that the subgraphs gained in each decomposition
adhere to the intended interpretations, and that all
arcs can be added. The important observation is
that, if the graph does not contain a cog belt, then
the information represented in each item is suffi-
cient to build all arcs (see Figure 8).

1 2 3 4 5 6

Figure 8: This dependency graph has a crossing
graph with a cycle of length 4 and is therefore
‘almost as hard’ as a cog belt. It can be derived
in the relaxed deduction system using rule (7):
Int [1, 6]←s[1, 4]+Int [1, 2]+L[2, 4, 1]+N [4, 6, 2]

84



(30) C[i, j, x, y]← s[x, y] + s[i, j] + Int [i, y] + Int [y, j]

(31) C[i, j, x, y]← s[x, k] + Int [i, k] + C[k, j, i, y]

(32) Int [i, j]← s[i, k]+ s[i, y]+ s[l, j]+ Int [i, l]+ Int [l, k]+C[k, j, l, y]

Figure 9: Additional rules for cog belts.

4.4 Extension to the Full Class
We have just seen that the subgraphs which the
relaxed deduction system fails to parse are exactly
cog belts. We now show how to extend the sys-
tem into a complete parser for the full class of 1ec
graphs. The key idea is that because cog belts are
isolated from the remainder of the graph in terms
of crossing arcs as per Lemma 6, we can simply
add new items and rules that build a cog belt on top
of a set of isolated intervals.

The new items take the form C[i, j, x, y] and rep-
resent partial cog belts on an interval [i, j] with two
additional vertices: one external vertex x (which
always lies to the left of i) and one new internal
vertex y, whose purpose is to ‘remember’ the ver-
tex that will be needed to close the cog belt (cf.
Figure 7). The new inference rules are given in
Figure 9 and are set up to derive a cog belt right-to-
left. Rule (30) starts the derivation, combining two
isolated intervals and adding two arcs. Rule (31) ex-
tends the cog belt by one isolated interval, adding
a new arc. Finally, rule (32) closes the cog belt
by adding two final intervals and three new arcs.
With this simple extension, the deduction system
becomes sound and complete with respect to the
full class of 1ec graphs.
Example derivation. To illustrate the workings
of the new rules, we provide a derivation of a cog
belt with length 6, which in Figure 5 we showed
to be non-derivable in the relaxed system. We as-
sume that we have already derived isolated interval
items Int [i, i + 1] for all vertices i < n. We then
instantiate rule (30) as

C[4, 6, 3, 5]← s[3, 5] + s[4, 6]
+ Int [4, 5] + Int [5, 6]

and after that rule (31) as

C[3, 6, 2, 5]← s[2, 4] + Int [3, 4] + C[4, 6, 3, 5]

To complete the derivation of the cog belt as a
closed interval item we instantiate rule (32) as

Int [1, 6]← s[1, 3] + s[1, 5] + s[2, 6]
+ Int [1, 2] + Int [2, 3] + C[3, 6, 2, 5]

The asymptotic runtime complexity of the ex-
tended algorithm is in O(n5), one order of magni-
tude higher than that of the tree-based algorithm.
This is due to rules (31) and (32), each of which
refers to five independent positions in the sentence.

5 Discussion

In this section we discuss our results and relate
them to other published work.

5.1 Graph-Theoretical Results

The main technical contribution of this paper is
a characterization of 1ec graphs as a subclass of
graphs with pagenumber at most 3 via certain prop-
erties of their crossing graphs – in particular the
absence of dominoes and the isolation of cycles of
length at least five, which induce the substructures
that we called cog belts (Section 3). The relations
between the various graph classes discussed in this
paper are visualized in Figure 10.

1ec graphs have previously been discussed pri-
marily in the context of dependency parsing. The
characterization in this paper was established us-
ing results from graph theory, in particular from
the study of circle graphs (Ageev, 1999). Future
work of this kind may help to identify new classes
of interesting dependency graphs or new parsing
algorithms.

Gnc
pn≤ 2
pn≤ 3
1ec
1ec−

Figure 10: Relations between the classes of non-
crossing graphs (nc), graphs with pagenumber at
most k (pn ≤ 2, pn ≤ 3), 1ec graphs, and 1ec
graphs without cog belts (1ec−).

85



Two classes of graphs that appear to be very
relevant for the study of 1ec graphs are fan-pla-
nar graphs (Kaufmann and Ueckerdt, 2014) and
outer-fan-planar graphs (Bekos et al., 2014). Their
defining property is essentially identical to the 1ec
constraint; however, their vertices are not linearly
ordered as in dependency graphs,

5.2 Parsing Algorithm
A second contribution of this paper is the exten-
sion of the parsing algorithm for 1ec trees (Pitler
et al., 2013) to a quintic-time algorithm for the full
class of 1ec graphs, and a quartic-time algorithm
for the restricted class of 1ec graphs without cog
belts. Closely related algorithms were recently pro-
posed by Cao et al. (2017) and Kummerfeld and
Klein (2017). The former use an approach simi-
lar to ours in Section 4.4 to parse what they call
‘coupled staggered patterns’ (our cog belts), albeit
restricted to pagenumber 2; they report state-of-
the-art results on the SemEval data. Kummerfeld
and Klein (2017) apply 1ec graphs in the context
of parsing to phrase structure representations with
traces; their algorithm cannot parse what they call
‘locked chains’ (our cog belts), but has the benefit
of enforcing acyclicity and uniqueness.

The proposed quintic-time algorithm may not be
the most attractive one for practical parsing. We
looked at the SemEval data from Section 2 and
found that cog belts occur rarely, less than once per
2,000 sentences, and for only two of the representa-
tion types (PSD and CCD). A similar observation
was made by Kummerfeld and Klein (2017) for the
graphs they obtained from their treebank data.

In presenting our algorithms, our main focus was
on theoretical properties (soundness and complete-
ness). To support the implementation of a practical
parser, the extended deduction system needs to be
refined in several ways. For one thing, the system
features a high degree of derivational ambiguity,
which in particular can lead to the same arc being
scored several times in a derivation. To avoid this,
we would need to extend the items with informa-
tion on whether an arc has already been set, very
similar to the booleans used to control treeness in
the original algorithm. For example, a modified
version of rule (5) could look like this:

Int [i, j; F ]← s[i, k] + LR[i, k, l; F, bi,l, bk,l]
+ Int [k, l; F ] + Int [l, j; bl,j ]

The LR item has three booleans, corresponding to

the three arcs that could be present among the three
sets of endpoints {i, k}, {i, l}, and {k, l}. The first
boolean has to be F (false), as the arc between
i and k is scored in the rule; the other two arcs
may or may not be already present, so the values
of the second and third boolean are free to choose.
However, when the arc between k and l was set in
the derivation of the LR item, it should not have
been already set in the derivation of the Int [k, l]
item, which is why we need to set the boolean in
this item to F .

The modified version of rule (5) is actually a
rule template which in an actual parser implemen-
tation needs to be instantiated in all legal ways.
This introduces a non-negligible constant factor
into the runtime: assuming a minimal number of
three boolean variables per rule and a fourth bi-
nary choice for the direction of the arc (which we
have left underspecified), we would already get
32 · 24 = 512 actual rules. This ignores the ad-
ditional bookkeeping that needs to be added in
order to prevent cycles or enforce uniqueness of
derivations, each of which would at least double
the number of rules, and the increased complexity
coming from labelled parsing.

The most promising parsing results so far on
the SDP data have been achieved with a simple,
quadratic-time parsing algorithm with very few
constraints on the search space but a strong learn-
ing component (Martins and Almeida, 2014; Peng
et al., 2017). A structurally restricted parsing algo-
rithm such as the one described in this paper, even
if its coverage is high, has the drawback that it is
harder to combine with an expressive learning ap-
proach such as the recurrent neural networks used
by Kiperwasser and Goldberg (2016).

6 Conclusion

We have shown how a new structural characteriza-
tion of 1ec graphs in terms of their crossing graphs
can be used to extend the parsing algorithm for 1ec
trees to the full class of graphs. The class of 1ec
graphs has a significantly higher coverage than the
previously considered class of noncrossing graphs
(Schluter, 2015; Kuhlmann and Jonsson, 2015) and
may thus be a useful constraint on the search space
for deep dependency parsing. However, to achieve
state-of-the-art results the new parsing algorithm
needs to be combined with a powerful machine
learning component, a practical challenge that we
leave to future work.

86



Acknowledgements

We thank the anonymous reviewers for their helpful
comments. This work was supported by a Google
Faculty Research Award to Marco Kuhlmann.

References
Alexander A. Ageev. 1999. Every circle graph of girth

at least 5 is 3-colourable. Discrete Mathematics
195(1–3):229–233.

Michael A. Bekos, Sabine Cornelsen, Luca Grilli,
Seok-Hee Hong, and Michael Kaufmann. 2014. On
the recognition of fan-planar and maximal outer-fan-
planar graphs. In Graph Drawing. Springer, volume
8871 of Lecture Notes in Computer Science, pages
198–209.

Frank Bernhart and Paul C. Kainen. 1979. The book
thickness of a graph. Journal of Combinatorial The-
ory, Series B 27(3):320–331.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiao-
jun Wan. 2017. Parsing to 1-endpoint-crossing,
pagenumber-2 graphs. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL). Vancouver, Canada, pages
2110–2120.

Dan Flickinger, Jan Hajič, Angelina Ivanova, Marco
Kuhlmann, Yusuke Miyao, Stephan Oepen, and
Daniel Zeman. 2016. SDP 2014 & 2015: Broad cov-
erage semantic dependency parsing LDC2016T10.
Web Download.

Csaba P. Gabor, Kenneth J. Supowit, and Wen-Lian
Hsu. 1989. Recognizing circle graphs in polynomial
time. Journal of the Association for Computing Ma-
chinery 36(3):435–473.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics
(ACL). Uppsala, Sweden, pages 1492–1501.

Venkatesan Guruswami, Johan Håstad, Rajsekar
Manokaran, Prasad Raghavendra, and Moses
Charikar. 2011. Beating the random ordering is
hard: Every ordering CSP is approximation resistant.
SIAM Journal on Computing 40(3):878–914.

Michael Kaufmann and Torsten Ueckerdt. 2014. The
density of fan-planar graphs. CoRR abs/1403.6184.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics
4:313–327.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing to
noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics 3:559–
570.

Marco Kuhlmann and Stephan Oepen. 2016. Towards
a catalogue of linguistic graph banks. Computa-
tional Linguistics 42(4):819–827.

Jonathan K. Kummerfeld and Dan Klein. 2017. Pars-
ing with traces: An O(n4) algorithm and a structural
representation. Transactions of the Association for
Computational Linguistics 5.

André F. T. Martins and Mariana S. C. Almeida. 2014.
Priberam: A turbo semantic parser with second or-
der features. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014).
Dublin, Republic of Ireland, pages 471–476.

Mark-Jan Nederhof. 2003. Weighted deductive parsing
and Knuth’s algorithm. Computational Linguistics
29(1):135–143.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, Angelina Ivanova, and Zdeňka Urešová. 2016.
Towards comparability of linguistic graph banks for
semantic parsing. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC). Portorož, Slovenia, pages 3991–
3995.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(ACL). Vancouver, Canada, pages 2037–2048.

Emily Pitler. 2013. Models for improved tractability
and accuracy in dependency parsing. Ph.D. thesis,
University of Pennsylvania.

Emily Pitler, Sampath Kannan, and Mitchell Marcus.
2013. Finding optimal 1-endpoint-crossing trees.
Transactions of the Association for Computational
Linguistics 1:13–24.

Natalie Schluter. 2014. On maximum spanning DAG
algorithms for semantic DAG parsing. In Proceed-
ings of the ACL 2014 Workshop on Semantic Parsing.
Baltimore, USA, pages 61–65.

Natalie Schluter. 2015. The complexity of finding the
maximum spanning DAG and other restrictions for
DAG parsing of natural language. In Proceedings
of the Fourth Joint Conference on Lexical and Com-
putational Semantics. Denver, CO, USA, pages 259–
268.

Stuart M. Shieber, Yves Schabes, and Fernando Pereira.
1995. Principles and implementation of deductive
parsing. Journal of Logic Programming 24(1–2):3–
36.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online graph planarisation
for synchronous parsing of semantic and syntactic
dependencies. In International Joint Conferences
on Artificial Intelligence. Pasadena, CA, USA, pages
1562–1567.

87



Proceedings of the 15th International Conference on Parsing Technologies, pages 88–98,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Effective Online Reordering with Arc-Eager Transitions

Ryosuke Kohita Hiroshi Noji
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{kohita.ryosuke.kj9, noji, matsu}@is.naist.jp

Yuji Matsumoto

Abstract

We present a new transition system with
word reordering for unrestricted non-
projective dependency parsing. Our sys-
tem is based on decomposed arc-eager
rather than arc-standard, which allows
more flexible ambiguity resolution be-
tween a local projective and non-local
crossing attachment. In our experiment
on Universal Dependencies 2.0, we find
our parser outperforms the ordinary swap-
based parser particularly on languages
with a large amount of non-projectivity.

1 Introduction

A dependency tree as illustrated in Figure 1 is
called a non-projective tree, which contains dis-
continuous subtrees and is informally remarked
with crossing arcs (arcs from idea4 to talking8

and from who5 to to9). Comparing to the class
of projective trees, which has a weak equivalence
to the context-free grammars (Gaifman, 1965),
parsing non-projective trees is generally involved.
This is particularly the case for transition-based
dependency parsing; contrary to the graph-based
approaches, in which a simple spanning-tree al-
gorithm is capable of handling them (McDon-
ald et al., 2005), due to the incremental nature,
transition-based parsers need some extra mecha-
nisms to find crossing arcs.

There are several attempts to handle crossing
arcs in transition-based parsers. Among them
online reordering with swap (Nivre, 2009) has a
number of appealing properties, of which the most
notable is that it inherits the standard architecture
of the transition systems using a stack and buffer
while covering all types of crossing arcs. This
simplicity allows us to incorporate the ideas de-
veloped for the standard projective parsers, such

as neural network architectures (Chen and Man-
ning, 2014; Dyer et al., 2015), and joint modeling
with other phenomena (Hatori et al., 2011; Hon-
nibal and Johnson, 2014), with a minimal effort.
Such extensions with swap include a recent non-
projective neural parser (Straka et al., 2015) and
joint system with POS tagging (Bohnet and Nivre,
2012). Other approaches often employ additional
data structures with non-trivial transitions (Cov-
ington, 2001; Choi and McCallum, 2013; Pitler
and McDonald, 2015), which interfere with the
transparency to the standard systems, or cannot
handle all crossing arcs (Attardi, 2006).

Despite the popularity of the swap system, to
our knowlege there is little work focusing on the
swap mechanism, or the transition system itself,
apart from the original proposal (Nivre, 2009;
Nivre et al., 2009). In other words, we are still
unsure whether the current swap mechanism is the
best strategy for handling crossing arcs with word
reordering.

In this work, we present a dependency parser
with a new transition system that employs swap-
based reordering but in a different manner from
the existing one (Nivre, 2009) built on the arc-
standard system. As we discuss (Section 2.2), in
Nivre’s transition system, choosing a correct swap
transition is sometimes hard due to the parser’s
preference to local attachments. The proposed
system (Section 3) alleviates this difficulty by al-
lowing a swap transition for a token that is already
linked on the stack. As we will see, it can be seen
as an extension to the arc-eager system (Nivre,
2003) while we divide each attachment transition
into two more primitive operations as in the di-
vided formulation of Gómez-Rodrı́guez and Nivre
(2013). The divided system is more flexible, and
by operating swap on this we can deal with the is-
sue of reordering at an appropriate step.

On this transition system we implement a pars-

88



ing model with the stack LSTMs (Dyer et al.,
2015) (Section 4). We extensively examine
the utility of new transition system (Section 5)
with the recently released Universal Dependencies
(UD) 2.0 dataset, which contains more than 60
treebanks with varying degree of non-projectivity,
and find that our system is superior to the ordi-
nary swap system particularly for languages with
a larger amount of non-projectivity.

2 Background

We first introduce some notations and the concept
of transition systems (Section 2.1), and then de-
scribe the existing swap-based transition system of
Nivre (2009) (Section 2.2).

2.1 Transition System

We focus in this paper on a standard transition sys-
tem operating on a triple called a configuration
c = (σ, β,A), where σ is a stack, β is a buffer,
andA is a set of labeled arcs. See Nivre (2008) for
the other variants and overview. In a configuration
i-th token in a sentence is denoted by its index i
while 0 denotes the special root token. Following
the standard notations, by σ|i and j|β, we mean
i and j are the top-most tokens of the stack and
buffer, respectively. We use i l−→ j or (i, l, j) to
denote an arc from i to j with label l.

Given a sentence of length n, the system be-
gins parsing with the initial configuration c0 =
([0], [1, 2, 3, ...n], φ) where only the root token is
on the stack, all inputs are on the buffer, and the set
of arcs is empty. Parsing finishes when it reaches
a terminal configuration, in which any transitions
cannot be performed, and the set of arcs A defines
a labeled dependency tree. The system continues
to make a transition decision at each step under
the current configuration until it reaches a termi-
nal configuration.

2.2 Arc-Standard Swap

Arc-standard swap system (ASS) (Nivre, 2009)
is the most popular transition system for non-
projective dependency parsing, which can handle
arbitrary crossing arcs. ASS rows in Table 1 show
the set of transitions, in which LA, RA, and SH are
the transitions of the arc-standard system, which
can only produce a projective tree by linking two
adjacent tokens on the top of the stack. Swap (SW)
is the key transition to support non-projectivity,
which reorders the top two tokens on the stack by

moving the second top token back to the buffer.
Reducing a reordered token by LA or RA means
we create subtrees that are non-adjacent with each
other, i.e., crossing arcs.

One potential issue in ASS is its tendency to
prefer local attachments due to the mechanism of
LA and RA, which at the same time reduce the de-
pendent token. This is problematic in that because
crossing arcs often involve a longer dependency
arc, if two tokens on the stack are locally likely to
be connected, choosing correct SW rather than LA
and RA is quite difficult.

To see an example, let us consider the configu-
ration in Figure 2 (c = (σ|who|talking, to|β,A)),
which occurs when parsing the sentence in Fig-
ure 1. The correct action here is SW to create a
crossing arc talking8

obl−→ who5. However, at this
point LA is a more likely transition since talking8
obl−→ who5 is a typical arc in a relative clause. The
problem is that since LA reduces talking, we will
miss the arc who5

case−−→ to9 if we choose LA rather
than SW.

3 New System: Stay-Eager Swap

Now we describe our proposed transition system,
which we call Stay-Eager Swap (SES). We first
present the transitions and its advantage (Section
3.1), and then discuss oracles (Section 3.2) and
some improvements (Section 3.3).

3.1 Transition System

SES rows in Table 1 show the set of transitions
of the new system. To understand the mechanism,
we first note that without SW, this system looks
very much similar to the arc-eager transition sys-
tem (Nivre, 2003). The main difference from the
original one is in the attaching transitions, which
we call STAY-LEFT (SL) and STAY-RIGHT (SR)
and do not reduce a dependent token, but just es-
tablish an arc between two tokens on the stack top
and buffer top. Specifically, this system is identi-
cal to the divided arc-eager transition system with
the primitive operations in Gómez-Rodrı́guez and
Nivre (2013); in the arc-eager system, LEFT-ARC
first builds an arc and then reduces the top of the
stack, i.e., it is a combination of SL → RD (re-
duce) in our system, while RIGHT-ARC builds an
arc and shift the top token of the buffer, i.e., it can
be seen as SR→ SH.1

1 To make this system without SW to fully mimic the
original arc-eager system, we need a constraint to prohibit

89



ROOT0 I1 have2 no3 idea4 who5 you6 are7 talking8 to9 .10
ROOT PRON VERB DET NOUN PRON PRON AUX VERB ADP PUNCT

nsubj

root

det

nsubj

obl

nsubj

aux

acl

case

punct

Figure 1: A non-projective sentence.

Transition Current configuration ⇒ Resulting configuration Condition
LEFT-ARCl (LA) (σ|i|j, β, A) ⇒ (σ|j, β, A ∪ {(j, l, i)}) i 6= 0

ASS RIGHT-ARCl (RA) (σ|i|j, β, A) ⇒ (σ|i, β, A ∪ {(i, ·, j)})
SHIFT (SH) (σ, i|β, A) ⇒ (σ|i, β, A)
SWAP (SW) (σ|i|j, β, A) ⇒ (σ|j, i|β, A) 0 < i < j

STAY-LEFTl (SL) (σ|i, j|β, A) ⇒ (σ|i, j|β, A ∪ {(j, l, i)}) i 6= 0 ∧ (·, ·, i) /∈ A ∧ i ∗−→ j /∈ A
STAY-RIGHTl (SR) (σ|i, j|β, A) ⇒ (σ|i, j|β, A ∪ {(i, l, j)}) (·, ·, j) /∈ A ∧ j ∗−→ i /∈ A

SES SHIFT (SH) (σ, i|β, A) ⇒ (σ|i, β, A)
REDUCE (RD) (σ|i, β, A) ⇒ (σ, β, A) (·, ·, i) ∈ A
SWAP (SW) (σ|i, j|β, A) ⇒ (σ, j|i|β, A) 0 < i < j

AUX UNSHIFT (UN) (σ|i, [], A) ⇒ (σ, [i], A) (·, ·, i) /∈ A
RIGHT-ROOT (RR) ([0, i] [], A) ⇒ ([0], [], A ∪ {(0, root, i)}) (·, ·, i) /∈ A ∧ (0, root, i) /∈ A

Table 1: The set of transitions for arc-standard swap (ASS) and stay-eager swap (SES). · in conditions
means an arbitrary value, e.g., (·, ·, i) /∈ Ameans ∀j.∀h.(j, h, i) /∈ A (i’s head is unspecified). i ∗−→ j /∈ A
means a path from i to j does not exist, which is needed to guarantee acyclicity.

idea, who, talking　  to, .　

idea, talking　  to, .　

who

idea, talking　  who, to, .　

LA 

SW

Stack Buffer

idea, who　  talking, to, . .　 idea, who　  talking, to, . .　

idea　  talking, who,  to, . .　

SW

SL

Figure 2: A configuration difficult for ASS
(above), which fails when LA is selected (SW is
correct). Our system avoides this difficulty by first
attaching who to talking (SL) and then SW (be-
low). Dotted arcs are correct arcs yet unattached.

We allow SW at an arbitrary point. This means
we can insert SW just after SL and SR, by which
we can alleviate the difficulty with an attachment
vs. swap transitions discussed in Section 2.2. Fig-

SL→ SH and SR→ RD, which cause a configuration never
reached by the original one. For simplicity we do not impose
such constraint. Rather, since our oracles prefer RD over SH
by default it is not uncommon to explore such configurations
during training.

ure 2 shows how our system can swap after resolv-
ing local projective attachments.

3.2 Static and Non-static Oracles

An oracle for a transition system is a function from
a configuration to the action that leads to a given
dependency tree. Before discussing in details, we
first note that our system suffers from the spuri-
ous ambiguity as in the arc-eager system (Gold-
berg and Nivre, 2012), which means an oracle for
some configurations is not unique.

Table 2 shows a specific oracle, which checks
for each action in descending order whether the
current configuration satisfies the condition, and
select the first found one. 2 3

2The priority of attaching transitions over SW is also
helpful to avoid unnecessary SW transitions for nested non-
projective structures. For example in Figure 1, if to9 has a
child node x4.5 at the left to who5 and SW is preferred than
SL and SR, it causes an additional crossing between talking6

−→ who5 and to9 −→ x4.5. This is not the case for our ora-
cle because talking6 −→ who5 has been already attached and
isCross(i, j) ignores such attached arcs.

3The function isCross(i, j) for SW could be defined like
ASS style which reorders by projective order (Nivre, 2009).
However their projective orders are different: for example in
Figure 1, while to9 comes up at sixth word for ASS, who5

goes down at eighth word for SES. In this paper, we could
not reach the detailed description and formal definition of
projective order for SES, but they are the one of important

90



Transition Configuration Condition
STAY-LEFTl (σ|i, j|β,A) (j, l, i) ∈ Ag

STAY-RIGHTl (σ|i, j|β,A) (i, l, j) ∈ Ag

SWAP (σ|i, j|β,A) isCross(i, j)
REDUCE (σ|i, β, A) (·, ·, i) ∈ A ∧ ∀h.∀j.((i, h, j) ∈ Ag → (i, h, j) ∈ A)
SHIFT (σ, j|β,A) ∀i.∀l.((j, l, i) ∈ Ag ∧ j < i)→ (j, l, i) ∈ A
1 isCross(i, j) returns true if i and j are two endpoints of two crossing arcs yet unattached.

Formally: (∃b.b ∈ β ∧ ((b, ·, i) ∈ Ag ∧ (b, ·, i) /∈ A ∨ (i, ·, b) ∈ Ag ∧ (i, ·, b) /∈
A)) ∧ (∃s.s ∈ σ ∧ ((s, ·, j) ∈ Ag ∧ (s, ·, j) /∈ A ∨ (j, ·, s) ∈ Ag ∧ (j, ·, s) /∈ A)).

Table 2: A static oracle for our transition system. Ag is the set of gold arcs. · means an arbitrary value.

ROOT0 elokuvaa1 lähdetään2 tekemään3 Maltalle4 .5

obj

root

xcomp

nmod

punct

Figure 3: A non-projective sentence of Finnish.

t Transition Stack Buffer Added Arc
0 [0] [1, 2, 3, 4, 5]
1 SH [0, 1] [2, 3, 4, 5]
2 SW [0] [2, 1, 3, 4, 5]
3 SR [0] [2, 1, 3, 4, 5] (0, root, 2)
4 SH [0, 2] [1, 3, 4, 5]
5 SH [0, 2, 1] [3, 4, 5]
6 SL [0, 2, 1] [3, 4, 5] (3, obj, 1)
7 RD [0, 2] [3, 4, 5]
8 SR [0, 2] [3, 4, 5] (2, xcomp, 3)
9 SH [0, 2, 3] [4, 5]
10 RD [0, 2] [4, 5]
11 SR [0, 2] [4, 5] (2, nmod, 4)
12 SH [0, 2, 4] [5]
13 SR [0, 2, 4] [5] (4, punct, 5)
14 RD [0, 2] [5]
15 SH [0, 2, 5] []
16 RD [0, 2] []
17 RD [0] []

Table 3: Static oracle transitions by our system for
the sentence in Figure 3.

This is a static oracle in that it is a determinis-
tic function given a configuration. Table 3 shows
the oracle transitions by this for the sentence in
Figure 3. In addition to the static oracle, we also
try a partially non-static oracle, which occasion-
ally prefers SH over RD when both are applica-
ble. Specifically, for this oracle when both condi-
tions for SH and RD are satisfied we choose SH
with some probability. This allows the parser to
learn the transitions that postpone RD when pos-
sible, but stochastically, which we found effective
in many languages in practice. This is a partially
non-static oracle since it does not postpone the
other transitions such as SL and SR. Designing

future works.

such oracle could also be possible; for example, in
Figure 2, we can also build the gold tree by SW
followed by SH and SR. We leave such fully non-
static oracle as well as the dynamic oracle (Gold-
berg and Nivre, 2012) as a future work.

3.3 Auxiliary transitions

Our system employs the following two additional
transitions (AUX in Table 1), which can be applied
in restricted conditions.

UNSHIFT The arc-eager system is not guaran-
teed to output a single rooted tree, i.e., it may keep
unconnected tree fragments in the stack while the
buffer is empty (Nivre, 2008). Then, a parser
becomes stack because no actions are permissi-
ble before reaching a terminal configuration, and
our system suffers from the same issue. To es-
cape from this, we employ the same hack as Nivre
and Fernández-González (2014) and add a special
transition UN, which pushes back the stack top
node to the empty buffer. We only apply UN at de-
coding. It is deterministically chosen in the con-
figuration c = ([n], [], A /∈ (·, ·, n)), so does not
have any associated score.

RIGHT-ROOT This is our new transition to im-
prove the root attachment accuracy for arc-eager.
The arc-eager system attaches the sentence root
to the special ROOT eagerly immediately after it
collects all its left dependents, but this decision
is sometimes hard for some types of garden-path.
The purpose of RR is to postpone the decision of
this root token until the terminal configuration, as
in the arc-standard system.

To be concrete, during training, we allow the
parser to select SH with some probability when the
gold transition is SRroot. This eventually leads to
a terminal configuration where the sentence root
token not attached to ROOT remains on the stack.
RR is used only for this configuration, also dur-
ing decoding. Note that unlike UN, the parser ex-

91



plores this transition during training and learns the
parameters associated with it. We hope by this
the parser becomes capable of postponing the de-
cision on the root token during decoding when it
seems ambiguous locally. We use this transition
only with the non-static oracle.

4 Parser Model

A model of a transition-based parser calculates
the score of each transition at the current config-
uration. Our model is basically the stack-LSTM
parser (Dyer et al., 2015)4, which we slightly
customize from the original architecture (Section
4.2). In this work we focus our attention on the
incremental setting, in which the model is not able
to access the full tokens in the buffer. With re-
gard for transition-based parsers this is practically
a more important scenario where the graph-based
parser is not applicable.

4.1 Stack-LSTM parser

We first briefly describe the original model in Dyer
et al. (2015) designed for the arc-standard system.
For a configuration ct at time t, the parser main-
tains the three vector representations, st that en-
codes the stack, bt the buffer, and at the action
history. Each of them is modeled with a stack
LSTM, an LSTM that supports push and pop op-
erations by keeping the representations of interme-
diate time steps. The stack LSTM for st is left-to-
right while that for bt is right-to-left. at encodes
the entire action history from the initial action to
the last action. Using these representations we en-
code the configuration into a single vector:

pt = ReLU(W[st;bt;at] + ep),

where W is the parameters. Here and the follow-
ings ex denotes a bias vector.

Using this the probability for each valid transi-
tion zt is obtained with restricted softmax:

p(zt|pt) =
exp(gT

zt
pt + qzt)∑

z′∈A(ct)
exp(gT

z′pt + qz′ )
,

where gz is the parameters and qz is the bias term
for action z. The set A(ct) returns the set of valid
transitions on ct. After each transition we update

4Please refer Ballesteros et al. (2015), Ballesteros et al.
(2016), Ballesteros et al. (2017) for the latest version which
is sophisicated in some architectures (e.g. character informa-
tion, dynamic oracle).

st+1, bt+1, and at+1 accordingly following the
new configuration.

For the buffer, each element of the LSTM is a
token representation, which Dyer et al. (2015) ob-
tains from the word and POS embeddings. bt is
then the last output of the LSTM.

For the stack, each element of the LSTM is a
compositional representation of a subtree, or a to-
ken if it is just a shifted one. The subtree repre-
sentation of the stack element is updated in a re-
cursive manner. In Dyer et al. (2015) when LA or
RA builds an arc h l−→ d, the representation h for
the subtree rooted at h is updated by:

h′ = tanh(U[h;d; l] + eh), (1)

in which d is the representation for the subtree
rooted at d, l is the label embeddings. st is then
updated by popping the top two elements of the
stack LSTM, h and d, and pushing h′.

4.2 Modifications
We modify the above basic architecture in the fol-
lowing three ways.

Configuration encoding This is a restriction
that we impose on the model. While the original
model exploits the entire sentence for the buffer
representation bt using the LSTM, this violates
our assumption of incrementality, the main advan-
tage of the transition-based parsers. We thus avoid
to use bt and instead use the representations of top
three nodes on the buffer: b1t, b2t, and b3t. We
also use the representations of the top three nodes
(subtrees) on the stack, s1t, s2t, and s3t, which
we found effective. The new encoding is:

o = W[st;at; s1t; s2t; s3t;b1t;b2t;b3t] + ep,

pt = ReLU(o).

Token representation Many languages in UD
are annotated with XPOS, fine language specific
tags, as well as FEATS, the morphological fea-
tures. We utilize the embeddings of these features,
initialized randomly. We also add character em-
beddings, which we obtain from character-level
bidirectional LSTMs. Our token representation is:

x = ReLU(V[w; t; tx; f ;wch] + ex),

where w, t, tx, and f are word, POS, XPOS, and
FEAT embeddings, respectively. wch is the out-
put of linear mapping from the concatenation of
the last hidden states of the forward and backward
character-level LSTMs.

92



Composition This is the only modification
needed to obtain the stack representation in our
stay-eager transition system. The subtree repre-
sentation in Dyer et al. (2015) is fully composi-
tional in that h in Eq. 1 encodes the entire subtree
with the recursive network. This is possible es-
sentially because of the bottom-up nature of the
arc-standard system. Unfortunatelly the same en-
coding is not straightforward in our system due to
its arc-eager property, in which the right arcs are
constructed top-down (Nivre, 2004). In this work,
we give up the full compositionality of the original
model, and simply mimic Eq. 1 with the following
equation:

c′ = tanh(U[h;d; l; c] + eh). (2)

We update the node representation of both of the
stack top and the buffer top. This means that apart
from the original model we also update the de-
pendent node with composition. In the equation,
c′ is the updated representation of the head or
the dependent after SR or SL, which is originally
c. For example, after SL, since the stack top be-
comes dependent, its representation (d) is updated
to tanh(U[h;d; r;d] + eh). Note that without c
in Eq. 2, the representations of two updated nodes
are identical. The role of c is thus to distinguish
the two updates for h and d.

5 Experiment

Data We use the 63 treebanks in 45 languages in
Universal Dependencies 2.0 (Nivre et al., 2017),
which are distributed with the training data in
the recent shared task in CoNLL 2017 (Zeman
et al., 2017).5 Following the shared task, we fo-
cus on real world parsing and assume the raw in-
put text. For all preprocessing (sentence segman-
tion, tokenization, and tagging), we use UDpipe
1.1 (Straka et al., 2015). We report the official F1
LAS used in the shared task.

Baseline To make a comparison between transi-
tion systems fair, we implement the arc-standard
lazy swap (ASS) parser (Nivre et al., 2009) with
almost the same settings as our stay-eager swap
(SES) parser including our network architecture
(Section 4.2).6 We also report the scores of UD-

5For small treebanks without the development set, we ran-
domly divide the training data at 1:9 ratio for development
and training.

6 This baseline is competitive to or stronger than the
original implementation of Dyer et al. (2015), which also

pipe 1.1, the baseline system in the shared task, al-
though the results may not be directly comparable
as they tune several settings including the oracle
and learning rate etc. for each language.

Settings Our network sizes are: 100 dimen-
sional word embeddings and LSTMs, 50 dimen-
tional POS, XPOS, and FEATS embeddings, and
20 dimensional action and label embeddings, and
32 dimensional character embeddings and bi-
LSTMs. We do not use any pre-trained embed-
dings. We use Adam (Kingma and Ba, 2014) for
the optimizer, and set the learning decay of 0.08
and the dropout ratio in LSTMs of 0.33.

In addition to the greedy search, we also try
beam search for learning and decoding (beam size
is 8). Note that due to swap, each transition se-
quence may have a different number of actions.
We alleviate this inconsistency by ranking with the
average scores (Honnibal and Johnson, 2014).7

For non-static oracles, we set both probabilities
to postpone RD and SRroot to 0.33, which works
well for the development set.

Results The main results are shown in the left
columns of Table 4. Comparing to ASS, our non-
static SES achieves the higher LAS on average,
regardless of search method. In more detail, it is
on about half treebanks (27 for greedy and 28 for
beam search) that the score improvements from
ASS are more than 0.5 points. Also the static SES
is not stronger, suggesting that non-static explo-
ration during training is important for our system.

Focusing on the results on only non-projective
sentences (right columns), the score improve-
ments get larger: the average LAS difference be-
tween non-static SES and SAS is 1.54 points with
greedy search, and 1.18 points with beam search.

To further inspect the parser behaviors on non-
projective and projective sentences, we next com-
pare the average LAS on a subset of treebanks,
which we divide into four groups according to

implements arc-standard swap (https://github.com/clab/lstm-
parser). Example UAS on development sets (with gold tags)
are: Arabic: 80.83 (Dyer et al.) vs. 82.01 (ours); English:
86.71 (Dyer et al.) vs. 85.28 (ours); and German: 82.87 (Dy-
ers et al.) vs. 84.45 (ours). Both employ greedy search. Note
that our system does not use the buffer LSTM.

7 For learning, we find the following heuristics inspired by
max-violation (Huang et al., 2012) works well. Our training
is basically local with cross-entropy while for each sentence
we calculate the max violation point by beam search and use
only the prefix until that point. Although this is simpler than
global structured learning (Andor et al., 2016), it provides
some improvements with much faster training time.

93



Language Non-proj ratio
All sentences Only non-projective sentences

ASS
SES

UDpipe ASS
SES

UDpipe
static non-static static non-static

grc 64.40% 49.18 (51.28) 50.00 (53.04) 50.10 (53.85) 56.04 45.54 (47.54) 46.57 (49.89) 46.73 (50.72) 52.83
la 47.50% 37.78 (37.82) 38.32 (42.50) 41.22 (43.27) 43.77 32.64 (32.19) 32.76 (37.60) 35.51 (37.31) 38.22
grc proiel 37.92% 60.67 (63.74) 60.92 (64.69) 60.66 (63.77) 65.22 54.57 (58.37) 56.15 (60.58) 56.61 (60.28) 60.77
la ittb 35.87% 72.29 (75.20) 71.98 (75.01) 72.61 (75.64) 76.98 67.07 (71.10) 67.56 (70.56) 67.31 (72.03) 72.14
eu 31.80% 66.61 (67.67) 65.68 (67.66) 65.74 (68.96) 69.15 58.98 (60.01) 58.15 (60.86) 58.49 (62.21) 61.46
en lines 29.54% 70.37 (72.16) 71.71 (72.59) 71.98 (73.02) 72.94 65.07 (66.96) 66.86 (67.30) 66.12 (67.69) 67.83
la proiel 28.30% 50.56 (54.38) 53.71 (54.72) 53.87 (56.18) 57.54 45.80 (48.98) 48.52 (50.37) 48.98 (51.44) 53.22
nl lassysmall 28.13% 76.48 (76.25) 77.35 (77.78) 77.63 (77.83) 78.15 71.76 (71.58) 73.90 (74.52) 75.36 (73.88) 74.12
pt 23.69% 77.12 (78.01) 74.89 (75.49) 75.07 (77.75) 82.11 71.06(72.42) 70.01 (70.87) 69.54 (71.37) 77.04
de 23.23% 65.11 (66.94) 63.35 (66.64) 65.13 (66.83) 69.11 62.30 (64.51) 61.90 (64.53) 62.83 (64.99) 66.66
gl treegal 23.00% 62.51 (63.78) 64.09 (63.66) 64.55 (64.48) 65.82 60.51 (62.51) 63.38 (62.28) 63.23 (62.94) 64.30
nl 22.92% 64.56 (65.69) 62.87 (66.86) 64.26 (67.99) 68.90 61.52 (63.79) 61.66 (67.03) 63.07 (66.33) 68.30
got 22.67% 54.07 (57.40) 55.46 (57.71) 56.66 (58.25) 59.81 47.04 (50.99) 48.73 (52.13) 49.44 (52.28) 53.45
hu 21.60% 61.64 (62.72) 60.61 (62.44) 61.94 (63.45) 64.30 56.79 (57.83) 56.18 (59.95) 57.22 (60.18) 60.05
cu 18.93% 58.50 (60.41) 61.17 (62.77) 60.66 (63.62) 62.76 51.25 (54.44) 53.23 (58.40) 54.44 (58.57) 56.21
ur 18.88% 75.91 (76.70) 75.46 (76.46) 75.85 (76.49) 76.69 69.50 (71.22) 69.61 (70.69) 70.06 (71.38) 71.45
sv lines 18.38% 71.48 (72.77) 71.18 (72.58) 72.14 (73.95) 74.29 63.43 (65.56) 64.90 (65.77) 65.84 (67.05) 67.24
et 16.87% 56.02 (56.26) 56.33 (56.57) 56.10 (57.64) 58.79 48.12 (47.91) 47.88 (49.42) 49.42 (51.05) 52.32
da 16.46% 70.23 (72.03) 69.63 (70.24) 70.38 (72.31) 73.38 65.05 (67.83) 64.30 (66.07) 66.11 (69.15) 68.27
sl 15.99% 78.58 (79.85) 78.72 (79.49) 78.72 (79.95) 81.15 75.18 (75.59) 75.11 (76.73) 74.11 (78.28) 78.56
cs cltt 15.76% 68.78 (68.66) 69.97 (70.06) 70.52 (71.30) 71.64 63.95 (64.15) 65.82 (66.12) 66.69 (65.85) 68.59
cs cac 12.74% 79.92 (81.56) 80.10 (81.20) 79.42 (81.18) 82.46 74.47 (75.43) 75.16 (76.38) 74.52 (76.76) 77.34
hi 12.53% 85.29 (85.82) 84.22 (85.56) 84.38 (85.79) 86.77 82.05 (82.56) 81.06 (83.35) 81.98 (83.40) 83.54
sl sst 12.18% 41.45 (42.67) 42.40 (44.15) 41.69 (44.40) 46.45 36.06 (37.91) 38.79 (41.10) 37.76 (40.71) 42.45
tr 12.10% 52.67 (51.56) 52.00 (52.54) 52.78 (52.49) 53.19 41.88 (41.97) 42.46 (43.23) 44.68 (41.59) 42.50
cs 11.98% 77.82 (80.43) 78.13 (79.62) 78.01 (80.36) 82.87 73.57 (77.03) 74.95 (77.10) 74.54 (77.69) 80.47
el 11.62% 76.89 (78.31) 76.67 (77.72) 77.73 (78.67) 79.26 76.56 (75.36) 76.02 (77.34) 75.66 (77.22) 77.52
ar 11.62% 63.79 (64.80) 64.97 (65.04) 64.27 (64.74) 65.30 55.58 (57.69) 57.65 (57.57) 56.82 (57.21) 58.24
kk 11.56% 21.83 (21.75) 18.43 (19.59) 20.08 (22.84) 24.51 15.65 (15.49) 11.85 (12.41) 12.86 (15.44) 16.46
fr 11.54% 78.05 (79.52) 77.70 (78.86) 77.97 (79.43) 80.75 75.14 (75.59) 72.99 (76.50) 74.52 (77.18) 78.03
ca 10.94% 82.94 (83.86) 83.28 (84.02) 83.40 (84.33) 85.39 78.01 (78.83) 78.35 (79.40) 78.97 (78.76) 80.07
ga 10.13% 58.58 (60.29) 60.50 (61.30) 61.34 (62.03) 61.52 56.14 (59.11) 58.89 (59.45) 59.89 (59.89) 60.34
es 10.09% 79.48 (80.42) 79.64 (80.81) 79.71 (80.49) 81.47 77.14 (78.49) 76.83 (78.69) 78.49 (78.33) 79.57
ro 9.74% 76.66 (78.25) 77.51 (78.34) 77.75 (78.92) 79.88 73.01 (74.78) 71.07 (74.48) 73.96 (74.17) 76.16
es ancora 9.65% 81.43 (83.18) 81.99 (82.88) 81.72 (83.21) 83.78 75.74 (77.31) 76.56 (77.04) 75.22 (78.09) 77.37
ko 9.61% 73.70 (74.24) 72.11 (72.80) 72.33 (73.39) 59.09 65.50 (65.22) 63.02 (65.09) 63.02 (64.12) 47.56
ru 9.48% 71.08 (73.84) 72.49 (73.33) 72.17 (74.85) 74.03 58.79 (61.80) 62.84 (62.17) 62.84 (64.24) 63.31
ru syntagrus 9.21% 83.89 (85.33) 84.26 (84.95) 84.17 (85.42) 86.76 78.42 (79.55) 78.97 (80.03) 79.16 (80.42) 82.24
no nynorsk 9.20% 78.69 (79.52) 78.26 (78.78) 78.13 (79.56) 81.56 72.62 (74.25) 74.88 (73.71) 74.01 (75.90) 77.23
hr 9.17% 73.74 (76.08) 73.47 (75.63) 73.61 (75.41) 77.18 67.63 (70.20) 64.86 (71.32) 66.58 (70.73) 72.12
fr sequoia 8.77% 77.22 (78.69) 77.09 (77.61) 78.19 (79.16) 79.98 73.91 (73.91) 74.58 (73.42) 73.29 (76.05) 76.35
uk 7.95% 57.85 (58.67) 58.97 (59.84) 59.80 (61.23) 60.76 50.63 (52.37) 52.42 (53.51) 52.10 (55.04) 54.55
no bokmaal 7.63% 79.81 (80.69) 79.75 (80.37) 80.36 (81.31) 83.27 73.00 (73.28) 73.28 (74.01) 73.37 (75.40) 76.98
fa 7.17% 74.83 (77.89) 74.61 (77.42) 75.94 (77.87) 79.24 67.59 (73.42) 69.42 (72.61) 72.95 (74.64) 74.78
fi ftb 7.02% 70.95 (73.15) 71.07 (72.03) 71.30 (72.75) 74.03 61.66 (66.13) 66.01 (67.56) 65.12 (68.04) 66.85
lv 6.64% 55.54 (57.10) 54.50 (56.76) 56.47 (57.35) 59.95 46.56 (47.83) 48.62 (49.25) 49.49 (50.20) 53.83
fi 6.24% 71.55 (72.37) 70.45 (72.62) 71.53 (72.18) 73.75 65.95 (67.94) 68.26 (68.74) 68.31 (67.56) 65.79
id 5.75% 71.48 (73.78) 72.17 (74.16) 72.49 (74.04) 74.61 62.20 (67.20) 64.43 (66.49) 65.50 (67.38) 66.13
it 4.98% 83.06 (84.68) 83.61 (84.30) 83.74 (84.92) 85.28 73.86 (77.20) 74.47 (76.29) 75.79 (75.08) 77.91
pt br 4.90% 83.59 (84.39) 83.38 (83.92) 83.35 (84.04) 85.36 74.86 (76.47) 73.24 (75.25) 75.40 (75.35) 76.57
ug 4.78% 31.54 (34.02) 33.09 (33.04) 34.40 (34.57) 34.18 23.49 (25.44) 24.01 (23.23) 25.83 (27.13) 25.05
sk 4.34% 70.13 (70.76) 70.76 (70.99) 70.71 (70.69) 72.75 62.65 (64.85) 66.80 (64.59) 63.81 (68.35) 68.35
fr partut 4.25% 75.86 (76.47) 76.81 (77.10) 77.43 (77.97) 77.38 70.48 (71.01) 71.01 (75.07) 69.60 (72.60) 70.13
en partut 4.00% 71.00 (72.61) 71.04 (72.43) 71.78 (73.44) 73.64 65.95 (68.11) 66.52 (67.39) 66.95 (69.40) 68.97
en 3.71% 72.53 (73.56) 72.51 (73.81) 72.29 (73.90) 75.84 59.12 (61.13) 58.95 (63.04) 62.66 (61.95) 63.96
vi 3.25% 36.37 (36.37) 36.11 (37.00) 36.68 (37.47) 37.47 32.17 (31.98) 33.72 (33.14) 35.27 (31.98) 31.59
bg 2.87% 81.24 (82.02) 79.92 (81.32) 80.58 (81.79) 83.64 80.00 (79.67) 76.49 (80.67) 77.66 (78.66) 80.33
sv 2.30% 74.09 (74.67) 73.65 (74.29) 74.24 (75.35) 76.73 69.94 (66.34) 68.42 (69.53) 69.94 (69.67) 71.19
he 1.83% 55.02 (56.58) 54.91 (56.21) 56.33 (56.90) 57.23 55.34 (59.92) 52.29 (56.11) 61.07 (61.45) 61.45
zh 1.40% 53.55 (55.23) 51.65 (53.94) 51.93 (53.11) 57.40 42.11 (47.24) 42.88 (45.70) 45.96 (45.19) 50.58
pl 0.27% 76.80 (78.02) 77.70 (78.09) 77.26 (77.75) 78.78 66.67 (68.75) 81.25 (81.25) 83.33 (70.83) 66.67
gl 0.00% 76.16 (77.43) 77.24 (77.68) 77.04 (78.35) 77.31 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00
ja 0.00% 71.47 (72.38) 63.91 (68.59) 66.96 (71.77) 72.21 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00
Average. 13.76% 67.59 (68.93) 67.56 (68.88) 68.05 (69.55) 70.34 59.51 (61.18) 60.28 (61.98) 61.05 (62.36) 62.75

Table 4: LAS of all sentences and of only non-projective sentences ordered by the ratio of non-projective
sentences in the test data. The scores in brackets are the results with beam search.

94



Sentence Non-proj ratio ASS SES UDpipestatic non-static

All

HIGH 62.07 (63.79) 62.21 (64.34) 62.96 (65.09) 66.42
MID 67.27 (68.30) 67.39 (68.35) 67.64 (69.05) 69.93
LOW 73.23 (74.85) 73.25 (74.50) 73.73 (75.11) 75.19
VERYLOW 67.49 (68.61) 67.09 (68.18) 67.65 (68.80) 69.68

Projective

HIGH 66.38 (67.91) 66.13 (67.92) 66.85 (68.80) 70.25
MID 68.35 (69.27) 68.32 (69.14) 68.59 (69.90) 70.81
LOW 74.17 (75.73) 74.09 (75.31) 74.57 (75.87) 76.06
VERYLOW 67.91 (68.96) 67.46 (68.53) 68.01 (69.14) 70.07

Non-projective

HIGH 57.19 (59.20) 58.02 (60.61) 58.60 (60.98) 62.17
MID 62.04 (63.27) 62.41 (63.99) 63.02 (64.50) 65.22
LOW 66.21 (68.35) 67.28 (68.63) 67.66 (69.47) 68.75
VERYLOW 59.74 (61.39) 60.77 (62.40) 62.56 (62.13) 62.52

1 HIGH (20%-) : grc, la, grc proiel, la ittb, eu, en lines, la proiel, nl lassysmall, pt, de, gl treegal,
nl, got, and hu.

2 MID (10%-20%) : cu, ur sv lines, et, da, sl, cs cltt, cs cac, hi, sl sst, tr, cs, el, ar, kk, fr, ca, ga,
and es.

3 LOW (5%-10%) : ro, es ancora, ko, ru, ru syntagrus, no nynorsk, hr, fr sequoia, uk,
no bokmaal, fa, fi ftb, lv, fi, and id.

4 VERYLOW (0%-5%) : it, pt br, ug, sk, fr rtut, en partut, en, vi, bg, sv, he, zh, and pl.
5 gl and ja are excluded when calculating the scores of “non-projective only” (bottom rows), as

these treebanks only contain projective sentences in their test data.

Table 5: The average LAS on all, only projective, and only non-projective sentences on the grouped
treebanks according to the ratio of non-projective sentences in the test set. The scores in brackets are the
results with beam search.

the ratio of non-projective sentences (Table 5).
When evaluating on all sentences (top rows), we
can see the larger improvements by the non-static
SES in HIGH, MID, and LOW groups (having non-
negligible non-projectivity), which confirms the
above results. Interestingly, for projective sen-
tences only (mid rows) the scores of SES do not
degrade comparing to ASS, or rather improves in
all cases. This suggests our transition system also
helps to recover the projective arcs.

6 Discussion

While the ordinary reordering-based transition
system is built on the arc-standard system, we
choose arc-eager as our basic architecture. One
reason for this is that decomposing the arc-
standard system is more involved than arc-eager;
Gómez-Rodrı́guez and Nivre (2013) observe the
RIGHT-ARC in arc-standard would be divided
into four transitions including a nontrivial UN-
SHIFT operation. Otherwise, we need two dif-
ferent reduce operations for each direction, which
complicates the system and learning.

Though we have seen the empirical advantage,
in terms of the reordering strategy our approach
may not be optimal. Consider the sentence in Fig-
ure 4, which we borrow from Nivre et al. (2009).
Our system needs more swap transitions than the
Nivre et al.’s swap-lazy system for this sentence.

ROOT0 Who1 did2 you3 send4 the5 letter6 to7 ?8

Figure 4: Another non-projective sentence.

In Nivre et al.’s system, swapping Who1 and did2

occurs after you3 is reduced as a dependent of
did2. In our system, due to the right top-down na-
ture of arc-eager, we need to build ROOT0 → did2

before did2 → you3. This means we also need an
additional swap between Who1 and you3.

Past work shows that a smaller number of swap
transitions improves accuracies (Björkelund and
Nivre, 2015), and thus it is an important future
work to revise our system to minimize the nec-
essary swap transitions. Another direction might
be to incorporate our idea to postpone swap tran-
sitions into the arc-standard system, possibly with
the divided system as we did for arc-eager.

In our system each word is once attached,
shifted, and reduced, so the total number of tran-
sitions is 3n plus the number of swap transitions.
This is greater than Nivre et al.’s system, though
we expect this additional cost is not substantial
comparing to the other techniques, e.g., beam

95



search with larger beam sizes.

7 Conclusion

We have shown for incremental non-projective
parsing, explicitly separating the attachment and
reduce transitions alleviates the difficulty of lo-
cal decisions, and leads to higher parsing accura-
cies for both projective and crossing arcs. Non-
projectivity is prevalent in multilingual parsing be-
yond the popular languages in the current NLP
such as English and Chinese. Also incremental
parsing is essential for many online applications,
in particular the speech-oriented systems. In this
paper, we proposed an alternative to the popular
approach for incremental non-projective parsing.
There are much rooms for improvements, and this
is our first step of reconsidering the optimal mech-
anism to handle crossing arcs incrementally.

Acknowledgements

This work was supported by JST CREST Grant
Number JPMJCR1513, Japan.

References
Daniel Andor, Chris Alberti, David Weiss, Aliak-

sei Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Glob-
ally normalized transition-based neural networks.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 2442–2452.
http://www.aclweb.org/anthology/P16-1231.

Giuseppe Attardi. 2006. Experiments with a mul-
tilanguage non-projective dependency parser.
In Proceedings of the Tenth Conference on
Computational Natural Language Learning
(CoNLL-X). Association for Computational
Linguistics, New York City, pages 166–170.
http://www.aclweb.org/anthology/W/W06/W06-
2922.

Miguel Ballesteros, Chris Dyer, Yoav Goldberg, and
Noah A Smith. 2017. Greedy transition-based de-
pendency parsing with stack lstms. Computational
Linguistics .

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Lisbon, Portugal,
pages 349–359. http://aclweb.org/anthology/D15-
1041.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration im-
proves a greedy stack lstm parser. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2005–2010.
https://aclweb.org/anthology/D16-1211.

Anders Björkelund and Joakim Nivre. 2015. Non-
deterministic oracles for unrestricted non-projective
transition-based dependency parsing. In Pro-
ceedings of the 14th International Conference on
Parsing Technologies. Association for Computa-
tional Linguistics, Bilbao, Spain, pages 76–86.
http://www.aclweb.org/anthology/W15-2210.

Bernd Bohnet and Joakim Nivre. 2012. A
transition-based system for joint part-of-speech tag-
ging and labeled non-projective dependency pars-
ing. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning. Association for Computational
Linguistics, Jeju Island, Korea, pages 1455–1465.
http://www.aclweb.org/anthology/D12-1133.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language

96



Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with selec-
tional branching. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Sofia, Bulgaria, pages
1052–1062. http://www.aclweb.org/anthology/P13-
1104.

Michael A. Covington. 2001. A fundamental algorithm
for dependency parsing. In In Proceedings of the
39th Annual ACM Southeast Conference. pages 95–
102.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Haim Gaifman. 1965. Dependency sys-
tems and phrase-structure systems. In-
formation and Control 8(3):304 – 337.
https://doi.org/http://dx.doi.org/10.1016/S0019-
9958(65)90232-9.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for arc-eager dependency parsing. In Proceed-
ings of COLING 2012. The COLING 2012 Orga-
nizing Committee, Mumbai, India, pages 959–976.
http://www.aclweb.org/anthology/C12-1059.

Carlos Gómez-Rodrı́guez and Joakim Nivre.
2013. Divisible transition systems and
multiplanar dependency parsing. Com-
putational Linguistics 39(4):799–845.
http://www.aclweb.org/anthology/J/J13/J13-
4002.pdf.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2011. Incremental joint pos tagging
and dependency parsing in chinese. In Proceedings
of 5th International Joint Conference on Natural
Language Processing. Asian Federation of Natural
Language Processing, Chiang Mai, Thailand, pages
1216–1224. http://www.aclweb.org/anthology/I11-
1136.

Matthew Honnibal and Mark Johnson. 2014. Joint
incremental disfluency detection and depen-
dency parsing. Transactions of the Associ-
ation for Computational Linguistics 2:131–142.
https://transacl.org/ojs/index.php/tacl/article/view/234.

Liang Huang, Suphan Fayong, and Yang Guo.
2012. Structured perceptron with inexact search.

In Proceedings of the 2012 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational
Linguistics, Montréal, Canada, pages 142–151.
http://www.aclweb.org/anthology/N12-1015.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Ryan McDonald, Fernando Pereira, Kiril Ribarov,
and Jan Hajic. 2005. Non-projective depen-
dency parsing using spanning tree algorithms.
In Proceedings of Human Language Technol-
ogy Conference and Conference on Empirical
Methods in Natural Language Processing. As-
sociation for Computational Linguistics, Van-
couver, British Columbia, Canada, pages 523–
530. http://www.aclweb.org/anthology/H/H05/H05-
1066.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT). pages 149–160.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Frank Keller, Stephen
Clark, Matthew Crocker, and Mark Steedman, edi-
tors, Proceedings of the ACL Workshop Incremental
Parsing: Bringing Engineering and Cognition To-
gether. Association for Computational Linguistics,
Barcelona, Spain, pages 50–57.

Joakim Nivre. 2008. Algorithms for deter-
ministic incremental dependency parsing.
Computational Linguistics 34(4):513–553.
http://www.aclweb.org/anthology/J/J08/J08-
4003.pdf.

Joakim Nivre. 2009. Non-projective dependency
parsing in expected linear time. In Proceed-
ings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP. Association for Computa-
tional Linguistics, Suntec, Singapore, pages 351–
359. http://www.aclweb.org/anthology/P/P09/P09-
1040.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Cristina
Bosco, Gosse Bouma, Sam Bowman, Aljoscha Bur-
chardt, Marie Candito, Gauthier Caron, Gülşen
Cebirolu Eryiit, Giuseppe G. A. Celano, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok
Cho, Silvie Cinková, Çar Çöltekin, Miriam Con-
nor, Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Marhaba Eli, Ali

97



Elkahky, Tomaž Erjavec, Richárd Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Cláudia Fre-
itas, Katarı́na Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Filip Ginter, Iakes Goenaga, Koldo
Gojenola, Memduh Gökrmak, Yoav Goldberg,
Xavier Gómez Guinovart, Berta Gonzáles Saave-
dra, Matias Grioni, Normunds Grūzītis, Bruno Guil-
laume, Nizar Habash, Jan Hajič, Jan Hajič jr.,
Linh Hà M, Kim Harris, Dag Haug, Barbora
Hladká, Jaroslava Hlaváčová, Petter Hohle, Radu
Ion, Elena Irimia, Anders Johannsen, Fredrik
Jørgensen, Hüner Kaşkara, Hiroshi Kanayama,
Jenna Kanerva, Tolga Kayadelen, Václava Ket-
tnerová, Jesse Kirchner, Natalia Kotsyba, Si-
mon Krek, Sookyoung Kwak, Veronika Laippala,
Lorenzo Lambertino, Tatiana Lando, Phng Lê Hng,
Alessandro Lenci, Saran Lertpradit, Herman Le-
ung, Cheuk Ying Li, Josie Li, Nikola Ljubešić,
Olga Loginova, Olga Lyashevskaya, Teresa Lynn,
Vivien Macketanz, Aibek Makazhanov, Michael
Mandl, Christopher Manning, Ruli Manurung,
Cătălina Mărănduc, David Mareček, Katrin Marhei-
necke, Héctor Martı́nez Alonso, André Martins,
Jan Mašek, Yuji Matsumoto, Ryan McDonald,
Gustavo Mendonça, Anna Missilä, Verginica Mi-
titelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shunsuke
Mori, Bohdan Moskalevskyi, Kadri Muischnek,
Nina Mustafina, Kaili Müürisep, Pinkey Nain-
wani, Anna Nedoluzhko, Lng Nguyn Th, Huyn
Nguyn Th Minh, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Petya Osenova, Lilja
Øvrelid, Elena Pascual, Marco Passarotti, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Martin
Popel, Lauma Pretkalnia, Prokopis Prokopidis, Ti-
ina Puolakainen, Sampo Pyysalo, Alexandre Rade-
maker, Livy Real, Siva Reddy, Georg Rehm,
Larissa Rinaldi, Laura Rituma, Rudolf Rosa, Davide
Rovati, Shadi Saleh, Manuela Sanguinetti, Baiba
Saulīte, Yanin Sawanakunanon, Sebastian Schus-
ter, Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Atsuko Shimada,
Muh Shohibussirri, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Mária Šimková,
Kiril Simov, Aaron Smith, Antonio Stella, Jana Str-
nadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó,
Dima Taji, Takaaki Tanaka, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Zdeňka Urešová, Larraitz Uria, Hans Uszko-
reit, Gertjan van Noord, Viktor Varga, Veronika
Vincze, Jonathan North Washington, Zhuoran Yu,
Zdeněk Žabokrtský, Daniel Zeman, and Hanzhi
Zhu. 2017. Universal dependencies 2.0 CoNLL
2017 shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre and Daniel Fernández-González. 2014.
Arc-eager parsing with the tree constraint. Compu-
tational linguistics 40(2):259–267.

Joakim Nivre, Marco Kuhlmann, and Johan Hall.

2009. An improved oracle for dependency pars-
ing with online reordering. In Proceedings
of the 11th International Conference on Parsing
Technologies (IWPT’09). Association for Compu-
tational Linguistics, Paris, France, pages 73–76.
http://www.aclweb.org/anthology/W09-3811.

Emily Pitler and Ryan McDonald. 2015. A
linear-time transition system for crossing inter-
val trees. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 662–
671. http://www.aclweb.org/anthology/N15-1068.

Milan Straka, Jan Hajič, Jana Straková, and jr.
Jan Hajič. 2015. Parsing universal dependency tree-
banks using neural networks and search-based ora-
cle. In 14th International Workshop on Treebanks
and Linguistic Theories (TLT 2015). IPIPAN, IPI-
PAN, Warszawa, Poland, pages 208–220.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martı́nez Alonso,
Çağr Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuo-
ran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadová, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonca, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. Conll 2017 shared task:
Multilingual parsing from raw text to universal de-
pendencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies. Association for Compu-
tational Linguistics, Vancouver, Canada, pages 1–
19. http://www.aclweb.org/anthology/K/K17/K17-
3001.pdf.

98



Proceedings of the 15th International Conference on Parsing Technologies, pages 99–104,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Arc-Hybrid Non-Projective Dependency Parsing
with a Static-Dynamic Oracle

Miryam de Lhoneux Sara Stymne Joakim Nivre

Department of Linguistics and Philology
Uppsala University

Abstract

We extend the arc-hybrid transition system
for dependency parsing with a SWAP tran-
sition that enables reordering of the words
and construction of non-projective trees.
Although this extension potentially breaks
the arc-decomposability of the transition
system, we show that the existing dynamic
oracle can be modified and combined with
a static oracle for the SWAP transition. Ex-
periments on five languages with differ-
ent degrees of non-projectivity show that
the new system gives competitive accuracy
and is significantly better than a system
trained with a purely static oracle.

1 Introduction

Non-projective sentences are a notorious prob-
lem in dependency parsing. Traditional algo-
rithms like those developed by Nivre (2003, 2004)
for transition-based parsing only allow the con-
struction of projective trees. These algorithms
make use of a stack, a buffer and a set of arcs,
and parsing consists of performing a sequence of
transitions on these structures. Traditional algo-
rithms have been extended in different ways to al-
low the construction of non-projective trees (Nivre
and Nilsson, 2005; Attardi, 2006; Nivre, 2007;
Gómez-Rodrı́guez and Nivre, 2010). One method
proposed by Nivre (2009) is based on the idea of
word reordering. This is achieved by adding a
transition that swaps two items in the data struc-
tures used, enabling the construction of arbitrary
non-projective trees while still only adding arcs
between adjacent words (after possible reorder-
ing). This technique was previously used in the
arc-standard transition system (Nivre, 2004). The
first contribution of this paper is to show that it
can also be combined with the arc-hybrid system

proposed by Kuhlmann et al. (2011).
Recent advances in dependency parsing have

demonstrated the benefit of using dynamic oracles
for training dependency parsers (Goldberg and
Nivre, 2013). Traditionally, parsers were trained
in a static way and were only exposed to config-
urations resulting from optimal transitions during
training. Dynamic oracles define optimal transi-
tion sequences for any configuration in which the
parser may be. The use of dynamic oracles en-
ables training with exploration of errors, which
mitigates the problem of error propagation at pre-
diction time.

In order to define a dynamic oracle, we need to
be able to compute the cost of any transition in
any configuration, where cost is usually defined as
minimum Hamming loss with respect to the best
tree reachable from that configuration. Goldberg
and Nivre (2013) showed that this computation
is straightforward for transition systems that sat-
isfy the property of arc-decomposability, mean-
ing that a tree is reachable from a configuration
if and only if every arc in the tree is reachable in
itself. Based on this result, they defined dynamic
oracles for the arc-eager (Nivre, 2003), arc-hybrid
(Kuhlmann et al., 2011) and easy-first (Goldberg
and Elhadad, 2010) systems.

Transition systems that allow non-projective
trees are in general not arc-decomposable and
therefore require different methods for con-
structing dynamic oracles (Gómez-Rodrı́guez and
Fernández-González, 2015). The online reorder-
ing system of Nivre (2009) is furthermore based
on the arc-standard system, which is not even
arc-decomposable in itself (Goldberg and Nivre,
2013). The second contribution of this paper is
to show that we can take advantage of the arc-
decomposability of the arc-hybrid transition sys-
tem and extend the existing dynamic oracle to deal
with the added swap transition. The resulting or-

99



acle is static with respect to the new transition
but remains dynamic for all other transitions. We
show experimentally that this static-dynamic ora-
cle gives a significant advantage over the alterna-
tive static oracle and results in competitive results
for non-projective parsing.

2 An Extended Transition System

The arc-hybrid system has configurations of the
form c = (Σ, B,A), where

• Σ is a stack (represented as a list with the
head to the right),

• B is a buffer (represented as a list with the
head to the left),

• A is a set of dependency arcs (represented as
(h, d) pairs).1

Given a sentence W = w1, . . . , wn, the system is
initialized to:

c0 = ([ ], [1, . . . , n, n+1], { })
where n+1 is a special root node, denoted r from
now on. Terminal configurations have the form:

c = ([ ], [r], A)

and the parse tree is given by the arc set A.
The original arc-hybrid system from Kuhlmann

et al. (2011) has three transitions:2

• LEFT[(σ|s0, b|β, A)] =
(σ, b|β, A ∪ {(b, s0)})
• RIGHT[(σ|s1|s0, β, A)] =

(σ|s1, β, A ∪ {(s1, s0)})
• SHIFT[(σ, b|β, A)] = (σ|b, β, A)

There are preconditions such that SHIFT is legal
only if b 6= r, RIGHT only if |Σ| > 1 and LEFT

only if |Σ| > 0. In order to enforce that r has
exactly one dependent, as required by some de-
pendency grammar frameworks, we add a precon-
dition such that LEFT is legal only if |Σ| = 1 or
b 6= r.

In the extended system, we add a SWAP tran-
sition to be able to construct non-projective trees
using online reordering:

1For simplicity, we focus on unlabeled dependency trees
in this paper. All results extend to the labeled case by adding
a label parameter to the LEFT and RIGHT transitions as usual.

2Note that we use uppercase Σ andB to refer to the entire
stack and buffer, respectively, while lowercase σ and β refer
to relevant (possibly empty) sublists of Σ and B.

• SWAP[(σ|s0, b|β, A)] = (σ, b|s0|β, A)

There is a precondition making SWAP legal only if
|Σ| > 0, |B| > 1 and s0 < b.3

The SWAP transition reorders nodes by moving
the item on top of the stack (s0) to the second po-
sition in the buffer, thus inverting the order of s0

and b. The SHIFT and SWAP transitions together
implement a simple sorting algorithm, which al-
lows us to permute the order of nodes arbitrarily.
As shown by (Nivre, 2009), this implies that we
can construct any non-projective tree by reorder-
ing and adding arcs between adjacent nodes using
LEFT and RIGHT.

As already observed, the main advantage of the
arc-hybrid system over the arc-standard system is
that it is arc-decomposable, which allows us to
construct a simple and efficient dynamic oracle.
The arc-eager system (Nivre, 2003) is also arc-
decomposable but cannot be combined with SWAP

because items on the stack in that system do not
necessarily represent disjoint subtrees.

3 A Static-Dynamic Oracle

The dynamic oracle for arc-hybrid parsing defined
by Goldberg and Nivre (2013) computes the cost
of a transition by counting the number of gold arcs
that are made unreachable by applying that tran-
sition. This presupposes that the system is arc-
decomposable, a result that is proven in the same
paper. Our construction of an oracle for arc-hybrid
parsing with online ordering is based on the con-
jecture that we can retain arc-decomposition by
only making SWAP transitions that are necessary
to make non-projective arcs reachable and by en-
forcing all such transitions. Proving this conjec-
ture is, however, outside the scope of this paper.

3.1 Auxiliary Functions and Notation
We assume that gold trees are preprocessed at
training time to compute the following informa-
tion for each input node i:

• PROJ(i) = the position of node i in the pro-
jective order.4

• RDEPS(i) = the set of reachable dependents
of i, initially all dependents of i.

3The last condition is needed to guarantee termination.
4The projective order is a canonical (re)ordering of the

words for which the tree is projective. It is obtained through
an inorder traversal of the tree that respects the local order of
a head and its dependents, as explained in Nivre (2009).

100



• LEFT:
C(LEFT) = |RDEPS(s0)| + [[h(s0) 6= b and s0 ∈ RDEPS(h(s0))]]

Updates: Set RDEPS(s0) = [ ] and remove s0 from RDEPS(h(s0)).

• RIGHT:
C(RIGHT) = |RDEPS(s0)| + [[h(s0) 6= s1 and s0 ∈ RDEPS(h(s0))]]

Updates: Set RDEPS(s0) = [ ] and remove s0 from RDEPS(h(s0)).

• SHIFT:

1. If there exists a node i ∈ B−b such that b < i and PROJ(b) > PROJ(i):

C(SHIFT) = 0
2. Else:

C(SHIFT) = |{d ∈ RDEPS(b) | d ∈ Σ}| + [[h(b) ∈ Σ−s0 and b ∈ RDEPS(h(b))]]

Updates: Remove b from RDEPS(h(b)) if h(b) ∈ Σ−s0 and remove d ∈ Σ from RDEPS(b).

Figure 1: Transition costs and updates. Expressions of the form [[Φ]] evaluate to 1 if Φ is true, 0 otherwise.
We use s0 and s1 to refer to the top and second top item of the stack respectively and we use b to denote
the first item of the buffer. Σ refers to the stack and Σ−s0 to the stack excluding s0 (if Σ is not empty).
B refers to the buffer and B−b to the buffer excluding b.

We use h(i) to denote the head of a node i in the
gold tree.

3.2 Static Oracle for SWAP

Our oracle is fully dynamic with respect to SHIFT,
LEFT and RIGHT but basically static with respect
to SWAP. This means that only optimal (zero cost)
SWAP transitions are allowed during training and
that we force the parser to apply the SWAP transi-
tion when needed.

Optimal: To prevent non-optimal SWAP transi-
tions, we add a precondition so that SWAP is legal
only if PROJ(s0) > PROJ(b).

Forced: To force necessary SWAP transitions, we
bypass the oracle whenever PROJ(s0) > PROJ(b).5

3.3 Dynamic Oracle

Since we use a static oracle for SWAP transitions,
these will always have zero cost. The dynamic or-
acle thus only needs to define costs for the remain-
ing three transitions. To construct the oracle, we
start from the old dynamic oracle for the projective

5This is equivalent to an eager static oracle for SWAP in
the sense of Nivre et al. (2009).

system and extend it to account for the added flex-
ibility introduced by SWAP. Figure 1 defines the
transition costs as well as the necessary updates to
RDEPS after applying a transition.

• LEFT: Adding the arc (b, s0) and popping
s0 from the stack means that s0 will not
be able to acquire a head different from b
nor any of its reachable dependents. In the
old projective case, the loss was limited to a
head in s0|β and dependents in b|β, but be-
cause s0 can potentially be swapped back to
the buffer, we instead define reachability ex-
plicitly through RDEPS(s0) (for dependents)
and RDEPS(h(s0)) (for the head) and update
these accordingly after applying the transi-
tion.

• RIGHT: Adding the arc (s1, s0) and pop-
ping s0 from the stack means that s0 will
not be able to acquire a head different from
s1 nor any of its reachable dependents. In
the old projective case, the loss was limited
to a head and dependents in b|β, but be-
cause s0 can potentially be swapped back to
the buffer, we again define reachability ex-
plicitly through RDEPS(s0) (for dependents)

101



1 2 3 4
s1 s0 b

[ 1 2 ]Σ [ 3 4 ]B RIGHT⇒

1 2 3 4

[ 1 ]Σ [ 3 4 ]B

SHIFT

⇓

1 2 3 4

[ 1 2 3 ]Σ [ 4 ]B

1 2 4 3
s1 s0 b

[ 1 2 ]Σ [ 4 3 ]B

Figure 2: Top left: Configuration with all nodes in projective order and gold tree displayed above the
nodes. Top right: Gold arc lost (the red dotted arc) when applying a RIGHT transition from the top left
configuration. The arc added by the transition is in blue, it is not in the gold tree. Bottom left: Gold arcs
lost (the red dotted arcs) when applying a SHIFT transition from the top left configuration. Bottom right:
Configuration where b is higher in the projective order than a following node in the buffer.

and RDEPS(h(s0)) (for the head) and update
these accordingly after applying the transi-
tion.

• SHIFT: In the projective case, shifting b onto
the stack means that b will not be able to ac-
quire a head in Σ other than the top item s0

nor any dependents in Σ. With the SWAP

transition and a static oracle, we also have
to consider the case where b can later be
swapped back to the buffer, in which case
SHIFT has zero cost. We therefore have two
cases in Figure 1. In the first case, no updates
are needed. In the second case, the updates
are analogous to the old projective case.

To illustrate how the oracle works, let us look at
some hypothetical configurations. First, we can
have a situation as in the top left corner of Fig-
ure 2, where all nodes are in projective order given
the gold tree displayed above the nodes. For sim-
plicity, the nodes are named after their projective
order.

Applying a RIGHT transition in this configura-
tion makes it impossible for s0 (2) to be attached
to its head (3) and therefore makes us lose the arc
3 → 2, as shown in the top right corner. If we
instead apply a SHIFT transition, we lose the arc
between b (3) and its head (1) as well as the arc 3
→ 2, as shown in the bottom left corner. By con-
trast, a LEFT transition has zero cost, because no
arcs are lost so the best tree reachable in the orig-

inal configuration is still reachable after applying
the LEFT transition.

Consider now a configuration, like the one in
the bottom right corner of Figure 2, where the
nodes are not in projective order. Here we can shift
b (4) onto the stack without cost, because it will
later be swapped back to the buffer to restore the
projective order between 4 and 3. A RIGHT tran-
sition makes us lose the head and dependent of s0

(4 → 2 and 2 → 3). A LEFT transition makes us
lose the dependent of s0 (2→ 3).

The combination of a dynamic oracle for LEFT,
RIGHT and SHIFT with a static oracle for SWAP al-
lows us to benefit from training with exploration in
most situations and at the same time capture non-
projective dependencies.

4 Experiments

We extend the parser we used in de Lhoneux et al.
(2017), a greedy transition-based parser that pre-
dicts the dependency tree given the raw words of a
sentence. That parser is itself an extension of the
parser developed by Kiperwasser and Goldberg
(2016). It relies on a BiLSTM to learn informative
features of words in context and a feed-forward
network for predicting the next parsing transition.
It learns vector representations of the words as
well as characters. Contrary to parsing tradition, it
makes no use of part-of-speech tags. We released
our system as UUparser 2.0, available at https:
//github.com/UppsalaNLP/uuparser.

102



We first compare our system, which uses our
static-dynamic oracle, with the same system using
a static oracle. This is to find out if we can benefit
from error exploration using our partially dynamic
oracle. We use the same set of hyperparameters as
in that paper in all our experiments.

We additionally compare our method to a
different approach to handling non-projectivity,
pseudo-projective parsing, as performed in
de Lhoneux et al. (2017). Pseudo-projective
parsing was developed by Nivre and Nilsson
(2005). In a pre-processing step, the training data
is projectivised: some nodes get reattached to
a close parent. Parsed data are then ‘deprojec-
tivised’ in a post-processing step. In order for
information about non-projectivity to be recover-
able after parsing, when projectivising, arcs are
renamed to encode information about the original
parent of dependents which get re-attached.
Note that hyperparameters were tweaked for the
pseudo-projective system, possibly giving an
unfair advantage.

Lastly, we compare to a projective baseline,
using a dynamic oracle but no SWAP transition.6

This is to find out the extent to which dealing with
non-projectivity is important.

We selected a sample of 5 treebanks from the
Universal Dependencies CoNLL 2017 shared task
data (Nivre et al., 2017). We selected languages
to have different frequencies of non-projectivity,
both at the sentence level and at the level of indi-
vidual arcs, ranging from a very high frequency
(Ancient-Greek) to a low frequency (English), as
well as some typological variety. Non-projective
frequencies were taken from Straka et al. (2015)
and are included in Table 1, which report our
results on the development sets (best out of 20
epochs).

Comparing to the static baseline, we can verify
that our static-dynamic oracle really preserves the
benefits of training with error exploration, with
improvements ranging from 0.5 to 3.5 points.
(All differences here are statistically significant
with p<0.01, except for Portuguese, where the
difference is statistically significant with p<0.05
according to the McNemar test).

The new system achieves results largely on par
with the pseudo-projective parser. Our method is
better by a small margin for 3 out of 5 languages

6When training the projective baseline, we removed non-
projective sentences from the training data.

Language %NP S-Dy Static PProj Proj
A.Greek 9.8 / 63.2 59.53 56.04 59.22 46.98
Arabic 0.3 / 8.2 77.08 76.61 76.96 76.55
Basque 5.0 / 33.7 72.27 70.98 74.16 68.85
English 0.5 / 5.0 81.97 81.00 82.21 82.37
Portuguese 1.3 / 18.4 87.34 86.60 87.20 85.39

Table 1: LAS on dev sets with gold tokeniza-
tion for our static-dynamic system (S-Dy), the
static and projective baselines (Static, Proj) and
the pseudo-projective system of de Lhoneux et al.
(2017) (PProj). %NP = percentage of non-
projective arcs/sentences.

and worse by a large margin for 1. Overall, these
results are encouraging given that our method is
simpler and more efficient to train, with no need
for pre- or post-processing and no extension of
the dependency label set.7

Comparing to the projective baseline, we see
that strictly projective parsing can be slightly
better than both online reordering and pseudo-
projective parsing for a language with few
non-projective arcs/sentences like English. For
all other languages, we see small (Arabic) to big
(Ancient Greek) improvements from dealing with
non-projectivity in some way.

5 Conclusion

We have shown how the SWAP transition for on-
line reordering can be integrated into the arc-
hybrid transition system for dependency parsing
in such a way that we still benefit from training
with exploration using a static-dynamic oracle. In
the future, we intend to test this further by eval-
uating our model on more languages with proper
tuning of hyperparameters. We are also interested
in the question of whether it is possible to define
a fully dynamic oracle for our system and allow
exploration for the SWAP transition too.

Acknowledgments

We thank Eli Kiperwasser who took part in the
discussion where the main idea of this paper
emerged. We acknowledge the computational re-
sources provided by CSC in Helsinki and Sigma2
in Oslo through NeIC-NLPL (www.nlpl.eu).

7We made no systematic study of training time but ob-
served that it took roughly half the time to train our parser
compared to the pseudo-projective one.

103



References
Giuseppe Attardi. 2006. Experiments with a multilan-

guage non-projective dependency parser. In Pro-
ceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL). pages 166–
170.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017. From raw text to universal
dependencies - look, no tags! In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies. As-
sociation for Computational Linguistics, Vancouver,
Canada, pages 207–217.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL HLT). pages 742–750.

Yoav Goldberg and Joakim Nivre. 2013. Training de-
terministic parsers with non-deterministic oracles.
Transactions of the Association for Computational
Linguistics 1:403–414.

Carlos Gómez-Rodrı́guez and Daniel Fernández-
González. 2015. An efficient dynamic oracle for
unrestricted non-projective parsing. In ACL-15-
SHORT . pages 256–261.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics
(ACL). pages 1492–1501.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. Transac-
tions of the Association for Computational Linguis-
tics 4:313–327.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). pages
673–682.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT). pages 149–160.

Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering
and Cognition Together (ACL). pages 50–57.

Joakim Nivre. 2007. Incremental non-projective de-
pendency parsing. In Proceedings of Human Lan-
guage Technologies: The Annual Conference of

the North American Chapter of the Association
for Computational Linguistics (NAACL HLT). pages
396–403.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP (ACL-
IJCNLP). pages 351–359.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University,
Prague. http://hdl.handle.net/11234/1-1983.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An improved oracle for dependency parsing with
online reordering. In Proceedings of the 11th
International Conference on Parsing Technologies
(IWPT’09). pages 73–76.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceedings of
the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL). pages 99–106.

Milan Straka, Jan Hajič, Jana Straková, and Jan
Hajič jr. 2015. Parsing universal dependency tree-
banks using neural networks and search-based ora-
cle. In Proceedings of the 14th Workshop on Tree-
banks and Linguistic Theories (TLT).

104



Proceedings of the 15th International Conference on Parsing Technologies, pages 105–114,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Encoder-Decoder Shift-Reduce Syntactic Parsing

Jiangming Liu and Yue Zhang
Singapore University of Technology and Design,

8 Somapah Road, Singapore, 487372
jmliunlp@gmail.com, yue zhang@sutd.edu.sg

Abstract

Encoder-decoder neural networks have
been used for many NLP tasks, such as
neural machine translation. They have
also been applied to constituent parsing
by using bracketed tree structures as a tar-
get language, translating input sentences
into syntactic trees. A more commonly
used method to linearize syntactic trees
is the shift-reduce system, which uses
a sequence of transition-actions to build
trees. We empirically investigate the effec-
tiveness of applying the encoder-decoder
network to transition-based parsing. On
standard benchmarks, our system gives
comparable results to the stack LSTM
parser for dependency parsing, and signifi-
cantly better results compared to the afore-
mentioned parser for constituent parsing,
which uses bracketed tree formats.

1 Introduction

Neural networks have achieved the state-of-the-
art for parsing under various grammar formalisms,
including dependency grammar (Dozat and Man-
ning, 2017), constituent grammar (Dyer et al.,
2016) and CCG (Xu et al., 2016). For transition-
based parsing, Chen and Manning (2014) em-
ployed a feed-forward neural network with cube
activation functions for local action modeling,
archiving better results compared to MaltParser
(Nivre et al., 2007). Subsequent work extend this
method by investigating more complex representa-
tions of configurations (Dyer et al., 2015; Balles-
teros et al., 2015) and global training with beam
search (Zhou et al., 2015; Andor et al., 2016).

Borrowing ideas from neural machine trans-
lation (NMT) (Bahdanau et al., 2015), a line
of work utilizes a bidirectional RNN to en-

code input sentences, using it for feature extrac-
tion, and observing improved performances for
both transition-based (Kiperwasser and Goldberg,
2016; Dyer et al., 2016) and graph-based (Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2017) parsers. In particular, using such encoder
structure, the graph-based parser of Dozat and
Manning (2017) achieves the state-of-the-art re-
sults for dependency parsing.

The success of the encoder structure can be
attributed to the use of multilayer bidirectional
LSTMs to induce non-local representations of
sentences. Without manual feature engineering,
such architecture automatically extracts complex
features for syntactic representation. For neural
machine translation, such encoder structure has
been connected to a corresponding LSTM de-
coder, giving the state-of-the-art for sequence-
to-sequence learning. Compared to carefully de-
signed feature representations, such as the parser
of Chen and Manning (2014) and the stack-LSTM
structure of Dyer et al. (2015), the encoder-
decoder structure is conceptually simpler, and
more general, which can be used across differ-
ent grammar formalisms without redesigning the
stack representation. Vinyals et al. (2015) applied
the encoder-decoder structure to constituent pars-
ing, generating the bracketed syntactic trees as the
output token sequence without model combina-
tion. However, their model achieves relatively low
accuracies.

The advantage of using a decoder LSTM is
that it leverages a recurrent structure for captur-
ing full sequence information in the output. Un-
like greedy or CRF decoders (Durrett and Klein,
2015), which capture only local label dependen-
cies, LSTM decoder models global label sequence
relations. Vinyals et al. (2015) use bracketed syn-
tactic trees as the output token sequence, which re-
quires strong constraints to ensure that the output

105



strings correspond to valid dependency trees. On
the other hand, a more commonly used sequen-
tial representation of syntactic structures is the
transition-action sequences in shift reduce parsers.
For both constituent (Sagae and Lavie, 2005;
Zhang and Clark, 2009) and dependency (Ya-
mada and Matsumoto, 2003; Nivre, 2003) pars-
ing, output syntactic structures can be built using
a sequence of inter-dependent shift-reduce actions,
which convey incremental structural information.

Motivated by the above, we study the effective-
ness of a highly simple encode-decoder structure
for shift-reduce parsing. In particular, the encoder
is used to represent the input sentence and the de-
coder is used to generate a sequence of transi-
tion actions for constructing the syntactic struc-
ture. We additionally use the attention over the
input sequence (Vinyals et al., 2015), but with a
slight modification, taking separate attentions to
represent the stack and queue, respectively.

On standard PTB evaluation, our final model
achieves 93.1% UAS for dependency parsing,
which is comparable to the model of Dyer
et al. (2015), and 90.5% on constituent parsing,
which is 2.2% higher compared to Vinyals
et al. (2015). We release our source code at
https://github.com/LeonCrashCode/
Encoder-Decoder-Parser.

2 Transition-based parsing

Transition-based parsers scan an input sentence
from left to right, incrementally performing a se-
quence of transition actions to predict its parse
tree. Partially-constructed outputs are maintained
using a stack, and the next incoming words are or-
dered in a queue. The initial state consists of an
empty stack and a queue containing the whole in-
put sentence. At each step, a transition action is
taken to consume the input and construct the out-
put. The process repeats until the input queue is
empty and the stack contains only one element,
e.g. a ROOT for dependency parsing, and S for
constituent parsing and CCG parsing.

In this paper, we investigate both dependency
parsing and constituent parsing, which are shown
in Figure 1(a) and (b), respectively. As can be
seen in the figure, the two formalisms render syn-
tactic structures from different perspectives. Cor-
respondingly, the stack structures for transition-
based dependency parsing and constituent parsing
are different. For dependency parsing, the stack

S

VP

NP

red tomatoes

likes

Tom

red tomatoeslikesTom

(a) Constituent tree (b) Dependency tree

.

.

amod
nsubj dobj

punct

Figure 1: Constituent structure and dependency
structure of the sentence “Tom likes red tomatoes.”

contains words directly, while for constituent pars-
ing, the stack contains constituent nodes, which
cover spans of words in a sentence. In addition, the
set of transition actions for building dependency
and constituent structures are highly different, as
shown by the examples in sections 2.1 and 2.2,
respectively. Traditional approaches, such as the
stack LSTM of Dyer et al. (2015, 2016), build dif-
ferent representations of the stack for dependency
and constituent parsing. In contrast, our method is
agnostic to the stack structure, using an encoder-
decoder structure to “translate” input sentences to
output sequences of shift-reduce actions. To this
term, each grammar formalism is reminiscent of a
unique foreign language.

2.1 Dependency parsing
We employ the arc-standard transition system
(Nivre et al., 2007). Formally, a parsing state is
denoted as a tuple (S,Q,L), where S is the stack
[..., s2, s1, s0], Q is the queue containing coming
words, and L is a set of dependency arcs that have
been built. At each step, the parser chooses one of
the following actions:

• SHIFT: pop the front word off the queue, and
push it onto the stack.

• LEFT-ARC(l): add an arc with label l be-
tween the top two trees on the stack (s1 ←
s0) and remove s1 from the stack.

• RIGHT-ARC(l): add an arc with label l be-
tween the top two trees on the stack (s1 →
s0) and remove s0 from the stack.

The arc-standard parser can be summarized as the
deductive system in Figure 2a. For a sentence
with size n, parsing stops after performing ex-
actly 2n − 1 actions. Given a sentence of Figure
1, the sequence of actions SHIFT, SHIFT, LEFT-
ARC(nsubj), SHIFT, SHIFT, LEFT-ARC(amod),
RIGHT-ARC(dobj), SHIFT, RIGHT-ARC(punct),
can be used to construct its dependency tree.

106



Initial State (φ,Q, φ)
Final State (s0, φ, L)

Induction Rules:

SHIFT
(S,q0|Q,L)
(S|q0,Q,L)

LEFT-ARC(L)
(S|s1|s0,Q,L)

(S|s0,Q,L∪s1←s0)

RIGHT-ARC(L)
(S|s1|s0,Q,L)

(S|s1,Q,L∪s1→s0)
(a) Arc-standard dependency parsing.

Initial State (φ,Q, 0)
Final State (s0, φ, 0)

Induction Rules:

SHIFT
(S,q0|Q,n)
(S|q0,Q,n)

NT(X)
(S,Q,n)

(S|e(x),Q,n+1)

REDUCE
(S|e(x)|sj |...|s0,Q,n)

(S|e(x,sj ,...,s0),Q,n−1)

(b) Top-down constituent parsing.

Figure 2: Deduction systems

2.2 Constituent parsing

We employ the top-down transition system of
Dyer et al. (2016) for constituent parsing. For-
mally, a parsing state is denoted as a tuple
(S,Q, n), where S is the stack [..., s2, s1, s0].
Each element in S can be a open nonterminal1,
a completed constituent, or a terminal, Q is the
queue, and n is the number of open nonterminals
on the stack. At each step, the parser chooses one
of the following actions:

• SHIFT: pop the front word off the queue, and
push it onto the stack.

• NT(X): open a nonterminal with label X on
top of the stack.

• REDUCE: repeatedly pop completed subtrees
or terminal symbols from the stack until an
open nonterminal is encountered, and then
this open NT is popped and used as the la-
bel of a new constituent that has the popped
subtrees as its children. This new completed

1An open nonterminal in top-down parsing is a nontermi-
nal waiting to be completed

hs2 hs1 hs0

hq2 hq1 hq0

ha0

ha1

softmax

a1

a1

xjxj-1xj-2

compxi

a0

stack

queue

action

r

l

head

dep

c0 c1 c2

comp

comp

head dep e(r)

c0 c1 c2 e(l)

dependency

constituent

(a)

(b)

(c)

Figure 3: Structure of stack-LSTM with depen-
dency and constituent composition, respectively.

constituent is pushed onto the stack as a sin-
gle composite item.

The top-down parser can be summarized as the de-
ductive system in Figure 2b. Given the sentence in
Figure 1, the sequence of actions NT(S), SHIFT,
NT(V P ), SHIFT, NT(NP ), SHIFT, SHIFT, RE-
DUCE, REDUCE, SHIFT, REDUCE, can be used to
construct its constituent tree.

2.3 Generalization
Both transition systems above can be treated as
examples of a general sequence-to-sequence task.
Formally, given a sentence x1, x2, ..., xn where
xi is the ith word in the sentence, the goal is
to generate a corresponding sequence of actions
a1, a2, ..., am, which correspond to a syntactic
structure. Other shift-reduce parser systems, such
as CCG (Zhang and Clark, 2011a), can be re-
garded as instantiation of this.

3 Baseline

We take two baseline neural parsers, namely the
parser of Dyer et al. (2015, 2016) and the parser
of Vinyals et al. (2015). The former is used to
study the effect of our formalism-independent rep-
resentation, while the latter is used to demon-
strate the advantage of transition action sequences
over bracketed tree structures for encoder-decoder
parsing. We briefly describe the parsers of Dyer
et al. (2015, 2016) in this section, and the struc-
ture of Vinyals et al. (2015) in Sections 4.1 and
4.2.

As shown in Figure 3(a), the parser of Dyer
et al. (2015) consist of three main components:
1) a stack of partial outputs, implemented using
a stack-LSTM, 2) the queue of incoming words
using an LSTM and 3) a list of actions that has
been taken so far encoded by an LSTM. The stack-
LSTM is implemented left to right, the queue

107



LSTM is implemented right to left, and the action
history LSTM in the first-to-last order. The last
hidden states of each LSTM is concatenated and
fed to a softmax layer to determine the next action
given the current state:

p(act) = softmax(W [hs;hq;ha] + b),

where hs, hq and ha denote the last hidden states
of the stack LSTM, the queue LSTM and the ac-
tion history LSTM, respectively.

The stack-LSTM parser represents states on the
stack by task-specific composition functions. We
give the composition by using task-specific com-
position functions for dependency parsing (Dyer
et al., 2015) and constituent parsing (Dyer et al.,
2016) respectively below.

Dependency parsing The composition func-
tion models the dependency arc between a head
and its dependent (i.e., head r→ dep), when a RE-
DUCE action is applied, as shown in Figure 3(b):

comp = tanh(Wcomp[hshead
;hsdep

; e(r)]+bcomp),

where hsh
is the value of the head, hsd

is the value
of the dependent and e(r) is the arc relation em-
bedding. After a LEFT-ARC(r) action is taken,
hsh

and hsd
are removed from the stack-LSTM,

and then comp is push onto the stack-LSTM.
Constituent parsing The composition func-

tion models the constituent spanning their children
(i.e., (l (c2) (c1) (c0))), when a REDUCE action is
applied, as shown in Figure 3(c):

comp = BI-LSTMcomp([hsc2
, hsc1

, hsc0
, e(l)]),

where hsc2
, hsc1

and hsc0
are the value of the chil-

dren on stack, and e(l) is the constituent label em-
bedding. After a REDUCE action is taken, hsc2

,
hsc1

and hsc0
are removed from the stack-LSTM,

and then comp is push onto the stack-LSTM.
It is worth noting that the stack contains over-

lapping information with the action history. This
is because the content of the stack can be inferred
when the action history is given. As a result, the
stack structure of the parser by Dyer et al. (2015)
can be regarded as redundant, serving to extract
the same source of information as features from
a different perspective, given the sequence of ac-
tions that have been applied. Our parser models
only the action sequence, relying on the model to
infer necessary information about the stack auto-
matically.

4 Model

As shown in Figure 4, our model structure con-
sists of two main components, namely encoder
and decoder. The encoder is a bidirectional re-
current neural network, representing information
of the input sentence; the decoder is a different re-
current neural network, used to output a sequence
of transition actions. The encoder can be further
divided into a stack and a queue, respectively, for
transition-based parsing.

4.1 Encoder

We follow Dyer et al. (2015), representing
each word using three different types of em-
beddings including pretrained word embedding,
ewi , which are not fine-tuned during training of
the parser, randomly initialized embeddings ewi ,
which are fine-tuned, and randomly initialized
part-of-speech embeddings epi , which are fine-
tuned. The three embeddings are concatenated,
and then fed to nonlinear layer to derive the final
word embedding:

xi = f(Wenc[epi ; ewi ; ewi ] + benc),

where Wenc and benc are model parameters, wi

and pi denote the form of the POS of the ith input
word, respectively, and f is a nonlinear function.
In this paper, we use ReLu for f .

The encoder is based on bidirectional peephole
connected LSTM (Greff et al., 2016), which takes
sequence of the word embeddings xi as input, and
output the sequence of hidden state hi. Bi-LSTM
is adopted in our models:

hi = [hli ;hri ] = BI-LSTM(xi).

The sequence of hi is fed to the decoder.

4.2 Vanilla decoder

As shown in Figure 4(a), the decoder structure is
similar to that of the decoder of neural machine
translation. It applies an LSTM to generate se-
quences of actions:

sj = g(Wdec[sj−1; eaj−1 ;hattj ] + bdec),

where Wdec and bdec are model parameters, aj−1

is previous action, eaj−1 is the embedding of aj−1,
sj−1 is the LSTM hidden state for aj−1, and sj

108



h1 h2 h3 h4 h5 h6 s1 s2 s3

encoder decoder

stack queue softmax

a2

a1x2 x5x1 x3 x4 x6
ach=3

h1 h2 h3 h4 h5 h6 s1 s2 s3

encoder decoder

softmax

a2

a1x2 x5x1 x3 x4 x6

(a) (b)

Figure 4: Encoder-decoder structure for parsing. (a) vanilla decoder; (b) Stack-queue decoder, where
the stack and the queue are differentiated by ach, which is initialized to the beginning of the sentence
(ach = 0), meaning the stack is empty and queue contains the whole sentence.

is the current LSTM state, from which aj is pre-
dicted. hattj is the result of attention over the en-
coder states h1...hn using the jth decoder state:

hattj = attention(1, n) =
n∑

i=1

αihi (1)

where

αi =
exp(βi)∑n

k=1 exp(βk)
,

and the weight scores β are calculated by using
the previous hidden state sj−1 and corresponding
encoder hidden state h:

βi = UT tanh(Watt · [hi; sj−1] + batt).

sj is used to predict the current action aj :

p(aj |sj) = softmax(Wout ∗ sj + bout)).

Here Watt, batt, Wout, bout are model parameters,
g is a nonlinear activation function. We use the
ReLU for g. For the encoder, the initial hidden
states are randomly initialized model parameters;
For the decoder, the initial LSTM state s0 is the
last the encoder hidden state [hln ;hr1 ].

This vanilla encoder decoder structure is identi-
cal to the method of Vinyals et al. (2015). The only
difference is that we use shift-reduce action as the
output, while Vinyals et al. (2015) use bracketed
string of constituent trees as the output.

4.3 Stack-Queue decoder

We extend the vanilla decoder, using two sepa-
rate attention models over encoder hidden state to
represent the stack and the queue, respectively, as
shown in Figure 4(b). In particular, for a given
state, the encoder is divided into two segments,

with the left segment (i.e. stack segment) contain-
ing words form x1 to the word on top of the stack
xt, and the right segment (i.e. queue segment) con-
taining words from the front of the queue xt+1 to
xn.

Attention is applied to the stack and the queue
segments, respectively. In particular, the represen-
tation of the stack segment is:

hlattj
= attention(1, t) =

t∑
i=1

αihi,

and the representation of the queue segment is:

hrattj
= attention(t+ 1, n) =

n∑
i=t+1

αihi,

where the function attention is the same with
equation (1). Similar with the vanilla decoder, the
hidden unit sj is calculated using:

sj = g(Wdec[sj−1; eaj−1 ;hlattj
;hrattj

] + bdec).

Where g is the same nonlinear function as in
vanilla decoder.

4.4 Training
Our models are trained to minimize a cross-
entropy loss objective with an l2 regularization
term, defined by

L(θ) = −
∑

i

∑
j

log paij +
λ

2
||θ||2,

where θ is the set of parameters, paij is the proba-
bility of the jth action in the ith training example
given by the model and λ is a regularization hyper-
parameter. λ = 10−6. We use stochastic gradient
descent with Adam (Kingma and Ba, 2015) to ad-
just the learning rate.

109



Parameter Value

Encoder LSTM Layer 2
Decoder LSTM Layer 1
Word embedding dim 64
Fixed word embedding dim 100
POS tag embedding dim 6
Label embedding dim 20
Action embedding dim 40
encoder LSTM input dim 100
encoder LSTM hidden dim 200
decoder LSTM hidden dim 400
Attention hidden dim 50

Table 1: Hyper-parameters.

5 Experiments

5.1 Data

We use the standard WSJ sections in PTB (Mar-
cus et al., 1993), where the sections 2-21 are taken
for training data, section 22 for development data
and section 23 for test for both dependency pars-
ing and constituent parsing. For dependency pars-
ing, the constituent trees are converted to Stanford
dependencies (v3.3.0) using the Stanford parser2.
We adopt the pretrained word embeddings gener-
ated on the AFP portion of English Gigaword.

5.2 Hyper-parameters

The hyper-parameter values are chosen according
to the performance of the model on the develop-
ment data for dependency parsing, and final val-
ues are shown in Table 1. For constituent parsing,
we use the same hyper-parameters without further
optimization.

5.3 Development experiments

Table 2 shows the development results on depen-
dency parsing. To verify the effectiveness of at-
tention, we build a baseline using average pooling
instead (SQ decoder + average pooling). We ad-
ditionally build a baseline (SQ decoder + treeL-
STM) that is aware of stack structures, by using a
tree-LSTM (Tai et al., 2015) to derive head node
representations when dependency arcs are built.
Attention on the stack sector are applied only on
words on the stack, but not for their dependents.
This representation is analogous to the stack rep-
resentation of Dyer et al. (2015) and Watanabe and
Sumita (2015).

Results show that the explicit construction of
stack does not bring significant improvements

2https://nlp.stanford.edu/software/lex-parser.shtml

Model UAS (%)

Dyer et al. (2015) 92.3
Vanilla decoder 88.5
SQ decoder + average pooling 91.9
SQ decoder + attention 92.4
SQ decoder + treeLSTM 92.4

Table 2: Dependency parsing dev results.

10 20 30 40 50 60

88

90

92

94

Sentence length

D
ep

en
de

nc
y

ac
cu

ra
cy

(%
)

stack-LSTM
SQ decoder

Figure 5: Accuracy against sentence length in
bins of size 10, where 20 contains sentences with
length [10, 20).

over our stack-agnostic attention model, which
confirms our observation in Section 3 that the ac-
tion history information is sufficient for inferring
the stack structure. Our model achieved this goal
to some extent. The SQ decoder with average
pooling achieves a 3.4% UAS improvement, com-
pared to the vanilla decoder (Section 4.2). The
SQ decoder with attention achieves a further 0.5%
UAS improvement, reaching comparable results to
the stack-LSTM parser.

5.4 Comparison to stack-LSTM

We take a range of different perspectives to an-
alyze the errors distribution of our parser, com-
paring them with stack-LSTM parser (Dyer et al.,
2015). The parsers show different empirical per-
formances over these measures.

Figure 5 shows the accuracy of the parsers rel-
ative to the sentence length. The parsers perform
comparatively better in short sentences. The stack-
LSTM parser performs better on relatively short
sentences (≤ 30), while our parser performs bet-
ter on longer sentences. The composition function
is applied in the stack-LSTM parser to explicitly
represent the partially-constructed trees, ensuring
high precision of short sentences. On the other
hand, errors are also fully represented and accu-
mulated in long sentences. As the sentence grows
longer, it is difficult to capture the stack structure.

110



NN IN NNP DT JJ NNS RB CD VBD VB CC TO VBZ VBN PRP

90

95
co

ns
tit

ue
nt

s
re

ca
ll

(%
)

stack-LSTM
SQ-decoder

Figure 6: Accuracy against part-of-the-speech tags.

2 4 6 8 10 12 14 16

80

85

90

95

Length

Pr
ec

is
io

n
(%

) stack-LSTM
SQ-encdec

Figure 7: Arc precision against dependency
length. The length is defined as the absolute differ-
ence between the indices of the head and modifier.

With stack-queue sensitive attention, SQ decoder
implicitly represent the structures.

Figures 6 and 7 show comparison on various
POS and dependency lengths, respectively. While
the error distributions of the two parsers on the
fine-grained metrics are slightly different, with
our model being stronger on arcs that take rela-
tively more steps to build, the main trends of the
two models are consistent, which shows that our
model can learn similar information compared to
the parser of Dyer et al. (2015), without explicitly
modeling stack information. This verifies the use-
fulness of the decoder on exploiting action history.

5.5 Contrast with Vinyals et al. (2015)

For constituent parsing, our models outperforms
the parser of Vinyals et al. (2015) by differentiat-
ing stack and queue and generating transition ac-
tions instead. This shows the advantage of shift-
reduce actions over bracketed syntactic trees as
decoder outputs. Using the settings tuned on the
dependency development data directly, our model
achieves a F1-score of 90.5, which is comparable
to the models of Zhu et al. (2013) and Socher et al.
(2013). By using the rerankers of Choe and Char-
niak (2016) under the same settings, we obtain a
92.7 F1-score with fully-supervised reranking and
a 93.4 F1-score with semi-supervised reranking.

Model UAS (%) LAS (%)

Graph-based
Kiperwasser and Goldberg (2016) 93.0 90.9
Dozat and Manning (2017) 95.7 94.1
Transition-based
Chen and Manning (2014) 91.8 89.6
Dyer et al. (2015) 93.1 90.9
Kiperwasser and Goldberg (2016)† 93.9 91.9
Andor et al. (2016) 92.9 91.0
Andor et al. (2016)* 94.6 92.8
SQ decoder + attention 93.1 90.1

Table 3: Results for dependency parsing, where *
use global training, † use dynamic oracle.

5.6 Attention visualization

We visualize the attention values during parsing,
as shown in Figure 8. The parser can implicitly
extract the structure features by assigning different
attention value to the elements on stack. In Figure
8(a), “Jones” on the top of stack and “industrials”
on the front of queue dominates the prediction of
SHIFT action. In Figure 8(b), “The” on the top of
stack and “closed” on the front of queue contribute
more to the prediction of LEFT-ARC, which con-
structs an left arc from “industrials” to “The” to
complete dependency of the word “industrials”. In
Figure 8(c), “said” on the top of stack determines
the prediction of NT(SBAR) for a clause. In Fig-
ure 8(d), “of” on the front of queue suggests to
complete the noun phrase of “most”. In Figure
8(e), “their major institutional” on top of the stack
needs the word “investor” on the front of queue to
complete a noun phrase.

Interestingly, these attention values capture in-
formation not only from nodes on the stack, but
also their dependents, achieving similar effects
as the manually defined features of Chen and
Manning (2014) and Kiperwasser and Goldberg
(2016). In addition, the range of features that
our attention mechanism models is far beyond the
manual feature templates, since words even on the

111



stack
The Dow Jones industrials closed at 2569.26 .

queue

Shift

Left-Arc

The

Dow Jones

industrials closed at 2569.26 .

…

(a)

(b)

(c) NP

Traders

said most of their major(VP(S institutional

NT(SBAR)

…said of their major institutional(SBAR (NP… … most investors

,major institutional(PP (NP… of investorstheir

(d)

Reduce

on the …

Shift

(e)

Figure 8: Output examples to visualize attention
values. The grey scale indicates the value of the
attention. (a) (b) are for dependency parsing, and
(c) (d) (e) are for constituent parsing.

bottom of the stack can sometimes influence the
decision, as shown in Figure 8(b). These are worth
noting given that our model does not explicitly
model the stack structure.

The decoder is used to model sequences of ac-
tions globally, and is less influenced by error prop-
agation.

5.7 Final results

We compare the final results with previous re-
lated work under the fully-supervised setting (ex-
cept for pretrained word embeddings), as shown
in Table 3 for dependency parsing, and Table 4
for constituent parsing. For dependency parsing,
our models achieve comparable UAS to the ma-
jority of parsers (Dyer et al., 2015; Kiperwasser
and Goldberg, 2016; Andor et al., 2016).

6 Related work

LSTM encoder structures have been used in both
transition-based and graph-based parsing. Among
transition-based parsers, Kiperwasser and Gold-
berg (2016) use two-layer encoder to encode in-
put sentence, extracting 11 different features from
a given state in order to predict the next transition
action, showing that the encoder structure lead to
significant accuracy improvements over the base-
line parser of Chen and Manning (2014). Among
graph-based parsers, Dozat and Manning (2017)
exploit 4-layer LSTM encoder over the input, us-
ing conceptually simple biaffine attention mecha-
nism to model dependency arcs over the encoder,
resulting in the stat-of-the-art accuracy in depen-

Model F1 (%)

Vinyals et al. (2015) 88.3
Socher et al. (2013) 90.4
Zhu et al. (2013) 90.4
Shindo et al. (2012) 91.1
Dyer et al. (2016) 91.2
Liu and Zhang (2017b) 91.7
Liu and Zhang (2017a) 91.8
Choe and Charniak (2016) + rerank 92.4
Dyer et al. (2016) + rerank 93.3
Liu and Zhang (2017a) + rerank 93.6
SQ decoder + attention 90.5
SQ decoder + attention + rerank 92.7
SQ decoder + attention + semi-rerank 93.4

Table 4: Results for constituent parsing.

dency parsing. Their success forms a strong moti-
vation of our work.

Vinyals et al. (2015) can also be understood
as building a language model over bracket con-
stituent trees. A similar idea is proposed by Choe
and Charniak (2016), who directly use LSTMs to
model such output forms. The language model
is used to rerank candidate trees from a baseline
parser, and trained over large automatically pars-
ing data using tri-training, achieving a current best
results for constituent parsing. Our work is simi-
lar in that it can be regarded as a form of language
model, over shift-reduce actions rather than brack-
eted syntactic trees. Hence, our model can poten-
tially be used for under tri-training settings also.

There has also been a strand of work apply-
ing global optimization to neural network parsing.
Zhou et al. (2015) and Andor et al. (2016) ex-
tend the parser of Zhang and Clark (2011b), using
beam search and early update training. They set
a max-likelihood training objective, using proba-
bility mass in the beam to approximate partition
function of CRF training. Watanabe and Sumita
(2015) study constituent parsing by using a large-
margin objective, where the negative example is
the expected score of all states in the beam for
transition-based parsing. Xu et al. (2016) build
CCG parsing models with a training objective of
maximizing the expected F1 score of all items in
the beam when parsing finishes, under a transition-
based system. More relatedly, Wiseman and Rush
(2016) use beam search and global max-margin
training for the method of Vinyals et al. (2015). In
contrast, we use a greedy local model; our method
is orthogonal to these techniques.

112



7 Conclusion

We adopted a simple encoder-decoder neural net-
work with slight modification for shift-reduce
parsing, regarding the task as translating a sen-
tence into a shift-reduce action sequence, achiev-
ing comparable results to the current state-of-the-
art neural parsers under the same settings. One
advantage of our model is that NMT techniques,
such as scheduled sampling (Bengio et al., 2015),
residual networks (He et al., 2016) and ensemble
mechanisms (Luong et al., 2015), can be directly
applied.

Acknowledgments

We thank the anonymous reviewers for their de-
tailed and constructive comments. Yue Zhang is
the corresponding author.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In ACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with lstms. In
EMNLP.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems. pages 1171–1179.

Danqi Chen and Christopher D. Manning. 2014. A fast
and accurate de- pendency parser using neural net-
works. In EMNLP.

Do Kook Choe and Eugene Charniak. 2016. Parsing as
language modeling. In EMNLP.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. ICLR .

Greg Durrett and Dan Klein. 2015. Neural crf parsing.
In ACL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In ACL.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In NAACL.

Klaus Greff, Rupesh K. Srivastava, Jan Koutnı́k, Bas R.
Steunebrink, and Jürgen Schmidhuber. 2016. Lstm:
A search space odyssey. IEEE transactions on neu-
ral networks and learning systems .

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pages
770–778.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions of
the Association for Computational Linguistics .

Jiangming Liu and Yue Zhang. 2017a. In-order
transition-based constituent parsing. arXiv preprint
arXiv:1707.05000 .

Jiangming Liu and Yue Zhang. 2017b. Shift-Reduce
Constituent Parsing with Neural Lookahead Fea-
tures. Transactions of the Association for Compu-
tational Linguistics 5:45–58.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In EMNLP.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics 19(2):313–330.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In IWPT . Citeseer.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser: A
language-independent system for data-driven de-
pendency parsing. Natural Language Engineering
13(02):95–135.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In IWPT .
Association for Computational Linguistics, pages
125–132.

Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and
Masaaki Nagata. 2012. Bayesian symbol-refined
tree substitution grammars for syntactic parsing.
In ACL. Association for Computational Linguistics,
pages 440–448.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with composi-
tional vector grammars. In ACL. pages 455–465.

113



Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In ACL.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In ICLR.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In ACL. pages
1169–1179.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. In EMNLP.

Wenduan Xu, Michael Auli, and Stephen Clark. 2016.
Expected f-measure training for shift-reduce parsing
with recurrent neural networks. In NAACL. pages
210–220.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In IWPT . volume 3, pages 195–206.

Yue Zhang and Stephen Clark. 2009. Transition-based
parsing of the chinese treebank using a global dis-
criminative model. In IWPT . Association for Com-
putational Linguistics, pages 162–171.

Yue Zhang and Stephen Clark. 2011a. Shift-reduce
ccg parsing. In ACL. Association for Computational
Linguistics, pages 683–692.

Yue Zhang and Stephen Clark. 2011b. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational linguistics 37(1):105–151.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun
Chen. 2015. A neural probabilistic structured-
prediction model for transition-based dependency
parsing. In ACL. pages 1213–1222.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In ACL. pages 434–443.

114



Proceedings of the 15th International Conference on Parsing Technologies, pages 115–121,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Arc-Standard Spinal Parsing with Stack-LSTMs

Miguel Ballesteros
IBM T.J Watson Research Center

Yorktown Heights, NY 10598. U.S.
miguel.ballesteros@ibm.com

Xavier Carreras
Naver Labs Europe

Meylan, France
xavier.carreras@naverlabs.com

Abstract

We present a neural transition-based
parser for spinal trees, a dependency rep-
resentation of constituent trees. The
parser uses Stack-LSTMs that compose
constituent nodes with dependency-based
derivations. In experiments, we show that
this model adapts to different styles of de-
pendency relations, but this choice has lit-
tle effect for predicting constituent struc-
ture, suggesting that LSTMs induce useful
states by themselves.

1 Introduction

There is a clear trend in neural transition sys-
tems for parsing sentences into dependency trees
(Titov and Henderson, 2007; Chen and Manning,
2014; Dyer et al., 2015; Andor et al., 2016) and
constituent trees (Henderson, 2004; Vinyals et al.,
2014; Watanabe and Sumita, 2015; Dyer et al.,
2016; Cross and Huang, 2016b). These transition
systems use a relatively simple set of operations to
parse in linear time, and rely on the ability of neu-
ral networks to infer and propagate hidden struc-
ture through the derivation. This contrasts with
state-of-the-art factored linear models, which ex-
plicitly use of higher-order information to capture
non-local phenomena in a derivation.

In this paper, we present a transition system
for parsing sentences into spinal trees, a type of
syntactic tree that explicitly represents together
dependency and constituency structure. This
representation is inherent in head-driven models
(Collins, 1997) and was used by Carreras et al.
(2008) with a higher-order factored model. We ex-
tend the Stack-LSTMs by Dyer et al. (2015) from
dependency to spinal parsing, by augmenting the
composition operations to include constituent in-
formation in the form of spines. To parse sen-

tences, we use the extension by Cross and Huang
(2016a) of the arc-standard system for dependency
parsing (Nivre, 2004). This parsing system gen-
eralizes shift-reduce methods (Henderson, 2003;
Sagae and Lavie, 2005; Zhu et al., 2013; Watanabe
and Sumita, 2015) to be sensitive to constituent
heads, as opposed to, for example, parse a con-
stituent from left to right.

In experiments on the Penn Treebank, we look
at how sensitive our method is to different styles of
dependency relations, and show that spinal mod-
els based on leftmost or rightmost heads are as
good or better than models using linguistic de-
pendency relations such as Stanford Dependen-
cies (De Marneffe et al., 2006) or those by Ya-
mada and Matsumoto (2003). This suggests that
Stack-LSTMs figure out effective ways of model-
ing non-local phenomena within constituents. We
also show that turning a dependency Stack-LSTM
into spinal results in some improvements.

2 Spinal Trees

In a spinal tree each token is associated with a
spine. The spine of a token is a (possibly empty)
vertical sequence of non-terminal nodes for which
the token is the head word. A spinal dependency
is a binary directed relation from a node of the
head spine to a dependent spine. In this paper we
consider projective spinal trees. Figure 1 shows
a constituency tree from the Penn Treebank to-
gether with two spinal trees that use alternative
head identities: the spinal tree in 1b uses Stanford
Dependencies (De Marneffe et al., 2006), while
the spinal tree in 1c takes the leftmost word of
any constituent as the head. It is direct to map a
constituency tree with head annotations to a spinal
tree, and to map a spinal tree to a constituency or
a dependency tree.

115



S

·VP

ADVP

deep

run

NP

PP

NP

othereach

of

NP

suspicionstheir

And

(a) A constituency tree from the Penn Treebank.

And their suspicions of each other run deep .

NP

NP

PP

NP

VP

S

ADVP

s s

s

s

s s

(b) The spinal tree of (1a) using Stanford Dependency heads.

And their suspicions of each other run deep .

S

NP

NP

PP

NP

VP

ADVP

sss

s s
s

s s

(c) The spinal tree of (1a) using leftmost heads.

Figure 1: A constituency tree and two spinal trees.

3 Arc-Standard Spinal Parsing

We use the transition system by Cross and Huang
(2016a), which extends the arc-standard system by
Nivre (2004) for constituency parsing in a head-
driven way, i.e. spinal parsing. We describe it
here for completeness. The parsing state is a tu-
ple 〈β, σ, δ〉, where β is a buffer of input tokens
to be processed; σ is a stack of tokens with partial
spines; and δ is a set of spinal dependencies. The
operations are the following:

• shift : 〈i:β, σ, δ〉 → 〈β, σ:i, δ〉
Shifts the first token of the buffer i onto the
stack, i becomes a base spine consisting of a
single token.

• node(n) : 〈β, σ:s, δ〉 → 〈β, σ:s+n, δ〉
Adds a non-terminal node n onto the top el-
ement of the stack s, which becomes s+n.
At this point, the node n can receive left and
right children (by the operations below) until
the node is closed (by adding a node above,
or by reducing the spine with an arc opera-
tion with this spine as dependent). By this

Transition Buffer β Stack σ New Arc in δ
[And, their, . . . ] []

shift [their, suspicions, . . . ] [And]
shift [suspicions, of, . . . ] [And, their]
shift [of, each, . . . ] [. . . , their, susp.]
node(NP) [of, each, . . . ] [. . . , their, susp.+NP1

3]
left-arc [of, each, . . . ] [And, susp.+NP1

3] (NP1
3,their)

node(NP) [of, each, . . . ] [And, susp.+NP1
3+NP2

3]
shift [each, other, . . . ] [. . . , susp.+NP1

3+NP2
3, of]

node(PP) [each, other, . . . ] [. . . , susp.+NP1
3+NP2

3, of+PP1
4]

shift [other, run, . . . ] [. . . , of+PP1
4, each]

shift [run, deep, . . . ] [. . . , each, other]
node(NP) [run, deep, . . . ] [. . . , each, other+NP1

6]
left-arc [run, deep, . . . ] [. . . , of+PP1

4, other+NP1
6] (NP1

6, each)
right-arc [run, deep, . . . ] [. . . , susp.+NP1

3+NP2
3, of+PP1

4] (PP1
4, NP1

6)
right-arc [run, deep, . . . ] [And, susp.+NP1

3+NP2
3] (NP2

3, PP1
4)

. . .

Figure 2: Initial steps of the arc-standard deriva-
tion for the spinal tree in Figure 1b, until the tree
headed at “suspicions” is fully built. Spinal nodes
are noted nj

i , where n is the non-terminal, i is the
position of the head token, and j is the node level
in the spine.

single operation, the arc-standard system is
extended to spinal parsing.

• left-arc :
〈β, σ:t:s+n, δ〉 → 〈β, σ:s+n, δ∪(n, t)〉
The stack must have two elements, the top
one is a spine s+n, where n is the top node
of that spine, and the second element t can
be a token or a spine. The operation adds a
spinal from the node n to t, and t is reduced
from the stack. The dependent t becomes the
leftmost child of the constituent n.

• right-arc :
〈β, σ:s+n:t, δ〉 → 〈β, σ:s+n, δ∪(n, t)〉
This operation is symmetric to left-arc, it
adds a spinal dependency from the top node
n of the second spine in the stack to the top
element t, which is reduced from the stack
and becomes the rightmost child of n.

At a high level, the system builds a spinal tree
headed at token i by:

1. Shifting the i-th token to the top of the stack.
By induction, the left children of i are in the
stack and are complete.

2. Adding a constituency node n to i’s spine.
3. Adding left children to n in head-outwards

order with left-arc, which are removed
from the stack.

4. Adding right children to n in head-outwards
order with right-arc, which are built re-
cursively.

5. Repeating steps 2-4 for as many nodes in the
spine of i.

116



Figure 2 shows an example of a derivation. The
process is initialized with all sentence tokens in the
buffer, an empty stack, and an empty set of depen-
dencies. Termination is always attainable and oc-
curs when the buffer is empty and there is a single
element in the stack, namely the spine of the full
sentence head. This transition system is correct
and sound with respect to the class of projective
spinal trees, in the same way as the arc-standard
system is for projective dependency trees (Nivre,
2008). A derivation has 2n+m steps, where n is
the sentence length and m is the number of con-
stituents in the derivation.

We note that the system naturally handles con-
stituents of arbitrary arity. In particular, unary
productions add one node in the spine without
any children. In practice we put a hard bound
on the number of consecutive unary productions
in a spine1, to ensure that in the early training
steps the model does not generate unreasonably
long spines. We also note there is a certain de-
gree of non-determinism: left and right arcs (steps
3 and 4) can be mixed as long as the children of a
node are added in head-outwards order. At train-
ing time, our oracle derivations impose the order
above (first left arcs, then right arcs), but the pars-
ing system runs freely. Finally, the system can be
easily extended with dependency labels, but we do
not use them.

4 Spinal Stack-LSTMs

Dyer et al. (2015) presented an arc-standard
parser that uses Stack-LSTMs, an extension of
LSTMs (Hochreiter and Schmidhuber, 1997) for
transition-based systems that maintains an embed-
ding for each element in the stack.2. Our model is
based on the same architecture, with the addition
of the node(n) action. The state of our algo-
rithm presented in Section 3 is represented by the
contents of the STACK, the BUFFER and a list with
the history of actions with Stack-LSTMs. This
state representation is then used to predict the next
action to take.

Composition: when the parser predicts a
left-arc() or right-arc(), we com-
pose the vector representation of the head and
dependent elements; this is equivalent to what
it is presented by Dyer et al. (2015). The

1Set to 10 in our experiments
2We refer interested readers to (Dyer et al., 2015; Balles-

teros et al., 2017).

representation is obtained recursively as follows:

c = tanh (U[h;d] + e) .

where U is a learned parameter matrix, h repre-
sents the head spine and d represents the depen-
dent spine (or token, if the dependent is just a sin-
gle token) ; e is a bias term.

Similarly, when the parser predicts a node(n)
action, we compose the embedding of the non-
terminal symbol that is added (n) with the repre-
sentation of the element at the top of the stack (s),
that might represent a spine or a single terminal
symbol. The representation is obtained recursively
as follows:

c = tanh (W[s;n] + b) . (1)

where W is a learned parameter matrix, s repre-
sents the token in the stack (and its partial spine, if
non-terminals have been added to it) and n repre-
sents the non-terminal symbol that we are adding
to s; b is a bias term.

As shown by Kuncoro et al. (2017) composition
is an essential component in this kind of parsing
models.

5 Related Work

Collins (1997) first proposed head-driven deriva-
tions for constituent parsing, which is the key idea
for spinal parsing, and later Carreras et al. (2008)
came up with a higher-order graph-based parser
for this representation. Transition systems for
spinal parsing are not new. Ballesteros and Car-
reras (2015) presented an arc-eager system that
labels dependencies with constituent nodes, and
builds the spinal tree in post-processing. Hayashi
et al. (2016) and Hayashi and Nagata (2016) pre-
sented a bottom-up arc-standard system that as-
signs a full spine with the shift operation, while
ours builds spines incrementally and does not de-
pend on a fixed set of full spines. Our method
is different from shift-reduce constituent parsers
(Henderson, 2003; Sagae and Lavie, 2005; Zhu
et al., 2013; Watanabe and Sumita, 2015) in that it
is head-driven. Cross and Huang (2016a) extended
the arc-standard system to constituency parsing,
which in fact corresponds to spinal parsing. The
main difference from that work relies on the neu-
ral model: they use sequential BiLSTMs, while we
use Stack-LSTMs and composition functions. Fi-
nally, dependency parsers have been extended to

117



LR LP F1 UAS (SD)

Leftmost heads 91.18 90.93 91.05 -
Leftmost h., no n-comp 90.20 90.76 90.48 -
Rightmost heads 91.03 91.20 91.11 -
Rightmost h., no n-comp 90.64 91.24 90.04 -
SD heads 90.75 91.11 90.93 93.49
SD heads, no n-comp 90.38 90.58 90.48 93.16
SD heads, dummy spines - - - 93.30
YM heads 90.82 90.84 90.83 -

Table 1: Development results for spinal models,
in terms of labeled precision (LP), recall (LR)
and F1 for constituents, and unlabeled attach-
ment score (UAS) against Stanford dependencies.
Spinal models are trained using different head an-
notations (see text). Models labeled with “no n-
comp” do not use node compositions. The model
labeled with “dummy spines” corresponds to a
standard dependency model.

constituency parsing by encoding the additional
structure in the dependency labels, in different
ways (Hall et al., 2007; Hall and Nivre, 2008;
Fernández-González and Martins, 2015).

6 Experiments

We experiment with stack-LSTM spinal models
trained with different types of head rules. Our goal
is to check how the head identities, which define
the derivation sequence, interact with the ability
of Stack-LSTMs to propagate latent information
beyond the local scope of each action. We use the
Penn Treebank (Marcus et al., 1993) with standard
splits.3

We start training four spinal models, varying the
head rules that define the spinal derivations:4

• Leftmost heads as in Figure 1c.
• Rightmost heads.
• Stanford Dependencies (SD) (De Marneffe

et al., 2006), as in Figure 1b.
• Yamada and Matsumoto heads (YM) (Ya-

mada and Matsumoto, 2003).

Table 1 presents constituency and dependency
metrics on the development set. The model using
rightmost heads works the best at 91.11 F1, fol-
lowed by the one using leftmost heads. It is worth
to note that the two models using structural head

3We use the the same POS tags as Dyer et al. (2015).
4It is simple to obtain a spinal tree given a constituency

tree and a corresponding dependency tree. We assume that
the dependency tree is projective and nested within the con-
stituency tree, which holds for the head rules we use.

identities (right or left) work better than those us-
ing linguistic ones. This suggests that the Stack-
LSTM model already finds useful head-child rela-
tions in a constituent by parsing from the left (or
right) even if there are non-local interactions. In
this case, head rules are not useful.

The same Table 1 shows two ablation studies.
First, we turn off the composition of constituent
nodes into the latent derivations (Eq 1). The ab-
lated models, tagged with “no n-comp”, perform
from 0.5 to 1 points F1 worse, showing the ben-
efit of adding constituent structure. Then, we
check if constituent structure is any useful for de-
pendency parsing metrics. To this end, we em-
ulate a dependency parser using a spinal model
by taking standard Stanford dependency trees and
adding a dummy constituent for every head with
all its children. This model, tagged “SD heads,
dummy spines”, is slightly outperformed by the
“SD heads” model using true spines, even though
the margin is small.

Tables 2 and 3 present results on the test,
for constituent and dependency parsing respec-
tively. As shown in Table 2 our model is com-
petitive compared to the best parsers; the genera-
tive parsers by Choe and Charniak (2016b), Dyer
et al. (2016) and Kuncoro et al. (2017) are better
than the rest, but compared to the rest our parser
is at the same level or better. The most similar
system is by Ballesteros and Carreras (2015) and
our parser significantly improves the performance.
Considering dependency parsing, our model is
worse than the ones that train with exploration as
Kiperwasser and Goldberg (2016) and Ballesteros
et al. (2016), but it slightly improves the parser by
Dyer et al. (2015) with static training. The sys-
tems that calculate dependencies by transforming
phrase-structures with conversion rules and that
use generative training are ahead compared to the
rest.

7 Conclusions

We have presented a neural model based on Stack-
LSTMs for spinal parsing, using a simple exten-
sion of arc-standard transition parsing that adds
constituent nodes to the dependency derivation.
Our experiments suggest that Stack-LSTMs can
figure out useful internal structure within con-
stituents, and that the parser might work bet-
ter without providing linguistically-derived head
words. Overall, our spinal neural method is sim-

118



LR LP F1
Spinal (leftmost) 90.30 90.54 90.42
Spinal (rightmost) 90.23 90.77 90.50
Ballesteros and Carreras (2015) 88.7 89.2 89.0
Vinyals et al. (2014) (PTB-Only) 88.3
Cross and Huang (2016a) 89.9
Choe and Charniak (2016a) (PTB-Only) 91.2
Choe and Charniak (2016a) (Semi-sup) 93.8
Dyer et al. (2016) (Discr.) 91.2
Dyer et al. (2016) (Gen.) 93.3
Kuncoro et al. (2017) (Gen.) 93.5
Liu and Zhang (2017) 91.3 92.1 91.7

Table 2: Constituency results on the PTB test set.

UAS test
Spinal, PTB spines + SD (TB-greedy) 93.15
Spinal, dummy spines + SD (TB-greedy) 93.10
Dyer et al. (2015) (TB-greedy) 93.1
Cross and Huang (2016a) 93.4
Ballesteros et al. (2016) (TB-dynamic) 93.6
Kiperwasser and Goldberg (2016) (TB-dynamic) 93.9
Andor et al. (2016) (TB-Beam) 94.6
Kuncoro et al. (2016) (Graph-Ensemble) 94.5
Choe and Charniak (2016a)* (Semi-sup) 95.9
Kuncoro et al. (2017)* (Generative) 95.8

Table 3: Stanford Dependency results (UAS) on
PTB test set. Parsers marked with * calculate de-
pendencies by transforming phrase-structures with
conversion rules.

ple, efficient, and very accurate, and might prove
useful to model constituent trees with dependency
relations.

References
Daniel Andor, Chris Alberti, David Weiss, Aliak-

sei Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Glob-
ally normalized transition-based neural networks.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 2442–2452.
http://www.aclweb.org/anthology/P16-1231.

Miguel Ballesteros and Xavier Carreras. 2015.
Transition-based spinal parsing. In Proceedings
of the Nineteenth Conference on Computa-
tional Natural Language Learning. Association
for Computational Linguistics, pages 289–299.
https://doi.org/10.18653/v1/K15-1029.

Miguel Ballesteros, Chris Dyer, Yoav Goldberg, and
Noah Smith. 2017. Greedy transition-based depen-
dency parsing with stack lstms. Computational Lin-
guistics 43(2).

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration im-
proves a greedy stack lstm parser. In Proceedings of

the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2005–2010.
https://aclweb.org/anthology/D16-1211.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
CoNLL 2008: Proceedings of the Twelfth Confer-
ence on Computational Natural Language Learn-
ing, Coling 2008 Organizing Committee, chapter
TAG, Dynamic Programming, and the Perceptron
for Efficient, Feature-Rich Parsing, pages 9–16.
http://aclweb.org/anthology/W08-2102.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Do Kook Choe and Eugene Charniak. 2016a. Pars-
ing as language modeling. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2331–2336.
https://aclweb.org/anthology/D16-1257.

Kook Do Choe and Eugene Charniak. 2016b. Pars-
ing as language modeling. In Proceedings
of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 2331–2336.
http://aclweb.org/anthology/D16-1257.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of
the 35th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Madrid, Spain, pages 16–23.
https://doi.org/10.3115/976909.979620.

James Cross and Liang Huang. 2016a. Incre-
mental parsing with minimal features using bi-
directional lstm. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 32–37.
https://doi.org/10.18653/v1/P16-2006.

James Cross and Liang Huang. 2016b. Span-based
constituency parsing with a structure-label system
and provably optimal dynamic oracles. In Pro-
ceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associ-
ation for Computational Linguistics, pages 1–11.
http://aclweb.org/anthology/D16-1001.

Marie-Catherine De Marneffe, Bill MacCartney,
Christopher D Manning, et al. 2006. Generat-
ing typed dependency parses from phrase structure
parses. In Proceedings of LREC. Genoa, volume 6,
pages 449–454.

119



Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 199–209.
http://www.aclweb.org/anthology/N16-1024.

Daniel Fernández-González and T. André F. Mar-
tins. 2015. Parsing as reduction. In Proceed-
ings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1523–1533.
https://doi.org/10.3115/v1/P15-1147.

Johan Hall and Joakim Nivre. 2008. Proceed-
ings of the Workshop on Parsing German, Asso-
ciation for Computational Linguistics, chapter A
Dependency-Driven Parser for German Dependency
and Constituency Representations, pages 47–54.
http://aclweb.org/anthology/W08-1007.

Johan Hall, Joakim Nivre, and Jens Nilsson. 2007.
Proceedings of the 16th Nordic Conference of
Computational Linguistics (NODALIDA 2007),
University of Tartu, Estonia, chapter A Hy-
brid Constituency-Dependency Parser for Swedish,
pages 284–287. http://aclweb.org/anthology/W07-
2444.

Katsuhiko Hayashi and Masaaki Nagata. 2016.
Empty element recovery by spinal parser op-
erations. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 95–100.
https://doi.org/10.18653/v1/P16-2016.

Katsuhiko Hayashi, Jun Suzuki, and Masaaki Nagata.
2016. Shift-reduce spinal tag parsing with dynamic
programming. Transactions of the Japanese Society
for Artificial Intelligence 31(2).

James Henderson. 2003. Inducing history representa-
tions for broad coverage statistical parsing. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology - Vol-
ume 1. Association for Computational Linguistics,
Stroudsburg, PA, USA, pages 24–31.

James Henderson. 2004. Discriminative train-
ing of a neural network statistical parser. In
Proceedings of the 42nd Meeting of the Asso-
ciation for Computational Linguistics (ACL’04),
Main Volume. Barcelona, Spain, pages 95–102.
https://doi.org/10.3115/1218955.1218968.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing
using bidirectional lstm feature represen-
tations. Transactions of the Association
for Computational Linguistics 4:313–327.
https://transacl.org/ojs/index.php/tacl/article/view/885.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proceedings
of the 15th Conference of the European Chapter
of the Association for Computational Linguistics:
Volume 1, Long Papers. Association for Compu-
tational Linguistics, Valencia, Spain, pages 1249–
1258. http://www.aclweb.org/anthology/E17-1117.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an ensemble of greedy dependency parsers
into one mst parser. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 1744–1753.
https://aclweb.org/anthology/D16-1180.

Jiangming Liu and Yue Zhang. 2017. Shift-reduce
constituent parsing with neural lookahead features.
Transactions of the Association of Computational
Linguistics 5:45–58. http://aclanthology.coli.uni-
saarland.de/pdf/Q/Q17/Q17-1004.pdf.

Mitchell P. Marcus, Beatrice Santorini, and Mary A.
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics 19(2):313–330.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Frank Keller, Stephen
Clark, Matthew Crocker, and Mark Steedman, edi-
tors, Proceedings of the ACL Workshop Incremental
Parsing: Bringing Engineering and Cognition To-
gether. Association for Computational Linguistics,
Barcelona, Spain, pages 50–57.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics 34(4):513–553.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proceed-
ings of the Ninth International Workshop on Parsing
Technology. Association for Computational Linguis-
tics, Vancouver, British Columbia, pages 125–132.

120



http://www.aclweb.org/anthology/W/W05/W05-
1513.

Ivan Titov and James Henderson. 2007. A la-
tent variable model for generative dependency
parsing. In Proceedings of the Tenth Inter-
national Conference on Parsing Technolo-
gies. Association for Computational Linguis-
tics, Prague, Czech Republic, pages 144–155.
http://www.aclweb.org/anthology/W/W07/W07-
2218.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav
Petrov, Ilya Sutskever, and Geoffrey E. Hinton.
2014. Grammar as a foreign language. CoRR
abs/1412.7449. http://arxiv.org/abs/1412.7449.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1169–
1179. http://www.aclweb.org/anthology/P15-1113.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of IWPT . volume 3, pages
195–206.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min
Zhang, and Jingbo Zhu. 2013. Fast and ac-
curate shift-reduce constituent parsing. In Pro-
ceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 434–443.
http://www.aclweb.org/anthology/P13-1043.

121



Proceedings of the 15th International Conference on Parsing Technologies, pages 122–127,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Coarse-To-Fine Parsing for Expressive Grammar Formalisms

Christoph Teichmann and Alexander Koller
Saarland University, Saarbrücken

{cteichmann|koller}@coli.uni-saarland.de

Jonas Groschwitz
Macquarie University, Sydney

jonas.groschwitz@students.mq.edu.au

Abstract

We generalize coarse-to-fine parsing to
grammar formalisms that are more ex-
pressive than PCFGs and/or describe lan-
guages of trees or graphs. We evaluate
our algorithm on PCFG, PTAG, and graph
parsing. While we achieve the expected
performance gains on PCFGs, coarse-to-
fine does not help for PTAG and can even
slow down parsing for graphs. We discuss
the implications of this finding.

1 Introduction

Coarse-to-fine (CTF) parsing (Charniak et al.,
2006) is one of the most effective pruning tech-
niques for PCFG parsing. Its basic idea is to sim-
plify a grammar by systematically merging non-
terminals together. One then parses the input with
the simple grammar, and uses statistics calculated
from the resulting parse chart to constrain parsing
with the original grammar. This can speed up pars-
ing by an order of magnitude at no loss in accuracy
(Charniak et al., 2006; Petrov and Klein, 2007).

We present an algorithm for CTF parsing for
grammar formalisms that are more expressive than
PCFGs – to our knowledge, for the first time.
More precisely, we extend CTF parsing to In-
terpreted Regular Tree Grammars (IRTGs, Koller
and Kuhlmann (2011)), a very general grammar
formalism which captures PCFGs, tree-adjoining
grammars (TAGs, Joshi and Schabes (1997)),
hyperedge replacement graph grammars (HRGs,
Chiang et al. (2013)), and many others. Our direct
application of CTF to expressive grammar formal-
ism contrasts with related work (van Cranenburgh,
2012; Zhang and Krieger, 2011) which limits en-
tries for the parse chart of the expressive formal-
ism using the parse chart of a PCFG approxima-
tion.

We then evaluate our generalized CTF algo-
rithm on a number of grammar formalisms. On
PCFGs, we obtain the expected speedups. How-
ever, we observe no speedups for TAG parsing
compared to unpruned parsing, and HRG parsing
on abstract meaning representations (Banarescu
et al., 2013) is even slowed down by CTF. We dis-
cuss these findings and show how the efficacy of
CTF parsing relies on specific properties of PCFG
grammars derived from treebanks. Because these
properties do not depend on the specifics of our
formalism, they would generalize to formalism
specific implementations of CTF for TAG or HRG.

2 Interpreted Regular Tree Grammars

Interpreted Regular Tree Grammars (IRTGs,
Koller and Kuhlmann (2011)) generalize a wide
range of grammar formalisms, including (prob-
abilistic) context-free grammars (PCFGs), tree-
adjoining grammars (Joshi and Schabes, 1997;
Koller and Kuhlmann, 2012), hyperedge replace-
ment grammars (Chiang et al., 2013; Groschwitz
et al., 2015), as well as synchronous and trans-
ducer versions of these formalisms. They achieve
this by distinguishing carefully between the gener-
ation of grammatical derivation trees and the way
in which these derivation trees are interpreted as
values of some algebra.

Formally, a (monolingual) IRTG G = (G, h,A)
consists of a weighted regular tree grammar (RTG,
(Comon et al., 2007)) G over some signature Σ
of node labels, an algebra A over some signature
∆ into which the derivation trees are interpreted,
and a tree homomorphism h : TΣ → T∆ that
maps derivation trees into terms over the algebra.
The RTG G generates a language L(G) ⊆ TΣ of
derivation trees. Based on these, the language of
the IRTG, L(G) = {Jh(t)KA | t ∈ L(G)}, is ob-
tained by mapping each derivation tree t ∈ L(G)

122



into a term h(t) over the algebra, and then evalu-
ating this term in the algebra.

Fig. 1 shows a simple IRTG. The RTG G is
shown on the left; it derives, among others, the
derivation tree t = r1(r4, r2(r6, r5)) ∈ L(G).
The tree homomorphism shown on the right maps
this to the term h(t) = ∗(john, ∗(loves,mary)).
By evaluating this term over a string algebra A
which interprets the symbol ∗ as string concate-
nation, we obtain “John loves Mary” ∈ L(G). For
simplicity we will identify rules of G with their
labels, i.e. we simply write r1 for the first rule in
Fig. 1.

IRTGs can capture different grammar for-
malisms by varying the algebra into which deriva-
tion trees are interpreted. For instance, TAG re-
quires a string algebra with a string wrapping op-
eration (Koller and Kuhlmann, 2012). It is also
possible to extend the IRTG formalism in order to
allow for multiple homomorphisms and algebras,
which is useful for mapping between inputs and
outputs and can be used e.g. in semantic parsing
(Koller, 2015).

Grammars from different formalisms also tend
to vary in the complexity of the homomorphism h.
For instance, all binary rules of a PCFG in CNF
map to simple concatenation (cf. r1, r2 in Fig. 1).
By contrast, IRTG encodings of TAG grammars
can use h to associate entire elementary trees with
a single rule.

Parsing for IRTGs proceeds in three steps. First,
given an input object w ∈ A, we compute a
decomposition grammar Dw which generates all
terms overA that evaluate to w. Then we compute
the inverse homomorphism (invhom) ofDw, i.e. an
RTG Iw with L(Iw) = {t ∈ TΣ | h(t) ∈ L(Dw)}.
This RTG thus describes all derivation trees that
are interpreted to w. Finally, we intersect Iw with
G - the RTG from G, obtaining an RTG M –
the parse chart – which compactly describes the
grammatically correct derivation trees. Similar to
intersection constructions for e.g. finite state au-
tomata, the nonterminals of M are pairs AJ of
nonterminals A of G and J of Iw and M has rules
of the form A0J0 → r(A1J1, . . . , AnJn).

When the rules of G are assigned weights, as
in Fig. 1, we can use the Viterbi algorithm to ex-
tract the highest-weight derivation tree from M .
We can also compute inside and outside weights
in(AJ) and out(AJ) for every nonterminal in M
as usual.

S→ r1(NP, VP) [1] h(r1) = ∗(x1, x2)
VP→ r2(VP, NP) [0.5] h(r2) = ∗(x1, x2)
VP→ r3(VP, NP) [0.1] h(r3) = ∗(to, ∗(x1, x2))
NP→ r4 [0.5] h(r4) = john
NP→ r5 [0.5] h(r5) = mary
VP→ r6 [0.4] h(r6) = loves

Figure 1: An example IRTG.

3 Coarse-to-fine parsing for IRTGs

Coarse-to-fine parsing for PCFGs. In PCFG
parsing, CTF parsing is an established pruning
technique for computing the best parse tree of a
sentence w given a PCFG GF . We assume a fine-
to-coarse map C, which maps the nonterminal
symbols of GF into a set of coarse-grained non-
terminal symbols, potentially making two nonter-
minals of GF the same. By merging rules of GF

that now have the same nonterminals on the left
and right hand side, we obtain a smaller PCFG
GC (the coarse grammar). For instance, if we
have C(S) = C(NP) = C(VP) = HP, then the
rules S → NP VP and VP → VP NP are both
mapped to the same rule, HP → HP HP. The
fine-to-coarse mapping may have multiple levels,
providing increasingly coarse-grained grammars.

CTF parsing then proceeds by parsing w with
respect to GC and computing the inside and out-
side probabilities of all edges in the (coarse) parse
chart. Edges whose probabilities are too low are
pruned away. The others are refined into edges for
a parse chart with respect to GF . Thus if an edge
HP[2−7] → HP[2−3] HP[3−7] in the coarse
chart (describing a split of the substring from 2
to 7 at position 3) is sufficiently likely, it will be
refined into both S[2−7] → NP[2−3] VP[3−7]
and VP[2−7]→ VP[2−3] NP[3−7]. The Viterbi
parse tree of this fine chart will then be a parse tree
of w with respect to GF .

Coarsification for IRTGs. We generalize this
procedure to IRTGs. In doing this, we need to
pay special attention to the fact that the rules of
an IRTG may differ not only in their nonterminal
symbols, but also in their homomorphic interpre-
tations. As mentioned above, this is prevalent in
expressive grammar formalisms, such as TAG.

We define two rules A0 → r1(A1, . . . , An) and
B0 → r2(B1, . . . , Bn) of an IRTG to be equiv-
alent with respect to a fine-to-coarse map C iff
C(Ai) = C(Bi) for all i and h(r1) = h(r2), i.e.
both rules are interpreted in the same way by the

123



input homomorphism. Using the mapping C from
above, we find that r1 and r2 in Fig. 1 are equiva-
lent to each other, but not to r3.

We can then partition the rules of a fine-grained
IRTG GF into their equivalence classes, and build
a coarse-grained IRTG GC over the same algebra
with one rule for each equivalence class. Let R =
{r1, . . . , rk} be an equivalence class containing
the fine-grained rule A0 → r1(A1, . . . , An). Then
GC will contain the rule H0 → R(H1, . . . ,Hn),
where Hi = C(Ai) for all i, and hC(R) =
hF (r1). The choice of r1 among the elements
of R does not matter, because equivalent rules
have the same homomorphic image and map to the
same coarse-grained nonterminals. In this paper,
we will simply let the weight of the coarse rule
be the sum of the weights of the fine rules in or-
der to set the inside score of an item in a coarse
chart to approximately the sum of the weights of
the finer items it represents; if suitable data is
available, these weights could also be re-estimated
from a treebank (Charniak et al., 2006; Petrov
and Klein, 2007). In the example, we obtain
HP → R1(HP,HP) and HP → R2(HP,HP)
with R1 = {r1, r2} and R2 = {r3}. This con-
struction generalizes easily to multiple CTF levels.

Coarse-to-fine parsing with IRTGs. Given this
precomputation, we can now perform coarse-
to-fine parsing. Given an input object w, we
first compute a complete parse chart MC us-
ing the coarse-grained IRTG GC , e.g. using one
of the parsing algorithms of Groschwitz et al.
(2016). The entries e of this chart are rules
H0J0 → R(H1J1, . . . ,HnJn), such that H0 →
R(H1, . . . ,Hn) is a rule of GC and the invhom
grammar Iw contains a rule J0 → r(J1, . . . , Jn)
for one, and thus all, r ∈ R.

We compute in(AJ) and out(AJ) for every
nonterminal AJ of MC , and use them to calculate
a score

s(e) = out(H0J0)·w(R)·in(H1J1)·. . .·in(HnJn)

for each chart entry e, where w(R) is the rule
weight in GC . We let Z = in(HJ) be the total in-
side weight of the start nonterminal of MC , which
combines the start nonterminal H of GC and the
start nonterminal J of Iw.

Then we refine the coarse-grained chart MC

into a fine-grained chart MF . If s(e) < θ·Z for
some fixed threshold θ, we discard e. Otherwise,
we add an entry A0J0 → r(A1J1, . . . , AnJn) to

MF for each rule A0 → r(A1, . . . ,A1) in the fine-
grained IRTG GF with r ∈ R.

If we have k coarse-to-fine levels (k−1 = coars-
est, 0 = finest), we repeat this refinement step k−1
times to obtain a chart for the original IRTG and
then find the best derivation using Viterbi decod-
ing.

4 Evaluation

Using this algorithm, we can do CTF parsing
for all grammar formalisms that can be encoded
as IRTGs. We evaluate it on PCFG, TAG, and
graph parsing, using the efficient algorithms of
Groschwitz et al. (2016) to compute the coarsest
charts. These algorithms are lazy and try to avoid
computing rules of the inverse homomorphism
grammar which cannot participate in a derivation.
This means that the number of rules in the inverse
automaton differs depending on the grammar with
which we are parsing. The evaluation grammars
and fine-to-coarse mappings are available as sup-
plementary material for this paper, and our coarse-
to-fine parser is implemented as part of the Alto
Toolkit.1

PCFG evaluation. First, we reproduce the
known result that CTF parsing speeds up PCFG
parsing. We read off a PCFG from the parse trees
of the WSJ portion of the Penn Treebank (Sec-
tions 02–21), using the gold POS tags as termi-
nal symbols; binarize it with the “inside” binariza-
tion strategy of Klein and Manning (2003); and
convert it to an IRTG. This yields an IRTG gram-
mar with 23817 rules and 8202 nonterminals, of
which 8131 were created during binarization. We
then parsed the sentences in Section 23 of up to
40 words, both without pruning and with the CTF
parser (longer sentences were infeasible with the
unpruned parser). For CTF we used the four-
level fine-to-coarse mapping from Charniak et al.
(2006) and a threshold of θ = 10−5. We also ap-
ply the fine-to-coarse mapping to the nonterminals
introduced during binarization. If the nonterminal
‘NP’ is mapped to ‘HP’ for the level k, then a non-
terminal ‘NP〉〉NP’ – which is created during bina-
rization to represent a sequence of two ‘NP’ chil-
dren, signified with the 〉〉 notation – would cor-
respond to a nonterminal ‘HP〉〉HP’ on the level

1Alto is available at https://bitbucket.org/
tclup/alto and the grammars and fine-to-coarse map-
pings used are available at https://bitbucket.
org/tclup/alto/downloads/coarse_to_fine_
experiments_grammars_and_mappings.zip

124



Approach f-score time invhom sat
PCFG
Unpruned 73.7 1230 2190 0.22
CTF 73.9 58 2260 –
TAG
Unpruned 70.9 11258 159203 0.03
CTF:10−5 51.8 11178 159203 –
CTF:10−9 68.5 11198 159203 –

Table 1: Results for PCFG and TAG parsing, with
mean runtime (in ms), invhom rules used in the
chart, and saturation per sentence.

k. The results are shown in Table 1 (top): For
IRTG encodings of treebank PCFGs, we obtain a
20x speedup at no loss in f-score.

TAG evaluation. To assess the efficacy of
CTF parsing on more expressive grammar formal-
ism, we first evaluated it on the probabilistic TAG
grammar induced from WSJ Section 00 by Chen
and Vijay-Shanker (2004), binarized with the “in-
side” strategy and converted to an IRTG. To avoid
data sparsity issues, we also evaluated the gram-
mar on Section 00, thus f-scores should be read
with care. We used a variant of the four-level fine-
to-coarse mapping from Charniak et al. (2006),
which always preserves the distinction between
nonterminals at the root of initial trees and those
at the root of auxiliary trees.2 We tried the thresh-
old values θ = 10−5 and θ = 10−9. The re-
sults are shown in Table 1 (bottom). Unexpect-
edly, while CTF pruning with these thresholds al-
ready reduces the f-score, the parsing time barely
improves.

HRG evaluation. We also evaluated CTF on
parsing Abstract Meaning Representation (AMR)
graphs with hyperedge replacement grammars
(HRGs, Chiang et al. (2013)). We use the HRG
grammar of Groschwitz et al. (2015), which was
induced from the “Little Prince” AMR corpus (Ba-
narescu et al., 2013) and converted to an IRTG.
This grammar describes how a graph can be con-
structed from atomic parts. It uses complex non-
terminal symbols such as N0{0, 1, 2}, indicating
that the nonterminal should derive a subgraph with
three sources 0, 1, and 2 (these describe nodes
at which further edges can be added during the
derivation), and the 1-source should be the AMR’s
“root” node. The symbol before the curly brack-

2For full details on the mappings used throughout the pa-
per see the supplementary data.

Approach best % time invhom sat
Unpruned 100.0 622 9042 0.04
Self 100.0 640 – –
– Level 1 – 629 8963 0.04
– Level 0 – 7 12 0.03

Unsplit 95.8 751 – –
– Level 1 – 739 9930 0.05
– Level 0 – 9 13 0.04

Unroot 96.0 3279 – –
– Level 1 – 3245 35476 0.12
– Level 0 – 31 13 0.03

Both 88.8 3926 – –
– Level 2 – 3887 34353 0.13
– Level 1 – 36 15 0.05
– Level 0 – 1 9 0.04

Table 2: Results for HRG parsing, with mean
percent best found, runtime (in ms), invhom rules
used in the chart, and saturation per graph.

ets can be one of N0 or N1, to allow the grammar
to make finer distinctions beyond the source infor-
mation. In total, the grammar has 39 nonterminals
and 13681 rules.

We tried a number of fine-to-coarse mappings
in parsing Groschwitz et al.’s corpus. The “Un-
split” mapping removes the distinction between
N0 and N1, so the above nonterminal coarsifies
to N{0, 1, 2}. “Unroot” removes the marking
of the root source, i.e. coarsifies to N0{0, 1, 2}.
“Both” applies the two in sequence, i.e. coarsifies
to N{0, 1, 2}. As a sanity check, we also looked
at a “Self” mapping, which “coarsifies” every non-
terminal to itself. We used an aggressive pruning
threshold of θ = 10−2.

The results are shown in Table 2. Because we do
not have access to gold standard derivation trees in
this dataset, we report the percentage of sentences
on which a CTF parser produced the same Viterbi
derivation tree as the unpruned parser (“best %”).
We find that the Unsplit and Unroot mappings pro-
duce high-quality parses. However, in striking
contrast to the PCFG case, all nontrivial mappings
make the parser slower than the unpruned one – in
the case of Unroot and Both, dramatically so.

5 Discussion

The fact that we find no speed improvements for
TAG parsing and observe slowdowns for HRG
parsing when we use CTF is a surprising nega-
tive result. To understand it, we first note that it
is a result about CTF parsing in general and not

125



about our implementation: We do obtain the ex-
pected performance gains on PCFGs, and the Self
mapping yields comparable HRG performance to
the unpruned parser. IRTGs allow us to use the
same infrastructure for CTF parsing with TAGs
and HRGs which we used for CTF parsing with
PCFGs. There are systematic structural differ-
ences between the PCFG, PTAG, and HRG gram-
mars which explain the differences in the useful-
ness of CTF.

One difference is the number of nonterminals
from which a substructure can be derived. In
treebank-induced PCFGs, most substrings of suf-
ficient length can be derived from almost every
phrasal nonterminal (Klein and Manning, 2001).
This is reflected in a measure called saturation,
which we formalize as the number of chart non-
terminals (A0, J0) that occur in the edges of the
chart, divided for comparability by the total num-
ber of nonterminals A in GC and the number of
invhom nonterminals J used in the chart. We
only compute this measure for nonterminals A0

that were present in the grammar before bina-
rization. For the unpruned PCFG parser, we ob-
tain a mean saturation of 0.22, confirming Klein
and Manning’s findings. By contrast, mean sat-
uration is 0.04 for the unpruned HRG parser and
0.03 for the unpruned TAG parser. Thus, the TAG
and HRG grammars are more restrictive than the
PCFG. The TAG grammar only derives each sub-
string from a few nonterminals as each lexical an-
chor determines the root of its elementary tree; in
the HRG, the annotation for the nonterminals en-
codes what sources are available for a merge oper-
ation. This leaves little room for CTF to increase
parsing speed.

A second difference between the HRG and
PCFG grammars is that only a small fraction of
all of a graph’s subgraphs can be derived from any
nonterminal with the HRG grammar in the first
place. This would be comparable to a setting for
PCFG parsing for which most spans are ungram-
matical. This is quantified by the “invhom” col-
umn in Table 2, which shows the mean number
of rules of the invhom grammar that are enumer-
ated during parsing; for HRGs, each of these de-
scribes how to split a subgraph into parts. The
“Unroot” and “Both” mappings delete source in-
formation, which substantially increases the num-
ber of subgraph combinations the parser explores.
PCFGs tend not to rule out many subspans, which

is not a problem as the growth of subspans is
only quadratic in the length of any sentence be-
ing parsed. For HRG parsing the number of
possible subgraphs grows with a larger exponent,
which depends on the grammar, and this means
that parsing is only feasible as long as many
small subgraphs can be identified as ungrammat-
ical and many larger subgraphs are never consid-
ered. When ruling out substructures is a key ele-
ment of efficient parsing, then pruning techniques
other than CTF are needed for speed-ups, because
the coarser grammars will generally be more per-
missive and therefore increase parsing times. This
also makes it clear that the slowdown under CTF
parsing is not a result of the particular implemen-
tation, as the number of substructures that need to
be considered will be a bottleneck for any parser.

6 Conclusion

In this paper, we have defined an algorithm for
coarse-to-fine parsing with IRTG grammars and,
for the first time, applied CTF parsing to grammar
formalisms that are more expressive than PCFGs.
However, we have not observed the expected ef-
ficiency gains for such grammars, as fewer rules
are equivalent and nonterminals are more informa-
tive, at least in the grammars used in our evalua-
tion. Indeed, treebank PCFGs are especially well-
suited to CTF parsing because they have many
rules which only concatenate strings without in-
troducing any terminal symbols and their nonter-
minals can derive almost arbitrary substrings. Nei-
ther is true for the TAG or HRG grammars we
used.

Our results offer guidance on grammar require-
ments for successful use of CTF parsing and pro-
vide a general algorithm that will work when they
are met. In the future, it would be interesting to ex-
tend CTF parsing to work in the absence of these
requirements, e.g. by broadening the notion of rule
equivalence, or by giving feedback from the fine
level to the coarser levels in a priority search.

Acknowledgements We thank the anonymous
reviewers for their comments. We are grateful to
Johannes Gontrum for some early implementation
work and to Mark Johnson for discussions about
the paper. This work was supported by the DFG
grant KO 2916/2-1. Jonas Groschwitz was sup-
ported by a Macquarie University Research Excel-
lence Scholarship.

126



References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse. http://www.aclweb.org/anthology/W13-
2322.

Eugene Charniak, Mark Johnson, Micha Elsner,
Joseph Austerweil, David Ellis, Isaac Haxton,
Catherine Hill, R. Shrivaths, Jeremy Moore,
Michael Pozar, and Theresa Vu. 2006. Multi-
level coarse-to-fine PCFG parsing. In Proceed-
ings of the Human Language Technology Confer-
ence of the North American Chapter of the ACL.
http://www.aclweb.org/anthology/N06-1022.pdf.

John Chen and K. Vijay-Shanker. 2004. Automatic ex-
traction of TAGs from the Penn Treebank. In New
developments in parsing technology, Springer, pages
73–89.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and
Kevin Knight. 2013. Parsing graphs with
hyperedge replacement grammars. In Pro-
ceedings of the 51st Annual Meeting of the
Association for Computational Linguistics.
https://www.aclweb.org/anthology/P/P13/P13-
1091.pdf.

Hubert Comon, Max Dauchet, Rémi Gilleron, Flo-
rent Jacquemard, Denis Lugiez, Sophie Tison, Marc
Tommasi, and Christof Löding. 2007. Tree Au-
tomata techniques and applications. published
online - http://tata.gforge.inria.fr/.
http://tata.gforge.inria.fr/.

Jonas Groschwitz, Alexander Koller, and Mark John-
son. 2016. Efficient techniques for parsing with tree
automata. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics. http://aclweb.org/anthology/P16-1192.

Jonas Groschwitz, Alexander Koller, and Christoph
Teichmann. 2015. Graph parsing with S-graph
Grammars. In Proceedings of the 53rd An-
nual Meeting of the Association for Compu-
tational Linguistics and the 7th International
Joint Conference on Natural Language Processing.
http://www.aclweb.org/anthology/P15-1143.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
Adjoining Grammars. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages,
Springer-Verlag, volume 3.

Dan Klein and Christopher D. Manning. 2001. Pars-
ing with treebank grammars: Empirical bounds,
theoretical models, and the structure of the Penn
Treebank. In Proceedings of 39th Annual Meeting
of the Association for Computational Linguistics.
http://aclweb.org/anthology/P/P01/P01-1044.pdf.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: fast exact viterbi parse selection. In
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology.
https://doi.org/10.3115/1073445.1073461.

Alexander Koller. 2015. Semantic construc-
tion with graph grammars. In Proceed-
ings of the 11th International Conference
on Computational Semantics. pages 228–238.
http://anthology.aclweb.org/W/W15/W15-0127.pdf.

Alexander Koller and Marco Kuhlmann. 2011.
A generalized view on parsing and transla-
tion. In Proceedings of the 12th Interna-
tional Conference on Parsing Technologies.
http://www.aclweb.org/anthology/W11-2902.

Alexander Koller and Marco Kuhlmann. 2012.
Decomposing TAG algorithms using simple
algebraizations. In Proceedings of the 11th
International Workshop on Tree Adjoining
Grammars and Related Formalisms (TAG+11).
http://aclweb.org/anthology/W/W12/W12-
4616.pdf.

Slav Petrov and Dan Klein. 2007. Improved in-
ference for unlexicalized parsing. In Human
Language Technologies 2007: The Confer-
ence of the North American Chapter of the
Association for Computational Linguistics.
http://www.aclweb.org/anthology/N/N07/N07-
1051.

Andreas van Cranenburgh. 2012. Efficient parsing with
linear context-free rewriting systems. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics.
http://aclweb.org/anthology/E12-1047.

Yi Zhang and Hans-Ulrich Krieger. 2011. Large-
scale corpus-driven pcfg approximation of an
hpsg. In Proceedings of the 12th Inter-
national Conference on Parsing Technologies.
http://www.aclweb.org/anthology/W11-2923.

127



Proceedings of the 15th International Conference on Parsing Technologies, pages 128–133,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Evaluating LSTM models for grammatical function labelling

Bich-Ngoc Do♦ and Ines Rehbein♣
Leibniz ScienceCampus

Universität Heidelberg♦ / Institut für Deutsche Sprache Mannheim♣

{do|rehbein}@cl.uni-heidelberg.de

Abstract

To improve grammatical function la-
belling for German, we augment the la-
belling component of a neural dependency
parser with a decision history. We present
different ways to encode the history, using
different LSTM architectures, and show
that our models yield significant improve-
ments, resulting in a LAS for German that
is close to the best result from the SPMRL
2014 shared task (without the reranker).

1 Introduction

For languages with a non-configurational word
order and rich(er) morphology, such as German,
grammatical function (GF) labels are essential for
interpreting the meaning of a sentence. Case syn-
cretism in the German case paradigm makes GF
labelling a challenging task. See (1) for an exam-
ple where the nouns in the sentence are ambiguous
between different cases, which makes it hard for a
statistical parser to recover the correct reading.

We approach the problem of GF labelling as
a subtask of dependency parsing, where we first
generate unlabelled trees and, in the second step,
try to find the correct labels. This pipeline ar-
chitechture gives us more flexibility, allowing us
to use the labeller in combination with our parser,
but also to apply it to the unlabelled output of other
parsing systems without the need to change or re-
training the parsers.

The approach also makes it straightforward to
test different architectures for GF labelling. We
are especially interested in the influence of differ-
ent input structures representing different (surface

versus structural) orders of the input. In particular,
we compare models where we present the unla-
belled tree in linear order with a model where we
encode the parser output as a tree. We show that all
models are able to learn GFs with a similar overall
LAS, but the model where the tree is encoded in
a breadth-first order outperforms all other models
on labelling core argument GFs.

2 Related Work

Grammatical function labelling is commonly in-
tegrated into syntactic parsing. Few studies have
adressed the issue as a separate classification task.
While most of them assign grammatical functions
on top of constituency trees (Blaheta and Char-
niak, 2000; Jijkoun and de Rijke, 2004; Chrupała
and van Genabith, 2006; Klenner, 2007; Seeker
et al., 2010), less work has tried to predict GF la-
bels for unlabelled dependency trees. One of them
is McDonald et al. (2006) who first generate the
unlabelled trees using a graph-based parser, and
then model the assignment of dependency labels
as a sequence labelling task.

Another approach has been proposed by Zhang
et al. (2017) who present a simple, yet efficient and
accurate parsing model that generates unlabelled
trees by identifying the most probable head for
each token in the input. Then, in a post-processing
step, they assign labels to each head-dependent
pair, using a two-layer rectifier network.

Dependency Parsing as Head Selection Our
labelling model is an extension of the parsing
model of Zhang et al. (2017). We use our own
implementation of the head-selection parser and
focus on the grammatical function labelling part.
The parser uses a bidirectional LSTM to extract a
dense, positional representation ai of the word wi

at position i in a sentence:

128



hF
i = LSTMF (xi, h

F
i−1) (1)

hB
i = LSTMB(xi, h

B
i+1) (2)

ai = [hF
i ; hB

i ] (3)

xi is the input at position i, which is the concate-
nation of the word embeddings and the tag em-
beddings of word wi. An artificial root token w0

is added at the beginning of each sentence.
The unlabelled tree is then built by selecting the

most probable head for each word. The score of
word wj being the head of word wi is computed
by a single hidden layer neural network on their
representations aj and ai.

An additional classifier with two rectified hid-
den layers is used to predict dependency labels,
and is trained separately from the unlabeled pars-
ing component, in a pipeline architecture. The
classifier predictions are based on the represen-
tations of the head and the dependent, bj and bi,
which are the concatenation of the input and the
bidirectional LSTM-based representations:

bi = [xi; ai] (4)

Despite its simplicity and the lack of global op-
timisation, Zhang et al. (2017) report competitive
results for English, Czech, and German.

3 Labeling Dependencies with History

Although the labelling approach in Zhang et
al. (2017) is simple and efficient, looking at head
and dependent only when assigning the labels
comes with some disadvantages. First, some la-
bels are easier to predict when we also take con-
text into account, e.g. the parent and grandparent
nodes or the siblings of the head or dependent.

Consider, for example, the following sentence:
Is this the future of chamber music? and its syn-
tactic structure (figure 1). If we only consider the
nodes this and future, there is a chance that the
edge between them is labelled as det (determiner).
However, if we also look at the local context, we
know that node the to the left of future is more
likely to be the determiner, and thus this should be
assigned a different label.

Second, when looking at the parser output, we
notice some errors that are well-known from other
local parsing models, such as the assignment of
duplicate subjects for the same predicate. To ad-
dress this issue, we propose an extended labelling

ROOT0 Is1 this2 the3 future4 of5 chamber6 music7 ?8

ROOT
COP

NSUBJ
DET PREP

PUNCT

POBJ

NN

Figure 1: The dependency tree of the sentence Is
this the future of chamber music?

model that incorporates a decision history. To that
end, we design different LSTM architectures for
the labelling task and compare their performance
on German, Czech and English.

Label prediction as a sequence labelling task
Presenting the input to the labeller in sequential
surface order does not seem very intuitive when
we want to assign labels to a tree. This ap-
proach, however, was adapted by McDonald et
al. (2006). In their work, they consider all de-
pendents xj1, ..., xjM of a head xi and label those
edges (i, j1), ..., (i, jM) in a sequence.

We argue, however, that it is not enough to know
the labels of the siblings, but that we also need
to consider nodes at different levels in the tree.
Therefore, when predicting the label for the cur-
rent node, we consider all label decisions in the
history, and feed them to a bidirectional LSTM.
Given a sequence of nodes S = (w1, ..., wN ) and
their corresponding head (h1, ..., hN ), at each re-
current step, we input the learned representation of
the head and the dependent:

hF (lbl)
i = LSTMF

lbl(bi, bhi
, hF (lbl)

i−1 ) (5)

hB(lbl)
i = LSTMB

lbl(bi, bhi
, hB(lbl)

i+1 ) (6)

After that, the concatenated hidden states
[hF (lbl)

i ; hB(lbl)
i ] are projected to a softmax layer

to predict the label.
When presenting a tree as a sequence, we ex-

periment with two different input orders:

• BILSTM(L): Tree nodes are ordered ac-
cording to their surface order in the sentence
(linear order; figure 2).

• BILSTM(B): Tree nodes are ordered ac-
cording to a breadth-first traversal (BFS) of
the tree, starting from the root node. Here,
siblings are closer to each other in the history.

129



Is, future this, future the, future future, ROOT of, future chamber, music music, of ?, future

COP NSUBJ DET ROOT PREP NN POBJ PUNCT

biLSTM(l) biLSTM(l) biLSTM(l) biLSTM(l) biLSTM(l) biLSTM(l) biLSTM(l) biLSTM(l)

future, ROOT is, future this, future the, future of, future ?, future music, of chamber, music

ROOT COP NSUBJ DET PREP PUNCT POBJ NN

biLSTM(b) biLSTM(b) biLSTM(b) biLSTM(b) biLSTM(b) biLSTM(b) biLSTM(b) biLSTM(b)

Figure 2: The processing order of the sentence in figure 1 a) in the BILSTM(L) model (top) and b) in
the BILSTM(B) model (bottom).

Top-down tree LSTM Intuitively, it seems
more natural to present the input as a tree struc-
ture when trying to predict the dependency labels.
We do that by adopting the top-down tree LSTM
model (Zhang et al., 2016) that processes nodes
linked through dependency paths in a top-down
manner. To make it comparable to the previous
LSTM models, we only use one LSTM instead of
four, and do not stack LSTMs. The hidden state is
computed as follow:

h
(lbl)
i = treeLSTM(bi, hi−1) (7)

After that, we proceed as we did for the BI-
LSTM models (see above). Note that the pro-
cessing order i is also the BFS order. We call this
model TREELSTM (figure 3).

4 Experiments

Our interest is focussed on German, but to put our
work in context, we follow Zhang et al. (2017) and
report results also for English, which has a config-
urational word order, and for Czech, which has a
free word order, rich morphology, and less ambi-
guity in the case paradigm than German.

For English, we use the Penn Treebank
(PTB) (Marcus et al., 1993) with standard train-
ing/dev/test splits. The POS tags are assigned
using the Stanford POS tagger (Toutanova et al.,
2003) with ten-way jackknifing, and constituency
trees are converted to Stanford basic dependen-
cies (De Marneffe et al., 2006). The German and
Czech data come from the CoNLL-X shared task
(Buchholz and Marsi, 2006) and our data split fol-
lows Zhang et al. (2017). As the CoNLL-X test-
sets are rather small (∼ 360 sentences), we also

treeLSTM

future

ROOT

treeLSTM

the

DET

treeLSTM

of

PREP

treeLSTM

this

NSUBJ

treeLSTM

Is

COP

treeLSTM

?

PUNCT

treeLSTM

music

POBJ

treeLSTM

chamber

NN

Figure 3: The processing order of the sentence in
figure 1 in the TREELSTM model.

train and test on the much larger German SPMRL
2014 shared task data (Seddah et al., 2014) (5,000
test sentences). For the SPMRL data we use the
predicted POS tags provided by the shared task or-
ganisers.

4.1 Setup

We test different labelling models on top of the un-
labelled trees produced by our re-implementation
of the parsing as head selection model (§2).

We first train the unlabelled parsing models
for the three languages. Unless stated other-
wise, all parameters are set according to Zhang et
al. (2017), and tag embedding size was set to 40
for all languages. Please note that we do not use
pre-trained embeddings in our experiments.

In the next step, we train four different labelling
models: the labeller of Zhang et al. (2017) that
uses a rectifier neural network with two hidden
layers (baseline), two bidirectional LSTM mod-
els (BILSTM(L) and BILSTM(B)), and one tree
LSTM model (TREELSTM) (§3).

The hidden layer dimension in all LSTM mod-
els was set to 200. The models were trained
for 10 epochs, and were optimized using Adam

130



Model en cs deCoNLL deSPMRL

UAS 93.35 89.70 93.09 91.29
Baseline 91.58 83.42 90.22 88.15
BILSTM(L) 91.92* 84.08* 90.87* 88.73*
BILSTM(B) 91.91* 83.80 90.97* 88.74*
TREELSTM 91.92* 83.82 90.89* 88.74*
DENSE 91.90 81.72 89.60 -

Table 1: Results for different labellers applied to
the unlabelled parser output. The first row re-
ports UAS for the input to the labellers. The last
row (DENSE) shows the results from Zhang et al.
(2017). (*) indicates that the difference between
the model and the baseline is statistically signifi-
cant (p < .001).

(Kingma and Ba, 2015) with default parameters
(initial learning rate 0.001, first momentum coef-
ficient 0.9, second momentum coefficient 0.999).
We used L2 regularization with a coefficient of
10−3 and max-norm regularization with an upper
bound of 5.0. The dropout (Srivastava et al., 2014)
rate was set to 0.05 for the input connections, and
0.5 for the rest.

4.2 Results
Table 1 shows the unlabelled attachment score
(UAS) for the unlabelled trees and the labelled at-
tachment scores (LAS) for the different labellers
(excluding punctuation). All history-based la-
belling models perform significantly better than
the local baseline model,1 but for English the im-
provements are smaller (0.3%) than for the non-
configurational languages (∼0.7%).

While we tried to reimplement the model of
Zhang et al. (2017) following the details in the pa-
per, our reimplemented model yields higher scores
for German, compared to the results in the paper.
The scores for English are slightly lower since,
in contrast to Zhang et al. (2017), we do not use
pre-trained embeddings. When using our history-
based labellers, we get similar results for English
(91.9%) and higher results for both Czech (84.1%
vs. 81.7%) and German (91.0% vs. 89.6%) on the
same data without using pre-trained embeddings
or post-processing.

On the SPMRL 2014 shared task data, our re-
sults are only 0.3% lower than the ones of the
winning system (Björkelund et al., 2014) without
reranker (blended).2 To further illustrate the ef-

1For significance testing, we use Bikel’s Random-
ized Parsing Evaluation Comparator (http://www.cis.
upenn.edu/˜dbikel/software.html).

2The shared task winner is a complex ensemble system
that generates a tree by blending the output of three parsers

deSPMRL SB OA DA PD
# 6,638 # 3,184 # 568 # 1,045

baseline 90.3 83.6 64.7 77.1
BILSTM(L) 91.4 85.3 67.7 80.0
BILSTM(B) 91.9 85.4 69.3 80.5
treeLSTM 91.2 85.1 68.6 79.8

deSPMRL AG PG OC OG
# 2,241 # 388 # 3,652 # 21

baseline 91.3 80.0 90.1 0
BILSTM(L) 91.3 81.6 90.5 16.0
BILSTM(B) 91.5 82.4 90.7 37.0
treeLSTM 91.4 81.4 90.2 27.6

Table 2: LAS for core argument functions (Ger-
man SPMRL data), and frequency (#) of GF in the
testset (SB: subj, OA: acc.obj, DA: dat.obj, PD:
pred, AG: gen.attribute, PG: phrasal genitive, OC:
clausal obj, OG: gen.obj).

fectiveness of our models, we also ran our labeller
on the unlabelled output of the SPMRL 2014 win-
ning system and on unlabelled gold trees. On the
output of the blended system LAS slightly im-
proves from 88.62% to 88.76% (TREELSTM).3

When applied to unlabelled gold trees, the dis-
tance between our models and the baseline be-
comes larger and the best of our history-based
models (BILSTM(B), 97.38%) outperforms the
original labeller of Zhang et al. (2017) (96.15%)
by more than 1%.

We would like to emphasize that our history-
based LSTM labeller is practically simple and
computationally inexpensive (as compared to
global training or inference), so our model man-
ages to preserve simplicity while significantly im-
proving labelling performance.

4.3 Discussion
Most strikingly, all three models seem to perform
roughly the same, and the TREELSTM model fails
to outperform the other two models. However, in
comparison to the BILSTM models, the TREE-
LSTM model has a smaller number of parameters,
and the history only flows in one direction. The
tree model also has a shorter history chain since
nodes are linked by paths from the root (figure 3),
which might explain why it does not yield better
results than the linear LSTM models.

The overall results suggest that the order in
which the nodes are presented in the history does
not have any impact on the labelling results. How-
ever, when looking at results for individual core
argument functions (subject, direct object, etc.), a

(Mate, Turbo, BestFirst; see (Björkelund et al., 2014)).
3Following Björkelund et al. (2014), here we include

punctuation in the evaluation.

131



GF en cs deSPMRL

sb 3.1 3.4 3.9
dep-length dobj 2.5 *2.4 4.2

iobj 1.7 - 4.7
sb 4.6 32.5 34.2

left-head ratio dobj 97.4 *77.5 37.2
iobj 100.0 - 27.5

Table 3: Avg. dependency length and ratio of left
arcs vs. all (left + right) arc dependencies for args.
(* in the Czech data, Obj subsumes all types of
objects, not only direct objects)

more pronounced pattern emerges (table 2).4 Here
we see the benefit of encoding the siblings close
to each other in the history: For all core argument
functions, the BILSTM(B) model outperforms the
other models.

To find out why the history-based models work
better for Czech and German than for English, we
compared the average dependency length as well
as the variability in head direction (how often e.g.
the head of a subject is positioned to the left, in
relation to the total number of subjects). Table 3
suggests that the success of the history-based mod-
els is not due to a better handling of long depen-
dencies but that they are better in dealing with the
uncertainty in head direction (also see Gulordava
and Merlo (2016)).

5 Conclusions

We have shown that GF labelling, which is of cru-
cial importance for languages like German, can be
improved by combining LSTM models with a de-
cision history. All our models outperform the orig-
inal labeller of Zhang et al. (2017) and give re-
sults in the same range as the best system from the
SPMRL-2014 shared task (without the reranker),
but with a much simpler model. Our results show
that the history is especially important for lan-
guages that show more word order variation. Here,
presenting the input in a structured BFS order not
only significantly outperforms the baseline, but
also yields improvements over the other LSTM
models on core grammatical functions.

Acknowledgments

We would like to thank Minh Le for his help with
data pre-processing. This research has been con-
ducted within the Leibniz Science Campus “Em-

4We evaluate GFs on the German SPMRL data which
are sufficiently large with 5,000 test sentences. The CoNLL
datasets, in comparison, only include ∼360 test sentences.

pirical Linguistics and Computational Modeling”,
funded by the Leibniz Association under grant no.
SAS-2015-IDS-LWC and by the Ministry of Sci-
ence, Research, and Art (MWK) of the state of
Baden-Württemberg.

References
Anders Björkelund, Özlem Çetinoğlu, Agnieszka

Faleńska, Richárd Farkas, Thomas Müller, Wolf-
gang Seeker, and Zsolt Szántó. 2014. Intro-
ducing the IMS-Wroclaw-Szeged-CIS entry at the
SPMRL 2014 Shared Task: Reranking and Morpho-
syntax meet Unlabeled Data. In Proceedings of
the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntac-
tic Analysis of Non-Canonical Languages. Dublin
City University, Dublin, Ireland, pages 97–102.
http://www.aclweb.org/anthology/W14-6110.

Don Blaheta and Eugene Charniak. 2000. Assign-
ing function tags to parsed text. In Proceedings of
the 1st North American Chapter of the Association
for Computational Linguistics Conference. NAACL
’00, pages 234–240.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning. Association for
Computational Linguistics, Stroudsburg, PA, USA,
CoNLL-X ’06, pages 149–164.

Grzegorz Chrupała and Josef van Genabith. 2006. Us-
ing machine-learning to assign function labels to
parser output for Spanish. In Proceedings of the
COLING/ACL on Main Conference Poster Sessions.
COLING-ACL ’06, pages 136–143.

Marie-Catherine De Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
The fifth international conference on Language Re-
sources and Evaluation. LREC’06, pages 449–454.

Kristina Gulordava and Paola Merlo. 2016. Multi-
lingual dependency parsing evaluation: a large-scale
analysis of word order properties using artificial
data. TACL 4:343–356.

Valentin Jijkoun and Maarten de Rijke. 2004. En-
riching the output of a parser using memory-based
learning. In Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Linguis-
tics. pages 311–318.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In The Interna-
tional Conference on Learning Representations. San
Diego.

Manfred Klenner. 2007. Shallow dependency labeling.
In Proceedings of the 45th Annual Meeting of the

132



ACL on Interactive Poster and Demonstration Ses-
sions. ACL ’07, pages 201–204.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: the Penn treebank. Computa-
tional Linguistics 19(2):313–330.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
10th Conference on Computational Natural Lan-
guage Learning. CoNLL-X ’06, pages 206–210.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the SPMRL 2014 shared task
on parsing morphologically-rich languages. In Pro-
ceedings of the First Joint Workshop on Statisti-
cal Parsing of Morphologically Rich Languages and
Syntactic Analysis of Non-Canonical Languages.
Dublin City University, Dublin, Ireland, pages 103–
109. http://www.aclweb.org/anthology/W14-6111.

Wolfgang Seeker, Ines Rehbein, Jonas Kuhn, and Josef
van Genabith. 2010. Hard constraints for grammat-
ical function labelling. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics. ACL ’10, pages 1087–1097.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: A simple way to prevent
neural networks from overfitting. Journal of
Machine Learning Research 15:1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology.
NAACL ’03, pages 173–180.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics. EACL’17, pages 665–676.

Xingxing Zhang, Liang Lu, and Mirella Lapata.
2016. Top-down tree long short-term memory net-
works. In Proceedings of the 2016 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 310–320.
http://www.aclweb.org/anthology/N16-1035.

133





Author Index

Ballesteros, Miguel, 115
Bechet, Frederic, 72
Bhat, Irshad, 61
Bhat, Riyaz A., 61
Bohnet, Bernd, 11

Carreras, Xavier, 32, 115
Çetinoğlu, Özlem, 18

de Lhoneux, Miryam, 99
Delecraz, Sebastien, 72
Do, Bich-Ngoc, 128
Don, J. Buddhika K. Pathirage, 50

Falenska, Agnieszka, 18
Favre, Benoit, 72

Groschwitz, Jonas, 122

Hayashi, Katsuhiko, 56
Hayashibe, Yuta, 1

Kawahara, Daisuke, 1
Kohita, Ryosuke, 88
Koller, Alexander, 122
Kuhlmann, Marco, 78
Kurohashi, Sadao, 1
Kurtz, Robin, 78

Lee, John, 44, 50
Leung, Herman, 44
Li, Keying, 44
Liu, Jiangming, 105

Madhyastha, Pranava Swaroop, 32
Martínez Alonso, Héctor, 25
Matsumoto, Yuji, 88
Morita, Hajime, 1

Nagata, Masaaki, 56
Nasr, Alexis, 72
Nivre, Joakim, 99
Noji, Hiroshi, 88

Quattoni, Ariadna, 32

Rehbein, Ines, 128

Sagot, Benoît, 25
Søgaard, Anders, 67
Sharma, Dipti, 61
Stymne, Sara, 99

Tanaka, Takaaki, 56
Teichmann, Christoph, 122

Yu, Juntao, 11

Zhang, Yue, 105

135


	Programme
	Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
	Dependency Language Models for Transition-based Dependency Parsing
	Lexicalized vs. Delexicalized Parsing in Low-Resource Scenarios
	Improving neural tagging with lexical information
	Prepositional Phrase Attachment over Word Embedding Products
	L1-L2 Parallel Dependency Treebank as Learner Corpus
	Splitting Complex English Sentences
	Hierarchical Word Structure-based Parsing: A Feasibility Study on UD-style Dependency Parsing in Japanese
	Leveraging Newswire Treebanks for Parsing Conversational Data with Argument Scrambling
	Using hyperlinks to improve multilingual partial parsers
	Correcting prepositional phrase attachments using multimodal corpora
	Exploiting Structure in Parsing to 1-Endpoint-Crossing Graphs
	Effective Online Reordering with Arc-Eager Transitions
	Arc-Hybrid Non-Projective Dependency Parsing with a Static-Dynamic Oracle
	Encoder-Decoder Shift-Reduce Syntactic Parsing
	Arc-Standard Spinal Parsing with Stack-LSTMs
	Coarse-To-Fine Parsing for Expressive Grammar Formalisms
	Evaluating LSTM models for grammatical function labelling

