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Abstract

Parser Evaluation using Textual Entail-
ments (PETE, Yuret et al. (2013)) is a re-
stricted textual entailment task designed to
evaluate in a uniform manner parsers that
produce different representations of syn-
tactic structure. In PETE, entailments can
be resolved using syntactic relations alone,
and do not implicate lexical semantics
or world knowledge. We evaluate TAG
parsers on the PETE task, and compare our
results to the state-of-the-art. Our TAG
parser combined with structural transfor-
mations to compute entailments outper-
forms the CCG-based results on the de-
velopment set, though it falls behind these
results on the test set. The CCG parser
makes use of a number of heuristics for
entailment comparison, however. Adding
such heuristics to our best TAG parser
yields state-of-the-art results on the test set
when using accuracy as a metric. This
sensitivity to heuristics suggests that the
PETE task may suffer from an unrepresen-
tative development set, and that we need
to improve upon formalism-independent
parsing evaluation methods.

1 Introduction

There has been a flurry of recent work, involving
neural network architectures, on parsing that has
improved performance across a variety of frame-
works that make different assumptions about the
target output for the parsing process: Dependency
grammar (Chen and Manning, 2014; Dyer et al.,
2015; Andor et al., 2016; Kuncoro et al., 2017;
Dozat and Manning, 2017), Combinatory Cate-
gorial Grammar (CCG) (Xu et al., 2015; Ambati
et al., 2016; Lewis et al., 2016), Tree Adjoining

Grammar (TAG) (Kasai et al., 2017), Constituent
structure (Dyer et al., 2017; Kuncoro et al., 2017)).
However, it is as yet unknown the degree to which
these improvements in parsing scores contribute to
downstream NLP tasks. Moreover, since the dif-
ferent frameworks make different representational
assumptions about the target of the parsing pro-
cess, these results are not directly comparable.

Parser Evaluation using Textual Entailments
(PETE) is a shared task from the SemEval-2010
Exercises on Semantic Evaluation (Yuret et al.,
2013). The task was intended to evaluate syn-
tactic parsers across different formalisms, focus-
ing on entailments that could be determined en-
tirely on the basis of the syntactic representations
of the sentences that are involved, without re-
course to lexical semantics logical reasoning or
world knowledge. For instance, syntactic knowl-
edge alone tells us that the sentence Peter, who
loves Mary, left the room entails Peter left the room
and Peter loves Mary but not, for example, that Pe-
ter knows Mary or that Peter was no longer in the
room.

In this paper, we apply a number of TAG parsers
to the PETE task. In the next section, we dis-
cuss the PETE task in further detail. Then in Sec-
tion 3 we describe how we apply TAG parses to
this task. Doing so requires a means of determin-
ing whether one TAG derivation entails another
syntactically. We do this through a set of task-
independent, linguistically-motivated transforma-
tions. After reviewing the TAG supertaggers and
parsers we evaluate in Sections 4 and 5, we dis-
cuss our results in Section 6. We demonstrate
that improvements in TAG parsing and supertag-
ging do indeed contribute to improvements in the
extrinsic PETE task, reaching state-of-the-art re-
sults in accuracy and near state-of-the-art in f-
measure. In particular, we compare our results to
the top-scoring systems of SemEval-2010, Cam-
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bridge (Rimell and Clark, 2010) and SCHWA (Ng
et al., 2010), both based on the Clark and Curran
(2007) CCG parser, as well as a later system based
on an HPSG-Minimal Recursion Semantics parser
(Lien, 2014). We also conduct an error analysis
and discuss limitations of TAG parsing in the con-
text of this task.

2 The PETE Task

PETE (Yuret et al., 2013) is a restricted instance
of the recognizing textual entailment (RTE) task,
aimed at evaluating syntactic parsers. As in
other RTE tasks, the task includes a set of Text-
Hypothesis pairs, for which a system must deter-
mine whether or not the content of the Text entails
the content of the Hypothesis. For PETE, the texts
are individual sentences that were drawn from
one of three sources: the Unbounded Dependency
Corpus (Rimell et al., 2009), the Brown section
of the Penn Treebank, and a list of sentences in
the Penn Treebank on which the Charniak parser
(Charniak and Johnson, 2005) performed poorly.
A sentence S from these sources were selected as
a candidate Text if S was misparsed by at least one
phrase structure or dependency parsers that was
state-of-the-art in 2009.

Given a candidate Text T, an associated Hypoth-
esis H was constructed by identifying a pair of
content words in T whose syntactic relationship
is implicated in the difference between the gold
parse and the incorrect parse. These words were
then used to form a minimal sentence. If such a
sentence involved a verb that required additional
arguments, these could be filled in with indefinite
expressions (somebody, someone, and something)
or the verb could be passivized. Similarly, in the
case of a head and modifier, a copular sentence,
or one involving existential there, could be con-
structed. The resulting T-H pair would then be
assigned the label ‘YES’ if the content words in
H stand in a relation that is also present in the
gold parse of T, and is otherwise assigned the label
‘NO’. Each of the resulting T-H pairs were then
given to five untrained annotators on Amazon Me-
chanical Turk and was retained in the dataset if
three of them agreed on the presence or absence of
the entailment. This left a dataset containing 367
T-H pairs (of which 51.83% were labeled ‘YES’).
These were then randomly divided into a devel-
opment set containing 66 sentences and a test set
containing 301 sentences. For more details on the

construction process, see Yuret et al. (2013).

3 Applying TAG Parsing to PETE

Our TAG-based PETE system determines the en-
tailment status of a T-H pair through the following
four steps:

1. T and H are tokenized using the NLTK tok-
enizer (Bird et al., 2009).

2. T and H are supertagged and parsed, yielding
derivation trees DT and DH .

3. Structural transformations are applied to DT

to yield a modified derivation graph D′
T .

4. Return ‘YES’ if DH is a subderivation of D′
T .

In the following subsection, we describe the prop-
erties of the TAG grammar we use for supertag-
ging and parsing and the derivation trees which
result from the parser. We then describe the set of
structural transformations that are applied to the
Text’s derivation tree, and define how we deter-
mine the subderivation property.

3.1 The TAG Grammar and Derivation Trees
Our experiments make use of the TAG grammar
extracted from the Penn Treebank by Chen (2001),
and used by the MICA parser (Bangalore et al.,
2009). This grammar makes use of the representa-
tions developed for TAG starting with the XTAG
project (XTAG Research Group, 2001). Positions
for a lexical anchor’s arguments are labeled with
numbers that represent the argument’s deep syn-
tactic role. Deep subjects are labeled 0, direct
objects and objects of prepositions are labeled 1
and indirect objects are labeled 2. These numbers
remain constant across elementary trees that dif-
fer with respect to grammatical operations such as
passivization and dative shift. In the elementary
tree associated with the verb played in the passive
sentence The piano was played by Fred, the pi-
ano will be labeled as role 1, while Fred will be
labeled as role 0, just as in the active counterpart
Fred played the piano.

In the derivation trees that result from a parse
with this grammar, the arcs deriving from substi-
tution are labeled by the deep role of substituted
argument. Distinct labels in the derivation tree are
used for the insertion of co-heads and of adjoining
(which are not distinguished by locus of adjoin-
ing). Nodes in the derivation tree are associated
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with a token in the sentence and its corresponding
elementary tree. A derivation tree can be thought
of as a set of parent-child-relation triples.

Because of the use of deep labels in the gram-
mar, the derivation trees of active and passive sen-
tences will be structurally identical, apart from the
identity of the elementary trees. As a result, the
most common kind of mismatch between T and
H in the PETE task, namely passivization, is han-
dled directly by the parser without any further ad-
dition.1

3.2 Transformations on the Derivation Tree
As we noted earlier in the description of the PETE
task, the sentences comprising T and H may differ
in certain syntactically defined ways, giving rise to
distinct TAG derivations. As a result, we apply a
set of transformations to these derivations to make
them more comparable. These were motivated by
well-understood properties of TAG derivations as
well as by divergences found in the T-H pairs in
the development set. The phenomena dealt with
by these transformations include NP modification,
relative clauses, clausal complementation by pred-
icative auxiliaries, predicative clauses, and coordi-
nation.

Modification in a TAG derivation is dealt with
via adjoining. In the derivation tree, this will result
in the modifier being a child of the head it modi-
fies, with the arc labeled as adjunction. However,
there are entailments where we will want to con-
sider a different relationship between these words.
For example, in the sentence I reached into that
funny little pocket (from the PETE development
set), the NP modifier funny is adjoined to pocket.
However on a hypothesis like The pocket is funny,
a predicative sentence, pocket is a 0-argument (i.e.,
subject) of funny. To deal with this mismatch,
when we find a adjoining dependency between an
N-headed tree and an auxiliary tree headed by an
adjective, preposition or noun, we add a triple to
the derivation tree in the reverse direction with the
arc label 0, signifying that the head is a subject ar-
gument of the predicate (as it would be in a pred-
icative sentence. This is depicted in the top line of
Figure 1.

1Note however that the grammar does not retain argument
labels across alternations like the causative-inchoative. In
The vase broke, the vase will be argument 0, while in I broke
the vase, it will be argument 1. Consequently, the entailment
from the latter to the former would not follow directly from
the parse. We would need PropBank-style argument labeling
to recognize such cases.

When the elementary tree that is adjoined to the
noun is a relative clause, we do something simi-
lar but slightly more complex. In order to deter-
mine the role that the reverse dependency should
have, we must consult the properties of the relative
clause elementary tree. For a subject relative, we
add a 0-labeled arc, for an object relative, we add
a 1-labeled arc, etc. This is shown on the second
line of Figure 1. For adjectival passives that are
adjoined to a noun (e.g., the thrown ball), we add
a 1-labeled arc between the head noun and the ver-
bal head, yielding the inference that the ball was
thrown.

Sentential complementation in TAG derivations
can be analyzed via either adjoining the higher
clause into the embedded clause (necessarily so in
cases of long-distance extraction from the embed-
ded clause) or substituting the embedded clause in
the higher clause. For example, on the third line
of Figure 1, we see the derivation tree for want to
watch, where want adjoins into watch. In order
to normalize this divergence, for adjunction links
involving a predicative auxiliary tree, we add a re-
verse link involving the 1 relation (i.e., that involv-
ing sentential complements).

For predicative clauses, like trading is some-
thing we want to watch, we want to allow for en-
tailments like we want to watch trading. Given
the transformations we have considered thus far,
we will only derive that we want to watch some-
thing (via the relative clause and predicative auxil-
iary transformations). However, for auxiliary trees
involving nominal predication (A is B), we add a
derivational link that asserts that A stands in the
same relation to predicates which have B as their
argument. Thus, since something in our example
is a 1-argument of watch, this rule will assert that
trading is such an argument as well.

The final structural transformation involves co-
ordination. Under the TAG analysis, VP coordina-
tion involves a VP-recursive auxiliary tree headed
by the coordinator that includes a VP substitution
node (for the second conjunct). We see part of the
resulting derivation for the sentence My host went
over and stared out the window in the top line of
Figure 2. In order to allow the first clause’s sub-
ject argument (as well as modal verbs and nega-
tions) to be shared by the second verb, we add the
relevant relations to the second verb.2

2There is some indeterminacy concerning the label of the
argument that should be added to the second verb, since this
VP tree does not encode what role its subject would be, at
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Figure 1: Structural transformations for features NP modifier, relative clause, predicative auxiliary, and
predicative clauses

In the case of conjuncts that are the argument
of some other predicate, seen in the bottom line
of Figure 2 for the sentence I like John and Mary,
the second conjunct (Mary in this example) will
inherit any numbered parents of the first conjoined
word.

This set of structural transformations is applied
in the order in which we have presented it, so that
the output of previous transformations can feed
subsequent ones.

3.3 Recognizing Entailment

Having applied this series of transformations to
the Text’s derivation, we determine the presence
or absence of an entailment essentially by ask-
ing whether the derivation of the Hypothesis is a
subset of the derivation of the Text. This can-
not however be done in the simplest fashion, be-
cause of possible superficial divergences between
the derivations, concerning upper and lower case,
the location of punctuation and the derivational

least not in the current grammar. As a result, we follow the
heuristic of adding the subject with the same argument label
that it has in the first conjunct, unless the second verb already
has that argument, in which case we do not add anything.
Neither do we add modals or negations if the second verb
already has them.

root, contraction, and the presence of extra func-
tional material (auxiliary verbs or determiners).
We therefore ignore these differences when we
consider whether DH is a subderivation of D′

T .
We say that D1 is a subderivation of D2 iff for
every (w1, w2, Rel) ∈ D1

1. (Subset) there is a triple (w′
1, w

′
2, Rel) ∈ D2

such that w1 ≈ w′
1 and w2 ≈ w′

2; or

2. (Ignore root, punctuation and some function
words) w1 or w2 is ROOT, a punctuation
symbol or is lemmatized as one of be, have
or the and is adjoined to its parent; or

3. (wildcard indefinites) w1 ∈ {somebody,
something, someone} and there is a triple
(w′

1, w2, Rel) ∈ D2 where w′
1 is a noun.

This definition depends on a near equality re-
lation ≈ between holding between words a and b
when

1. (lowercase) lowercase(a) = lowercase(b); or

2. (contraction) a =‘’s’ and b =‘is’ or a =‘n’t’
and b =‘not’ (or vice versa)
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Figure 2: Structural transformations for coordination.

In Section 6.2, we report our main results based
on the transformations and this notion of sub-
derivation above, and compare those results to
other systems. It is interesting to observe that the
Cambridge system (Rimell and Clark, 2010) made
use of the following heuristic procedure to deter-
mine whether the result of one CCG derivations
(converted into a dependency structure) entails an-
other:

1. Lowercase and lemmatize all tokens

2. From DH , discard dependencies involving
tokens not present in DT .

3. Let core(DH ) be the dependencies with sub-
ject and object relations in DH . Answer YES
if core(DH) ⊂ core(DT ) and DH∩DT = ∅,
NO otherwise.

We see little a priori motivation for the whole-
sale elimination of tokens in H not present in T,
or for the restriction to subject and object rela-
tions. Nonetheless, for comparability, we also in-
clude separate results where we apply our struc-
tural transformations, but rather than using our no-
tion of subderivation, instead follow the heuristic
procedure adopted in the Cambridge system.

4 Supertagging Models

In the experiments reported below, we compare
performance with two different supertaggers.

4.1 bi-LSTM Supertagger

The current state-of-the-art in TAG supertagging
is reported in (Kasai et al., 2017), a model based
on a bidirectional LSTM that get as input word
sequences and predicted part of speech tags, and
produces as output a probability distributions over
the TAG supertags at the last softmax layer. This
supertagger is trained on Section 1-22 in the TAG-
annotated WSJ Penn Tree Bank extracted by Chen
(2001). Its supertagging accuracy on Section 0 is
89.32%. For more details, see Kasai et al. (2017).

4.2 MICA Supertagger

The MICA supertagger is a maxent model, which
uses lexical and part-of-speech attributes of words
in a 3-word window on either side of the target
word in a one-versus-all classification task. (The
tagger does not use tagging history.) It achieves
88.52% accuracy on Section 0.

5 Parsing Models

We compare two parsing models here, one a neural
network-based transition based parser, and another
a chart parser.
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5.1 Shift-Reduce Neural Network TAG
Parser

The currently best performing TAG parser is re-
ported in Kasai et al. (2017). This is an arc-eager
shift-reduce parser that uses a feed-forward neural
network as an oracle. At each time step, the ora-
cle takes as input the configuration of the parser,
which consists of a fixed number of cells from the
top of the stack and the front of the buffer, each
containing a 1-best supertag from the supertagger.
The parser’s task is to construct a derivation tree
from the individual supertags. This derivation is
constructed in the usual way for transition-based
parsers, namely through a series of actions (shift,
reduce, left-arc, and right-arc). Left-arc and right-
arc create links in the derivation tree, and these
operations are further specified by the type of op-
eration (substitution and adjoining) as well as the
node within the elementary tree to which the op-
eration applies (specified for substitution as 0-4,
encodings of the deep grammatical role of the sub-
stitution site). The output of the network is a soft-
max layer, whose activations can be interpreted
as a probability distribution over actions and la-
bels. It should be noted that the parser is unlexi-
calized; the only information that the parser uses
to determine its action is the supertags in the rel-
evant cells of the stack and buffer. We train this
parser on WSJ Sections 1-22 similarly to the bi-
LSTM supertagger. For more details, see Kasai
et al. (2017).

5.2 MICA Parser

The MICA parser (Bangalore et al., 2009) is based
on the SYNTAX system (Boullier, 2003), a full
Earley parser with additional performance opti-
mizations to deal with large grammars. The
TAG grammar is transformed into a variant of a
probabilistic CFG which allows Kleene stars on
righthand side nonterminals to model adjunction.
MICA produces a full parse forest and can out-
put n-best parses, but in these experiments we only
consider the 1-best parse.

5.3 Intrinsic task results

Table 1 shows that the NN parser outperforms the
MICA parser on both the development set (Section
0) and the test set (Section 23).

6 Results and Discussions

The results of PETE are provided using both ac-
curacy and f-measure for finding the entailment
cases (which represent around 52% of the cases
in the test set). Both metrics are reasonable met-
rics for the task, and the choice of primary metric
depends on exactly why one wants to perform this
extrinsic textual entailment task. The fact that both
metrics are reasonable ways of assessing perfor-
mance makes it more difficult to rank the systems,
and we comment on both accuracy and f-measure.

6.1 Previous Results

The top part of Table 2 shows the previous re-
sults from the best performing systems in the 2010
SEMEVAL PETE task. All of these involve sys-
tems which make use of grammatical formalisms
that provide rich linguistic description: the CCG-
based Cambridge and SCHWA systems, and the
HPSG/MRS-based system from Lien (2014). The
Cambridge system does best by accuracy, the
SCHWA system by f-measure. We note that the
MRS system, which uses a grammar to derive a
deeper semantics from the parse than we are using
in our approach, gets the highest precision among
these systems, but at the cost of a lower recall, as
is often the case with grammar-based systems.

6.2 Performance

The middle part of Table 2 shows results using
structural transformations and our notion of sub-
derivation. We evaluate our system with three
combinations of MICA and neural network su-
pertaggers and parsers. In general, the more neu-
ral networks, the better. We note a large discrep-
ancy between our results for development and test
set (accuracies 78.8% v.s 68.4% for bi-LSTM+NN
system). We note that all of our transformations
and subderivation notion increase the number of
yes-answers (by enlarging T or reducing H). Yet,
our high precision and low recall values show that
we miss a significant amount of ’yes’-answers.
Thus, we evidently did not devise enough trans-
formations; or perhaps our formulation of the cri-
terion for entailment was not applicable to the test
set.

6.3 Cambridge Heuristics

Because of the drop off when using our subderiva-
tion notion, we also explored the use of the Cam-
bridge heuristics. The bottom part of Table 2
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Dev Results Test Results
Gold Stags Predicted Stags Gold Stags Predicted Stags

Parsing Model Beam size UAS LAS UAS LAS UAS LAS UAS LAS
MICA Stagger + MICA Parser – 97.60 97.30 87.91 86.14 96.97 96.59 86.66 84.90
bi-LSTM Stagger + MICA Parser – 90.05 88.32 90.20 88.66
bi-LSTM Stagger + NN Parser 1 96.82 96.45 89.48 88.00 – – – –
bi-LSTM Stagger + NN Parser 16 97.67 97.45 90.23 88.77 97.87 97.64 90.25 88.91

Table 1: Intrinsic task parsing results on the development and test sets.

Entailment Dev Results Test Results
Supertagger Parser Identification %A %P %R %F1 %A %P %R %F1
Cambridge Cambridge Cambridge 66.7 78.6 57.9 66.7 72.4 79.6 62.8 70.2
SCHWA SCHWA SCHWA 78.8 84.2 80.0 82.0 70.4 68.3 80.1 73.7
MRS MRS MRS 77.3 92.6 65.8 76.9 70.7 88.6 50.0 63.9
bi-LSTM Feed-Forward NN Subderivation 78.8 92.9 68.4 78.8 68.4 90.7 43.6 58.9
bi-LSTM MICA Subderivation 74.2 92.0 60.5 73.0 66.1 90.9 38.5 54.1
MICA MICA Subderivation 68.2 90.5 50.0 64.4 63.8 87.3 35.3 50.2
bi-LSTM Feed-Forward NN Cambridge 66.7 73.5 65.8 69.4 72.4 85.4 56.4 68
bi-LSTM MICA Cambridge 69.7 75 71.1 73 75.7 88.1 61.5 72.5

Table 2: PETE task previous system scores and TAG system scores on dev and test sets, using structural
transformations together with either our notion of subderivation or Cambridge’s heuristics. Accuracy
(A) gives the percentage of correct answers for both YES and NO. Precision (P), recall (R) and F1 are
calculated for YES.

shows results using our structural transformations
together with Cambridge heuristics for entailment
identification.

Surprisingly, the system comprised of the neural
supertagger and MICA parser is the best perform-
ing of our systems now, based on both accuracy
and f-measure. In fact, it has the best result on ac-
curacy compared to all systems, and is beat only
by SCHWA in f-measure. We note that the devel-
opment set results with the Cambridge heuristics
are much lower than with our subderivation no-
tion. This shows that the heuristics are crucial in
this evaluation, and that they apply differently for
the development and test sets.

6.4 Discussion

We note a disconnect from parser performances
when we use the Cambridge heuristic. We can
compare these results to the intrinsic evaluation
results of Table 1. The bi-LSTM+NN model
performs better on the intrinsic parsing evalua-
tion metrics UAS and LAS (unlabeled and labeled
attachment scores) than the bi-LSTM+MICA
model. This is reflected in the results using struc-
tural transformations and our subderivation no-
tion. However, this performance difference is in-
verted with structural transformations and Cam-
bridge heuristics.

These results also document that the heuris-
tics are crucial in this evaluation; the Cambridge

heuristics do not appear to be motivated by gen-
eral linguistic considerations. It appears to be im-
portant to understand the specific data chosen for
the evaluation in order to derive good heuristics.
As noted in Section 2, the T sentences were man-
ually selected and transformed by the workshop
organizers, in order to maximize the presence of
certain syntactic phenomena known to be difficult.
The entailment sentences (H) were constructed by
hand using certain types of transformations, which
are not completely specified in the task descrip-
tion. So there is a certain human idea (that of
the workshop organizers) of “entailment” operat-
ing here which we are trying to reverse engineer.
As we created our heuristics based only on the
development set and kept to linguistically well-
grounded notions, we ended up with low recall on
the test set. Consequently, a good understanding
of the data creation process will probably benefit
performance. This is not to say PETE is not an
interesting evaluation exercise, but it is (necessar-
ily) limited in what it shows because of the data
creation process.

6.5 Error analysis

6.5.1 Sources of Errors

In order to better understand the nature of the data
set as well as what kinds of cases are causing prob-
lems for the neural network TAG parser, we in-
spected the examples from the development set
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that led to errors. A number of these were pars-
ing errors without any simple diagnosis. However
a number of the others were more intriguing.

One case in the development set was misparsed
because of an attachment ambiguity: It is the last
of the three tests of manhood which the women im-
pose is supposed to entail that the women impose
tests. The NN parser mistakenly attaches the rela-
tive clause headed by impose to the noun manhood
instead of to tests. Such examples inevitably pose
difficulties for our TAG-based parsers, since they
are unlexicalized and therefore cannot make use of
lexical information to make attachment decisions.

Another case in the test set involves the res-
olution of an anaphoric dependency: Mary said
’I have seen’ is supposed to entail Mary has
seen something. It is not clear to us that such
cases should be treated as syntactically governed
(or even if the entailment is correct – she could
be mistaken or lying). If the verb is changed
from said to heard, the entailment no longer goes
through, suggesting that the lexical semantics of
the embedding predicate, not to mention the in-
dexical, is at issue.3

The fine-grained character of TAG derivations
gives rise to derivational ambiguities that do not
exist in other frameworks, but which can prevent
the recognition of entailments. The development
set contains the phrase Japan hadn’t come up with
specific changes. For reasons that are not clear to
us at present, the phrasal verb is parsed correctly
in H, with both up and with treated as co-heads to
the verb come. However in the parse of T, which
also contains this phrasal verb, only up is treated
as a co-head, while with is treated as the head of
a PP modifying the VP. One of the major differ-
ences between the Cambridge heuristics and our
subderivation notion is the former’s exclusive fo-
cus on “core arguments”. This would allow mis-
parses of this sort to be ignored, though it might
pose problems for other cases.

Finally, we note a surprising parsing error aris-
ing from an error in Part of Speech tagging that
is input to our supertagger. For the Hypothesis
Many bear resemblances to movie personalities,
both our bi-LSTM supertagger and the Stanford
PCFG Parser (Manning et al., 2014) tag many bear
resemblances as an adjective, noun, and verb (as in

3Rimell and Clark (2010) also cite the example discussed
earlier, trading is something we want to watch, as anaphoric.
However, we believe that a syntactic treatment can be given
if predicative sentences are correctly recognized.

red bear runs), instead of the correct sequence de-
terminer, verb, and noun. In the pre-trained Parsey
McParseface model (Andor et al., 2016), many
bear resemblances is tagged as an adjective, noun,
and noun, a sequence that is locally possible, but
not compatible with the sentence as a whole. This
is surprising, given that POS tagging is often re-
garded as a largely solved task. This sentence is
short and contains no unbounded dependencies,
nor are its lexical items unusual.

6.5.2 Differences between Subderivation
Condition and Cambridge Heuristics

To compare our subderivation condition to the
Cambridge heuristics, we compared their respec-
tive test set results under the bi-LSTM+NN model:
out of 301 entailment hypotheses, there are 20
cases that are correctly recognized by Cambridge
heuristics but not our heuristics, and eight cases
for which the opposite is true.

All of the 20 cases that Cambridge heuristics
succeed in are True entailments that our heuristics
mislabeled as False. Eight cases involve parser er-
rors: either one of two coheads was mislabeled as
an adjunction, a relative clause was misattached
due to an attachment ambiguity, the grammatical
function of the relative clause head is misiden-
tified, or quotation marks are misparsed. Eight
cases stemmed from the fact that our subderivation
condition does not involve lemmatization of non-
auxiliary verbs; hence it will fail on cases where a
non-auxiliary verb is in different forms in the hy-
pothesis and entailment, for example Something
includes vs. Examples include. One further fail-
ure involved ellipsis, whose underlying structure
our TAG parse does not allow us to recover: with
the text Consider the ingredients, not the name,
our parse attaches not to name, whereas with the
hypothesis Do not consider the name, our parse
attaches not to consider. Another case involved
a difference in choice of determiner between the
hypothesis and text, i.e., the vs. an. A final case
involved what we take to be a contestable gold la-
bel, where the text he would have a place to hang
is granted the hypothesis he would hang as a True
entailment.

For these cases, the Cambridge heuristics suc-
ceed by lemmatizing all tokens (8 cases), by con-
sidering only the core arguments (11 cases), and
by skipping an unseen token (1 case).

In contrast, the eight cases where Cambridge
heuristics fail but where the subderivation condi-
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tion succeeds are all instances of False entailments
that Cambridge heuristics mislabels as True. Here,
we see that the Cambridge heuristics lose relevant
grammatical distinctions as a result of ignoring
non-core arguments (6 cases) or skipping unseen
tokens (2). For example, with the text that is ex-
actly what I’m hoping for and hypothesis I’m hop-
ing exactly, it is the non-core adjunction relation
between exactly and hoping that makes the hy-
pothesis False. Or, with the text to live like Chris-
tians and hypothesis someone likes Christians, it
is the unseen token someone with the tokens like
or likes that make the hypothesis False.

As observed in Table 2, precision is higher
but accuracy is lower for our subderivation con-
dition than for Cambridge heuristics under the
bi-LSTM+NN model. Based on the inspection
above, Cambridge heuristics result in gains and
losses in entailment prediction as a result of their
coarse-grained nature. Our subderivation condi-
tion fails to predict certain entailments because of
its lack of verb lemmatization and its lack of ro-
bustness to “minor” parse failures.4 However, its
success is more directly tied to parser performance
in a more linguistically rigorous way.

7 Conclusions and Future Work

In this paper, we have presented results for the
PETE task using three systems for TAG parsing.
Our results confirm previous exploration of this
task in which parsers that provide rich linguistic
descriptions fare best. Using linguistically moti-
vated structural transformations and a subderiva-
tion criterion for detecting entailments, we have
shown that TAG parsers can outperform the state-
of-the-art on the development sets. However, on
the test set, our results decrease sharply. In con-
trast, when we instead apply the heuristics used by
the (previously) best performing CCG-based sys-
tem (Cambridge) to detect entailment, we obtain
accuracy results that surpass the state-of-the-art on
this task. These results demonstrate that heuristics
greatly affect task performance.

Since the development set is small, and we in-
ferred structural transformations by observing the
linguistic changes in the development set, there

4Note that if we add lemmatization of main verbs to our
subderivation condition, we gain 8 additional correct predic-
tions (the aforementioned lemmatization failures), but lose
no other cases. This would yield the following performance
scores: accuracy 71.1, precision 91.6, recall 48.7, and F1
63.6.

may be linguistic features that TAG parses do pro-
vide, but which we did not think to make use
of. This reflects a common challenge for rule-
based systems. More rules could be derived by
observing the Penn Treebank and our particular
grammar. We intend to analyze which cases the
Cambridge heuristics perform better on than our
subderivation-based heuristics; in so doing, we
will treat the test set as an expanded development
set, but we feel the provided development set is too
small to truly understand this problem. We hope it
will be possible to create a new test set in the fu-
ture if there is sufficient community interest.

Finally, because our structural transformations
are based on general properties of TAG deriva-
tions and are task-independent, this suggests that
the utility of the current work may extend to other
extrinsic tasks, such as semantic role labeling and
textual entailment tasks that involve lexical se-
mantics, world knowledge and logical reasoning.
We leave such explorations for the future.
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