
Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 102–111,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Contextual Hyperedge Replacement Grammars for
Abstract Meaning Representations

Frank Drewes
Umeå University

drewes@cs.umu.se

Anna Jonsson
Umeå University
aj@cs.umu.se

Abstract

We show how contextual hyperedge re-
placement grammars can be used to
generate abstract meaning representations
(AMRs), and argue that they are more suit-
able for this purpose than hyperedge re-
placement grammars. Contextual hyper-
edge replacement turns out to have two
advantages over plain hyperedge replace-
ment: it can completely cover the lan-
guage of all AMRs over a given domain of
concepts, and at the same time its gram-
mars become both smaller and simpler.

1 Introduction

Natural language processing applications that re-
ceive sentences as input mainly make use of lexi-
cal and syntactic properties of the input sentences.
Even though these properties are an important ba-
sis for the analysis of a sentence, one is usually
more interested in the meaning of a sentence, i.e.,
its semantics. This is particularly true in the case
of machine translation where a semantic error can
cause far more bewilderment than a syntactic one.

Thus, a general-purpose formalism for mod-
elling the semantics of sentences in a way that al-
lows for efficient analysis would be widely use-
ful in natural language processing. This study
focuses on the generation of a semantic repre-
sentation that was proposed some years ago, the
abstract meaning representation (AMR) (Langk-
ilde and Knight, 1998; Banarescu et al., 2013).
An AMR1 is a directed, rooted, acyclic, node-
and edge-labelled graph that represents the se-

1We use the term AMR to refer not only to the concept
of Abstract Meaning Representation as such (Langkilde and
Knight, 1998; Banarescu et al., 2013), but also to its individ-
ual graphs.

mantics of an English sentence2; the nodes and
edges represent concepts and their relations, re-
spectively. A corpus of AMRs over a limited do-
main can be found in (Braune et al., 2014). As in
the case of syntax trees, where tree grammars and
tree automata (Knight and Graehl, 2005) provide a
model for distinguishing structurally correct trees
from incorrect ones, the algorithmic processing of
AMRs would benefit from the existence of appro-
priate formal models for their generation or recog-
nition. Here, we focus on the generation of AMRs
by graph grammars, which have previously been
proposed as formal models for this very task (Chi-
ang et al., 2013).

The usefulness of two types of hyperedge re-
placement grammar (HRG, see Habel (1992);
Drewes et al. (1997)) for AMR generation was in-
vestigated by Jonsson (2016a) (see also (Jonsson,
2016b)), namely the predictive top-down (PTD)
parsable grammar (Drewes et al., 2015) and the
restricted directed acyclic graph (rDAG) gram-
mar (Björklund et al., 2016). Both are of particular
interest because their study was, among other pos-
sible application areas, motivated by AMR gen-
eration. A specific advantage of these special
cases of HRGs is that their membership problem
is solvable in polynomial time. However, Jonsson
(2016a) concludes that neither of them is able to
generate the complete set of AMRs over a given
concept domain.

Unrestricted HRGs allow for better coverage at
the expense of greater computational complexity.
However, a general disadvantage of hyperedge re-
placement remains. The nonterminal items in an
HRG are hyperedges – edges that may be attached
to more (or fewer) than two nodes. Replacement
of a hyperedge inserts a new subgraph in its place,

2Although AMR is to some extent language independent,
it is biased towards English (Banarescu et al., 2013), and
therefore not truly an interlingua (Xue et al., 2014).

102

connecting it to the host graph via the nodes the
replaced hyperedge was incident on. Intuitively,
nonterminal hyperedges keep track of a number of
potentially relevant nodes for the purpose of being
able to attach new edges to them later on in the
derivation. This process is well known (and eas-
ily seen) to generate graph languages of bounded
treewidth. As shall be illustrated in Section 6 the
ability of hyperedges to keep track of a bounded
number of previously generated nodes can be used
to ensure structural properties such as those caused
by control verbs. However, it appears that other
types of reentrancies, like those arising from the
use of pronouns, are of a different nature. If,
for example, several instances of the concept boy
have been generated, any of them can in princi-
ple be referred to from anywhere else in the AMR.
As a consequence, there is no reasonable a priori
bound on the treewidth of the graph. Nontermi-
nal hyperedges generating other parts of the AMR
would have to keep track of all boy instances to
accomplish full coverage. On the one hand, this is
not possible in an HRG. On the other hand, it does
not seem to be desirable either, because keeping
track of every boy instance individually would en-
able a level of control far beyond what is needed.

Here we consider contextual hyperedge replace-
ment grammars (CHRGs) (Drewes et al., 2012;
Drewes and Hoffmann, 2015) to learn whether
they can be used to overcome these disadvantages.
CHRGs are also based on hyperedge replacement,
but the left-hand side of a rule can contain so-
called contextual nodes. This provides access to
nodes other than those immediately controlled by
the nonterminal hyperedge, thus enabling rules
to establish connections of the type discussed in
the previous paragraph. The additional ability is
severely limited, far below true context-sensitivity
in power, because nodes are terminal items and
derivation steps cannot distinguish between con-
textual nodes with the same label. For instance,
in the situation sketched above a rule application
would just pick any occurrence of boy elsewhere
in the host graph. As a consequence, however, the
treewidth of generated graphs is not necessarily
bounded anymore.

In the present paper we study and illustrate the
advantages of CHRGs over HRGs for AMR gen-
eration by looking at an example concept domain
in a theoretical case study. To this end, we build
a CHRG that generates AMRs over a restricted

domain and argue that it exhibits perfect cover-
age. The baseline domain is the one introduced
by Braune et al. (2014), consisting of the con-
cepts boy, girl, want and believe along
with two basic relations (called arg0 and arg1)
that are used to bind the concepts together and
correspond to the agent and patient of a want or
believe event. We also consider the construc-
tion of CHRGs for more general AMRs to explore
the advantages of the more generous rule format.
Therefore we add a small set of possible modifiers,
allow an arbitrary number of boys and girls to ap-
pear in an AMR,3 and discuss how to handle con-
trol verbs.

The conclusion of our study is that contextual
hyperedge replacement is indeed a promising for-
malism for describing sets of AMRs. On the one
hand, AMRs contain the mentioned local struc-
tures that must satisfy certain well-formedness
constraints, such as in the case of control verbs.
This can be implemented like it would in an HRG,
using a nonterminal hyperedge to keep track of
the involved nodes. On the other hand, contex-
tual nodes can be used to implement the kinds of
coreferences which may occur anywhere without
following strict local rules, such as those relat-
ing to the use of pronouns. As discussed above,
the latter creates problems in HRGs because non-
terminal hyperedges would have to keep track of
potential antecedents, which seems inappropriate
for various reasons: it is restricted by the rank
of hyperedges, provides an unnecessarily detailed
level of control (thus creating the risk of overfit-
ting), and leads to a huge number of rules to ac-
count explicitly for all the possible nondeterminis-
tic choices arising from the (exponentially) many
ways in which coreferences can be inserted.

The obvious downside of using CHRGs is
that computational problems may potentially be-
come more difficult. However, recent results
on shift-reduce parsing for both HRGs and
CHRGs (Drewes et al., 2017)4 indicate that this
may not be the case. In fact, as the rank of hyper-
edges and the number of rules are central param-
eters in the complexity of membership algorithms
for both unrestricted HRGs and CHRGs, it may
even pay off to turn to CHRGs since this leads
to smaller ranks and much fewer rules, the latter

3Braune et al. (2014) only consider at most one boy and
at most one girl.

4See https://www.unibw.de/inf2/grappa/
for the extension to CHRGs.

103

because the use of contextual nodes removes the
necessity to implement nondeterministic choices
explicitly by creating a separate rule for each.

In Section 2, we lay the ground for the rest of
the paper with some basic definitions. The CHRG
is defined in Section 3, and the subset of AMR
to be considered here is discussed in Section 4.
The construction of a CHRG for this domain is
described in Section 5. In Section 6, we indicate
how to generalise it to larger domains, and in par-
ticular how control verbs can be added. Finally,
the results are discussed in Section 7 followed by
the conclusions and future work in Section 8.

Acknowledgement We thank the reviewers for
useful comments that helped us clarify the line of
argumentation (as we hope).

2 Preliminaries

For a set A, we write A∗ to denote the set of finite
sequences or strings over A, and A~ for the set of
strings over A in which no element is repeated; ε
denotes the empty sequence. Elements of A are
identified with strings of length 1 over A, and thus
subsets of A are string languages at the same time.

Furthermore, we let 2A denote the power set
of A, i.e., the set of all subsets of A. The ex-
tension of a function f : A → A′ to sequences
a1, . . . , an where ai ∈ A for 0 ≤ i ≤ n is de-
noted f∗ : A∗ → A′∗ and defined by f∗(a0, . . . ,
an) = f(a1) · · · f(an). Concatenation of strings
is denoted by simple juxtaposition, and element-
wise concatenation of two string languages L,L′

is denoted by L · L′, i.e., L · L′ = {uv | u ∈ L,
v ∈ L′}.

A labelling alphabet is a set Σ partitioned into
three mutually disjoint sets ΣV , ΣE and ΣN on
which an arity function arity : ΣE] ΣN → 2Σ∗

V

is defined. (See Section 5 for an example of an
alphabet and its arity function.) The sets ΣV , ΣE

and ΣN are referred to as node labels, (hyper)edge
labels and nonterminal labels, respectively.

A hypergraph is a generalisation of directed
graphs by the usage of edges that can connect
an arbitrary number of nodes. Here, we consider
node- and edge-labelled hypergraphs.

Definition 1 (Hypergraph (Drewes et al., 2012)).
A labelled hypergraph (hypergraph, for short) over
a labelling alphabet Σ is a tuple G = (V,E, att ,
labelV , labelE) such that
• V is a finite set of nodes.

• E is a finite set of hyperedges.
• att : E → V ~ is the attachment of hyperedges.
• labelV : V → ΣV is the labelling of nodes.
• labelE : E → ΣE ∪ ΣN with label∗V (att(e)) ∈
arity(labelE(e)) for all e ∈ E is the labelling
of hyperedges.5

The rank of a hyperedge e is |arity(labelE(e))|.
Hyperedges with labels in ΣN are called nonter-
minals; GΣ denotes the set of all hypergraphs over
Σ. For a hypergraph G and a hyperedge e ∈ E,
the hypergraph resulting from removing e from G
is denoted by G − e. The empty hypergraph is
denoted by ().

In illustrations, nodes and hyperedges are drawn
as ellipses and squares, respectively, with in-
scribed labels. The attachment of a hyperedge is
shown by lines, and the attachment order is de-
picted using numbers (these can be left out if the
attachment order is clear from the context or irrel-
evant). If a hyperedge connects exactly two nodes
(i.e., it is binary), it can be drawn as an arrow
directed from the first node of the attachment to
the second with its label next to it. See Section 5
for various examples of hypergraphs. Note that a
hypergraph containing only binary hyperedges is
equivalent to an ordinary directed graph; this is the
case in e.g. Figure 1.

3 Contextual Hyperedge Replacement

Given a hypergraph containing nonterminals, rules
can be applied to it in order to generate a new hy-
pergraph. A set of such rules along with a fixed
hypergraph to which they are to be applied forms
a grammar. The grammar type considered here
was proposed in (Drewes et al., 2012; Drewes and
Hoffmann, 2015) and uses the following rule type.

Definition 2 (Contextual Rule). A contextual hy-
peredge replacement rule (or contextual rule) is a
pair (L,R) where L and R are hypergraphs over
the labelling alphabet Σ such that
• L (the left-hand side) contains exactly one hy-

peredge e that must be a nonterminal, and
• R (the right-hand side) is an arbitrary super-

graph of L− e.

A contextual rule for which all nodes in the left-
hand side are connected to e is called context-free.
The nodes that are not connected to e are referred
to as contextual nodes.

5The arity function used differs from the one in (Drewes
et al., 2012), but the resulting hypergraph definition remains
the same.

104

We denote a contextual rule by letting ::= sep-
arate the left- and right-hand sides. Moreover, we
allow rules that share the same left-hand side to be
drawn more compactly; in this case, the left-hand
side is only drawn once, and a vertical line is used
to separate the right-hand sides from each other.
To save further space, we use rule schemata in
which labels may be variables ranging over a spec-
ified subset of the set of all labels. As an exam-
ple of a set of contextual rules, consider the rules
in (iii) in Figure 4 of Section 5. Every choice of z,
u, v and a1, a2 in the range specified beneath the
rules yields three rules. Each has the nonterminal
N1 in its left-hand side, and the node labelled u is
a contextual node. In addition, the third right-hand
side contains a newly generated node labelled v.

A contextual rule (L,R) can be applied to a hy-
pergraph G containing an isomorphic copy of L,
i.e., a subgraph that is equal to L up to renaming
of nodes and hyperedges. Suppose for simplicity
that L is a subgraph of G. Then the application of
the rule works in the following manner:
1. Remove e from G, yielding G− e.
2. Add R to G− e, disjointly.
3. Identify the nodes in L−e with the correspond-

ing nodes in R.
The resulting hypergraph is denoted by G[R/e].

Now, we can formally define the grammar type
that makes use of contextual rules.

Definition 3 (Contextual Hyperedge Replace-
ment). A contextual hyperedge replacement gram-
mar (CHRG) is a triple Γ = (Σ,R, Z) where
• Σ is a finite labelling alphabet,
• R is a finite set of contextual rules, and
• Z ∈ GΣ is a start hypergraph.

If G′ = G[R/e] for some contextual rule (L,
R) ∈ R, we say that G′ is derived from G in Γ,
and we write G ⇒R G′. The language gener-
ated by Γ is L(Γ) = {G ∈ GΣ\N | Z ⇒∗R G}
where ⇒∗ is the reflective and transitive closure
of ⇒. Two CHRGs Γ1 and Γ2 are equivalent if
L(Γ1) = L(Γ2), i.e., if they generate the same
language. If all of the rules of Γ are context-
free, then Γ is a hyperedge replacement grammar
(HRG). Thus, CHRG is a generalisation of HRG
through the extension of context-free rules to con-
textual rules. Intuitively, the difference between
the two is that CHRGs can nondeterministically
pick a previously generated node with a specified
label without that node being connected to the re-
placed nonterminal. HRGs do not have this ability.

The graph languages generated by CHRGs are
in NP (Drewes and Hoffmann, 2015), and can thus
be NP-complete, as this already holds for HRGs.
Hence, unless P = NP there are CHRGs which
do not admit a polynomial membership test. For
HRGs, there exist polynomial membership algo-
rithms for nontrivial special cases such as PTD
parsable, shift-reduce parsable, and rDAG HRGs.
The fact that membership testing is not harder for
CHRG than for HRG (at least in theory) strength-
ens the hope that there are subclasses of CHRG
with efficient membership tests. Indeed, this has
partially been confirmed: the membership algo-
rithms for PTD and shift-reduce parsable HRGs
can be extended to CHRGs.4

4 Abstract Meaning Representation

Abstract meaning representation (AMR) (Langk-
ilde and Knight, 1998; Banarescu et al., 2013)
denotes sentence meaning as directed, rooted,
acyclic graphs with node and edge labels. To the
extent possible, AMR aims to provide a unique
representation of semantics, i.e., while numerous
sentences can express the same meaning, they
should all map to the same AMR. The idea is that
the nodes of the graph represent the concepts iden-
tifiable in the sentence, and the edges represent
the relations between the concepts. Intuitively, the
subgraph rooted at any one given node represents
an event, a fact, or an entity. See Figure 1 for ex-
ample AMRs that can be realised into the English
sentences “The boy wants the girl to believe him”
or “[. . .] to believe the other boy.”

The previous example highlights that every
event or entity represented in an AMR should oc-
cur once and only once. In fact, this is the ma-
jor difference between AMRs and syntax trees, in
which several subtrees may refer to the same se-
mantic thing. In the second AMR in Figure 1, the
fact that the wantee is not represented by the same
node as the believee implies that these two are dis-
tinct. Representing the first sentence by the second
AMR (or the second one by the first) is an error.

Thus, to achieve complete coverage, a grammar
for generating AMRs over the given domain must
generate both graphs in Figure 1. Figures 2 and 3
show another pair of AMRs, of which the former
correctly represents the semantics of the sentence
“The boy wants the girl to believe in herself and
this is what the girl wants, too.” The interpretation
of the latter is less obvious. We do not endeav-

105

want

believe

girlboy

arg1arg0

arg0arg1

want

believe

girlboy boy

arg1arg0

arg0 arg1

Figure 1: AMRs representing an event want,
where the wanter is a boy and the wantee is the
event believe for which the believer is a girl
and the believee is either the formerly mentioned
boy (left) or a different one (right).

boy

want

believe

want

girl

arg0 arg1 arg1 arg0

arg0

arg1

Figure 2: Another AMR.

boy

want

believe girl

want

believe

arg0 arg1 arg1arg0

arg0

arg1 arg1

arg0

Figure 3: An AMR similar to the one in Figure 2, but with two distinct believe events.

our to discuss whether this AMR is meaningful at
all, but it certainly seems to be less probable. Un-
fortunately, it turns out that structures such as the
one in Figure 3 are easy to generate by a HRG and
even by the aforementioned PTD parsable HRGs,
whereas trying to include the more desirable one
in Figure 2 meets severe difficulties. This is an in-
stance of the problems mentioned in the introduc-
tion: a HRG generating structures like the one in
Figure 2 (even one that is not PTD parsable) would
have to generate the believe node early on and
then keep track of it in its nonterminal hyperedges
to establish the desired relations later on, when
the two want nodes are generated.6 The non-
deterministic choices this creates seem to destroy
PTD parsability. Further, even if PTD parsability
is abandoned in favour of generative power, the
desired effect can only be approximated: as the
number of believe nodes grows, it eventually
exceeds the number of nodes that the nonterminal
hyperedges have been designed to keep track of.

4.1 The Boy-Girl AMR Corpus

The boy-girl AMR corpus is a set of 10 000
AMRs over a restricted domain that was presented
in (Braune et al., 2014). Each AMR of this corpus
fulfils the following conditions:
• The node label alphabet consists of the concept

names boy, girl, want, and believe.
6This assumes for simplicity that a bottom-up generation

strategy is employed. However, the difficulties arising depend
only marginally on the choice of strategy.

• The edge label alphabet consists of the relation
names arg0 and arg1.
• The node labels boy and girl occur at most

once each, and label the leaves of the graph.
• For each want and believe node, the outgo-

ing edges carry distinct labels and all incoming
edges are labelled arg1.
The relation arg0 is used for marking the agent

of an action expressed by a concept in the form of
a verb, and the patient of the same action is given
by the concept pointed to by arg1. The above
restrictions simply give us the domain and tell us
that a person cannot be used as a verb, and that
verbs cannot be agents, but that an event (a sub-
graph with a verb concept as root) can act as a
patient. The left AMR in Figure 1 is a boy-girl
AMR, whereas the left one is not, as it contains
two copies of boy.

To make things more interesting, we remove the
restriction that there can only be one girl and one
boy, and extend the concept domain by months,
weekdays and the words happy and angry. Let
ΣV denote this extended domain. Finally, we add
the relations manner, month and day, which to-
gether with arg0 and arg1 form ΣE .

5 Construction of a Boy-Girl CHRG

Let us now discuss how to construct a CHRG
that generates the complete language of boy-girl
AMRs. The alphabet used is that of Section 4.1,
enlarged by ΣN = {S,N,N1,M} and with the

106

arity function given as follows: for A ∈ ΣE ,
arity(A) = {want,believe} · TARA where

TARarg0 = {boy,girl}
TARarg1 = ΣV \ {happy,angry}
TARmanner = {happy,angry}
TARmonth = {Jan, . . . ,Dec}
TARday = {Mon, . . . ,Sun}.

Furthermore, arity(S) = arity(N) = ε and
arity(N1) = arity(M) = {want,believe}.
The start hypergraph Z consists of a single nonter-
minal labelled S. The rules of the boy-girl CHRG
can be seen in Figure 4.

The initial rules of the grammar, the ones of
schema (i), simply generate the first leaf of the
graph. The rules of schema (ii) choose between
terminating the derivation by generating the empty
graph or continuing it by generating a non-leaf
node. Schemata (iii) and (iv) connect the newly
generated node with label z to at least one previ-
ously generated node. Moreover, these rules con-
nect a nonterminal labelled M to the node, which
makes it possible to add zero or more outgoing
manner edges from the node currently being han-
dled to suitable (new) leaves. In addition, at most
one month and one day edge can be generated,
and the latter only in connection with the former.
We note here that these restrictions are not in-
tended to be semantically particularly meaningful.
They only serve to illustrate that this type of “reg-

ular control” can be used to put together the com-
bination of outgoing relations a node shall have.

To restart the cycle of either generating an-
other want or believe node or terminating the
derivation, (iii) and (iv) also create a new nonter-
minal labelled N .

We can see that each node must be given all
of its outgoing arg0 and arg1 edges before an-
other one is generated, making sure that the result-
ing AMR is acyclic (because manner, month,
and day edges only point to leaves). Every node
generated by (iii), (iv), or (v) is immediately con-
nected to an already existing node. Moreover, the
new node generated by the second rule of (ii) is
connected to a nonterminal labelled N1 until that
node, by (iii) or (iv), is connected to an older node.
Using this, it follows by induction that only con-
nected graphs are generated.

An example of a derivation using the boy-girl
CHRG can be seen in Figure 5. The rule(s) used in
every step are indicated above the derivation sym-
bol (⇒) combined with the right-hand side index
of the used rule (starting at 1). What variables are
mapped to which labels throughout the derivation
is shown implicitly. The resulting AMR is the pre-
viously discussed one in Figure 2.

It should be clear that this grammar generates
the complete language of AMRs over our small
domain: as we are only interested in generating
acyclic graphs this is always possible by generat-

S
(i)
::=

x

N

where x ∈ {boy,girl}

N
(ii)
::= ()

z

N1

where z ∈ {want,believe}

N1

z

u

(iii)
::=

z

u

M

N

a0

z

u

M

N

a0 a1

u

z

v

M

N

a0 a1

where z ∈ {want,believe}, {a0, a1} = {arg0,arg1},
and u, v ∈ ΣV are such that arity(ai) is respected

N1

z

u v

(iv)
::=

u

z

v

M

N

arg0
arg1

where z ∈ {want,believe}, u ∈ {boy,girl},
and v ∈ {want,believe,boy,girl}

M

z

(v)
::=

z

m

M

manner

z

x y

month day

z

x

month

z

where z ∈ {want,believe}, m ∈ {happy,angry},
x ∈ {Jan, . . . ,Dec}, y ∈ {Mon, . . . ,Sun}

Figure 4: A boy-girl CHRG exemplifying general rule structures. Rules are named for later reference by
a superscript on the operator ‘::=’.

107

S ⇒
(i)

girl

N

⇒
(ii).2

girl

believe

N1 ⇒
(iii).2

believe

girl

N

M

arg0 arg1
⇒∗
(v).4
(ii).2

believe

girl N1

want

arg0 arg1
⇒
(iv)

believe

want

girl

N

M

arg0

arg1

arg0ar
g1 ⇒∗

(v).4
(ii).2

believe

want

girlN1

want

arg0

arg1

arg0ar
g1 ⇒∗

(ii).1
(v).4
(iii).3

boy

want

believe

want

girl
arg0

arg1

arg0ar
g1

ar
g0

arg1

Figure 5: A derivation of an AMR using the boy-girl CHRG.

ing the nodes in reverse topological order. In other
words, the CHRG constructed indeed generates
the complete AMR language described above.

6 Generalisations

Let us now formulate some general rules about
how to create a CHRG that generates AMRs over
a given, finite domain of concepts and relations.

Let ΣV contain the concept names of the do-
main and ΣE its relations – these can be any
sets as long as they are finite. Define the
arity function of Σ as arity(r) = {cicj |
r is a valid relation from ci to cj for ci, cj ∈ ΣV }.
The arity function is used to restrict which con-
cepts can be connected using a particular rela-
tion. (For example, in the boy-girl case, we
know that verbs cannot be agents and that per-
sons cannot have agents. Thus, wantboy and
wantgirl are allowed in arity(arg0), but not
wantbelieve or girlwant.)

As in the boy-girl CHRG, generation starts with
the base case – a single leaf nondeterministically
chosen from all the concept names that may ap-
pear as leaves. A nonterminal similar to N in the
boy-girl case generates one new non-leaf node at
a time. All of the outgoing edges to other non-leaf
nodes are generated before returning to N . This
guarantees acyclicity as it prevents nodes from be-
ing given outgoing edges to nodes generated pos-
terior to them. As in the previous section, con-
textual rules are thus used to (1) enable the gener-
ation to refer back to previously generated nodes

by adding incoming relations and to (2) make sure
that the AMRs are connected. Further leaves can
only be generated along with the generation of an
outgoing relation from another node.

We may also want for a CHRG to generate var-
ious combinations of outgoing relations from the
latest non-leaf node (in the boy-girl grammar rep-
resented as z). This can be done similarly to the
generation of manner, month, and day edges
by M in Figure 4.

In view of the previous discussion the reader
may wonder whether one will ever have the need
to use nonterminal labels A with |arity(A)| >
1. It might seem that arguments can always be
picked using contextual nodes. However, this se-
lects targets exclusively based on their labels and
is thus inappropriate if finer structural control is
required. To illustrate this, let us add the ob-
ject control verb persuade and the subject con-
trol verb try to our concept set (i.e., to ΣV).
We also need a new relation arg2 to connect an
occurrence of persuade to its indirect object,
i.e., arity(arg2) = {persuade} · Σverb where
Σverb = {want,believe,persuade,try}.

Recall that, whenever an arg0 edge is created
in one of the rules in Figure 4, the subsequent
creation of further want and believe nodes is
taken care of by a nonterminal N generated at the
same time. To implement control, we use variants
of these rules which, instead of N , use a nonter-
minal C with arity(C) = Σverb · {boy,girl}.
This nonterminal is attached to the two nodes of

108

the arg0 edge, thus remembering where the con-
trol should take place instead of floating freely.

Some of the new rules are illustrated in Figure 6.
The rules in (vi) work like those in (iii), but cre-
ate nonterminals labelled by C instead of N , in
the way just described. A similar rule obtained
from (iv) is left out to save space.

The remaining rules insert the control verbs:
those in (vii) implement subject control by try
whereas those in (viii) implement object control
by persuade. Each of the rules corresponds to a

succession of two rules in Figure 4, namely (iii).1
followed by rule (ii).2. The first of each pair of
rules initiates another level of control whereas the
second returns to the “uncontrolled” case. Note
that we, for simplicity, drop the nonterminals M
that should be attached to the control verbs to
follow (iii).1 strictly. Also, there should be fur-
ther rules corresponding to (iii).2, (iii).3, and (iv),
which are omitted because they are constructed
along the same lines as those shown in the figure.

N1

z

u

(vi)
::=

z

u

M

C arg0

1

2

z

u

M

C arg1arg0

1

2

z

u v

M

C arg1arg0

1

2

where z ∈ {want,believe}, u ∈ {boy,girl}, v ∈ {want,believe,boy,girl}

C

z

u

1

2

(vii)
::=

try

z

u

C

arg1

arg0

1

2

try

z

u

N
arg1

arg0

where z ∈ {want,believe}, u ∈ {boy,girl}

C

z

xu

1

2

(viii)
::=

persuade

z

xu

C

arg2arg1

arg0

1

2

persuade

z

xu

N
arg2arg1

arg0

where z ∈ {want,believe}, u, x ∈ {boy,girl}

Figure 6: Rules implementing subject control (vii) and object control (viii).

S ⇒
(i)

N

girl
⇒

(ii).2

believe

N1

girl

⇒
(vi).3 believe

girl boy

C

arg0 arg1

1

2 ⇒
(viii).1

persuade

believe

girl boy

C

arg1 arg2 arg0

arg0 arg1

1

2 ⇒
(vii).2
(ii).1

try

persuade

believe

girl boy

arg0

arg1

arg1 arg2 arg0

arg0 arg1

Figure 7: An example derivation using the rules in Figures 4 and 6.

109

Figure 7 shows an example derivation involving
the new rules, the sentence being “The boy tries
to persuade the girl to believe him.” The reader
may wish to add the remaining rules not shown in
Figure 6, so that AMRs for sentences such as “The
boy wants to persuade the girl to try to persuade
the other girl to believe him” can be generated.

7 Discussion

Being able to generate complete AMR languages
is a clear advantage of CHRGs compared to PTD
parsable and rDAG grammars, and even over unre-
stricted HRGs. The latter can only generate graph
languages of bounded treewidth, and despite the
fact that real-world AMRs usually seem to be of
small treewidth (Chiang et al., 2016) it does not
seem to be justified to impose an a priori upper
bound on their treewidth.

However, the advantage of CHRGs for mod-
elling AMR languages exceeds the formal aspect
of unlimited treewidth. In an HRG, nontermi-
nal hyperedges have to keep track of all nodes to
which edges shall (potentially) be attached later
on in the process. This includes the implemen-
tation of non-local phenomena like anaphora, for
which little if any structural control is required,
thus resulting in an artificial increase not only in
the rank of hyperedges but also in the number of
rules. The latter may be significant, even exponen-
tial in the number of additional nodes to be kept
track of, because in a right-hand side every nonter-
minal hyperedge would nondeterministically have
to choose a subset of additional nodes to attach
to. Even so, the number of nodes that can be kept
track of is restricted by a constant depending on
the rank of hyperedges. In contrast, CHRGs do
not need to carry around such additional informa-
tion at all as they can simply view antecedents as
contextual nodes when it is time to insert a ref-
erence. The finer control provided by nonterminal
hyperedges can be reserved for situations in which
structural requirements must be met, such as im-
plementing control verbs, quantifiers, and the like.

It remains to be seen whether the algorith-
mic properties of AMR-generating CHRGs are
sufficiently good, especially when compared to
HRGs. Since CHRGs generalise HRGs one may
expect them to be algorithmically more demand-
ing. However, the preceding discussion indicates
that the converse may be true in practice. The ef-
ficiency of algorithms for analysing graphs with

respect to a given (C)HRG depends most signif-
icantly on two things: the ranks of hyperedges
and the number of rules (see in particular Chiang
et al. (2013)). Thus, the greater algorithmic com-
plexity of CHRGs may very well turn out to be
outweighed by them requiring much smaller ranks
and fewer rules, because the difference in size, as
indicated above, will most likely be exponential in
the desired number of potential antecedents.

The fact that CHRGs allow for structurally
simpler rules may also make it possible to cast
CHRGs like the one discussed here into a spe-
cial form suitable for efficient analysis like shift-
reduce parsing (Drewes et al., 2017) whereas the
same may happen to be impossible for an HRG,
even though the former has better coverage than
the latter. Whether these possibilities can be re-
alised is a question to be addressed by future work.

8 Conclusion

We have shown how CHRGs can generate com-
plete AMR languages in cases where HRGs fail
to do so because they do not provide appropriate
means for the implementation of arbitrary coref-
erences. Whether CHRGs can generate complete
AMR languages over arbitrary concept domains,
including phenomena such as quantification while
excluding structurally incorrect graphs, remains to
be studied. In any case, the simplicity of the gram-
mar discussed here seems to be promising. Future
work, should investigate how efficiently problems
such as the membership problem can be solved in
practise for AMR-generating CHRGs. In this con-
text, a better understanding of how quickly such
CHRGs grow with the size of the input domain
would also be valuable. If CHRGs indeed turn
out to be a suitable device for AMR generation,
a long-term goal should be to define a weighted
version of CHRGs and to devise machine learn-
ing methods that make it possible to extract rule
weights or even entire grammars from AMRbank.

Finally, it should be mentioned that there are
other formalisms for defining languages of di-
rected acyclic graphs that seem promising and
should therefore be investigated for AMR mod-
elling, e.g. DAG automata (Blum and Drewes,
2016, 2017; Chiang et al., 2016). In particular,
it would be interesting to study the relative ad-
vantages and disadvantages of these options, and
whether they can be combined in a fruitful way.

110

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse. pages 178–186.

Henrik Björklund, Frank Drewes, and Petter Ericson.
2016. Between a rock and a hard place — pars-
ing for hyperedge replacement DAG grammars. In
10th International Conference on Language and Au-
tomata Theory and Applications.

Johannes Blum and Frank Drewes. 2016. Properties of
regular dag languages. In 10th International Con-
ference on Language and Automata Theory and Ap-
plications.

Johannes Blum and Frank Drewes. 2017. Language
theoretic properties of regular DAG languages. To
appear.

Fabienne Braune, Daniel Bauer, and Kevin Knight.
2014. Mapping between English strings and reen-
trant semantic graphs. In Proceedings of the Ninth
International Conference on Language Resources
and Evaluation. pages 4493–4498.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge
replacement grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). pages
924–932.

David Chiang, Frank Drewes, Daniel Gildea, Adam
Lopez, and Giorgio Satta. 2016. Weighted DAG au-
tomata for semantic graphs. Submitted.

Frank Drewes and Berthold Hoffmann. 2015. Con-
textual hyperedge replacement. Acta Informatica
52(6):497–524.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2012. Applications of Graph Transformations with
Industrial Relevance: 4th International Symposium,
Revised Selected and Invited Papers, chapter Con-
textual Hyperedge Replacement, pages 182–197.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2015. Predictive top-down parsing for hyperedge
replacement grammars. In Proceedings of the 8th
International Conference on Graph Transformation.
pages 19–34.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2017. Predictive shift-reduce parsing for hyperedge
replacement grammars. In Proc. 10th Intl. Conf. on
Graph Transformation (ICGT’17). Lecture Notes in
Computer Science.

Frank Drewes, Hans-Jörg Kreowski, and Annegret Ha-
bel. 1997. Hyperedge replacement graph grammars.
In Handbook of Graph Grammars and Computing
by Graph Transformation, pages 95–162.

Annegret Habel. 1992. Hyperedge replacement: gram-
mars and languages, volume 643. Springer Science
& Business Media.

Anna Jonsson. 2016a. Generation of Abstract Meaning
Representations by Hyperedge Replacement Gram-
mars – A Case Study. Master’s thesis.

Anna Jonsson. 2016b. On the generation of ab-
stract meaning representations using polynomial-
time parsable hyperedge replacement grammars.
The Sixth Swedish Language Technology Confer-
ence.

Kevin Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In International Conference on Intelli-
gent Text Processing and Computational Linguistics.
pages 1–24.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
Proceedings of the 36th Annual Meeting of the Asso-
ciation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguis-
tics - Volume 1. pages 704–710.

Nianwen Xue, Ondrej Bojar, Jan Hajic, Martha Palmer,
Zdenka Uresova, and Xiuhong Zhang. 2014. Not
an interlingua, but close: Comparison of English
AMRs to Chinese and Czech. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation. pages 1765–1772.

111

