
TAG+13

The 13th International Workshop
on Tree Adjoining Grammars

and Related Formalisms

Proceedings

September 4–6, 2017
Umeå, Sweden

c© 2017 The Association for Computational Linguistics

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-98-2

ii

Introduction

It is our pleasure to introduce the proceedings of the 13th International Workshop on Tree Adjoining
Grammars and Related Formalisms, which will be held at Umeå University from September 4–6, 2017.

This year’s meeting is special in at least two ways: it is the first workshop in the series to be held in
Sweden, and the first one to be co-located with FSMNLP, the International Conference on Finite State
Methods and Natural Language Processing. This co-location, which is manifested through joint tutorials,
invited talks, and social events, provides an exciting opportunity for scientific exchange between the two
research communities. The TAG+-specific program features 14 papers, which were selected from a pool
of 21 submissions after a thorough peer review process.

We are deeply grateful to everybody who has been involved in the organization of this meeting: to our
colleagues on the program committee for the time and effort that they put into the reviewing of the
submissions; to our tutorial speakers Johanna Björklund, Laura Kallmeyer, Rainer Osswald, and Sylvain
Pogodalla; to our invited speakers Ann Copestake and Gregory Kobele; to Min-Yen Kan for his help
with the publishing of these proceedings in the ACL Anthology – and most of all to our local host, Frank
Drewes, for welcoming us to Umeå and for the tremendous energy and work that he put into this project.

And now, we wish you a fruitful meeting!

Marco Kuhlmann and Tatjana Scheffler
TAG+13 Program Chairs

iii

Program Chairs:

Marco Kuhlmann (Linköping University, Sweden)
Tatjana Scheffler (Potsdam University, Germany)

Local Chair:

Frank Drewes (Umeå University, Sweden)

Program Committee:

Daniel Bauer (Columbia University, USA)
Tilman Becker (DFKI GmbH, Germany)
Rajesh Bhatt (UMass Amherst, USA)
David Chiang (University of Notre Dame, USA)
Stephen Clark (University of Cambridge, UK)
Laurence Danlos (U. Paris 7, France)
Vera Demberg (Saarland University, Germany)
Frank Drewes (Umeå University, Sweden)
Robert Frank (Yale University, USA)
Claire Gardent (CNRS/LORIA Nancy, France)
Thomas Graf (Stony Brook University, USA)
Chung-Hye Han (Simon Fraser University, Canada)
Aravind Joshi (University of Pennsylvania, USA)
Laura Kallmeyer (Heinrich Heine University Düsseldorf, Germany)
Makoto Kanazawa (National Institute of Informatics, Japan)
Adam Lopez (University of Edinburgh, UK)
Andreas Maletti (Leipzig University, Germany)
Mark-Jan Nederhof (University of St Andrews, UK)
Sylvain Pogodalla (LORIA/INRIA Lorraine, France)
Owen Rambow (Columbia University, USA)
Sylvain Salvati (Université de Lille, France)
Matthew Stone (Rutgers, USA)
Dennis Ryan Storoshenko (University of Calgary, Canada)
Heiko Vogler (TU Dresden, Germany)
Luke Zettlemoyer (University of Washington, USA)

Invited Speakers:

Ann Copestake (University of Cambridge, UK)
Gregory Kobele (Leipzig University, Germany)

Tutorial Speakers:

Johanna Björklund (Umeå University, Sweden)
Laura Kallmeyer (Heinrich Heine University Düsseldorf, Germany)
Rainer Osswald (Heinrich Heine University Düsseldorf, Germany)
Sylvain Pogodalla (LORIA/INRIA Lorraine, France)

v

Table of Contents

A Feature Structure Algebra for FTAG
Alexander Koller . 1

Parsing Minimalist Languages with Interpreted Regular Tree Grammars
Meaghan Fowlie and Alexander Koller . 11

Depictives in English: An LTAG Approach
Benjamin Burkhardt, Timm Lichte and Laura Kallmeyer . 21

Reflexives and Reciprocals in Synchronous Tree Adjoining Grammar
Cristina Aggazzotti and Stuart M. Shieber . 31

Coordination in TAG without the Conjoin Operation
Chung-hye Han and Anoop Sarkar . 43

Scope, Time, and Predicate Restriction in Blackfoot using MC-STAG
Dennis Ryan Storoshenko . 53

Combining Predicate-Argument Structure and Operator Projection: Clause Structure in Role and Ref-
erence Grammar
Laura Kallmeyer and Rainer Osswald . 61

Parsing with Dynamic Continuized CCG
Michael White, Simon Charlow, Jordan Needle and Dylan Bumford . 71

Multiword Expression-Aware A∗ TAG Parsing Revisited
Jakub Waszczuk, Agata Savary and Yannick Parmentier . 84

Single-Rooted DAGs in Regular DAG Languages: Parikh Image and Path Languages
Martin Berglund, Henrik Björklund and Frank Drewes . 94

Contextual Hyperedge Replacement Grammars for Abstract Meaning Representations
Frank Drewes and Anna Jonsson . 102

Transforming Dependency Structures to LTAG Derivation Trees
Caio Corro and Joseph Le Roux . 112

Linguistically Rich Vector Representations of Supertags for TAG Parsing
Dan Friedman, Jungo Kasai, R. Thomas McCoy, Robert Frank, Forrest Davis and Owen Rambow . . 122

TAG Parser Evaluation using Textual Entailments
Pauli Xu, Robert Frank, Jungo Kasai and Owen Rambow. .132

vii

Program

Monday, September 4

08:30–09:00 Registration and Opening

Tutorials

09:00–10:30 Minimization Techniques for Automata and Grammars
Johanna Björklund

10:30–11:00 Coffee Break

11:00–12:30 Abstract Categorial Grammars as a Model of the Syntax–Semantics Interface for TAG
Sylvain Pogodalla

12:30–13:30 Lunch Break

13:30–15:00 Syntax-Driven Semantic Frame Composition in Lexicalized Tree Adjoining Grammars
Laura Kallmeyer and Rainer Osswald

15:00–15:30 Coffee Break

Paper Session 1

15:30–16:00 A Feature Structure Algebra for FTAG
Alexander Koller

16:00–16:30 Parsing Minimalist Languages with Interpreted Regular Tree Grammars
Meaghan Fowlie and Alexander Koller

ix

Tuesday, September 5

Invited Talk

09:00–10:00 Higher Order Structures in Minimalist Derivations
Gregory Kobele

10:00–10:30 Coffee Break

Paper Session 2

10:30–11:00 Depictives in English: An LTAG Approach
Benjamin Burkhardt, Timm Lichte and Laura Kallmeyer

11:00–11:30 Reflexives and Reciprocals in Synchronous Tree Adjoining Grammar
Cristina Aggazzotti and Stuart M. Shieber

11:30–12:00 Coordination in TAG without the Conjoin Operation
Chung-hye Han and Anoop Sarkar

12:00–13:00 Lunch Break

Paper Session 3

13:00–13:30 Scope, Time, and Predicate Restriction in Blackfoot using MC-STAG
Dennis Ryan Storoshenko

13:30–14:00 Combining Predicate-Argument Structure and Operator Projection: Clause Structure
in Role and Reference Grammar
Laura Kallmeyer and Rainer Osswald

14:00–14:30 Parsing with Dynamic Continuized CCG
Michael White, Simon Charlow, Jordan Needle and Dylan Bumford

14:30–15:00 Coffee Break

Paper Session 4

15:00–15:30 Multiword Expression-Aware A∗ TAG Parsing Revisited
Jakub Waszczuk, Agata Savary and Yannick Parmentier

15:30–16:00 Single-Rooted DAGs in Regular DAG Languages: Parikh Image and Path Languages
Martin Berglund, Henrik Björklund and Frank Drewes

16:00–16:30 Contextual Hyperedge Replacement Grammars for Abstract Meaning Representations
Frank Drewes and Anna Jonsson

x

Wednesday, September 6

Invited Talk

09:00–10:00 Dependency Semantics and Composition
Ann Copestake

10:00–10:30 Coffee Break

Paper Session 5

10:30–11:00 Transforming Dependency Structures to LTAG Derivation Trees
Caio Corro and Joseph Le Roux

11:00–11:30 Linguistically Rich Vector Representations of Supertags for TAG Parsing
Dan Friedman, Jungo Kasai, R. Thomas McCoy, Robert Frank, Forrest Davis and
Owen Rambow

11:30–12:00 TAG Parser Evaluation using Textual Entailments
Pauli Xu, Robert Frank, Jungo Kasai and Owen Rambow

12:00–13:00 Closing and Lunch

xi

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 1–10,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

A Feature Structure Algebra for FTAG

Alexander Koller
Saarland University

koller@coli.uni-saarland.de

Abstract

FTAG, the extension of TAG with fea-
ture structures, lags behind other feature-
based grammar formalisms in the avail-
ability of efficient chart parsers. This is in
part because of the complex interaction of
adjunction and unification, which makes
such parsers inconvenient to implement.
We present a novel, simple algebra for fea-
ture structures and show how FTAG can
be encoded as an Interpreted Regular Tree
Grammar using this algebra. This yields a
straightforward, efficient chart parsing al-
gorithm for FTAG.

1 Introduction

Like many other grammar formalisms, tree-
adjoining grammars (TAG) have been extended
with feature structures to model linguistic phe-
nomena such as agreement conveniently. The
FTAG formalism of Vijay-Shanker and Joshi
(1988) equips each node in each elementary tree
with a “top” and “bottom” feature structure. These
are unified with each other at the end of the deriva-
tion if no auxiliary tree is adjoined at this node;
otherwise they are unified with feature structures
from the root and foot node of such an auxiliary
tree. FTAG has been used successfully in large-
scale grammar engineering, such as in the XTAG
grammar (XTAG Research Group, 2001).

One aspect in which FTAG has lagged behind
other feature grammar formalisms, such as HPSG
and LFG, is in parsing. Recent efficient parsers
for TAG, such as MICA (Bangalore et al., 2009)
and Alto (Koller and Kuhlmann, 2012; Groschwitz
et al., 2016), do not support feature structures.
The recent TuLiPA parser (Kallmeyer et al., 2010)
does support feature structures in FTAG parsing,
but can be inefficient in practice because it enu-

merates all TAG derivation trees and then checks
each of them for feature structure violations indi-
vidually, instead of checking features on the parse
chart directly. On the theoretical side, Schmitz
and Le Roux (2008) explain FTAG through a
feature-based formalism for describing languages
of derivation trees, with unclear implications for
parsing efficiency. Overall, the sense is that be-
cause of the complex interaction of unification and
adjunction in FTAG, implementing efficient FTAG
parsers is uncomfortable and something that tends
to get avoided.

In this paper, we offer a simple and modular
approach to efficient parsing with FTAG. We en-
code an FTAG grammar into an Interpreted Reg-
ular Tree Grammar (IRTG, Koller and Kuhlmann
(2011)) by extending the TAG-to-IRTG encoding
of Koller and Kuhlmann (2012) with an additional
interpretation into feature structures. This inter-
pretation maps each derivation tree into a term
over a novel algebra of feature structures, in a
similar way as c-structures are mapped into f-
structures in LFG (Kaplan and Bresnan, 1982).
This term can be evaluated to a value in the al-
gebra if and only if all unifications required by the
grammar succeed. We then show how known al-
gorithms for IRTG chart parsing – which can be
efficient for TAG (Groschwitz et al., 2016) – ex-
tend naturally to FTAG parsing.

We offer a view on FTAG which brings it
more in line with other feature-based grammar for-
malisms, in that the distinction between top and
bottom feature structures is represented correctly,
but requires no special treatment by the parser.
This simplifies, for instance, the use of existing
unification algorithms. At the same time, we offer
a very general and modular approach to checking
feature unification on a parse chart; no unpacking
of the individual derivation trees is required in our
algorithm. This approach generalizes straightfor-

1




WORD boy

AGR

[
NUM sg
GEN masc

]






SUBJ
[

AGR 1

]

AGR 1

[
NUM pl

]




(a) (b)

Figure 1: Two example feature structures.

wardly to other mechanisms for filtering deriva-
tion trees, as long as they can be expressed in
terms of finite-state constraints on trees.

Plan of the paper. We will review FTAG in Sec-
tion 2 and IRTGs and the TAG-to-IRTG encoding
in Section 3. We will then define the feature struc-
ture algebra and show how it can be used to encode
FTAG in Section 4. We show how to do efficient
and modular chart parsing for FTAG in Section 5.
Section 6 concludes.

2 TAG and feature structures

2.1 Feature structures
Feature structures (Shieber, 1986; Kasper and
Rounds, 1986; Carpenter, 1992) are used in many
grammar formalisms to represent grammatical in-
formation. Intuitively, a feature structure (FS) as-
signs values to a finite set of features; these val-
ues may either be atomic, or they may be fea-
ture structures themselves. For instance, the FS
in Fig. 1a specifies that the WORD feature has the
atomic value ‘boy’, and the value of the AGR fea-
ture is a feature structure with the features NUM

and GEN.
Technically, feature structures represent di-

rected, acyclic graphs in which both the top-level
FS and all of the FSs it contains are nodes. If F
has a feature FT, and the value of this feature in F
is G, then there is an edge (with label FT) from the
node F to the node G. We define a feature path to
be a sequence F1.F2.Fn of features Fi. Then
if F is a feature structure, we write F.f1.fn
for feature selection, i.e. for the node in F that is
reached by the given feature path. We define the
depth of an FS as the length of the longest defined
feature path.

As a special case, it can happen that the same
node is reachable via two different feature paths,
i.e. we have F.p1 = F.p2 for feature paths p1 6=
p2. This is called a reentrancy in F . We repre-
sent reentrancies in the attribute-value matrix no-
tation of Fig. 1 by marking the endpoints of the
reentrant feature paths with the same number. In
Fig. 1b, the marker 1 indicates that F.SUBJ.AGR

S

NP↓ VP

sleeps
NP

boy

NP

the NP*

bot: [num: X = sg]

top: [num: X]

bot: [num: sg, det: -]
top: [det: +]

top: [num: X, det: +]

bot: [num: X, det: -]

α1

α2

β1

Figure 2: An example FTAG derivation.

and F.AGR are the same node. Thus, we have
F.SUBJ.AGR.NUM = pl.

We say that the FS F subsumes the FS G if all
the information that F specifies, including reen-
trancies, is also present in G. The unification
F tG of F and G is the least informative FS that
is subsumed both by F and G. Not all FSs can
be unified. For instance, the two example FSs in
Fig. 1 cannot be unified because they specify con-
tradictory values for the feature path AGR.NUM, so
no feature structure can be subsumed by both.

2.2 Feature TAG

Vijay-Shanker and Joshi (1988) extend TAG with
feature structures, obtaining Feature-Based TAG
(FTAG). The core point about FTAG is that every
node in every elementary tree is decorated with
two feature structures (FSs) – one for the “top”
half of the node and one for the “bottom” half.
If no auxiliary tree is adjoined at a given node u,
these two feature structures must be unified with
each other. However, if an auxiliary tree β is ad-
joined, then the top FS of u will be unified with
the top FS of the root of β, and the bottom FS of
u will be unified with the bottom FS of the foot
node. Finally, substitution unifies the top FSs of
the substitution node and the root of the initial tree.
This makes unification consistent with adjunction,
and allows an elegant encoding of obligatory and
selective adjunction constraints in terms of FSs.

FTAG assumes that the value of each feature in
each top or bottom FS is an atomic value, ensuring
that all FSs have depth one. This makes the set of
possible FSs finite, and thus the expressive capac-
ity of FTAG is the same as that of TAG without
features.

An example derivation of FTAG is shown in
Fig. 2. This derivation combines three elemen-
tary trees α1, α2, β1 by substituting α2 into the
substitution node of α1 and then adjoining β1 into
the root of α2. Every node in these elementary
trees is annotated with a top and bottom feature

2

structure; feature structures whose value is >, the
trivial feature structure which subsumes all other
feature structures, are not shown in the figure. The
top and bottom FSs of the root of α2 cannot be uni-
fied with each other because they require different
values for the “det” feature; thus a derivation tree
in which nothing is adjoined into this node would
be ungrammatical. By adjoining β1 into this node,
we instead unify the top FS of α2’s root with the
top FS of β1’s root, and the bottom FS of α2’s root
with the bottom FS of β1’s foot node. Both unifi-
cations succeed.

FTAG requires that multiple occurrences of the
same variable (such as X) within the FSs of the
same elementary tree must be instantiated with the
same value. Thus when the occurrence ofX in the
bottom FS of β1’s foot node is bound to ‘sg’, the
occurrence of X in the top FS of β1’s root gets
the value ‘sg’ too. Further unifications percolate
this value into the occurrence of X in α1, which is
consistent with the requirement defined at α1’s V
node. By contrast, an elementary tree for “boys”
would assign ‘pl’ to the “num” feature at its root
node, making this unification fail and establishing
ungrammaticality of “boys sleeps”.

The decision to assign feature structures to
nodes (and not elementary trees), and to assign
two of them to each node, is necessary to make
unification consistent with adjunction. However,
it makes implementing parsers inconvenient, be-
cause we do not even know what FSs need to be
unified with each other before we have decided
whether and what to adjoin at each node. One way
to read this paper is as an illustration that these
decisions are not so inextricably linked with each
other as it may seem at first glance. Instead, unifi-
cations can simply be performed bottom-up at the
level of the derivation tree, enabling efficient chart
parsing.

We identify the nodes in an elementary tree α
through their node addresses, i.e. words π ∈ N∗
such that ε is the address of the root, and πk is the
address of the k-th child of π. Given an elemen-
tary tree α in an FTAG grammar, we write topα(π)
for the top FS at the node π and botα(π) for the
bottom FS. We combine the two into the feature
structure

φα(π) =

[
TOP topα(π)

BOT botα(π)

]

We drop the subscript α if the elementary tree
is clear from the context.

3 Interpreted Regular Tree Grammars

We tackle FTAG parsing below by encoding it
as an Interpreted Regular Tree Grammar (IRTG,
Koller and Kuhlmann (2011)). IRTG is a grammar
formalism in which a language of derivation trees
is described using a regular tree grammar (RTG,
(Comon et al., 2008)) or, equivalently, a finite tree
automaton, and each derivation tree is then inter-
preted in one or more algebras. Different grammar
formalisms can be encoded into IRTG by varying
the algebras; for instance, (Koller and Kuhlmann,
2012) encoded TAG into IRTG by introducing two
novel algebras for strings and trees.

An IRTG which encodes the TAG grammar un-
derlying the derivation in Fig. 2 is shown in Fig. 3.
The first column contains an RTG G which de-
scribes a language L(G) of derivation trees. The
RTG contains one rule for each elementary tree
α in the TAG grammar, expanding a nontermi-
nal symbol of the form XS if α is an initial tree
with root symbol X , or of the form XA if α is an
auxiliary tree (cf. Schmitz and Le Roux (2008)).
Each rule also specifies the substitutions that must
and the adjunctions that may take place at this el-
ementary tree. Each of these nonterminals must
be expanded by applying another RTG rule, corre-
sponding to performing the respective substitution
and adjunction. We can choose not to adjoin an
auxiliary tree at a node where an adjunction could
take place by expanding the nonterminal XA with
the rule nopX . One derivation tree t ∈ L(G) is
shown in Fig. 4; note the obvious correspondence
to the derivation tree underlying the TAG deriva-
tion in Fig. 2.

This derivation tree can now be mapped into
a term over an algebra, and evaluated there into
an object of this algebra. In general, an algebra
over the signature Σ of operation symbols is a
structure A = (A, I) consisting of a set A (the
domain of A) and an interpretation function I.
This function assigns to each operation symbol
f ∈ Σ of arity k a function I(f) that takes k ar-
guments from A and returns a value in A. Thus, a
term τ over the signature Σ can be evaluated to a
value JτK recursively by letting Jf(τ1, . . . , τk)K =
I(f)(Jτ1K, . . . , JτkK).

The second column of Fig. 3 shows how the ex-
ample IRTG interprets derivation trees into strings.
This assumes the TAG string algebra As =
(As, Is) defined by Koller and Kuhlmann (2012).
The values As of this algebra are all strings and

3

RTG rule string homomorphism hs FS homomorphism hF
SS → α1(NPS , SA,VPA) wrap21(x2, conc11(x1,wrap21(x3, sleeps))) unify(cα1 , embi1(x1), embaε(x2), emba2(x3))
NPS → α2(NPA) wrap21(x1, boy) unify(cα2 , embaε(x1))
NPA → β1(NPA) wrap21(x1, conc12(the, ∗)) unify(cβ1 , embaε(x1))
XA → nopX ∗ cnop

Figure 3: The FTAG from Fig. 2, encoded as an IRTG. There is a nop rule for each nonterminal X ∈
{S,VP,NP}.

string pairs over a given alphabet; in the example,
the alphabet contains the words “sleeps”, “boy”,
and “the”. The signature ∆s contains a constant
for each of these words, a constant * denoting
the pair (ε, ε) of empty strings, plus a number
of binary operations which combine strings and
string pairs. In particular, Is(conc11) is a func-
tion which takes two strings as arguments and
concatenates them; Is(conc12) takes a string v
and a string pair (w1, w2) as arguments and con-
catenates them into the string pair (vw1, w2); and
Is(wrap21) takes a string pair (v1, v2) and a string
w as arguments, and then “wraps” the string pair
around the string, yielding the string v1wv2. Now
the IRTG G has an interpretation (hs,As). A
derivation tree t is recursively mapped to a term
hs(t) by the tree homomorphism hs, and then
hs(t) is evaluated to a value Jhs(t)K in As. In
this way, t describes a string. For instance, for the
derivation tree t in Fig. 4, we obtain Jhs(t)K =
“the boy sleeps”.

In general, an IRTG G =
(G, (h1,A1), . . . , (hn,An)) consists of an
RTG G and n ≥ 1 interpretations. It describes
the language L(G) = {(Jh1(t)K, . . . , Jhn(t)K) |
t ∈ L(G)}. Thus, if we consider only the first and
second column in the example grammar in Fig. 3,
we have a grammar which describes a language
of strings, and captures precisely the TAG part of
the grammar underlying Fig. 2. The third column
is for the feature structure interpretation we define
below, and extends the IRTG into an encoding of
an FTAG grammar.

4 A feature structure algebra for FTAG

As the grammar in Fig. 3 illustrates, the basic intu-
ition of the TAG-to-IRTG encoding is to traverse
the derivation tree bottom-up, calculating an in-
terpretation for each node in the derivation tree.
Each rule of the IRTG specifies the function by
which the interpretation for the parent is calcul-
cated from those of the children; so for instance,
the second column of Fig. 3 expresses for each el-

α1

nopVPnopSα2

β1

nopNP

Figure 4: Derivation tree of the IRTG in Fig. 3,
representing the (F)TAG derivation of Fig. 2.

ementary tree of the TAG grammar how it com-
bines the strings of its children with each other.

We will follow the same intuition here and spec-
ify how the feature structure for a subtree of the
derivation tree is computed out of the FSs of its
parts. We will first introduce an algebra F for fea-
ture structures, with novel operations that are suit-
able for FTAG, and then show how an FTAG can
be converted into an IRTG over this algebra.

4.1 A feature structure algebra

We define an algebra F = (F , I) consisting of
a set F of feature structures and an interpretation
function I. We let F contain all feature structures
whose feature paths have the form π tb f , where
π ∈ N∗ ∪ {RT, FT} is either a node address in an
elementary tree or a special feature for the root or
foot node, respectively; tb ∈ {TOP, BOT}; and f is
a feature from an FTAG grammar, as in Section 2.
The value reached under each feature path is either
an atomic value, such as ‘sg’, or the placeholder
>, which unifies with any atomic value. We as-
sume that every feature structure in F contains a
RT feature; it may or may not contain a FT feature
as well.

We define I to provide interpretations for the
following four classes of function symbols.

• Any constant c is interpreted as a feature
structure I(c) ∈ F . The construction in
Section 4.2 will yield a finite set of feature
structures F ∈ F , one for each elementary

4

tree. We assume that F has a constant cF with
I(cF) = F for each of these.

• For any path π ∈ N∗, we have a func-
tion symbol embiπ for initial-tree embed-
ding. Given a feature structure F ∈ F , we let
I(embiπ) = EIπ with EIπ(F) = [π F.RT].

• For any path π ∈ N∗, we have a function
symbol embaπ for auxiliary-tree embedding.
Given a feature structure F ∈ F , we let
I(embaπ) = EAπ with

EAπ(F) =


π

[
TOP F .RT.TOP

BOT F .FT.BOT

]


• The binary function symbol unify represents
unification of two feature structures. For
any two arguments F,G ∈ F , we let
I(unify)(F,G) = F t G if F and G can
be unified; otherwise I(unify)(F,G) is un-
defined.

Note that F is a partial algebra, in that not every
term over the algebra has a value. This happens in
particular if the unify operation attempts to unify
two feature structures which cannot be unified. We
say that JtK is undefined in such a case.

4.2 Encoding FTAG with the feature
structure algebra

We will now use this algebra to encode arbitrary
FTAG grammars into IRTGs. We extend the TAG-
to-IRTG encoding of Koller and Kuhlmann (2012)
with an additional interpretation (hF ,F) into the
feature structure algebra (see the third column of
Fig. 3). This means that we need to define, for
each elementary tree α in the FTAG grammar, an
image hF (α) for the homomorphism into the FS
algebra, which specifies how α combines the FSs
of its children.

Let us say that the elementary tree α
was encoded into an IRTG rule N →
α(N

(1)
S , . . . , N

(k)
S , N

(k+1)
A , . . . N

(n)
A) by the con-

version in Section 3, with k child nonterminals for
substitution and n − k for adjunction. The homo-
morphic image hF (α) will select the RT and FT

entries of the FSs for the child nonterminals and
unify them with one large FS T (α) representing
the functional behavior of α; we will define T (α)
below. Let cα be the constant with I(cα) = T (α)

(assumed to exist above). Then we let

hF (α) = unify(cα,
embiπ1(X1), . . . , embiπk(Xk),
embaπk+1

(Xk+1), . . . , embaπn(Xn)),

where we abbreviate the n− 1 binary unify opera-
tions that are needed to combine the arguments by
simply writing unify once.

We construct T (α) = F (α) t I(α) t N(α) t
R(α) by unifying four smaller feature structures,
each of which encodes one specific aspect of α:

1. A feature structure F (α) which captures the
top and bottom feature structures at each
node of α. For any node π of α, F (α) con-
tains an entry [π φα(π)].

2. A feature structure I(α) which enforces the
coindexations for features in α that share
variables. If a variable X occurs both at fea-
ture f1 in the tb1 feature structure of the node
π1 (where tb1 ∈ {TOP, BOT}) and at feature
f2 in the tb2 FS of the node π2, we let




π1

[
tb1

[
f1 1

]]

π2

[
tb2

[
f2 1

]]




subsume I(α).

3. A feature structure N(α) which unifies the
top and bottom feature structures at nodes
where nothing can be adjoined. This includes
all foot nodes, as well as all nodes explicitly
marked with a null adjunction constraint. The
IRTG rule contains no child nonterminal for
adjoining at this node; thus without N(α),
the top and bottom FSs at these nodes would
not get unified at all. For all such nodes π,
we let 

π
[

TOP 1

BOT 1

]


subsume N(α). Note that substitution nodes
do not generate entries in N(α), as this
would unify the top and bottom FS of the root
of an initial tree substituted there.

4. A feature structure R(α) which makes the
correct sub-feature-structures accessible un-
der the RT and FT features. If α is an initial

5

I(cα1) = T (α1) I(cα2) = T (α2) I(cβ1) = T (β1)




ε 1

[
TOP >
BOT >

]

1


TOP

[
NUM 2

]

BOT >




2




TOP >
BOT

[
NUM 2 sg

]



RT 1







ε 1




TOP
[

DET +
]

BOT

[
NUM sg
DET -

]




RT 1







ε 1




TOP >

BOT

[
DET +
NUM 2

]



2 3




TOP 4

[
DET -
NUM 2

]

BOT 4 >




RT 1

FT 3




Figure 5: Feature structure encodings for the elementary trees in Fig. 2.

tree, we let

R(α) =

[
RT 1

ε 1

]

If α is an auxiliary tree with its foot node at
address π, we let

R(α) =




RT 1

FT 2

ε 1

π 2




In addition to rules that encode elementary
trees, the IRTG also contains rules XA → nopX
for every nonterminal symbol X . For these sym-
bols, we let hF (nopN) = cnop, with a constant
cnop which evaluates to the feature structure

I(cnop) = Fnop =




RT
[

TOP 1

]

FT
[

BOT 1

]




Thus, whenever we choose not to adjoin an aux-
iliary tree at a certain node, the IRTG encodes this
with a nop operation. When the FS for this nop
operation is unified into the parent FS using an
embaπ operation, this unifies the top and bottom
feature structures of π, as required in FTAG.

4.3 An example

We illustrate this construction with the example
FTAG grammar from Fig. 2. The homomorphism
hF is shown in the third column of Fig. 3; it uses
constants cα1 , cα2 , cβ1 , whose values are the FSs
shown in Fig. 5.

unify

emba2

cnop

unify

embaε

cnop

unify

embi1

unify

embaε

unify

embaε

cnop

cβ1

cα2

cα1

Figure 6: The term hF (t) over the feature structure
algebra for the derivation tree t from Fig. 4.

Note first that all three FSs have one feature for
each (non-lexical) node in the respective elemen-
tary tree, with a TOP and BOT feature nested below,
representing the upper and lower feature structure
of that node. This part of the feature structure is
contributed by F (α). Any two occurrences of the
same variable are coindexed through I(α); see e.g.
the index 2 in T (α1) and the index 2 in T (β1).

Furthermore, all nodes where no adjunction can
take place have had their top and bottom feature
structure coindexed byN(α). The index 4 for the
foot node at position 2 in β1 was introduced like
this. Finally, all three FSs have a RT feature, con-
tributed by R(α) and coindexed with the ε feature
for the root node of the elementary tree. Because
β1 is an auxiliary tree, T (β1) also has a FT feature,
coindexed with the foot node at position 2.

Now consider the IRTG derivation tree t in
Fig. 4, which encodes the TAG derivation in Fig. 2.

6

T (α1) t




1




TOP

[
DET +
NUM 2

]

BOT

[
DET -
NUM 2 sg

]






t


ε

[
TOP 3

BOT 3

]
t


2

[
TOP 4

BOT 4

]
 =




ε 1

[
TOP 3

BOT 3

]

1




TOP

[
DET +
NUM 2

]

BOT

[
DET -
NUM 2 sg

]




2




TOP 5

BOT 5

[
NUM 2 sg

]



RT 1




Figure 7: Computing the value JhF (t)K of the term in Fig. 6.

The homomorphism hF maps t to a term hF (t)
over the FS algebra F, shown in Fig. 6. We have
marked with a box the root of each subtree hF (t′)
where t′ is a subtree of t. Observe that each
“block” between two boxed nodes has a consis-
tent shape, in that it unifies cα with a number of
FSs, each of which is obtained by embedding the
FS for a subtree into the features of T (α).

The term hF (t) can then be evaluated to a fea-
ture structure JhF (t)K in the algebra F. The last
step of computing JhF (t)K for the entire term
hF (t) in Fig. 6 is shown in Fig. 7. We per-
form three unification operations, with the first
argument being I(cα1) = T (α1) and the sec-
ond being the value of the sub-derivation-tree
α2(β1(nopNP)), embedded at the substitution
node 1. The other two arguments come from the
nop nodes, embedded at the appropriate features
through embaπ operations. Notice that the top and
bottom feature structures at 1 are not coindexed,
because we adjoined β1 into the root of α2, and
the top and bottom features are not coindexed in
T (β1).

5 Parsing

We now turn to the issue of FTAG parsing. By en-
coding an FTAG grammar as an IRTG with an in-
terpretation into the FS algebra, we can apply stan-
dard methods from IRTG parsing to FTAG pars-
ing. We will first compute a parse chart for the
input string while ignoring the feature structures,
and then intersect it with an RTG that carries out
the unifications.

The specific parsing problem we solve is as fol-
lows: Given an IRTG G = (G, (hs,As), (hF ,F))
and an input string w, find a compact represen-

tation Cw of the set parses(w) = {t ∈ L(G) |
Jhs(t)K = w and JhF (t)K is defined} – that is, the
derivation t must be grammatical according to G;
it must map to the input string under the string in-
terpretation; and all unifications required by the
feature structure interpretation succeed. We will
represent this parse chart Cw as an RTG such that
L(Cw) = parses(w).

5.1 Parsing without feature structures

In a first step, we apply standard methods
from IRTG parsing (Koller and Kuhlmann, 2011;
Groschwitz et al., 2016) to obtain a parse chart of
all grammatical derivation trees that interpret tow.
We do this by computing a decomposition gram-
mar Dw for w in the TAG string algebra – i.e., an
RTG such that L(Dw) is the set of all terms over
the TAG string algebra that evaluate to w. We then
look at the set LI = h−1s (L(Dw)) of derivation
trees t such that hs(t) ∈ L(Dw), i.e. of deriva-
tion trees that interpret to w. Because regular tree
languages are closed under inverse tree homomor-
phisms (Comon et al., 2008), we can calculate an
RTG Iw such that L(Iw) = LI . Because regular
tree languages are also closed under intersection,
we can then intersect Iw with G to obtain an RTG
C0
w such that L(C0

w) = {t ∈ L(G) | Jhs(t)K =
w}. We call C0

w the pre-chart for w.
Consider, by way of example, the pre-chart C0

w

for the input string w = “the boy sleeps” and
our example grammar; see Koller and Kuhlmann
(2012) for details. The nonterminals of C0

w are
pairs of nonterminals of the derivation tree RTG
G and nonterminals of Iw. Nonterminals of Iw of
the form i−k can derive terms which evaluate to
the substring of w from position i to k − 1; we
write pairs of nonterminals Ns with such nonter-

7

minals as [Ns, i−k]. Nonterminals of Iw can also
be of the form (i−j, k−l), for terms which evalu-
ate to a pair of substrings of w (from position i to
j − 1 and from k to l − 1 respectively). We write
pairs of nonterminals NA with such nonterminals
as 〈Na, i−j, k−l〉. Note that a span i−i represents
an empty string at position i. Some of the rules in
C0
w are as follows:

〈NPA, 1−1, 3−3〉 → nopNP
〈NPA, 2−2, 3−3〉 → nopNP
〈NPA, 1−2, 3−3〉 → β1(〈NPA, 1−1, 3−3〉)

[NPS , 2−3] → α2(〈NPA, 2−2, 3−3〉)
[NPS , 1−3] → α2(〈NPA, 1−2, 3−3〉)

Using these rules, we can derive both the sub-
derivation-tree t1 = α2(nopNP), which evaluates
to the string “boy” (as an NP) on the string in-
terpretation of the IRTG, and the sub-derivation-
tree t2 = α2(β1(nopNP)), which evaluates to “the
boy”. Notice that while both of these subtrees
are allowed by the underlying TAG grammar, only
hF (t2) can be evaluated over the FS algebra. To
evaluate hF (t1), we would have to unify the top
and bottom FS at the root of α2, which fails.

5.2 Feature structure filtering

In order to exclude t1 from the language of the
chart, while retaining t2, we can define an RTG
FG, which tracks feature structures and filters out
trees with unification failures. The nonterminals
of FG are symbols [F], where F is any feature
structure in F ; this is a finite set because we have
limited the depth of these feature structures to
three. We can then define rules for FG which sim-
ply interpret the function symbols of F:

[I(c)] → c for constants c
[EIπ(F)] → embiπ([F])

[EAπ(F)] → embaπ([F])
[F tG] → unify([F], [G]) if defined

We add a start symbol SFG and rules SFG → [F]
for all feature structures F . Then the language
L(FG) consists exactly of all terms τ over F such
that JτK is defined. As a consequence, we can in-
tersect C0

w with h−1F (FG) to obtain the chart Cw,
which describes only derivation trees that can be
interpreted in the FS algebra, i.e. where all unifi-
cations succeed.

In our example, the intersection Cw of C0
w with

FG contains (among others) the following rules:

〈NPA, 1−1, 3−3, Fnop〉 → nopN
〈NPA, 2−2, 3−3, Fnop〉 → nopNP
〈NPA, 1−2, 3−3, F1〉 → β1(〈NPA, 1−1, 3−3, Fnop〉)

[NPS , 1−3, F2] → α2(〈NPA, 1−2, 3−3, F1〉)
[NPS , 1−3, SFG] → [NPS , 1−3, F2],

where F1 = T (β1) t EAε(Fnop) and F2 =
T (α2) t EAε(F1); we have already seen F2 as
the second argument of the unification in Fig. 7.
One can think of these rules as copies of the rules
from C0

w, each decorated with a feature structure.
Observe that the rule for [NPS , 1−3], correspond-
ing to “the boy”, is simply extended with the FS
F2. The chart has further rules (not shown above)
which derive the derivation tree t from Fig. 4,
which contains t2 as a subtree, we we find that
t ∈ L(Cw) = parses(w).

By contrast, Cw does not contain decorated
rules for [NPS , 2−3]. This is because JhF (t1)K is
undefined in F, and therefore t1 is not in L(FG),
and the pre-chart rule for [NPS , 2−3] is filtered out
by the intersection algorithm.

5.3 Discussion

Our parsing algorithm computes the full parse
chart in two steps: We first parse the input into
the pre-chart and then refine the pre-chart into a
chart by intersecting it with an RTG which fil-
ters out derivation trees that do not unify. The
filter grammar FG and the intersection algorithm
can be implemented in a way that does not require
us to compute all rules of FG beforehand (which
would be extremely expensive). Instead, the in-
tersection algorithm can query the rules of FG as
it goes along, which essentially amounts to eval-
uating the operations of F on the feature structure
decorations.

In addition, this algorithm does not require enu-
merating all derivation trees before the unifica-
tions are checked; all unifications are performed
on chart items. This is in line with parsers for
grammar formalisms such as HPSG and especially
LFG, and in contrast to other parsers for FTAG.
At the same time, our algorithm avoids the expo-
nential blowup of lexical ambiguity which would
result from compiling the FTAG grammar into an
ordinary TAG grammar. The filtering method pre-
sented here could be used more generally to en-
force any well-formedness condition on derivation
trees which can be expressed by an RTG, such as
well-typedness given a type system.

8

5.4 Implementation

We have implemented the FS algebra and the fil-
ter grammar described above in the context of
the Alto IRTG parser (Gontrum et al., 2017).
Alto is available open-source from https://
bitbucket.org/tclup/alto.

Our implementation uses well-known efficient
algorithms for unification (Tomabechi, 1991) and
subsumption checking (Malouf et al., 2000). Sub-
sumption checking is needed because as the inter-
section algorithm discovers new candidate rules
for Cw, it has to check whether another rule
with an equal feature structure already exists; this
equality checking is performed by testing whether
each FS subsumes the other one. Parsing effi-
ciency could be improved further by replacing this
with asymmetric subsumption checks and retain-
ing only the chart rule with the less informative
FS (Zhang et al., 2007).

6 Conclusion

We have defined an algebra of feature structures
and used it to encode FTAG grammars into IRTG
grammars with two interpretations – one over a
TAG string algebra and one over the feature struc-
ture algebra. We have shown how to do FTAG
parsing by intersecting a parse chart with respect
to the input string with an RTG which attempts to
carry out the unifications required by the FTAG
grammar. This yields a clean, LFG-style sepa-
ration of the derivation process of TAG (includ-
ing adjunction) from unification, and an efficient
parsing algorithm that performs unifications on the
chart and not the individual derivation trees.

One advantage of our FS algebra is that it can be
combined freely with any other grammar formal-
ism that can be encoded in IRTG. It should, for in-
stance, be straightforward to define feature-based
LCFRS by adding variants of embaπ for rules
of higher fan-out. By adding further interpreta-
tions, we can also build feature-based synchronous
grammars, e.g. for semantic parsing (Peng et al.,
2015; Groschwitz et al., 2015). An interesting
challenge would be to attempt to encode LFG
into IRTG, using a string interpretation for the c-
structure and a variant of the FS algebra intro-
duced here for the f-structure. This would require
dealing with arbitrarily deep feature structures (as
opposed to ones of bounded depth as in FTAG),
and encoding LFG’s completeness and coherence
constraints into a filter grammar.

Acknowledgments. I am grateful to the review-
ers for their insightful and constructive com-
ments, and to Jessica Grasso, Jonas Groschwitz,
Christoph Teichmann, and Stefan Thater for dis-
cussions. I am also indebted to the students in
my Grammar Formalisms classes at the University
of Potsdam for demanding a faster FTAG parser,
and those at Saarland University for being the first
users of the system described here.

References
Srinivas Bangalore, Pierre Boullier, Alexis Nasr, Owen

Rambow, and Benoit Sagot. 2009. MICA: A prob-
abilistic dependency parser based on Tree Insertion
Grammars. In Proceedings of NAACL HLT 2009:
Short Papers.

Bob Carpenter. 1992. The logic of typed feature struc-
tures. Cambridge University Press.

Hubert Comon, Max Dauchet, Remi Gilleron, Florent
Jacquemard, Denis Lugiez, Christof Lding, Sophie
Tison, and Marc Tommasi. 2008. Tree automata
techniques and applications. Available on http:
//tata.gforge.inria.fr/.

Johannes Gontrum, Jonas Groschwitz, Alexander
Koller, and Christoph Teichmann. 2017. Alto:
Rapid prototyping for parsing and translation. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL): Demo Session.

Jonas Groschwitz, Alexander Koller, and Mark John-
son. 2016. Efficient techniques for parsing with tree
automata. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Jonas Groschwitz, Alexander Koller, and Christoph Te-
ichmann. 2015. Graph parsing with s-graph gram-
mars. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL-IJCNLP).

Laura Kallmeyer, Wolfgang Maier, Yannick Parmen-
tier, and Johannes Dellert. 2010. TuLiPA – Pars-
ing extensions of TAG with Range Concatenation
Grammars. Bulletin of the Polish Academy of Sci-
ences – Technical Sciences 58(3):377–391.

Ronald Kaplan and Joan Bresnan. 1982. Lexical-
functional grammar: A formal system for grammat-
ical representation. In Joan Bresnan, editor, The
Mental Representation of Grammatical Relations,
MIT Press, Cambridge, MA, pages 173–381.

Robert Kasper and William Rounds. 1986. A logical
semantics for feature structures. In Proceedings of
the 24th Annual Meeting of the Association for Com-
putational Linguistics (ACL).

9

Alexander Koller and Marco Kuhlmann. 2011. A gen-
eralized view on parsing and translation. In Pro-
ceedings of the 12th International Conference on
Parsing Technologies (IWPT).

Alexander Koller and Marco Kuhlmann. 2012. De-
composing TAG algorithms using simple alge-
braizations. In Proceedings of the 11th TAG+ Work-
shop.

Robert Malouf, John Carroll, and Ann Copestake.
2000. Efficient feature structure operations with-
out compilation. Natural Language Engineering
6(1):29–46.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning (CoNLL).

Sylvain Schmitz and Joseph Le Roux. 2008. Feature
unification in TAG derivation trees. In Proceedings
of the 9th TAG+ Workshop.

Stuart Shieber. 1986. An introduction to unification-
based approaches to grammar. CSLI Publications.

Hideto Tomabechi. 1991. Quasi-destructive graph uni-
fication. In Proceedings of the 29th Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

K. Vijay-Shanker and Aravind Joshi. 1988. Feature
structures based tree-adjoining grammar. In Pro-
ceedings of COLING.

XTAG Research Group. 2001. A lexicalized tree
adjoining grammar for english. Technical Report
IRCS-01-03, IRCS, University of Pennsylvania.
ftp://ftp.cis.upenn.edu/pub/xtag/
release-2.24.2001/tech-report.pdf.

Yi Zhang, Stephan Oepen, and John Carroll. 2007. Ef-
ficiency in unification-based n-best parsing. In Pro-
ceedings of the 10th International Conference on
Parsing Technologies (IWPT).

10

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 11–20,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Parsing Minimalist Languages with Interpreted Regular Tree Grammars

Meaghan Fowlie
Saarland University

mfowlie@coli.uni-saarland.de

Alexander Koller
Saarland University

koller@coli.uni-saarland.de

1 Introduction

Minimalist Grammars (MGs) (Stabler, 1997) are
a formalisation of Chomsky’s minimalist pro-
gram (Chomsky, 1995), which currently domi-
nates much of mainstream syntax. MGs are sim-
ple and intuitive to work with, and are mildly
context sensitive (Michaelis, 1998), putting them
in the right general class for human language
(Joshi, 1985).1 Minimalist Grammars are known
to be more succinct than their Multiple Context-
Free equivalents (Stabler, 2013), to have regular
derivation tree languages (Kobele et al., 2007), and
to be recognisable in polynomial time (Harkema,
2001) with a bottom-up CKY-like parser. How-
ever, the polynomial is large, O(n4k+4) where k
is a grammar constant. By approaching minimal-
ist grammars from the perspective of Interpreted
Regular Tree Grammars, we show that standard
chart-based parsing is substantially computation-
ally cheaper than previously thought at O(n2k+3 ·
2k).

1.1 Notation

We treat functions as sets of pairs. For 〈a, b〉 ∈ f
we write a 7→ b. For a partial function f : A B,
the domain of f , Dom(f) = {a ∈ A | f(a) is
defined}. The set of all such functions is [A B].

For partial functions f, g : A B, let f ⊕ g =
f ∪ g if Dom(f) ∩ Dom(g) = ∅, and undefined
otherwise. For a ∈ A, let f−a = f−{(a, f(a))}

2 Minimalist Grammars

We begin with a brief overview of Minimalist
Grammars. Readers familiar with MGs should
note that we encode movers with a partial func-
tion from licensing features to movers, otherwise

1Or slightly below, if unbounded phrasal copying is re-
quired: see for example (Kobele, 2006) on Yoruba clefting.

Section 3 should be familiar. Minimalist Gram-
mars are a family of formal grammars in which
parts of sentences are put together with operations
merge and move. MGs are feature-driven, which
means that lexical items come with a stack of fea-
tures which determine whether operations apply.

Features encode properties of lexical items,
such as syntactic categories (noun, verb, etc), cat-
egories of arguments of the word (such as a verb
that selects a noun), as well as agreement or dis-
placement, such as person, case, quantifier rais-
ing, or wh-movement. For example, lexical item
〈Loki, D〉 has string part Loki and feature stack D,
meaning it has category D, while 〈laughed, =DV〉
has features =D and V, meaning that it requires
something of category D and is itself of category
V.

These requirements of the lexical items are ful-
filled by applications of Merge and Move opera-
tions. For example, laughed’s requirement of a D

is fulfilled by Merging it with Loki or who, for ex-
ample:

merge

〈laughed, =DV〉 〈Loki, D〉

Figure 1: Derivation tree of 〈laughed Loki, V〉

The diagram in 1 above illustrates a deriva-
tion tree, a term over 〈merge(2),move(1),Lex(0)〉
which describes the application of merge and
move to expressions.

An operation’s applicability is determined by
the features on the top of the feature stacks – the
head features – and the application deletes those
features; here the =D and D features are deleted,
leaving us with V. Notice that deleting D left Loki
without features; when features remain, something

11

different happens.
The lexical item 〈who, D-wh〉 has a D like Loki,

but also has a -wh feature which can ultimately
cause it to be pronounced in a different place in the
string than it would have if it had had only feature
D; this is movement. For instance, if instead we
applied Merge to laughed and who, deleting the
head features leaves -wh on who. This means that
although who is selected by laughed as an argu-
ment, its final position in the string will be deter-
mined by something else: the operation licensed
by its -wh feature. Because the final position is at
this point unknown, instead of trying to add it to
the string laughed, we store it for later insertion.

Our storage mechanism is a partial function
from features to moving items. When laughed se-
lects who and the D features are deleted, 〈who, ε〉
is stored as the image of feature wh, as follows:

merge

〈〈laughed, =DV〉, ∅〉 〈who, D-wh〉

Figure 2: Derivation of 〈〈laughed, V〉,
{wh7→〈who, ε〉 }〉

We call the partial function the storage and the
〈string, feature stack〉 pair the workspace. To-
gether they form an expression. Moving items,
or movers, are taken out of storage when their
head feature matches the head feature of the
workspace. For example, suppose our expression
〈〈laughed, V〉, {wh7→〈who,ε〉 }〉 is selected by a
silent complementiser that triggers wh-movement,
〈ε, =V +wh C〉. The string parts will remain un-
changed, and the storage untouched, but the head
feature in the workspace becomes +wh.

merge

〈ε,=V +wh C〉 merge

〈laughed, =DV〉 〈who, D-wh〉

Figure 3: Derivation of 〈〈laughed, +wh C〉,
{wh7→〈who,ε〉 }〉

The +wh feature triggers Move. We look in stor-
age for wh, find 〈who, ε〉, delete the +wh feature,
and concatenate who with laughed:

move

merge

〈ε, =V+whC〉 merge

〈laughed, =DV〉 〈who, D-wh〉

Figure 4: Derivation of 〈〈who laughed, C〉,∅〉

The item 〈who, ε〉 had only its -wh feature left,
as represented by its place in storage and the ε
where its features had been. If it had features left,
it would go back into storage after Move, as the
image of its new head feature. For example, if who
also had nominative case – 〈who, -nom-wh〉–, af-
ter moving for case it would go back into storage
under wh. Such a derivation would also require a
locus of case assignment; we add in a silent Tense
head, 〈ε,=V+nomT〉. We illustrate this derivation
in Figure 5 with a derivation tree annotated by the
expression generated at each step.

move
〈〈laughed, V〉, {wh 7→〈who, ε〉 }〉

merge
〈〈laughed, +nomT〉, {nom7→〈who, -wh〉 }〉

〈ε, =V+nomT〉 merge
〈〈laughed, V〉, {nom7→〈who, -wh〉 }〉

〈laughed, =DV〉 〈who, D-nom-wh〉

Figure 5: Annotated derivation tree of non-final
Move: 〈who, -wh〉 has a feature remaining, so af-
ter Move applies it goes back into storage.

Intuitively, it is as though who started out beside
laughed because it is an argument of the verb. But
because it needed Case, it moved up to beside the
Tense. Next, because it is a wh-word, it will move
up to the front of the sentence.

2.1 Formal defintion
Formally, following Stabler and Keenan (2003),
we define a (string-generating) Minimalist Gram-
mar over expressions, with two finite, disjoint sets
of bare features. Selectional features sel , drive
Merge, and licensing features, lic drive Move.
Each of sel and lic has a positive and negative
polarity. A feature pairs a polarity with a bare
feature. Merge and Move apply when head fea-
tures of two items have the same bare feature,

12

but with opposite polarities. The features are
F={+f,-f,=X,X | f∈ lic , X ∈ sel }. Let Σ be a
finite alphabet. The lexicon Lex ⊂ Σ∗ × F ∗ is a
finite set of string-feature stack pairs.

An expression is a string-feature stack pair,
paired with a partial function from licensing fea-
tures to string-feature stack pairs; that is, expres-
sions are Expr = (Σ∗ × F ∗)× [lic Σ∗ × F ∗]

MGs have one constraint: for a given nega-
tive feature -f, only one pair whose head fea-
ture is -f may be in storage. This is the short-
est move constraint (SMC), and we implement it
by defining storage as a partial function from lic
to 〈string, feature stack〉 pairs, and by defin-
ing storage parts of merge and move with ⊕ as
defined in section 1.1 above.

We define four partial functions,
merge1,merge2,move1, and move2, as fol-
lows.2 They have ⊕ as subfunctions, and are only
defined if their subfunctions are defined.
Merge merge1,merge2 : Expr × Expr Expr

Let α, β ∈ F ∗, let X∈ sel , and let f∈ lic .

merge1(〈(s, =Xα),S〉, 〈(t, X),T〉) = 〈〈st, α〉,S⊕T〉

merge2(〈〈s=Xα〉, Ss〉, 〈〈t, X-fβ〉, St〉) =
〈〈s, α〉, {f 7→〈t,β〉 }⊕Ss ⊕ St〉
Move move1,move2 : Expr Expr

Let α, β, γ ∈ F ∗, let f,g ∈ lic , and suppose
S(f) = 〈t,β〉.
move1〈〈s, +fα〉, S〉 = 〈〈ts, α〉, S− f〉 if β = ε
move2(〈〈s, +fα〉, S〉)=
〈〈s,α〉, {g7→〈t, γ〉 }⊕(S−f)〉 if β=-gγ

For example, in the derivation in Figure 5,
the lowest merge node is an instance of merge2.
merge applies because the head feature of laughed
is =X and that of who is D. It is merge2 specif-
ically because, in the language of the definition
above, β = -nom-wh. The next merge node is
merge1 because the feature stack of laughed is just
V. The move node is an instance of move2 since
β = -wh 6= ε.

An MG is a 6-tuple

g = 〈Σ, sel , lic,M,Lex, S〉

where Σ is a finite alphabet,
2The domains of Merge 1 and 2, and those of Move 1 and

2 being disjoint, the operations can alternatively be defined as
just Merge and Move with 2 cases each. We choose this vari-
ant for parallelism with the minimalist string algebra defined
in section 2.3 below.

M = {merge1,merge2,move1,move2},
Lex ⊂ Σ∗×{+f,-f,=X,X | f∈lic ,X∈sel}∗, and
S ⊆ sel is a designated set of start cate-
gories. From our two examples above, we
can define an MG g where Σ = {Loki,
laughed, who}, sel ={D,V,T,C}, lic ={nom,wh},
Lex={〈who, D-wh〉, 〈who, D-nom-wh〉, 〈Loki, D〉,
〈laughed, =D V〉, 〈ε, =V +wh C〉, 〈ε, =V +nom T〉,
〈ε, =T +wh C〉 }, and S={T,C}.

Let Expr(〈s, fs〉) = 〈〈s, fs〉, ∅〉 make an ex-
pression with empty storage from a lexical item.
CL(Lex,M), the closure of the lexicon under the
operations M , is the closure of Expr(Lex) un-
der the operations. Then for a Minimalist Gram-
mar g with lexicon Lex and start categories S ⊆
sel , the language generated by g is L(g) =
{s | 〈〈s, S〉, ∅〉 ∈ CL(Lex,M) and S ∈ S}; that
is, for an expression with empty storage and ex-
actly one feature, where that feature is a start cate-
gory, the string part of that expression is in the lan-
guage of g. In our example, L(g) = {who laughed,
Loki laughed}.

If merge applies because the head feature of the
first expression is =X, we say that application of
merge is triggered by X. Similarly, if move ap-
plies because the head feature of the expression is
+f, we say the application of move is triggered by
f. merge2 and move2 always add a mover to stor-
age; if that mover is the image of feature f,then we
say it is an f-storing operation.

2.2 Expressive capacity

MGs are mildly context sensitive; in particular
they are are weakly equivalent to multiple context
free grammars (MCFGs) and Linear Context-Free
Rewrite Systems (LCFRSs) (Michaelis, 1998),
(Michaelis, 2001), and multicomponent tree-
adjoining grammars (MC-TAGs), which are more
expressive than TAGs. Every MG with k licensing
features has a strongly equivalent (k+1)-MCFG(2)
– an MCFG with at most binary rules and at most
k + 1-tuples –, where the category names are the
features of an expression and the strings behave
very much like the string tuple algebra in sec-
tion 2.3 below.3 An MG can be exponentially
more succinct than its equivalent MCFG (Stabler,
2013); similarly the IRTGs defined here can be ex-

3More preceisely, the licensing features are given an or-
der, and the MCFG category names, rather than having a par-
tial function from licensing features to feature stacks just has
the feature stacks in the right order, and similarly for the order
of elements in the tuples.

13

ponentially larger than the MGs they describe.

2.3 Minimalist String Algebra

Kobele et al. (2007) define an algebra of tree tu-
ples, which handles how the Minimalist Grammar
builds trees. We define a similar algebra which
builds strings, and convert the algebra into our no-
tation of a partial function from licensing features
to strings. These functions are just the string parts
of the MG operations, separated out from the fea-
ture calculus.

The values of the algebra are strings paired with
a partial function from lic to strings, i.e.
Σ∗ × [lic Σ∗], which we call minimalist string
tuples. We define |lic| + 1 Merge operations
and |lic|2 + |lic| + 1 Move operations as follows,
∀f,g ∈ lic . merge1 and move1 are for final
merge/move, so the string of the merging or mov-
ing element concatenates (·) with the main string,
on the right for Merge and on the left for Move.
merge2f is for f-storing Merge, and move2g-f is
for f-storing Move triggered by g.

merge1(〈s, S〉, 〈t, T〉) = 〈s · t, S⊕ T〉
merge2f(〈s, S〉, 〈t, T〉) = 〈s, S⊕ T⊕ {f 7→ t}〉

move1f(〈s, S〉) = 〈S(f) · s, S− f〉
move2f-g(〈s, S〉) = 〈s, (S− f)

⊕ {g 7→ S(f)}〉
For an MG 〈Σ, sel ∪ lic,M,Lex〉, the signa-

ture of a tuple-feature algebra includes each ele-
ment s(0) of the alphabet Σ (evaluates to 〈s, ∅〉),
merge

(2)
1 (evaluates to merge1), merge

(2)
2f for each

f ∈ lic (evaluates to merge2f), move
(1)
1f for each

f ∈ lic (evaluates to move1f), and move
(1)
2f-g for

each pair f,g ∈ lic (evaluates to move2f-g).
If t = m(d0, . . . , dn) is a term of the signature

of the algebra, t evaluates to the function m evalu-
ates to, applied to what d0, . . . , dn evaluate to. We
write JtK = JmK(Jd0K, . . . , JdnK).

3 Interpreted Regular Tree Grammar

Minimalist Grammars lend themselves readily to
so-called “two-step” approaches in which the fea-
ture calculus is separated from the algebra of the
derived forms (strings, trees, etc). For instance,
Kobele et al. (2007) show that for a given MG, the
language of valid derivation trees is regular, and
that a derived tree can be generated by a multi-
bottom up transduction from the derivation tree.
Graf (2012) adds MSO-definable constraints on
the transduction to constrain movement and de-

fine different movement types (sidewards, lower-
ing, covert, etc).

Michaelis et al. (2000), Morawietz (2003), and
Mönnich (2006), etc. take a related approach, gen-
erating derived trees by Monadic Second-Order
(MSO)-definable transduction not from the deriva-
tion tree but rather from the equivalent MCGF,
translated into a regular tree grammar. (Kobele
et al. (2007) note that this second approach can
generate transductions that theirs cannot.)

In this tradition, we define an interpreted regular
tree grammar for Minimalist Grammars. IRTGs
are a generalisation of, among other things, the
synchronous grammars of Shieber (1994), 2004,
2006 that form the basis for the tree homomor-
phisms of Kobele et al. (2007).

3.1 IRTGs
An interpreted regular tree grammar
(IRTG) (Koller and Kuhlmann, 2011)
G = 〈G, (h1,A1), . . . , (hn,An)〉 derives n-
tuples of objects, such as strings or trees from
derivation trees in G. A given t ∈ G is interpreted
into the n algebras A1, . . .An by means of
the n tree homomorphisms h1, . . . , hn. For a
given i ≤ n, hi(t) is a term of the signature of
algebra Ai, which is in turn evaluated (J·KAi)
into an object of the algebra. For example,
suppose we have a minimalist string algebra
A as defined in Section 2.3, and suppose we
have a derivation tree as in the first tree in
Table 3, call it t. A tree homomorphism h that
includes the rules {mv1 7→ merge1nom,mg13 7→
merge1, lex11 7→ ε,mg2 7→ merge2nom, lex9 7→
laughed, lex3 7→ Loki} yields the second tree
in Table 3, call it u. Then we write h(t) = u
and JuKA = 〈〈Loki laughed, T〉, ∅〉. The lan-
guage of the grammar L(G) is the set of tuples
{〈Jh1(t)KA1 , . . . , Jhn(t)KAn〉 | t ∈ L(G)}.

An IRTG is regular in that G is a regular tree
language, meaning it is a set of trees that can be
generated by a finite set of production rules of the
form NT0 → t or NT0 → t(NT1, . . . , NTn) for
nonterminals NTi and terminals t. The terminals
are elements of the signature of the tree language.
An example is given in Table 3.

3.2 IRTG for Minimalist Grammars
We use the regular tree language of derivation
trees defined in Kobele et al. (2007) and define a
homomorphism from the derivation trees to terms
of the minimalist string algebra (with notation

14

modified to match ours), explicitly defining it as
an IRTG. Finally, we calculate the parsing com-
plexity.

For a Minimalist Grammar g with lexicon Lex,
the production rules of its regular tree grammar,
RTG(g), have as their nonterminal symbols the
featural configurations of expressions defined by
the grammar. Let
f : [lic Σ∗ × F ∗] → [lic F ∗] strip away
the string parts of a storage function, leaving only
the features. Then the nonterminals of RTG(g)
are {〈fs, f(S)〉|〈〈s, fs〉, S〉 ∈ CL(Expr(Lex))}.
Since lexical items have finite feature stacks, the
SMC limits the size of the storage, and each appli-
cation of merge or move deletes features, there are
a finite number of nonterminals for a given finite
lexicon. Therefore each possible application of
merge or move to expressions of g belong to a fi-
nite set of instances; these are the non-lexical rules
of the RTG. Each lexical item 〈s, fs〉 has associ-
ated with it a rule with left hand side 〈fs, ∅〉. We
give each rule a name from {mgi,mvi, lexi | i ∈
N} by choosing a new i ∈ N for each rule: in an
IRTG, each rule has its own name. The rules are
named according to Table 1. The start categories
are {〈S, ∅〉 |S ∈ S}.
Example 3.1.

Let sel = {T,V,D,C}, lic = {nom,wh}. Let S =
{T, C} be the start categories Let Lex be defined
according to Table 2; for example, 〈Thor, D-nom〉
∈ Lex.

Table 3 lists the RTG production rules and con-
tains an example tree and its interprtation in the
minimalist string algebra defined in section 2.3
above. Rules that are greyed out are rules that can
never be used in a complete derivation; the RTG
could also be defined to leave them out.

3.3 Interpretation

The derivation trees – the terms over
{mg(2)i ,mv(1)i , lex(0)i | i ∈ N } – are inter-
preted in algebras, meaning for each algebra we
want to interpret into, we define a tree homo-
morphism from derivation trees to terms of the
algebra. In our case, we want to interpret into
the minimalist string algebra as follows. The
examples are from the grammar in Table 3.
Merge 1 Merge of a non-mover is interpreted as

merge1. e.g.:
h(mgi(t1, t2)) = merge1(h(t1), h(t2)) for
i ∈ {1, 3, 5, 7, 8, 12, 13, 14, 15, 16, 17}

Merge 2 f-storing Merge is interpreted
as merge2f. e.g.: h(mgi(t1, t2)) =
merge2nom(h(t1), h(t2)) for i ∈ {2, 6, 9, 11}
or merge2wh(h(t1), h(t2)) for i ∈ {4, 10}

Move 1 Final move triggered by f is interpreted
as move2f. e.g.:
h(mvi(t)) = move1nom(h(t)) for i ∈ {1, 2}

Move 2 g-storing Move triggered by f is inter-
preted as move2f-g. e.g.:
h(mv3(t)) = move2nom-wh(h(t))

Lex for a production rule 〈fs, ∅〉 → lexi, each
h(lexi) = s for some 〈s, fs〉 ∈ Lex. e.g.:
h(lex1) = h(lex3) = Loki

For example, the derivation tree in Table 3 is
interpreted by the homomorphism h as a term of
the string-feature tuple algebra, which evaluates to
the minimalist string tuple 〈Loki laughed, ∅〉.

4 IRTG-based parsing for minimalist
grammars

Given a minimalist grammar g, we can ask
whether a given string w is grammatical accord-
ing to g, i.e. if w ∈ L(g). This parsing problem
has been addressed in a substantial amount of lit-
erature (Harkema, 2001), (Stabler, 2013), (Stano-
jević, 2016). The best known upper bound for a
complete parser from this literature is O(n4k+4)
(Harkema, 2001). This is based on a relatively
coarse estimation, by which there are O(n2k+2)
different parse items, and binary rules such as
those for Merge could combine these arbitrarily.
Alternatively, by encoding g into an (k + 1)-
MCFG, we can apply standard parsing algorithms
for MCFGs, which yields a parsing complexity of
O(n3k+3) (Seki et al., 1991). The more efficient
MCFG parsing algorithm for well-nested MCFGs
of Gómez-Rodrı́guez et al. (2010), which would
yield a parsing complexity of O(n2k+4), is not ap-
plicable because the MCFGs that are produced by
the MG-to-MCFG encoding are not well-nested
(Boston et al., 2010).

Here we present a parsing algorithm for min-
imalist grammars that is based on the MG-to-
IRTG encoding. This algorithm has a runtime of
O(n2k+3), a substantial improvement over previ-
ously published upper bounds. It is worth noting
that we achieve this improved upper bound not
through a particularly clever parsing algorithm –
indeed, the basic idea of the algorithm presented
here is the same as in Harkema (2001) –, but
through a more careful analysis of the algorithm’s

15

MG rule application RTG production rule
merge1|2(〈〈s, fs〉, S〉, 〈〈t, ft〉,T〉) = 〈〈s′, fs′〉,S′〉 〈fs′, f (S′)〉 →mgx(〈fs, f (S)〉,〈ft, f (T)〉)
move1|2(〈〈s, fs〉, S〉) = 〈〈s′, fs′〉,S′〉 〈fs′, f (S′)〉 →mgx(〈fs, f (S)〉)
〈s, fs〉 ∈ Lex 〈fs, ∅〉 →lexx

Table 1: RTG(g) rule template

Types strings feature stacks
Nominals Loki, Thor D-nom | D
wh-words who D-nom-wh | D-wh
Intransitive verbs laughed, cried =D V
Transitive verbs slew, tricked =D =D V
Tense ε =V +nom T
Complementiser ε =T +wh C

Table 2: Sample lexicon

runtime. The primary advantage we obtain from
using the standard IRTG parsing algorithm is that
it separates the parts that depend on the string
length very cleanly from those that depend on the
grammar, which makes it a bit easier to see the
exact runtime complexity.

We will make a Java implementation of our
parsing algorithm available open-source upon
publication.

We first sketch the general approach to parsing
with IRTGs (Koller and Kuhlmann, 2011). The
objective of IRTG parsing is to compute, given
an input object w and an IRTG grammar G =
(G, (h,A)), a compact representation of the lan-
guage parses(w) = {t ∈ L(G) | Jh(t)K = w} –
i.e., of those derivation trees that are both gram-
matically correct and that are interpreted to w.
This is done by first computing a decomposition
grammar Dw, that is, an RTG such that L(Dw)
consists of all terms that evaluate to w in the al-
gebra. Then we can exploit closure properties of
regular tree languages to compute a parse chart
– that is, an RTG C such that L(C) = L(G) ∩
h−1(L(Dw)) –, by intersecting G with an RTG
that generates all trees which h maps to a term in
L(Dw). By construction, we have that L(C) =
parses(w).

Most pieces of this parsing algorithm are com-
pletely generic, and do not depend on the algebra
that is being used. Thus, when one applies IRTGs
to a new algebra, all that is required to obtain a
complete parser is to specify how decomposition
grammarsDw are computed for arbitrary elements
w of the algebra. We now explain how to obtain
decomposition grammars for the minimalist string
algebra.

Let w ∈ Σ∗ be a string that we want to parse
with an IRTG G over the minimalist string alge-
bra. The decomposition grammar Dw will de-
scribe a language of terms over this algebra, such
as the term in the lower left of Table 3. Let Sp be
the set of all spans in w, i.e. of all pairs (i, j) of
string positions with 1 ≤ i ≤ j ≤ n + 1. Then
the nonterminals of Dw will be pairs [s, S] where
s ∈ Sp and S : lic Sp is a partial function that
assigns spans to licensing features. We assume
that s and the spans for all features are pairwise
disjoint. The start symbol is [(1, n+ 1), ∅].

Now consider first the constants c of the mini-
malist string algebra. These derive a span of length
one or, if c = ε, of length zero. Thus we obtain the
following rules for Dw:

[(i, i+ 1), ∅] → c if wi = c ∈ Σ
[(i, i), ∅] → ε for all 1 ≤ i ≤ n+ 1

Furthermore, terms can be combined into larger
terms using the merge and move operations. The
grammar Dw contains rules which essentially
evaluate these operations as defined in Section 2.3,
in terms of the spans represented by each sub-
string. Concretely, the rules look as in figure 6.

Rules in which ⊕ would yield undefined results
(because a feature would appear twice in a partial
function) do not exist in the grammar.

4.1 Parsing Complexity

Asymptotic parsing complexity is determined by
the time it takes to compute the rules of Dw; the
rest of the IRTG parsing algorithm is linear in the
size of Dw. The most costly rule of Dw, in terms
of parsing complexity, is that for merge1. In this
rule there are O(n3) values for the string positions
i, j, p. Within S ⊕ T there are spans for at most
k spans, each of which has O(n2) possible values.
These spans are distributed over the two child non-
terminals. This can be done in 2k different ways.
Thus, in total, there are areO(n2k+3 ·2k) instances
of this rule, which can be enumerated asymptoti-
cally in that time.

16

Lexical
〈D, ∅〉 → lex1 | lex2
〈D-nom, ∅〉 → lex3 | lex4
〈D-nom-wh, ∅〉 → lex5
〈D-wh, ∅〉 → lex6
〈=D=DV, ∅〉 → lex7 | lex8
〈=DV, ∅〉 → lex9 | lex10
〈=V+nomT, ∅〉 → lex11
〈=T+whC, ∅〉 → lex12
Derivation tree

mv1

mg13

lex11 mg2

lex9 lex3
→h Term of minimalist algebra

move1nom

merge1

ε merge2nom

laughed Loki
→J·K 〈Loki laughed, ∅〉

Phrasal
merge of subject

〈V, ∅〉 → mg1(〈=DV, ∅〉, 〈D, ∅〉)
〈V, {nom7→∅}〉 → mg2(〈=DV, ∅〉, 〈D-nom, ∅〉) |

mg3(〈=DV, {nom7→∅}〉, 〈D, ∅〉)
〈V, {wh7→∅}〉 → mg4(〈=DV, ∅〉, 〈D-wh, ∅〉) |

mg5(〈=DV, {wh 7→∅}〉, 〈D, ∅〉)
〈V, {nom7→-wh}〉 → mg6(〈=DV, ∅〉, 〈D-nom-wh, ∅〉) |

mg7(〈=DV, {nom7→-wh}〉, 〈D, ∅〉)
merge of object

〈=DV, ∅〉 → mg8(〈=D=DV, ∅〉, 〈D, ∅〉)
〈=DV, {nom7→∅}〉 → mg9(〈=D=DV, ∅〉, 〈D-nom, ∅〉)
〈=DV, {wh 7→∅}〉 → mg10(〈=D=DV, ∅〉, 〈D-wh, ∅〉)
〈=DV, {nom7→-wh}〉 → mg11(〈=D=DV, ∅〉, 〈D-nom-wh, ∅〉)

Tense selects VP
〈+nomT, ∅〉 → mg12(〈=V+nomT, ∅〉, 〈V, ∅〉)
〈+nomT, {nom7→∅}〉 → mg13(〈=V+nomT, ∅〉, 〈=DV, {nom7→∅}〉)
〈+nomT, {wh 7→∅}〉 → mg14(〈=V+nomT, ∅〉, 〈V, {wh7→∅}〉)
〈+nomT, {nom7→-wh}〉 → mg15(〈=V+nomT, ∅〉, 〈=DV, {nom7→-wh}〉)

Subject moves to spec-TP
〈T, ∅〉! → mv1(〈+nom T, {nom7→∅}〉)
〈T, {wh7→∅}〉 → mv2(〈+nom T, {nom7→-wh}〉)

C selects TP
〈+wh C, ∅〉 → mg16(〈=T +wh C, ∅〉 〈T, ∅〉)
〈+wh C, {wh 7→∅}〉 → mg17(〈=T +wh C, ∅〉 〈T, {wh 7→∅}〉)

wh-word moves to spec-CP
〈C, ∅〉! → mv3(〈+wh C, {wh 7→∅}〉)

Table 3: Example IRTG rules and an example derivation of Loki laughed

[(i, p), S⊕ T] → merge1([(i, j), S], [(j, p),T])
[(i, j), S⊕ T⊕ {f 7→ (p, l)}] → merge2f([(i, j),S], [(p, l),T])

[(i, p), S− f] → move1f([(j, p), S] if S(f) = (i, j)
[(i, j), (S− f)⊕ {g 7→ S(f)}] → move2f-g([(i, j),S]),

Figure 6: Decomposition rules

5 Comparison with other Mildly Context
Sensitive grammars

Mildly context sensitive grammars (Joshi, 1985)
frequently come with constants that limit the
number of pieces being manipulated by the
grammar. In Multiple Context-Free Grammars
(MCFGs) (Seki et al., 1991) and Linear Context-
Free Rewrite Systems (LCFRSs) (Vijay-Shanker
et al., 1987) these are the rank – the maximum
number of daughters/arguments a rule can have,
and the fanout – the maximum number of elements
in a tuple. In Minimalist Grammars it is the num-
ber of licensing features k, which limits the num-
ber of movers via the SMC. The maximum num-
ber of elements in a minimalist item is therefore
k + 1 – all possible movers plus the workspace.
Transforming an MG into an MCFG yields a
grammar with rank 2 and fanout k+ 1 (Michaelis,
1998). Our O(n2k+3 · 2k) expressed in terms of

fanout f = k + 1 is therefore O(n2f+1 · 2f−1),
which is less than the parsing complexity for an
arbitrary binary MCFG with fanout f : O(n3f).

It is difficult to compare parsing complexities
across grammars, as moving from one grammar
to another can change the fanout. While MGs,
MCFGs, and LCFRSs with finite fanout generate
the same languages, an arbitrary binary MCFG of
fanout f may not have a weakly equivalent MG
with f − 1 licensing features; indeed Michaelis
(2001) shows that an LCFRS with fanout f has a
weakly equivalent MG with 3f licensing features.

In terms of the string algebra, the difference be-
tween an MCFG and an MG is that an MCFG rule
is unrestricted in how it concatenates strings; in
an MG, only the workspace can be made by con-
catenation; the movers are simply pooled into one
function, never concatenated with one another. In
this sense, MG equivalents of MCFGs are a sub-
class of general MCFGs of the same fanout, one

17

which has a lower parsing complexity. To trans-
form an MG into an MCFG we take as categories
the RTG categories, choose an (arbitrary) order on
the licensing features, and interpret the mover stor-
age partial function as tuples in the chosen order.
We call the class of MCFGs with string concatena-
tion rules restricted to the rules of the Minimalist
String Algebra MCFGMG.

Another subclass of MCFGs with lowered pars-
ing complexity is well-nested (Kuhlmann, 2007)
MCFGs (MCFGwn) in which no rule involves the
interleaving of elements from two daughters (no
abab rules). The parsing complexity of a binary
MCFGwn with fanout f is O(n2f+2), due to the
fact that there is a normal form in which all deduc-
tion rules are either concatenation rules or wrap-
ping rules, which have complexity O(n2f+1) and
O(n2f+2) respectively (Gómez-Rodrı́guez et al.,
2010). In a concatenation rule, we take one ele-
ment of each tuple and concatenate them, and the
rest are kept as they are; in a well-nested MCFG
the last element of the first daughter is concate-
nated with the first element of the second daughter,
which maintains the well-nestedness.

Interestingly, although the MCFG equivalent
of MGs is not well-nested, the argument for the
parsing complexity of merge1 is closely related
to that for MCFGwn. The well-nested concate-
nation rules have the same number of indices
as merge1. Therefore the complexity of merge1

(O(n2f+1 · 2f−1)) and concatenation rules for
parsing a MCFGwn (O(n2f+1)) have the same
polynomial degree, 2f + 1. This is perhaps
counter-intuitive, since well-nested MCFLs are a
proper subset of MCFLs/MLs (Gómez-Rodrı́guez
et al., 2010). However, as noted above, trans-
forming between grammars will often change the
fanout.

A proper subclass of well-nested MCFGs is
monadic-branching MCFGs (MCFGmb), which
are binary MCFGs in which only the right daugh-
ter may have fanout greater than 1. MGs with the
specifier island condition (SpIC), in which nothing
can move out of a specifier, are weakly equivalent
to monadic-branching MCFGs (Kanazawa et al.,
2011). These grammars have three kinds of Merge
rules: merge1, which merges a lexical item with
its complement; merge2, which merges a non-
lexical item with its specifier, and merge3, which
merges a mover. Move is restricted to prevent a
certain kind of movement from within a mover,

and Merge is restricted to prevent movement from
within a specifier. The result is grammar that never
has to combine mover lists. merge1 can’t have
movers in the selector, since lexical items never
carry movers, and merge2 is constrained by the
SpIC not to have movers in the selected item. Our
string-tuple analysis of minimalist parsing makes
it clear that SpIC-MGs have a parsing complexity
of O(n2k+3). The most complex rules are merge1

and merge2, which still have at most 3 indices for
the workspace and 2 for each mover. The only dif-
ference is that in the standard MG case, the movers
could have come from either daughter, but for a
SpIC-MG they could only have come from one
daughter. For SpIC-MGs the parsing complexity
is therefore reduced to O(n2k+3). For our parser
the difference is not necessarily huge since 2k is
a constant, but for some, like Stabler (2013)’s top-
down beam parser, the SpIC can greatly reduce the
search space.

Figure 7 shows the grammars described above.4

We don’t have a linguistic characterization of the
“?”-node, which stands for the intersection be-
tween the two higher nodes. These would be well-
nested MCFGs that only have concatenation in the
first element of the tuple. We speculate that this
is a linguistically uninteresting class, as the non-
well-nestedness of the rules is a reflection of the
arbitrarily-chosen order on the licensing features,
and has no special linguistic significance.5

6 Conclusion

Approaching Minimalist Grammars as interpreted
regular tree grammars makes clear the parsing
complexity of traditional chart-based parsing, and
the options available for interpretation of a deriva-
tion as a string. We found that the commonly-cited
upper bound of O(n4k+4) was in fact too conser-
vative, and MGs can be parsed in the much smaller
polynomial time of O(n2k+3 · 2k). MGs with the
specifier island constraint have a parsing complex-
ity of O(n2k+3).

4Note that the inclusion refers to the string algebra restric-
tions in the grammars themselves, and not necessarily to the
languages they generate. The left side of the diagram in fact
is reflected in the languages – for a given fanout and rank,
MCFLmb (MCFLwn (MCFL. We don’t make any claims
about the weak generative capacity on the right side.

5Also missing from the lattice is the class of MGs with
a looser SpIC where only Move is restricted by the SpIC.
This restriction leaves the asymptotic parsing complexity un-
changed as Merge is still the most complex rule and is un-
changed.

18

MCFG
O(n3f)

MCFGwn

O(n2f+2)
MCFGMG

O(n2f+1 · 2f−1)

?

MCFGmb = MCFGMG-SpIC

O(n2f+1)

Figure 7: Subclasses of binary MCFGs with
fanout f and their parsing complexities

References
Marisa Ferrara Boston, John Hale, and Marco

Kuhlmann. 2010. Dependency structures derived
from minimalist grammars. In Christian Ebert, Ger-
hard Jäger, and Jens Michaelis, editors, The Mathe-
matics of Language. 10th and 11th Biennial Confer-
ence, MOL 10, Revised Selected Papers. Springer,
volume 6149 of Lecture Notes in Computer Science,
pages 1–12.

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, MA.

Carlos Gómez-Rodrı́guez, Marco Kuhlmann, and Gior-
gio Satta. 2010. Efficient parsing of well-nested lin-
ear context-free rewriting systems. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics (NAACL 2010). As-
sociation for Computational Linguistics, pages 276–
284. http://www.aclweb.org/anthology/N10-1035.

Thomas Graf. 2012. Movement-generalized minimal-
ist grammars. In Denis Béchet and Alexander J.
Dikovsky, editors, LACL 2012. volume 7351 of Lec-
ture Notes in Computer Science, pages 58–73.

Henk Harkema. 2001. Parsing minimalist languages.
Ph.D. thesis, University of California Los Angeles.

Aravind Joshi. 1985. How much context-sensitivity is
necessary for characterizing structural descriptions.
In D. Dowty, L. Karttunen, and A. Zwicky, editors,
Natural Language Processing: Theoretical, Compu-
tational and Psychological Perspectives, Cambridge
University Press, New York, pages 206–250.

Makoto Kanazawa, Jens Michaelis, Sylvain Salvati,
and Ryo Yoshinaka. 2011. Well-nestedness prop-
erly subsumes strict derivational minimalism. In In-
ternational Conference on Logical Aspects of Com-
putational Linguistics. Springer, pages 112–128.

Greg Kobele. 2006. Generating copies. Ph.D. thesis,
UCLA.

Gregory M. Kobele, Christian Retoré, and Sylvain Sal-
vati. 2007. An automata-theoretic approach to min-
imalism. In J. Rogers and S. Kepser, editors, Model
Theoretic Syntax at ESSLLI ’07. ESSLLI.

Alexander Koller and Marco Kuhlmann. 2011. A gen-
eralized view on parsing and translation. In Pro-
ceedings of the 12th International Conference on
Parsing Technologies (IWPT). Dublin.

Marco Kuhlmann. 2007. Dependency Structures and
Lexicalized Grammars. Doctoral Dissertation, Saar-
land University, Saarbrücken, Germany.

Jens Michaelis. 1998. Derivational minimalism is
mildly context-sensitive. In LACL. Springer, vol-
ume 98, pages 179–198.

Jens Michaelis. 2001. Transforming linear context-
free rewriting systems into minimalist grammars.
In Philippe de Groote, Glyn Morrill, and Christian
Retoré, editors, Logical Aspects of Computational
Linguistics: 4th International Conference, LACL
2001 Le Croisic, France, June 27–29, 2001 Pro-
ceedings, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pages 228–244. https://doi.org/10.1007/3-
540-48199-0 14.

Jens Michaelis, Uwe Mönnich, and Frank Morawietz.
2000. Derivational minimalism in two regular and
logical steps. In Proceedings of the 5th international
workshop on tree adjoining grammars and related
formalisms (tag+ 5).

Uwe Mönnich. 2006. Grammar morphisms. Ms. Uni-
versity of Tübingen .

Frank Morawietz. 2003. Two-Step Approaches to Nat-
ural Language Formalism, volume 64. Walter de
Gruyter.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. 1991.
On Multiple Context-Free Grammars. Theoretical
Computer Science 88(2):191–229.

Stuart Shieber. 2004. Synchronous grammars as tree
transducers. In Proceedings of the Seventh Inter-
national Workshop on Tree Adjoining Grammar and
Related Formalisms (TAG+ 7).

Stuart Shieber. 2006. Unifying synchronous tree-
adjoining grammars and tree transducers via bimor-
phisms. In Proceedings of the 11th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL-2006). Association for
Computational Linguistics.

Stuart M Shieber. 1994. Restricting the weak-
generative capacity of synchronous tree-adjoining
grammars. Computational Intelligence 10(4):371–
385.

Edward Stabler. 1997. Derivational minimalism. Logi-
cal Aspects of Computational Linguistics pages 68–
95.

19

Edward P Stabler. 2013. Two models of minimalist,
incremental syntactic analysis. Topics in Cognitive
Science 5(3):611–633.

Edward P Stabler and Edward L Keenan. 2003. Struc-
tural similarity within and among languages. Theo-
retical Computer Science 293(2):345–363.

Miloš Stanojević. 2016. Minimalist grammar
transition-based parsing. In Logical Aspects of
Computational Linguistics. Celebrating 20 Years of
LACL (1996–2016) 9th International Conference,
LACL 2016, Nancy, France, December 5-7, 2016,
Proceedings 9. Springer, pages 273–290.

Krishnamurti Vijay-Shanker, David J Weir, and Ar-
avind K Joshi. 1987. Characterizing structural de-
scriptions produced by various grammatical for-
malisms. In Proceedings of the 25th annual meeting
on Association for Computational Linguistics. As-
sociation for Computational Linguistics, pages 104–
111.

20

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 21–30,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Depictives in English: An LTAG Approach

Benjamin Burkhardt and Timm Lichte and Laura Kallmeyer
CRC 991, Heinrich Heine University Düsseldorf

{burkhardt,lichte,kallmeyer}@phil.hhu.de

Abstract

In this paper, we explore different ways to
account for the peculiarities of depictive
secondary predication in English, which
we think can be characterized as long-
distance modification. Other than with re-
sultative secondary predication, the depic-
tive and its target, typically the subject or
direct object of a verbal phrase, do not
form a contiguous constituent. Instead,
the depictive attaches to the verbal domain
that also embeds the target phrase. This
sibling configuration, together with the
constrained flexibility in choosing a target,
obviously poses a challenge to the syntax-
semantics interface and we therefore com-
pare three general LTAG approaches to
deal with this. We eventually favor a
rather semantic approach that also allows
for a more principled view in terms of
Van Valin’s ACTOR-UNDERGOER distinc-
tion. Our analysis predicts that only the
verbal arguments which are the respective
lowest and highest entries in the ACTOR-
UNDERGOER hierarchy can act as targets
for a depictive. To our knowledge, this
is the first work that investigates the treat-
ment of secondary predication within the
TAG framework.

1 Introduction

The term SECONDARY PREDICATE refers to a typ-
ically sentence final, adjectival element that pred-
icates one of the (main) verbal predicate’s argu-
ments, which we will refer to as the TARGET

(see, e.g., Winkler 1997; Pylkkänen 2002; Müller
2002; Geuder 2004; Simpson 2005). Furthermore,
within the set of secondary predicates two kinds
are usually distinguished: DEPICTIVES and RE-

SULTATIVES. While resultative secondary predi-
cates characterize states that are brought about by
the event that is expressed by the main verb as in
(1), depictive secondary predicates, as in (2), ex-
press properties that hold for at least some part of
the event time, but do not immediately result from
the verb event.1

(1) Sean stomped the cani flati.

(2) a. Kim ate the steaki rawi.
b. Kimi ate the steak hungryi.

In (1), the flatness that is predicated of the can is
a result of the stomping it underwent. By contrast,
the rawness of the steak or Kim’s appetite in (2)
are rather peripheral to the overall act of eating –
even though they could influence the manner of
eating. However, we will put event semantic sub-
tleties of this distinction aside for the rest of the
paper. What we are interested in is the capability
of depictives to target different arguments of the
main verb, for instance the object in (2-a) and the
subject in (2-b). This is highly relevant to models
of the syntax-semantics interface in that it raises
the following questions: how can the relation be-
tween a depictive and its potential targets be estab-
lished? And how can the possible choice of con-
stituents that a depictive may target be correctly
captured? These are the questions addressed in
this paper, taking English as the object language
and, for the first time, Lexicalized Tree-Adjoining
Grammar (LTAG, Joshi and Schabes 1997; Abeillé
and Rambow 2000) as the syntactic framework.

2 Data

In this section, we will give a more detailed
overview over syntactic properties of depictives
that also pertains to the possible choice of targets.

1In the examples, we will use coindexation to mark the
secondary predicate and its target.

21

On this, we will base the discussion of previous
analyses in Section 3 as well as our own proposal
for an LTAG analysis in Sections 5 and 6.

2.1 Target ambiguity and stacking
In (2), we have seen clear-cut cases where the de-
pictive can target either the subject or the object
due to their respective semantic (in)compatibility.
Consequently, when semantics does not constrain
the possible readings, TARGET AMBIGUITY as in
(3) arises.

(3) Kimi ate the applej unwashedi/j.

Here, both verbal arguments are viable targets for
the depictive element unwashed, even though na-
tive speakers seem to generally prefer the subject
target readings.

Interacting with target ambiguity, depictives can
also be stacked as in (4).

(4) a. ? Kimi ate the steakj rawj hungryi.
b.?? Kimi ate the steakj hungryi rawj.
c.?? Kim ate the steakj rawj saltedj.

While STACKING OF DEPICTIVES generally de-
creases the acceptability of sentences, such stacks
with alternating targets and in the wellnested or-
der as in (4-a), i.e. object depictive followed by
subject depictive, seem more acceptable than the
illnested order in (4-b), or those in which both de-
pictives have the same target, as in (4-c).

2.2 Depictives and unrealized arguments
Another important property of depictives is that
the targeted constituent does not need to be syn-
tactically realized, as the passive constructions in
(5) show. In both examples, the depictive element
target the unrealized AGENT argument of the verb.

(5) a. The gamej was played barefooti/*j.
b. The bookj is to be read nakedi/*j.

The example in (5-a), discussed in Roberts (1987),
was originally used to raise the question whether
adjectival elements of this kind should actually be
treated as such or rather as adverbials that mod-
ify the event itself. In any case, assuming a non-
metaphorical meaning and sticking with the adjec-
tival use of barefoot, we must conclude that the
depictive in fact targets the unrealized AGENT ar-
gument rather than the THEME constituent. The
same is true for the book and naked in the pas-
sive infinitive construction in (5-b). Finally, as (6)

shows, it is also possible for depictives to target
unrealized direct objects.

(6) Wei usually bake gluten-free*i/j.

2.3 Depictives and oblique arguments

The examples discussed so far were only con-
cerned with depictives targeting either the sub-
ject or the verb’s direct object. What about
“oblique” arguments, that is, indirect objects and
PP-objects? Judging by the observations made this
far, one could assume that depictives can target ei-
ther one of the verb’s arguments. This does not
seem to be the case however, as shown in (7).

(7) a. The cash machinei gave Johnj the moneyk
hungry*i/*j/*k.

b. Peter crashed into himi tired*i.

As for (7-a), even though the verb’s indirect object
is the only animate argument, it cannot be targeted
by the depictive hungry. A similar observation can
be made for most verbs that require a prepositional
argument. In almost all cases, native speakers dis-
miss readings in which the nominal constituent in-
side the PP is targeted, as in (7-b).

However, there are counterexamples like (8).

(8) a. You can’t give themj injections
unconsciousj. (Simpson, 2005, (46))

b. Tomi talked to Megj drunki/j.

For (8-a), the possibility to target the indirect ob-
ject could be explained with the presence of a light
verb construction give injections, which doesn’t
assign argument status to injections. Similarly, the
targeting of the prepositional object in (8-b) could
be ascribed to the reanalysis into a verb-particle
construction talk to. This needs to be more care-
fully examined in future work.

2.4 Depictives and non-arguments

Finally, depictives cannot target constituents of
complex arguments, such as the genitive noun in
(9-a) or the single conjuncts in (9-b), nor modify-
ing constituents like PP-adjuncts as in (9-c).

(9) a. John met Maria’si father naked*i.
b. [Johni and Paulj]k met [Mariam and her

boyfriendn]o naked*i/*j/k/*m/*n/o.
c. John drilled a hole with a power tooli

new*i.

Again, single counterexamples like the one in (10)

22

can be found, where the depictive seems in fact to
be able to target the reflexive pronoun inside the
complex NP-argument.

(10) If you’re an investment banker, don’t choose
a profile of yourselfi [drunk at a house
party]i.2

It is yet unclear whether the putative locality vio-
lation in (10) could be explained with the involve-
ment of a multi-word expression. One reviewer
has noticed that the acceptability of (10) decreases
as soon as the PP at a house party is left out, which
could hint at the presence of a construction differ-
ent from the depictive one, for example some sort
of small clause. A closer inspection of such exam-
ples is left to future work.

3 Previous analyses

We will briefly report on two very different pro-
posals from other frameworks that precede our
work.

In the framework of Generative Grammar,
Geuder (2002, 2004), following Winkler (1997),
asserts that depictives always occur in postver-
bal position and are preceded by resultatives, as
shown in (11). This leads him to the assumption
that depictives must be right-adjoined.

(11) Johni kicked the doorj openj tiredj.

Furthermore, pointing to earlier work by Roberts
(1988), he states that depictives, without discrimi-
nating between subject and object depictives, must
be adjoined at VP-level and bases this on sev-
eral constituency tests, i.e. VP fronting, though-
movement, and pseudoclefts, as well as on the be-
havior of depictives under negation. Geuder fur-
ther strengthens this position through an obser-
vation made by Ernst (2001): depictives precede
manner adverbs, which themselves cannot adjoin
higher than at VP-level (see (12)).

(12) Ali sitsj clothedi quietlyj [...].

While the argument is valid in the context of
the Generative Grammar framework, LTAG is not
necessarily restricted in such a way. That said, the
analysis proposed here eventually adopts Geuder’s
view such that the depictive is adjoined at VP-
level as well. The main point in Geuder (2004),

2From the book The Short and Great Guide to Online
Business Networking by Michel Semienchuk from 2016.

however, is to tease apart the differences of the
semantics of depictives in comparison to “nor-
mal” adverbial modification and modification by
the class of so called transparent adverbs. Fur-
thermore, Geuder (2004) states that target resolu-
tion is not driven by syntax, but that the restictions
on possible targets of depictives “arise on an in-
terpretational level”. This runs contrary to, e.g.,
Wunderlich (1997) who assumes distinct adjunc-
tion sites for subject and object depictives. How-
ever, Geuder’s analysis remains at a rather infor-
mal level compared to what we are aiming at.

In contrast to Geuder (2004), the analysis of
depictives in Müller (2008) is based on Head-
Driven Phrase Structure Grammar (HPSG) and
aims to give a mainly syntax-driven account of de-
pictive targeting phenomena. Following an exten-
sive discussion of both English and German data,
he summarizes that all verb arguments, including
indirect objects, are possible targets of depictives.
This contradicts the observations made in section
2 about indirect objects as targets of depictives,
e.g. in example (7-a). Additionally, he empha-
sizes that the target has to precede the depictive it-
self. In the provided analyses, which largely cover
German examples, Müller deviates from Pollard
and Sag (1994) by adopting a version of HPSG
in which the verb arguments in the SUBCAT list
are marked as realized, but are not deleted from
it. This assumption is essential for Müller’s anal-
ysis of English, because depictives are included
after the target has been combined with the ver-
bal head. Under standard assumptions, the target
would have been removed from the SUBCAT list
too early. With the distinction of realized and un-
realized items on the SUBCAT list, however, also
the stacking of depictives seems to be manageable,
even though Müller remains silent on this.

4 Modification in LTAG

Since we want to treat depictive secondary pred-
icates as long-distance modification, the ap-
proaches we present in the following section are
based on assumptions commonly followed in the
TAG literature, namely that, in accordance with
valency-driven design principles for elementary
trees (Abeillé and Rambow, 2000; Frank, 2002),
modifiers (or adjuncts) are attached via adjunction.
From this and the shape of the target trees, it im-
mediately follows that it must be possible to ad-
join a modifier to its target non-immediately, for

23

the simple fact that modifiers are seen as optional
material without argument status. As such, they
are not uniquely reflected in the elementary tree
of the target, for example, by a non-terminal leaf
node, which makes them act very differently from
arguments. Thus, when modifiers are stacked sim-
ilarly to the topicalized yesterday and in Paris in
(13), one is not adjoined to the elementary tree of
elected, but rather to the other modifier:3

(13) Yesterday, in Paris, Kim ate the steak.

This can be seen from the analysis sketch in Fig-
ure 1. Hence, in LTAG analyses, even rather stan-

S

AdvP

yesterday

S*

S

PP

in Paris

S*

NP

Kim

S

NP VP

V

ate

NP

NP

the steak

Figure 1: Analysis of topicalized modifier stack-
ing in (13)

dard instances of modification can turn out “long
distance”.

The situation with depictives is even worse, as
will become clear in the next section: (i) the aux-
iliary tree of the depictive can never adjoin imme-
diately to the elementary tree of the target if it is
the subject, and (ii) the depictive tree does not add
to the lexical projection of the target, namely the
NP. We suspect that the connection between a de-
pictive and its target can be more directly estab-
lished with some sort of MCTAG, but we also see
good reasons not to use tree sets here. One reason
that has been mentioned in Section 2.2 is that the
realization of the target can be optional. We will
therefore not fully explore this possibility in this
work and only provide some general thoughts in
Section 7.

5 LTAG approaches to depictives

Staying with LTAG, there are thus two primary
challenges when dealing with depictive secondary
predicates: firstly, one has to make sure that

3Yet multiple adjunction (Schabes and Shieber, 1994)
would allow for a direct adjunction of both modifiers to the
verbal elementary tree.

the depictive finds its target through the syntax-
semantics interface; secondly, one has to cope
with the fact that sometimes more than one con-
stituent can be chosen as target at a time. In other
words, there is the possibility of target ambigu-
ity. With respect to target ambiguity, one can think
of three general approaches, namely treating it ei-
ther in syntax or in semantics, or in the syntax-
semantics interface proper. Let us go through them
one by one.

5.1 Syntactic ambiguity approach

With a SYNTACTIC AMBIGUITY APPROACH, sub-
ject and object depictives induce different syntac-
tic derivations. Hence, either they anchor different
trees, that is, trees that differ in the structure or
labeling of the nodes, or they adjoin to different
nodes of the verbal tree, or both.

So one effect could be that the target of a depic-
tive is uniquely determined through the syntactic
position at which the elementary tree of a depictive
is adjoined. Hence, depictives targeting the sub-
ject are always adjoined at a different node than
depictives that target the object. A rough example
analysis of this kind is shown in Figure 2, which
models the postverbal stacking of subject and ob-
ject depictives in (14), repeated from (4-a) above:

(14) Kimi ate the steakj rawj hungryi.

NP[I = 3]

Kim

3

[
person
NAME Kim

]

S[I = 1]

NP[I = 1] VP[I = 2]

V

ate

NP[I = 2]

0




event

AGENT 1

[
animate

]

THEME 2

[
physical entity

]




S[I = 6]

S*[I = 6] AdjP

hungry

6

[
animate
STATE hungry

]

VP[I = 5]

VP*[I = 5] AdjP

raw

5

[
physical entity
STATE raw

]

NP[I = 4]

the steak

4

[
edible
KIND steak

]

Figure 2: Analysis of (14) with a syntactic ambi-
guity approach

24

The analysis we propose employs the syntax-
semantics interface of Kallmeyer and Osswald
(2013) where syntactic nodes are enriched with in-
terface features and the semantic representations
consist of semantic frames. Interface features such
as I(NDIVIDUAL) and E(VENT) contribute base la-
bels (i.e. boxed numbers) that also appear in the
semantic frames. Upon substitution and adjunc-
tion, the unification of interface features triggers
the identification of base labels and, consequently,
the unification of the linked semantic frames.

The example in Figure 2 is thus to be under-
stood in the following way: when adjoining the
elementary tree of the depictive hungry to the S-
node of the elementary tree of ate, the unfication
of their I-features triggers the identification of base
labels 1 , which is linked to the semantic content
of the subject, and 6 , which points at the seman-
tic contribution of the depictive. Interface features
therefore serve to establish but also limit the visi-
bility of a potential target to specific nodes.

The syntactic ambiguity then emerges from a
specific distribution of base labels as values of the
I-feature. In Figure 2, the subject is only visible in
the S-node (via 1) and the object only in the VP-
node (via 2). Hence, the target of the depictive is
determined by whether it is adjoined to S or VP.

Considering coverage and sparseness, this im-
plementation of the syntactic ambiguity approach
comes with certain drawbacks, some of which can
be overcome easily, and some with more difficul-
ties – if at all. Concerning grammar sparseness,
every depictive anchors at least two elementary
trees that differ only in their respective root/foot
category. Hence, in the grammar, the depictive
hungry would not only anchor the auxiliary tree
with S-root, but also the one with a VP-root in or-
der to be usable as an object depictive. Of course,
this duplication can be overcome easily by gener-
ally replacing the S-category for the VP-category
(and representing the S-category by, e.g., an extra
feature). With this change, depictives would only
adjoin to VP-nodes. Another challenge is posed
by unrealized arguments, e.g. involving passives
such as in (5). But here the answer would be to
leave the interface unchanged compared to the ac-
tive alternate. Hence, the subject position of the
passive would still be linked to the VP-node, while
the S-node would remain linked to the logical sub-
ject. Lastly, and most severely, the syntactic am-
biguity approach forces a certain linear order onto

the depictives, depending on which argument they
target: in postverbal position, depictives target-
ing the object can only precede subject depictives
since the latter are adjoined at a higher syntactic
position. Similarly, the presented syntactic am-
biguity approach predicts that only subject depic-
tives may appear in a topicalized position. Both
predictions seem to be too strong (see, e.g., (4-b)),
but are hardly adjustable when one wants to retain
the common verbal phrase structure.

Given these issues, an alternative worth consid-
ering seems to be one that assumes specific inter-
face features for the subject and the object. For ex-
ample, there could be interface features Isubj and
Iobj and they could be made accessible in both S
and VP. This would indeed help to relax the men-
tioned linearization constraints, but it would also
necessitate the duplication of entries on the side
of depictives, in order to be able to let a depictive
target either the subject or the object.

5.2 Interface ambiguity approach

Instead of representing target ambiguity by means
of distinct interface features or by assigning dif-
ferent values to the I-feature in distinct syntactic
nodes, one could as well trigger target ambiguity
with one value of the I-feature only. This is what
we want to call an INTERFACE AMBIGUITY AP-
PROACH. It consists of giving a local choice re-
garding the value of the I-feature, namely that it
is linked either to the subject or the object. We
formally write this as a disjunctive expression [I =
1 ∨ 2], using ∨ as the disjunction operator. The
sample analysis from above then turns into the one
in Figure 3.

The challenge here is to pass the disjunctive
value from the foot node to the root of the de-
pictive elementary tree without also projecting the
final value of the I-feature, which it receives af-
ter top-bottom unification – otherwise only either
subject or object depictives could be adjoined to
VP. To this end, we include a special variable α

that is valid during substitution and adjunction, but
becomes void when top-bottom unification is ap-
plied.

Obviously, this sort of disjunction helps to rem-
edy the duplication issue that can arise in the syn-
tactic ambiguity approach. Hence, in the interface
ambiguity approach, one can maintain a uniform
auxiliary tree for depictives without having to har-
monize syntactic categories (but see below). An-

25

NP[I = 3]

Kim

3

[
person
NAME Kim

]

S[I = 1 ∨ 2]

NP[I = 1] VP[I = 1 ∨ 2]

V

ate

NP[I = 2]




eat

AGENT 1

[
animate

]

THEME 2

[
physical entity

]




5

[
animate
STATE hungry

]

VP[I = α]

VP*[I = 5]
[I = α] AdjP

hungry

6

[
physical entity
STATE raw

]
VP

[I = β]

VP*[I = 6]

[I = β]
AdjP

raw

NP[I = 4]

the steak

4

[
edible
KIND steak

]

Figure 3: Analysis of (14) with an interface ambi-
guity approach

other advantage over the syntactic ambiguity ap-
proach in Figure 2 is that postverbal linearization
is left underspecified and the topicalized position
can be occupied by both the subject and the ob-
ject depictive. However, the critical drawback is
that one has to allow for logical operators to be in-
cluded into elementary trees. This is a big step,
formally speaking, because it means to treat the
syntactic feature structures in elementary trees as
descriptions and to introduce special variables for
descriptions such as α in Figure 3. Otherwise,
when first resolving disjunctions such as the one
in the I-feature, the duplication issue would return
back on the scene, not to mention the narrowing to
either subject or object depictives that can adjoin
at VP. Having said this, tree and feature structure
descriptions are widely used in metagrammars (cf.
Crabbé et al., 2013) and certain TAG variants (cf.
Rambow et al., 2001). So it is a possible strategy.

Nevertheless, we want to propose yet another
type of approach, namely the semantic ambiguity
approach, that circumvents this extension and is
also more explanatory with respect to the linking
aspects of target ambiguity.

5.3 Semantic ambiguity approach

At first glance, the SEMANTIC AMBIGUITY AP-
PROACH differs from the interface ambiguity ap-
proach in just one detail: disjunction does not ap-
pear in elementary trees (or their descriptions),
but in their semantics. Remember that we follow

Kallmeyer and Osswald (2013) in that we use de-
scriptions of semantic frames as semantic repre-
sentation, and in these descriptions, disjunction is
a natural ingredient.

We can thus recast the LTAG analyses from Fig-
ures 2 and 3 into the one in Figure 4, which now
embeds the disjunction AGENT ∨ THEME in the
semantics of the depictive.

NP[I = 3]

Kim

3

[
person
NAME Kim

]

S[E = 0]

NP[I = 1] VP[E = 0]

V

ate

NP[I = 2]

0




eat

AGENT 1

[
animate

]

THEME 2

[
physical entity

]




5




event
(AGENT∨

THEME

)
[

animate
STATE hungry

]

VP[E = 5]

VP*[E = 5] AdjP

hungry

6




event
(AGENT∨

THEME

)
[

physical entity
STATE raw

]

VP[E = 6]

VP*[E = 6] AdjP

raw

NP[I = 4]

the steak

4

[
edible
KIND steak

]

Figure 4: Analysis of (14) with the semantic
amibuity approach

This move has far reaching consequences re-
garding the interface and the semantics of the de-
pictive: instead of accessing the I-feature of the
respective target NPs, the depictive now reads off
the E-feature, which commonly points to the se-
mantics of the verbal head. The semantics of the
depictive has to reflect this, that is, the root type
has to be of type event, while its actual seman-
tic content, which either contributes to the AGENT

role or the THEME role of the event, is more deeply
embedded compared to the other two approaches.

As with the interface ambiguity approach, it
should be obvious that the semantic ambiguity ap-
proach avoids the unwanted proliferation of ele-
mentary trees that have to be assumed for a sin-
gle depictive. Similarly, no post- or preverbial
linearization constraints are imposed. But on the
other hand, the semantic ambiguity approach im-
proves on the interface ambiguity approach since
no additional descriptive means need to be in-

26

cluded ad hoc. Furthermore, it does not hinge
on making the I-features of subject and object ac-
cessible within the whole verbal phrase. Yet one
could criticize that this simplification in the syn-
tax puts additional burden on the semantics: the
possible targets of depictives are not immediately
determined by the syntactic argument structure of
the verbal head any more, but entirely follow from
the semantic roles that are specified in the frame-
semantic event descriptions assigned to the verbal
head and the depictive. Going back to Figure 4,
this means that semantic roles such as AGENT and
THEME and their linking to syntactic argument po-
sitions have to be taken into account, for instance,
in order to avoid depictive predication on non-
arguments. The following section will show, how
to achieve this in a principled manner.

6 A semantic approach with
actor-undergoer linking

The semantic solution discussed in the previous
section simply lists all semantic roles that are
potential targets for depictive modification. The
question is whether we can generalize this in some
way. One abstraction over semantic roles is pro-
vided by the MACROROLES actor and undergoer
introduced in Van Valin, Jr. (2005) (see also the
similar concepts of proto-agent and proto-patient
in Dowty, 1991). Van Valin, Jr. (2005) explains
how to determine actor and undergoer based on
the semantic characterization of an event, more
specifically based on the semantic roles of its par-
ticipants. A constraint-based LTAG implementa-
tion of his linking theory within the metagram-
mar (using XMG) has been proposed in Kallmeyer
et al. (2016). With the additional linking con-
straints in the metagrammar, the frame for eating
for instance gets enriched with marcorole informa-
tion, as shown in Figure 5.

0




eating

AGENT 1

[
animate

]

ACTOR 1

THEME 2

[
physical entity

]

UNDERGOER 2




Figure 5: eating frame with macroroles

The hypothesis we want to pursue in the fol-
lowing is that depictives target either the actor or
the undergoer of the event that they modify (see
Figure 6 for the revised elementary tree for raw).
This hypothesis is not just a generalization over

the analysis proposed in Section 5.3 but it comes
with the additional claim that non-macroroles can-
not be targeted by depictive modifiers or, more
precisely, the depictive has to target one of the
macroroles.

VP
[E= 6]

VP*[E= 6] AdjP

raw

6




event
(ACTOR∨

UNDERGOER

)
[

physical entity
STATE raw

]



Figure 6: Revised elementary tree for raw

This hypothesis clearly holds for the examples
in (2). The two arguments of the verb eat are the
actor and the undergoer and both are possible tar-
gets for depictives. The question is whether it also
holds that event participants that are neither actor
nor undergoer cannot be targeted by a depictive.
This seems to be supported by the data in (7-a).

Let us consider further examples involving par-
ticipants that are neither actor nor undergoer.

(15) Johni ran into the buildingj burningi/*j.

(16) Johni worried about the applesj unwashedi/*j.

In (15), the building, which is neither actor nor
undergoer, is actually not available as antecedent
for a depicitive. In (16), John is the undergoer
while the apples are neither actor nor undergoer.
And in fact, they do not seem to be available for
modification by a depictive.

(17) a. Chrisi ate the applesj with a fork
unwashedi/j.

b. Chrisi ate the soup with a spoonj
unwashedi/*j.

(17) gives examples where we have an actor and
an undergoer and, as a third participant, an instru-
ment. The instrument cannot be targeted by depic-
tive modification.

(15)–(17) suggest that particpants that are real-
ized as PPs are in general not available for mod-
ification by depictives. This seems to be the case
even for semantic roles that are relatively low on
the actor–undergoer hierarchy, as in (18). Accord-
ing to Van Valin, Jr. (2005), arguments that are se-
lected as undergoers are by definition not marked
by an oblique case or an adposition. For example,
Chris is not the undergoer in the sentences in (18).
But this is different for (19), where Chris becomes
the undergoer due to the passivization. And here

27

Chris is in fact accessible as a target for a depic-
tive.

(18) a. The car crashed into Chrisi unprepared*i.
b. The bewitched machine hammered on

Chrisi drunk*i.

(19) Chrisi was crashed into unpreparedi.

Even though these data indicate that actor and
undergoer are more easily accessible for depictive
modifiers, we need broader empirical evidence for
our hypothesis. Corresponding tests, including a
corpus study and acceptability judgment tests, are
planned for the very near future.

7 Remaining issues

Considering the still underresearched wealth of
depictive secondary predication, the presented
analyses are certainly not meant to be conclu-
sive. They are rather supposed to highlight general
LTAG-related options when dealing with some
critical challenges posed by depictive secondary
predication: the non-local relation between the de-
pictive and its target, the rather strict choice of tar-
gets, and the flexibility in stacking and lineariz-
ing depictives. Therefore, it might be that the pro-
posed analyses have to be revised in the light of
more data and more languages. In what follows,
we want to mention some of the potential “break-
ing points”.

One challenge to the analysis in Section 6 would
be that a depictive can target an argument of the
verb that does not bear a macrorole. While En-
glish seems to be largely consistent in only allow-
ing macroroles, there seem to be languages that are
less strict (e.g. Warlpiri, see Simpson 2005). For
these languages, a more syntactic approach might
be preferable. A more severe challenge would
be if a depictive was able to target a constituent
that cannot even be considered an argument of
the verb, for instance, a modifying expression or
some more deeply embedded part of an argument.
While it is hard to find acceptable data where a
depictive targets a modifier, there are indeed cases
that seem to challenge the locality restriction. If
they were possible in general and not just side ef-
fects of multi-word expressions as argued in Sec-
tion 2.4, either the set of interface features would
have to be considerably extended in order to make
the embedded targets accessible or the semantics
of the depictive would have to be more complex
in order to access elements embedded below the

event participants. On the other hand, restrictions
on linearization (and stacking) could be rather eas-
ily implemented using purely syntactic features.

Finally, our choice for LTAG as such could be
seen as another weakness. As mentioned in Sec-
tion 4, we deliberately decided against MCTAG,
even though we thereby rule out the possibility
to establish a more direct derivational relation be-
tween the depictive and its target. Within an MC-
TAG, depictives could be represented as tree sets
consisting of two trees: one tree anchored by the
depitive word, namely roughly the auxiliary tree
that was used above in the presented LTAG anal-
yses, and one degenerated elementary tree, the
scope taking part. The degenerated elementary
tree possibly only consists of a single node and
is supposed to either adjoin to the root node of the
target NP or to substitute into the target NP slot of
the verbal tree, yielding again a substitution node.
Similar tree sets can be found in works that deal,
for example, with reflexives (Ryant and Scheffler,
2006; Kallmeyer and Romero, 2007; Storoshenko
et al., 2008; Frank, 2008) and extraposed relative
clauses (Kroch and Joshi, 1987; Chen-Main and
Joshi, 2014). The approach in Frank (2008) adopts
a tree-local solution where reflexives introduce on
the syntactic side, in addition to the initial tree of
the reflexive, an initial single-node NP tree that
substitutes into the antecedent slot. A similar so-
lution might be possible for depicitves. The ap-
proach in Chen-Main and Joshi (2014) is interest-
ing because it remains tree-local even for illnested
dependency structures, thanks to flexible composi-
tion and multiple adjunction. As was shown with
(4-b), depictives can give rise to illnested depen-
dencies as well. Even so, the strongest argument
against using MCTAG for depictives is that the tar-
get does not have to be realized. Consequently,
there are cases where the target NP is missing as a
landing site for the scope part of the depictive tree
set, unless it is made part of the verbal elemen-
tary tree for this very reason. Therefore, in place
of decorating the verbal elementary tree in such a
way, we prefer to remain with LTAG.

8 Conclusion

Depictives challenge the syntax-semantics inter-
face in many ways: as for English, locality is ex-
tended, but still restricted to the verbal domain,
that is, maximally extending to the syntactic ar-
guments of the verbal head. But as flexible as it

28

might look, within this there is some additional re-
strictiveness that is hard to capture in only syntac-
tic or semantic terms. Therefore, among the three
LTAG approaches we developed in this paper, we
favour a semantic approach that is enhanced with
Van Valin’s argument linking mechanism. The
prediction then made is that depictives are re-
stricted to the syntactically and semantically de-
termined macroroles actor and undergoer. While,
from what we have seen in this paper, the pre-
diction seems to be empirically valid at least for
English, the data survey is still very preliminary.
This needs to be tackled in future work while also
broadening the scope crosslinguistically. Finally,
as one of the reviewers pointed out to us, there are
other constructions that also seem to involve long-
distance modification, such as absolutes and free
adjuncts (examples taken from Stump 1985):

(20) a. His father being a sailor, John knows all
about boats.

b. Walking home, he found a dollar.

The differences and commonalities with construc-
tions of this kind need to be investigated in future
work as well.

9 Acknowledgments

We are grateful to Wilhelm Geuder and the two
anonymous reviewers for detailed comments and
discussion. The work presented in this paper
was financed by the Deutsche Forschungsgemein-
schaft (DFG) within the CRC 991 “The Structure
of Representations in Language, Cognition, and
Science”.

References
Anne Abeillé and Owen Rambow. 2000. Tree Ad-

joining Grammar: An overview. In Anne Abeillé
and Owen Rambow, editors, Tree Adjoining Gram-
mars: Formalisms, Linguistic Analyses and Process-
ing, CSLI Publications, Stanford, CA, number 107
in CSLI Lecture Notes, pages 1–68.

Joan Chen-Main and Aravind K. Joshi. 2014. A de-
pendency perspective on the adequacy of tree lo-
cal multi-component tree adjoining grammar. Jour-
nal of Logic and Computation 24(5):989–1022.
https://doi.org/10.1093/logcom/exs012.

Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph
Le Roux, and Yannick Parmentier. 2013. XMG: eX-
tensible MetaGrammar. Computational Linguistics
39(3):1–66.

David Dowty. 1991. Thematic proto-roles and argu-
ment selection. Language 67(3):547–619.

Thomas Ernst. 2001. The syntax of adjuncts. Num-
ber 96 in Cambridge Studies in Linguistics. Cam-
bridge University Press, Cambridge, UK.

Robert Frank. 2002. Phrase Structure Composition
and Syntactic Dependencies. MIT Press, Cam-
bridge, MA.

Robert Frank. 2008. Reflexives and TAG semantics.
In Proceedings of the Ninth International Workshop
on Tree Adjoining Grammar and Related Frame-
works (TAG+9). Tübingen, Germany, pages 97–104.
http://www.aclweb.org/anthology/W08-2313.

Wilhelm Geuder. 2002. Oriented adverbs: Issues in
the lexical semantics of event adverbs. Doctoral dis-
sertation, University of Tübingen, Tübingen, Ger-
many.

Wilhelm Geuder. 2004. Depictives and trans-
parent adverbs. In Jennifer R. Austin, Ste-
fan Engelberg, and Gisa Rauh, editors, Adver-
bials: The interplay between meaning, context,
and syntactic structure, John Benjamins Pub-
lishing Company, Amsterdam, pages 131–166.
https://doi.org/10.1075/la.70.06geu.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
Adjoining Grammars. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Lan-
guages, Springer, Berlin, volume 3, pages 69–124.

Laura Kallmeyer, Timm Lichte, Rainer Osswald, and
Simon Petitjean. 2016. Argument linking in LTAG:
A constraint-based implementation with XMG. In
Proceedings of the 12th International Workshop on
Tree Adjoining Grammars and Related Formalisms
(TAG+12). Düsseldorf, Germany, pages 48–57.
http://www.aclweb.org/anthology/W16-3305.

Laura Kallmeyer and Rainer Osswald. 2013. Syntax-
driven semantic frame composition in Lexicalized
Tree Adjoining Grammar. Journal of Language
Modelling 1:267–330.

Laura Kallmeyer and Maribel Romero. 2007. Reflex-
ives and reciprocals in LTAG. In Jeroen Geertzen,
Elias Thijsse, Harry Bunt, and Amanda Schiffrin,
editors, Proceedings of the Seventh International
Workshop on Computational Semantics IWCS-7.
Tilburg, pages 271–282.

Anthony S. Kroch and Aravind K. Joshi. 1987. Ana-
lyzing extraposition in a tree adjoining grammar. In
Geoffrey J. Huck and Almerido E. Ojeda, editors,
Syntax and Semantics: Discontinuous Constituency,
Academic Press, Inc., pages 107–149.

Stefan Müller. 2002. Complex Predicates. Verbal
Complexes, Resultative Constructions, and Particle
Verbs in German. Studies in Constraint-Based Lex-
icalism. CSLI Publications, Stanford.

29

Stefan Müller. 2008. Depictive secondary predicates
in German and English. In Christoph Schroeder,
Gerd Hentschel, and Winfried Boeder, editors,
Secondary Predicates in Eastern European Lan-
guages and Beyond, BIS-Verlag, Oldenburg, num-
ber 16 in Studia Slavica Oldenburgensia, pages 255–
273. http://hpsg.fu-berlin.de/ stefan/Pub/depiktiv-
2006.html.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. Studies in Contempo-
rary Linguistics. The University of Chicago Press,
Chicago.

Liina Pylkkänen. 2002. Introducing Arguments. Ph.D.
thesis, Massachusetts Institute of Technology, Cam-
bridge, MA.

Owen Rambow, K. Vijay-Shanker, and David Weir.
2001. D-tree substitution grammars. Computa-
tional Linguistic 27(1):87–121.

Ian Roberts. 1987. The Representation of Im-
plicit and Dethematized Subjects. Number 10 in
Linguistic Models. De Gruyter Mouton, Berlin.
https://doi.org/10.1515/9783110877304.

Ian Roberts. 1988. Predicative aps. Linguistic Inquiry
19(4):703–710.

Neville Ryant and Tatjana Scheffler. 2006. Bind-
ing of anaphors in LTAG. In Proceedings
of the Eighth International Workshop on
Tree Adjoining Grammar and Related For-
malisms. Sydney, Australia, pages 65–72.
http://www.aclweb.org/anthology/W/W06/W06-
1509.

Yves Schabes and Stuart M. Shieber. 1994. An Al-
ternative Conception of Tree-Adjoining Derivation.
Computational Linguistics 20(1):91–124.

Jane Simpson. 2005. Depictives in English and
Warlpiri. In Nikolaus P. Himmelmann and Eva
Schultze-Berndt, editors, Secondary Predication
and Adverbial Modification: The Typology of Depic-
tives, Oxford University Press, Oxford, pages 69–
106.

Dennis R. Storoshenko, Chung-hye Han, and David
Potter. 2008. Reflexivity in English: An STAG
analysis. In Proceedings of the Ninth International
Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+9). Tübingen, Germany, pages
149–156. http://www.aclweb.org/anthology/W08-
2320.

Gregory Stump. 1985. The semantic variability of ab-
solute constructions. Number 25 in Synthese lan-
guage library. D. Reidel Publishing, Dordrecht, The
Netherlands.

Robert D. Van Valin, Jr. 2005. Exploring the Syntax-
Semantics Interface. Cambridge University Press,
Cambridge.

Susanne Winkler. 1997. Focus and Secondary Predica-
tion. Number 43 in Studies in Generative Grammar.
Mouton de Gruyter, Berlin.

Dieter Wunderlich. 1997. Argument extension by lexi-
cal adjunction. Journal of Semantics 14(2):95–142.

30

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 31–42,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Reflexives and Reciprocals in Synchronous Tree Adjoining Grammar

Cristina Aggazzotti
Department of Linguistics

Harvard University
Cambridge, MA 02138

caggazzotti@g.harvard.edu

Stuart M. Shieber
Paulson School of Eng’g. and Applied Sciences

Harvard University
Cambridge, MA 02138

shieber@seas.harvard.edu

Abstract

An attractive feature of the formalism
of synchronous tree adjoining grammar
(STAG) is its potential to handle linguistic
phenomena whose syntactic and seman-
tic derivations seem to diverge. Recent
work has aimed at adapting STAG to cap-
ture such cases. Anaphors, including both
reflexives and reciprocals, have presented
a particular challenge due to the locality
constraints imposed by the STAG formal-
ism. Previous attempts to model anaphors
in STAG have focused specifically on re-
flexives and have not expanded to incor-
porate reciprocals. We show how STAG
can not only capture the syntactic distri-
bution and semantic representation of both
reflexives and reciprocals, but also do so in
a unified way.

1 Introduction

In this paper, we present a novel unified anal-
ysis of both reflexives and reciprocals in syn-
chronous tree adjoining grammar (STAG). STAG
utilizes syntactic-semantic tree pairs that undergo
synchronized operations to produce a unified syn-
tactic and semantic analysis of linguistic phenom-
ena. Since anaphors, specifically reflexives (him-
self, themselves) and reciprocals (each other), re-
quire a referential lexical item, or antecedent, to
supply their semantic value, they depend on both
syntax, in the form of distributional constraints,
and semantics, in the form of specific relations
with the antecedent. Thus, STAG has the potential
to be an effective way of modeling both reflexives
and reciprocals. Yet STAG’s tight integration of
syntax and semantics places strong constraints on
the syntax-semantics interface, making anaphors a

challenging and illuminating test case for the for-
malism.

By way of example, consider the sentences in
(1), identical except for the alternation between re-
flexive and reciprocal.

(1) a. Noah and Emma saw themselves.

b. Noah and Emma saw each other.

As reciprocals require a plural antecedent, for con-
sistency throughout this paper we use examples
with plural antecedents for both reflexives and re-
ciprocals. In the distributive reading of the reflex-
ive, the relation (here, saw) holds between each
atom in the plural antecedent and itself. Similarly,
for reciprocals, the core reading (so-called strong
reciprocity) is one in which the relation holds be-
tween each atom in the antecedent and each other
distinct atom.1

The variant of STAG that we assume, following
other recent work on STAG for natural-language
semantics, is based on set-local multicomponent
TAG (MCTAG). In synchronous set-local MC-
TAG (henceforth, simply “STAG”), a lexical item
is represented by a set of syntactic and semantic
elementary trees, all of which substitute or ad-
join at the same time into another tree set (thus
“set-locally”) (Weir, 1988). This formalism has
been shown to handle a range of phenomena at
the syntax-semantics interface, including nested
quantifiers (Nesson and Shieber, 2006), extraction

1There are additional readings for reflexives and recipro-
cals as well. For instance, in a cumulative reading of the re-
flexive, Noah and Emma both see the pair containing both
of them (as, perhaps, in a mirror). The relation holds of the
entire plurality and itself. Similarly, reciprocals can display
weaker readings than strong reciprocity (Langendoen, 1978;
Dalrymple et al., 1998). Incorporation of these readings into
the present framework is enabled by our abstracting out the
meanings of the reflexive and reciprocal into separable rela-
tions REFL and RECP below, but is well beyond the scope of
this paper.

31

phenomena (Nesson and Shieber, 2007), preposi-
tions (Nesson, 2009), it-clefts (Han and Hedberg,
2006), pied-piping in relative clauses (Han, 2006),
and clitic climbing (Bleam, 2000).

Previous applications of TAG to anaphors have
either appealed to extra facilities, such as recursive
semantic features (Kallmeyer and Romero, 2007;
Ryant and Scheffler, 2006; Champollion, 2008),
or used the more constrained STAG plus adjust-
ments, such as using de Bruijn indices in the se-
mantics (Nesson, 2009), creating multiple reflex-
ive trees (Storoshenko et al., 2008), or operating
at multiple links in the derivation (Frank, 2008).
No STAG approach to our knowledge has cap-
tured both reflexives and reciprocals. Our analysis
seeks to fill this void by showing that both kinds
of anaphors can be captured uniformly in STAG.

To achieve this, we simplify and generalize one
previous analysis of reflexives in STAG, namely
that of Frank (2008), so it can apply to recipro-
cals and a variety of reflexive cases. We simplify
Frank’s analysis, eliminating the c-command and
dominance relations used for proper variable bind-
ing by appealing to fundamental syntactic and se-
mantic constraints. We also generalize his anal-
ysis to apply to both reflexives and reciprocals.
Our full analysis is described in Section 2. We
demonstrate the power of this approach in Sec-
tion 3 using the examples of cataphoric construc-
tions and anaphors as arguments of object con-
trol verbs. Analogous derivations capture ditransi-
tive verbs in which the reflexive can be coindexed
with the subject or object, though space limita-
tions preclude their inclusion. To handle non-local
cases, we avail ourselves of a version of delayed
locality, originally proposed by Chiang and Schef-
fler (2008), and in Section 4 we show how de-
layed locality accounts for syntactic constructions
such as anaphors as arguments of raising verbs
and Exceptional Case Marking (ECM) verbs. The
analysis also accounts for anaphors in picture-DPs
and quantificational picture-DPs, anaphors in ad-
juncts, and sentences with multiple anaphors.

1.1 Synchronous tree adjoining grammar

We use set-local feature-structure-based syn-
chronous MCTAG, supplemented with a version
of delayed locality for non-local anaphoric cases.
Nodes in syntactic trees are notated with syntac-
tic categories and in semantic trees with semantic
types, using the notation 〈σ, τ〉 to express func-

tion types from σ to τ , or the abbreviated ver-
sion στ where no ambiguity results. The feature-
structure-based synchronous MCTAG framework
we use is exemplified in Figure 1. Elementary tree
sets for DPs, as in (a) and (b), contain multiple
syntactic trees and semantic trees, two of each,
independently motivated for handling quantifica-
tion and topicalization. The syntax has a TP aux-
iliary tree (allowing for frontings such as topical-
ization, following Nesson and Shieber (2007)) in
addition to the “in situ” DP tree; the synchronous
semantics has a t auxiliary tree (used for quantifier
scope, following Shieber and Schabes (1990) and
Williford (1993)) and an e-rooted reference tree.
Non-quantificational DPs like Noah have a degen-
erate scope tree t∗ that does not modify the derived
tree, so merely serves as a placeholder to maintain
structural consistency.

Syntactic nodes have an associated feature
structure containing finite feature values. The fea-
ture structure must unify with the feature struc-
ture of any substituting or adjoining node in or-
der for the operation to take place; if any fea-
tures conflict, the unification fails (Vijay-Shanker
and Joshi, 1988). In particular, we can mark DP
substitution nodes in their feature structure with
their case requirements (which can be thought of
as a manifestation of their being assigned abstract
Case (Polinsky and Preminger, 2014)), while lex-
ical item trees rooted at DP that exhibit morpho-
logical case will have that case depicted in the
root feature structure as well. This built-in feature
checking system will play a role in several aspects
of our STAG framework, including matching phi-
features (number, person, gender) of anaphors and
antecedents, making c-command and dominance
constraints unnecessary, and accounting for cat-
aphoric constructions. For reasons of readability
and succinctness, we do not show feature struc-
tures explicitly in subsequent examples.

Reciprocals reciprocate over plural entities. For
our purposes, we do not require a sophisticated se-
mantic notion of plurality (such as Scha (1981),
van Bentham (1989), or Westerståhl (1989)). We
notate the type of sets of entities of type σ as σ
and the plural entity combining a and b as a + b;
we further optionally identify singular entities a
with singleton plural entities {a}. Plural DPs will
sometimes denote plural entities (like Noah and
Emma of type e), and certain verbs (of type et, like
met) will require plural entities. Certain quantified

32

(a) TP∗ DP

Noah




cat : DP

agr :



num : sg
pers : 3rd
gend : masc





 t∗ e

noah

(b) TP∗ DP

her




cat : DP
case : acc

agr :



num : sg
pers : 3rd
gend : fem





 t∗ e

her

(c) TP 1 2

T′

VP

DP↓ 2 [case : acc]V

saw

T

DP↓ 1 [case : nom]

t 1 2

e↓ 1et

e↓ 2eet

saw

(d) saw

hernoah

1 2
(e) T

T′

VP

DP

her

V

saw

T

DP

Noah

t

e

noah

et

e

her

eet

saw

Figure 1: Elementary STAG trees and feature
structures for (a) DPs, (b) pronouns, and (c) transi-
tive verbs; (d) is the derivation tree and (e) the de-
rived trees for the simple transitive sentence Noah
saw her.

DPs (like everyone) may involve both interpreta-
tions – the quantifier meaning (as in everyone left)
of type 〈et, t〉 and the plural interpretation (as in
everyone met) of type e.

Nodes that can undergo operations are desig-
nated by links, shown in the trees with numbered
boxes (1), that ensure the syntactic and seman-
tic trees accept synchronous operations at corre-
sponding nodes, as in (c). Multiple boxes marked
with the same numbered link specify the sites of
operation of a set of trees.

1.2 Previous work on reflexives in TAG

In the literature, there are six main applica-
tions of TAG to capture anaphors. Three are
non-synchronous, building a semantic representa-
tion using recursive feature structures (Ryant and
Scheffler, 2006; Kallmeyer and Romero, 2007;
Champollion, 2008),2 which can be more pow-

2Steedman (2000) also provides an account for binding
but uses a combination of LTAG and combinatory categorical

erful than TAG (indeed Turing-equivalent under
some usages), and look at both reflexives and re-
ciprocals. The other three use the more restric-
tive STAG framework for both the syntax and se-
mantics but only look at reflexives (Nesson, 2009;
Storoshenko et al., 2008; Frank, 2008).

For the non-synchronous TAG approaches,
Ryant and Scheffler (2006) employ tree-local mul-
ticomponent lexicalized TAG (LTAG) with seman-
tic feature structures and a flat compositional se-
mantics for each elementary tree. The multicom-
ponent tree set for reflexives and reciprocals con-
tains two trees: an NP tree with the lexical anaphor
that is c-commanded by a degenerate NP tree
that composes with its antecedent through flexible
composition (FC) (Joshi et al., 2003), an extension
of LTAG. This approach captures reflexives and
reciprocals but requires extra subject intervention
and c-command constraints to prevent overgener-
ation.

Kallmeyer and Romero (2007) use a similar ap-
proach, but replace Ryant and Scheffler’s degen-
erate anaphor NP tree with a degenerate VP tree.
This change does not require the FC extension
(except for adjuncts) or stronger c-command con-
straints, but does require a dominance relation be-
tween the degenerate VP and the lexical anaphor
as well as a procedure for passing antecedent fea-
tures. Only with both of these additions do the lo-
cality and c-command restrictions of classic bind-
ing theory (Chomsky, 1981) then follow.

Instead of compositional semantics, Champol-
lion (2008) uses the feature-based LTAG formal-
ism of Vijay-Shanker (1987) extended by the use
of lists as values of features, as in HPSG (Pol-
lard and Sag, 1992), and list operations, such as
appending lists together. Champollion (2008) im-
proves upon the previous non-synchronous ap-
proaches in several ways, such as by capturing
ECM verbs, adjuncts, and all conditions in binding
theory with no further additions to the framework;
however, the analysis does not include reciprocals
and requires recursive features.

For the STAG approaches, Nesson (2009) uses
MCTAG but extends the lambda calculus notation
for semantic representation with de Bruijn indices.
The de Bruijn notation uses integer indices – in-
stead of explicitly-named free variables – to indi-
cate how many enclosing λ terms away the vari-
able’s binding λ is. Although this approach pro-

grammar (CCG).

33

vides more flexibility for locality constraints and
can successfully account for a variety of reflex-
ive sentences, it does not allow the differentiation
needed for reciprocals because the indices allow
specification only of coindexation.

Storoshenko et al. (2008) take a different MC-
TAG approach by positing three separate reflexive
syntactic trees, whose use depends on the reflex-
ive’s binding option as a verbal argument. The
semantics relies on dynamically varying what is
a function and what is an argument. For a sen-
tence containing a reflexive, the reflexive plays the
function role, taking its sister node as its argument;
however, if an entity fills that position in the sen-
tence instead of a reflexive, the entity would be
an argument and its sister node the function. Al-
though the analysis captures ditransitives, raising
verbs, and ECM verbs, why these three reflexive
tree sets are the (only) possible options and why
each reflexive has its specific semantic type is not
well motivated.

It may be possible to extend this analysis to
reciprocals: following reflexives, the semantics
could be separately defined for each case as
needed and agreement could be handled in the
syntax through a clever use of features. However,
this approach seems to lack a unifying story be-
hind the choice of tree set configuration. We thus
turn to the final application of STAG to reflexives,
which we show can be extended to both reflexives
and reciprocals in a more straightforward way.

1.3 The analysis of Frank (2008)

Frank (2008) uses tree-local MCTAG to capture
simple reflexive cases but does not attempt to cap-
ture reciprocals and does not definitively extend
the analysis to more complicated cases, such as
raising and ECM verbs. The analysis is illustrated
in Figure 2 for the sentence in (2).3

3We have diverged from Frank’s elementary trees (Frank,
2008, Figure 1) slightly, modifying them by clarifying and
making explicit two notational issues, according to our un-
derstanding. First, we include an explicit t∗ tree in the tree
set for John based on the 1 link at the root of the reflexive
tree, which we assume indicates the adjunction of a John tree
at the same time its e-rooted tree substitutes. Second, we
removed the 2 links on the NP himself and on the second se-
mantic x variable tree (see Frank’s Figure 1(a)) because they
seem to serve as labels, rather than as operable sites like the
1 links. We leave the 2 link on the root of the semantic verb
tree (even though it does not correspond to an explicit adjoin-
ing tree) because it may be intended for an extra scope tree
in the reflexive tree set; however, it is unclear how that extra
scope tree would fit into the included dominance relations so
we do not explicitly add it to the reflexive tree set here.

(a) S

VP

NP↓ 2V

sees

NP↓ 1

t 1 2

et

e↓ 2eet

sees

e↓ 1

(b) NP

John

t∗ e

john

(c) NP↓ 1 NP

himself

CC

t 1

et

t∗λx

e↓ 1

e

x
DOM

e

x
DOM

CC

(d) sees

himself

john

1

1 2

(e) S

VP

NP

himself

V

sees

NP

John

t

et

t

et

e

x

eet

sees

e

x

λx

e

john

Figure 2: Frank’s elementary trees for (a) transi-
tive verbs, (b) type e NPs, and (c) reflexives; (d) is
the derivation tree and (e) the derived trees for sen-
tence (2). Extra constraints are indicated with la-
beled arrows: CC for c-command, DOM for dom-
inance.

(2) John sees himself.

Frank’s analysis is novel in two ways: the
structure of the derivation and the use of multi-
ple links. First, derivations of reflexive sentences
(Figure 2(d)) diverge from derivations of non-
reflexive sentences (Figure 1(d)). The derivation
tree in Figure 2(d) has the antecedent (subject) first
substitute into the reflexive (object), which then as
a whole composes into the verb tree at the respec-
tive links.4

The structure of this derivation is unusual in the
TAG literature in not paralleling the non-reflexive
derivation tree, in which the subject and object
separately substitute directly into the verb tree.
However, there may be cross-linguistic evidence
for this type of derivation. In languages such
as Finnish, which represent reflexivization with a
verbal affix that detransitivizes the verb into an
intransitive verb, Büring (2005) explains that this
verbal reflexive marker is not a syntactic argument

4Ryant and Scheffler (2006) use a similar derivation tree
in that the antecedent composes with the anaphor before both
compose into the verb tree, but their use of flexible compo-
sition allows composition of trees in either direction, so the
derivation tree is not actually equivalent.

34

or clitic, providing support for a derivation tree in
which the verb accepts just one argument, the sub-
ject. An analysis of clitics along these lines may
be apposite as well.

Second, Frank’s analysis crucially relies on al-
lowing a tree set to operate at multiple links. The
reflex of this innovation is the multiple links dec-
orating edges in the derivation tree, where in stan-
dard STAG, only a single link would appear. In
particular, Frank’s derivation tree in (d) portrays
the reflexive himself going into the verb tree at
both links 1 and 2 . Implicitly, Frank is appeal-
ing to a novel generalization of MCTAG, in which
multiple components of a tree set can apply at mul-
tiple links.

Frank’s approach accounts for simple reflex-
ive antecedents, quantifier-bound reflexives, re-
flexives embedded in a picture-DP, and reflexives
occurring as the argument of a ditransitive predi-
cate. However, the approach does not directly ex-
tend to reciprocals.

Unlike reflexives, reciprocals are not simply
inherently coindexed with their antecedent since
the antecedent must be distributed into its atomic
parts. Frank’s approach as it stands cannot ac-
count for this. The semantic trees contain only one
binder of two instantiations of the same variable
and are thus inherently detransitivizing. By main-
taining separate binders of the two argument po-
sitions, our modifications below not only account
for both reflexives and reciprocals, but also do so
in a unified and simplified way.

2 Our analysis

In this section, we explain how our analysis builds
directly on Frank’s. We adjust the analysis to be in
line with the framework outlined in Section 1.1.

2.1 Frank’s analysis revised

As in Frank’s analysis, the reflexives will use both
subject and object links, and thus will be com-
posed of four syntactic and four semantic trees.
The tree set follows Frank’s approach with only
minor changes, as shown in Figure 3(a). In the
syntactic tree set are two TP∗ placeholder trees,
one for each of the DP trees. The first DP tree is
degenerate, accepting the antecedent by substitu-
tion, and the second contains the reflexive. The
semantic tree set contains a t auxiliary scope tree
for each of the e-rooted variables. In the first scope
tree, a reflexive operator REFL (described shortly)

has been added as another binary branch in the el-
ementary reflexive tree, along with two binding λ
terms (instead of just one). The e-rooted variable
trees correspondingly contain two distinct vari-
ables. As shown in (b), we use the same derivation
tree as Frank, also taking advantage of the multi-
link extension of MCTAG.

As described in Section 1.1, our framework
makes use of case and feature unification for pro-
nouns, which can additionally ensure the cor-
rect configuration of lexical substitution of the
antecedent and reflexive, thus making the c-
command (CC) and dominance (DOM) con-
straints redundant. Eliminating these extra con-
straints greatly simplifies the analysis by relying
on the inherent features of the formalism instead
of on externally-added restrictions.

On the semantics side, the reflexive operator
REFL serves as a formalization of the reflexive re-
lation. For the purposes of this paper, in which we
focus on the distributive reflexive reading of plu-
ral reflexives, the REFL operator is given as in (3).
Abstracting out the reflexive operator allows flexi-
bility in its semantic definition and comparison to
alternatives (such as the RECP operator we intro-
duce shortly).

(3) REFL ≡ λR . λZ . ∀x : x ∈ Z .
∀y : y ∈ Z ∧ y = x . R y x

Informally speaking, the operator holds of a binary
relation R and an antecedent set Z just in case ev-
ery pair x and y in the set Z, where x and y are not
distinct, are in the relation R.5 (The benefit of the
apparent redundancy of the two universal quanti-
fiers will become evident shortly.)

The STAG derivation corresponding to sentence
(1a) proceeds as in Figure 3. The resulting logical
form can be simplified as shown in (4), demon-
strating that the distributive reading is appropri-
ately captured.

(4) REFL (λa . λb . saw a b) (n+ e)

= (λR . λZ . ∀x : x ∈ Z.
∀y : y ∈ Z ∧ y = x . R y x)

(λa . λb . saw a b) (n+ e)

= ∀x : x ∈ (n+ e).

∀y : y ∈ (n+ e) ∧ y = x . saw y x

= saw n n ∧ saw e e

5This definition of REFL can also account for singular an-
tecedents by interpreting them as singleton plural entities.

35

(a) TP∗ 1 DP↓ 1 TP∗ DP

themselves
t 1

e↓ 1et

eet

et

t∗λb

λa

〈eet, et〉

REFL

e

b

t∗ e

a

(b)

saw

themselves

noah+emma
1

1 2

(c)
TP

T′

VP

DP

themselves

V

saw

T

DP

Noah&Emma

t

e

n+ e

et

eet

et

t

e

b

et

e

a

eet

saw

λb

λa

〈eet, et〉

REFL

Figure 3: (a) Elementary tree set for a reflexive;
(b) is the derivation tree and (c) the derived trees
for sentence (1a).

2.2 Comparison of analyses
There are four differences between our reflexive
analysis and Frank’s.

1. We use extra placeholder trees to maintain a
parallel structure among all DPs. The extra
trees are necessitated on the syntax side by
the DP tree used in the Nesson and Shieber
(2007) fronting analysis and on the semantics
side by the quantifier scope tree. This modi-
fication is not essential to our reflexive anal-
ysis as it arises solely from our incorporation
of the independent fronting analysis (as de-
scribed in Section 3.1).

2. We eliminate binding constraints like c-
command and dominance, which permits the
flexibility needed for cataphora, since these
relations are already captured through case
checking.

3. We employ two bindings of distinct variables
instead of one binding of a single variable
twice, as this allows the appropriate grain
needed for reciprocals.

4. We abstract away the reflexivity notion from
Frank’s trees with an operator REFL, which

generalizes to also be compatible with recip-
rocals using a parallel operator RECP, as de-
scribed in the next section.

2.3 Adding reciprocals

Using an operator for both reflexives and recipro-
cals captures their underlying similarities, creat-
ing a unified account of both. It seems logical to
group reflexives and reciprocals together syntac-
tically, as structurally interchangeable construc-
tions, and distinguish between them semantically,
as differing with respect solely to distribution over
the antecedent. This is the motivation behind our
proposed approach.

In order to incorporate reciprocals into the
STAG framework, we simply add the reciprocal
counterparts in the same place as reflexives in the
multicomponent tree set for reflexives, as in Fig-
ure 4. On the syntax side, we replace the lexi-
cal item themselves with each other and on the
semantics side, we replace the reflexive operator
(REFL) with a reciprocal operator (RECP). We in-
dicate the shared structure by placing correspond-
ing components of reflexives and reciprocals in the
same node as interchangeable options.

An attractive property of this analysis is that
simply by replacing the = in the semantic repre-
sentation of REFL with 6=, we get the formalization
of the reciprocal relation RECP:

(5) RECP ≡ λR . λZ . ∀x : x ∈ Z .
∀y : y ∈ Z ∧ y 6= x . R y x

Similarly to REFL, the RECP operator holds of a
binary relation R and an antecedent set Z just in
case every pair x and y in the set Z, where x and
y are distinct, are in the relation R. For the recip-
rocal version of sentence (1a), in (1b), RECP pro-
vides the correct (and only) reading – the strong
reciprocity reading – that Noah saw Emma and
Emma saw Noah. The reduction proceeds in paral-
lel fashion to that of reflexives. Comparing these
trees to Frank’s trees in Figure 2, the reader can
confirm that the derivation tree is identical and
both methods produce the same result (up to the
modification in the logical form). With this exam-
ple as a foundation, we now show the utility of this
representation for a range of increasingly complex
reflexive and reciprocal phenomena.

36

TP∗ 1 DP↓ 1 TP∗ DP

themselves/
each other

t 1

e↓ 1et

eet

et

t∗λb

λa

〈eet, et〉

REFL/RECP

e

b

t∗ e

a

Figure 4: Anaphor elementary tree set for both a
reflexive and a reciprocal

3 Applications

The analysis essentially unchanged accounts for
various reflexive and reciprocal phenomena, in-
cluding cataphora, anaphors with object control
verbs, and anaphors as arguments of ditransitive
verbs. The analysis also has the potential to apply
to reflexives and reciprocals in other languages,
but we leave this extension for future work. We
show here only the analysis for cataphora and
anaphors with object control verbs due to space
constraints, but the other applications follow simi-
larly.

3.1 Cataphora

Cataphora, such as in (6a), would appear to
present a problem for analyses requiring c-
command constraints, as the required c-command
relation does not appear to hold overtly in the
derived tree. Our approach however is com-
pletely consistent with the account of topicaliza-
tion of Nesson and Shieber (2007), by treating the
anaphor as a topicalized item.6 We illustrate this
derivation in Figure 5 for the simplified cataphoric
reciprocal sentence in (6b).7

(6) a. (Noah and Emma like many people, but)
each other, they can’t stand.

b. Each other, Noah and Emma saw.

The syntactic tree set for the reflexive, shown in
Figure 5(a), simply reflects topicalization of the

6In this paper, we focus on the core anaphoric cases,
excluding logophoric (point of view or emphatic/focus)
anaphors, as discussed in, for instance, Reinhart and Reu-
land (1993). For cataphora in particular, we only consider
examples in which the anaphor stands alone as a topicalized
item, and do not address anaphors embedded in topicalized
adjuncts or adverbial phrases.

7Cataphoric reflexives follow similarly so are not shown.

(a) TP∗ 1 DP↓ 1 TP

T′

TP∗T

DP

each other

DP

ε

(b) saw

each other

noah+emma
1

1 2

(c) TP

T′

TP

T′

VP

DP

ε

V

saw

T

DP

Noah&Emma

T

DP

Each other

Figure 5: (a) Syntactic elementary trees for a cat-
aphoric (topicalized) reflexive; (b) is the derivation
tree and (c) the syntactic derived tree for sentence
(6b)

reflexive following directly the topicalization anal-
ysis of Nesson and Shieber (2007): the TP auxil-
iary tree now contains the lexical reflexive and the
corresponding DP tree contains the empty string;
the semantics side remains unchanged so is not
shown. The derivation proceeds as usual.

Using a feature-checking system instead of
binding principles provides the flexibility needed
for capturing cataphora without additional ma-
chinery because the topicalized anaphor, instead
of the empty DP, receives accusative case and thus
no feature conflicts arise.

3.2 Anaphors with object control verbs
Syntactic constructions with object control verbs,
such as persuade in (7), follow directly from our
analysis as put forth so far.

(7) Noah and Emma persuaded themselves/each
other to be happy.

Object control verbs have three arguments:
an agent (Noah and Emma), a theme (them-
selves/each other), and an open proposition (to
be happy). This configuration is represented in
the elementary object control verb tree set in Fig-
ure 6(a). The lower verb cannot have its own sub-
ject, so the persuaded tree set contains a DP tree
in the syntax and a corresponding variable tree in
the semantics that substitute into the subject po-
sition of the lower verb. The derivation proceeds
according to the derivation tree in (c), in which
the antecedent composes into the anaphor tree set,

37

(a)

TP 1 2

T′

VP

TP∗DP↓ 2V

persuaded

T

DP↓ 1

DP

PRO

t 1 2

e↓ 1et

t

e↓ 2et

e

z

eet

t∗〈t, eet〉

persuaded

λz e

z

(b) TP 1

T′

VP

AdjP

happy

V

be

T

to

DP↓ 1

t 1

e↓ 1et

to-be-happy

(c) to-be-happy

persuaded

themselves/
each other

noah+emma
1

1 2

1

Figure 6: Elementary trees for (a) object control
verbs and (b) non-finite predicates with appropri-
ate links; (c) is the derivation tree. The derived
tree pair is provided in Figure 8 in the appendix.

which then as a whole composes into the object
control tree set in a tree-local fashion. This tree
set then composes into the non-finite verb tree.

4 Extensions with delayed locality

Although a wide variety of interactions between
anaphors and other constructions are captured by
this analysis, there is an entire class of cases that
are not expressible under the set-local view of
STAG derivation we have been presupposing. In
this section, we extend the derivation notion to al-
low for delayed locality, first proposed by Chi-
ang and Scheffler (2008). Delayed locality re-
laxes the set-locality constraint to allow a delay
in composition. Two trees in a multicomponent
tree set may compose into (any number of) other
trees before eventually composing into the same
elementary tree.8 This differs from the more ex-
pressive non-local MCTAG in requiring that the
members eventually compose into the same ele-
mentary tree (Chiang and Scheffler, 2008). De-
layed locality has permitted analyses of non-local
right-node raising (Han et al., 2010), bound vari-

8Storoshenko and Han (2013) propose a slightly different
definition of a delay than Chiang and Scheffler (2008); we
postpone committing to a particular definition to future work,
but recognize that overgeneration is a concern, since without
further constraint our analysis could allow, for instance,

(8) * Noahi thinks that Emma likes himselfi.

able pronouns (Storoshenko and Han, 2010), and
clitic climbing (Chen-Main et al., 2012).

With this extension, our analysis allows for
anaphors in a variety of syntactic constructions, in-
cluding picture-DPs, quantificational picture-DPs,
adjuncts, raising verbs, ECM verbs, and multiple
anaphors in the same sentence, but due to space
limitations we again demonstrate only for raising
and ECM verbs.

4.1 Anaphors with raising verbs

In contrast to object control verbs, raising verbs,
such as seem in (9), do not have an inherent subject
argument; therefore, the usual representation of
seem in the TAG literature (with minor variations)
does not contain a DP subject node, as shown in
Figure 7(b).

(9) Noah and Emma seem to themselves/each
other to be happy.

Use of the present anaphor analysis with this con-
figuration violates set-locality because the anaphor
would compose into the raising verb tree, but there
would not be a position for the antecedent to also
compose.9 However, the relaxation provided by
delayed locality allows the lexical anaphor part
of the tree set to compose into the raising verb
through delay, which then composes into the lower
clause verb trees at link 3 , while the antecedent
part is not delayed and composes directly into the
lower clause verb trees, as depicted in Figure 7(c).
In order to ensure that all variables are properly
bound, the semantic predicate to-be-happy tree in
Figure 7(a) has the root node split into an upper
t 1 2 node and a lower t 3 node to ensure that the
REFL/RECP tree binds the a variable in the raising
verb tree.

4.2 Anaphors with ECM verbs

ECM (or “subject-to-object raising”) verbs, as in
(10), have two arguments: a subject (Noah and
Emma) and a proposition (themselves/each other
to be happy). Based on these structural properties,
the elementary tree for an ECM verb contains a
subject position and adjoins into a predicate to fill
its proposition argument, as shown in Figure 7(d).

9An alternative local derivation would be to simply in-
clude a subject position in the elementary raising verb tree.
Although this solution solves the locality issue, it has impli-
cations for the treatment of raising constructions in general
so we do not pursue it here.

38

(a) TP 1 2

T′ 3

VP

AdjP

happy

V

be

T

to

DP ↓ 1

t 1 2

t 3

e↓ 1et

to-be-happy

(b) T′ 2

VP

VP

T′∗PP

DP↓ 2P

to

V

seem

T

t 2

e↓ 2et

t∗〈t, et〉

seem-to

(c) to-be-happy

seem-to

themselves/
each other

noah+emma
1

2

3

1

(d) TP 1

T′

VP

TP∗V

want

T

DP↓ 1

t 1

e↓ 1et

t∗〈t, et〉

want

(e) to-be-happy

want

themselves/
each other

noah+emma
1

1

2

1

Figure 7: Elementary trees for (a) non-finite pred-
icates with appropriate links and configuration for
variable binding and (b) raising verbs with an
anaphor object; (c) is the derivation tree with de-
layed locality for sentence (9); (d) elementary
trees for ECM verbs and (e) is the derivation tree
with delayed locality for sentence (10).

(10) Noah and Emma want themselves/each other
to be happy.

In contrast to the previous example, for ECM
verbs the antecedent part of the anaphor tree set
is the delayed part, first composing into the ECM
verb trees and then composing into the non-finite
verb trees at link 2 . The derivation tree in (e) re-
flects this difference through the links shown.

For cases in English with multiple (surface ac-
cusative) objects, such as in the ECM construc-
tion in (11a), appealing to case is not sufficient
to account for the ungrammaticality of (11b). A
more nuanced case analysis, in which the equa-
tional constraint on case (that the antecedent’s case
is nominative and the anaphor’s case is accusative)
is replaced by an inequational constraint over a
set of cases ordered by obliqueness (that the an-

tecedent’s case is less oblique than the anaphor’s
case) suffices to cover these as well, predicting the
grammaticality of (11a) and ungrammaticality of
(11b).

(11) a. Emma wants him to love himself.

b. * Emma wants himself to love him.

5 Conclusion

In this paper, we have shown how the formalism
of STAG can not only handle both reflexives and
reciprocals, but also provide a unified account of
both, founded on the idea that these anaphors share
a syntactic distribution but differ slightly and uni-
formly in their semantics. To accomplish this,
we provide STAG tree sets for reflexives and re-
ciprocals that differ only in their lexical presen-
tation and their interpretation through operators
REFL and RECP that capture the parallel seman-
tic nature of reflexives and reciprocals. It is, to
our knowledge, the first STAG analysis to provide
for reciprocals as well as reflexives. The analysis
is consistent with earlier STAG analyses account-
ing for such syntactic phenomena as topicalization
and semantic phenomena as quantification, while
building on the previous STAG account by Frank
(2008) of reflexives alone, making anaphoric no-
tions more explicit, eliminating the need for c-
command and dominance constraints, and gener-
alizing the analysis to capture reciprocals as well.

Areas for future work include investigating ap-
propriate further limits on delayed locality to pre-
vent overgeneration, expanding our preliminary
application of the operators crosslinguistically,
and refining the operators’ semantic definitions to
account for additional anaphoric interpretations.

Acknowledgments

We wish to thank Gennaro Chierchia, Robert
Frank, and Jennifer Hu for valuable conversations
on the topic of this paper and the anonymous re-
viewers for their helpful comments.

References
Tonia Bleam. 2000. Clitic climbing and the power of

tree adjoining grammar. In Anne Abeillé and Owen
Rambow, editors, Tree Adjoining Grammars: For-
malisms, Linguistic Analysis, and Processing, CSLI
Publications, pages 193–219.

Daniel Büring. 2005. Binding Theory. Cambridge
University Press, UK.

39

Lucas Champollion. 2008. Binding theory in LTAG.
In Proceedings of the Ninth International Work-
shop on Tree Adjoining Grammar and Related For-
malisms (TAG+9). Tübingen, Germany, pages 1–8.
http://aclweb.org/anthology/W08-2301.

Joan Chen-Main, Tonia Bleam, and Aravind K. Joshi.
2012. Delayed tree-locality, set-locality, and clitic
climbing. In Proceedings of the 11th International
Workshop on Tree Adjoining Grammar and Related
Formalisms (TAG+11). Paris, France, pages 1–9.
http://aclweb.org/anthology/W12-4601.

David Chiang and Tatjana Scheffler. 2008. Flex-
ible composition and delayed tree-locality. In
Proceedings of the Ninth International Workshop
on Tree Adjoining Grammars and Related For-
malisms (TAG+9). Association for Computational
Linguistics, Tübingen, Germany, pages 17–24.
http://aclweb.org/anthology/W08-2303.

Noam Chomsky. 1981. Lectures on Government and
Binding. Dordrecht: Foris.

Mary Dalrymple, Makoto Kanazawa, Yookyung Kim,
Sam McHombo, and Stanley Peters. 1998. Re-
ciprocal expressions and the concept of reci-
procity. Linguistics and Philosophy 21(2):159–210.
https://doi.org/10.1023/A:1005330227480.

Robert Frank. 2008. Reflexives and TAG seman-
tics. In Proceedings of the Ninth International
Workshop on Tree Adjoining Grammar and Re-
lated Formalisms (TAG+9). Association for Compu-
tational Linguistics, Tübingen, Germany, pages 97–
104. http://aclweb.org/anthology/W08-2313.

Chung-hye Han. 2006. Pied-piping in relative
clauses: Syntax and compositional semantics based
on synchronous tree adjoining grammar. In
Proceedings of the Eighth International Work-
shop on tree Adjoining Grammars and Related
Formalisms (TAG+8). Association for Computa-
tional Linguistics, Sydney, Australia, pages 41–48.
http://aclweb.org/anthology/W06-1506.

Chung-hye Han and Nancy Hedberg. 2006. A tree ad-
joining grammar analysis of the syntax and seman-
tics of it-clefts. In Proceedings of the Eighth In-
ternational Workshop on tree Adjoining Grammars
and Related Formalisms (TAG+ 8). Association for
Computational Linguistics, Sydney, Australia, pages
33–40. http://aclweb.org/anthology/W06-1505.

Chung-hye Han, David Potter, and Dennis Ryan
Storoshenko. 2010. Non-local right-node raising:
An analysis using delayed tree-local mc-tag. In
Proceedings of the 10th International Workshop
on Tree Adjoining Grammars and Related For-
malisms (TAG+10). Linguistics Department, Yale
University, New Haven, Connecticut, pages 9–16.
http://aclweb.org/anthology/W10-4402.

Aravind K. Joshi, Laura Kallmeyer, and Maribel
Romero. 2003. Flexible composition in LTAG:

Quantifier scope and inverse linking. In Proceedings
of the International Workshop on Compositional Se-
mantics. Tilburg, The Netherlands.

Laura Kallmeyer and Maribel Romero. 2007. Reflex-
ives and reciprocals in LTAG. In Harry Bunt, Jeroen
Geertzen, Elias Thijsse, and Amanda Schiffrin, edi-
tors, Proceedings of the Seventh International Work-
shop on Computational Semantics ICWS-7. Tilburg,
pages 271–282.

D. Terence Langendoen. 1978. The logic of
reciprocity. Linguistic Inquiry 9(2):177–197.
http://www.jstor.org/stable/4178051.

Rebecca Nesson. 2009. Synchronous and Multicom-
ponent Tree-Adjoining Grammars: Complexity, Al-
gorithms and Linguistic Applications. Ph.D. thesis,
Harvard University.

Rebecca Nesson and Stuart M. Shieber. 2006. Simpler
TAG semantics through synchronization. In Pro-
ceedings of the 11th Conference on Formal Gram-
mar. Malaga, Spain. https://perma.cc/JM6Y-6QBY.

Rebecca Nesson and Stuart M. Shieber. 2007. Ex-
traction phenomena in synchronous TAG syn-
tax and semantics. In Proceedings of SSST,
NAACL-HLT 2007 / AMTA Workshop on Syntax
and Structure in Statistical Translation. Associa-
tion for Computational Linguistics, pages 9–16.
http://aclweb.org/anthology/W07-0402.

Maria Polinsky and Omer Preminger. 2014. Case and
grammatical relations. In Andrew Carnie, Dan Sid-
diqi, and Yosuke Sato, editors, Routledge Handbook
of Syntax, Routledge, chapter 8.

Carl Pollard and Ivan A. Sag. 1992. Head-driven
Phrase Structure Grammar. University of Chicago
Press.

Tanya Reinhart and Eric Reuland. 1993. Re-
flexivity. Linguistic Inquiry 24(4):657–720.
http://www.jstor.org/stable/4178836.

Neville Ryant and Tatjana Scheffler. 2006. Binding of
anaphors in LTAG. In Proceedings of the Eighth In-
ternational Workshop on Tree Adjoining Grammar
and Related Formalisms (TAG+8). Association for
Computational Linguistics, Sydney, Australia, pages
65–72. http://aclweb.org/anthology/W06-1509.

Remko Scha. 1981. Distributive, collective and cu-
mulative quantification. In J. A. G. Groenendijk,
T. M. V. Janssen, and M. B. J. Stokhof, editors, For-
mal Methods in the Study of Language, Part 2, Math-
ematisch Centrum, Amsterdam, pages 483–512.

Stuart M. Shieber and Yves Schabes. 1990. Syn-
chronous tree-adjoining grammars. In Proceedings
of the 13th International Conference on Compu-
tational Linguistics. Helsinki, Finland, volume 3,
pages 253–258. http://aclweb.org/anthology/C90-
3045.

40

Mark Steedman. 2000. Implications of binding for lex-
icalized grammars. Tree Adjoining Grammars: For-
malisms, Linguistic Analysis, and Processing pages
283–301.

Dennis R. Storoshenko, Chung-hye Han, and David
Potter. 2008. Reflexivity in English: an STAG anal-
ysis. In Proceedings of the Ninth International
Workshop on Tree Adjoining Grammars and Re-
lated Formalisms (TAG+9). Association for Com-
putational Linguistics, Tübingen, Germany, pages
149–156. http://aclweb.org/anthology/W08-2320.

Dennis Ryan Storoshenko and Chung-hye Han. 2010.
Binding variables in english: An analysis using de-
layed tree locality. In Proceedings of the 10th In-
ternational Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+10). Linguistics De-
partment, Yale University, New Haven, Connecticut,
pages 143–150. http://aclweb.org/anthology/W10-
4418.

Dennis Ryan Storoshenko and Chung-hye Han. 2013.
Using synchronous tree adjoining grammar to model
the typology of bound variable pronouns. Jour-
nal of Logic and Computation 25(2):371–403.
https://doi.org/10.1093/logcom/exs064.

Johan van Bentham. 1989. Polyadic quanti-
fiers. Linguistics and Philosophy 12(4):437–464.
https://doi.org/10.1007/BF00632472.

K. Vijay-Shanker. 1987. A study of Tree Adjoining
Grammars. Ph.D. thesis, University of Pennsylva-
nia.

K. Vijay-Shanker and Aravind K. Joshi. 1988. Fea-
ture structures based tree adjoining grammars.
In Coling Budapest 1988 Volume 2: Interna-
tional Conference on Computational Linguistics.
http://aclweb.org/anthology/C88-2147.

David Jeremy Weir. 1988. Characterizing mildly
context-sensitive grammar formalisms. Ph.D. the-
sis, University of Pennsylvania.

Dag Westerståhl. 1989. Quantifiers in formal and nat-
ural languages. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic: Volume
IV: Topics in the Philosophy of Language, Springer
Netherlands, Dordrecht, pages 1–131.

Sean Michael Williford. 1993. Application of Syn-
chronous Tree-Adjoining Grammar to Quantifier
Scoping Phenomena in English. Bachelor’s the-
sis, Harvard College. http://nrs.harvard.edu/urn-
3:HUL.InstRepos:10951941.

41

A Appendix: Derived trees

The derived trees for the object control example (7) using the elementary trees and derivation of Figure 6
are provided in Figure 8.

TP

T′

VP

TP

T′

VP

AdjP

happy

V

be

T

to

DP

PRO

DP
themselves/
each other

V

persuaded

T

DP

Noah&Emma

t

e

n+ e

et

eet

et

t

e

b

et

t

e

a

et

e

z

eet

t

e

z

et

to-be-happy

〈t, eet〉

persuaded

λz

λb

λa

〈eet, et〉

REFL/RECP

Figure 8: Derived trees for the object control example (7)

42

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 43–52,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Coordination in TAG without the Conjoin Operation

Chung-hye Han
Simon Fraser University

Department of Linguistics
8888 University Drive

Burnaby BC, V5A 1S6, Canada
chunghye@sfu.ca

Anoop Sarkar
Simon Fraser University

School of Computing Science
8888 University Drive

Burnaby BC, V5A 1S6, Canada
anoop@cs.sfu.ca

Abstract

In this paper, we propose an alternative to
Sarkar and Joshi’s (1996) Conjoin Opera-
tion approach to clausal coordination with
shared arguments. The Conjoin Opera-
tion applies across elementary trees, iden-
tifying and merging arguments from each
clause, yielding a derivation tree in which
the shared arguments are combined with
multiple elementary trees, and a derived
tree in which the shared arguments are
dominated by multiple verbal projections.
In contrast, our analysis uses Synchronous
Tree Adjoining Grammar in order to pair
syntactic elementary trees that participate
in the derivation of clausal coordination
with semantic elementary trees that use a
lambda term to abstract over the shared
argument. This allows the sharing of ar-
guments in coordination to be instantiated
in semantics, without being represented in
syntax in the form of multiple dominance.

1 Introduction

In clausal coordination, one or more arguments
can be shared by the verbal predicates of the con-
juncts. For example, in (1), an object argument,
Pete, is shared by likes and hates, and in (2), a
subject argument, Sue, is shared by the two verbs.

(1) Sue likes and Kim hates Pete.
a. likes(Sue,Pete) ∧ hates(Kim,Pete)

(2) Sue hates Pete and likes Kim.
a. hates(Sue,Pete) ∧ likes(Sue,Kim)

A widely adopted analysis to such coordination,
since Ross (1967), is to postulate an across-the-
board (ATB) movement of the shared argument,
in which multiple underlying copies of the shared

material are identified during movement, yielding
a single overt copy located outside of the coordi-
nate structure. So, (1) and (2) would be derived
from movement of the shared argument from both
conjuncts to a position outside of the coordinate
structure, as in (3) and (4).

(3) [Sue likes ti] and [Kim hates ti] Petei.

(4) Suei [ti hates Pete] and [ti likes Kim].

Not to mention the problematic aspects of the ex-
act mechanism where movement somehow iden-
tifies two syntactically distinct objects, the ATB
movement analysis incorrectly predicts that shared
arguments be barred from islands, given that
movement dependency is subject to island con-
straints (Wexler and Culicover, 1980). (5) illus-
trates that a wh-movement dependency cannot be
formed across a relative clause, an island. In con-
trast, in (6), a shared argument can form a pu-
tative ATB movement dependency across relative
clauses.

(5) * What did Max denounce [the senator
who wrote ti]]? (Sabbagh, 2014, 14)

(6) Max publicly denounced [the senator [who
wrote ti]], and Pauline outwardly criticized
[the magazine editor [who published ti]],
[the speech that encouraged the riot]i.
(Sabbagh, 2014, 15)

Combinatory Categorial Grammar (CCG)
(Steedman, 1996) places the shared argument
outside the coordinating conjuncts without postu-
lating movement. It uses a syntactic combinator
(X\X)/X for conjunctions, which combines
two constituents of any type (one on the left and
the other on the right represented by the slash
direction). In semantics, the coordinated con-
stituents provide a predicate lambda term which
is then reduced using the shared argument. CCG

43

combines type-raising and function composition
to handle coordination which leads to a view of
constituency that is quite different from traditional
phrase structure.

Another prominent analysis, starting with
Wexler and Culicover (1980), is to postulate that
the appearance of a shared argument is a result
of ellipsis of corresponding arguments from other
conjuncts. Under the ellipsis analysis, (1) and (2)
would be a result of eliding the object argument
from the first conjunct (7) and the subject argu-
ment from the second conjunct (8), respectively.

(7) [Sue likes Pete] and [Kim hates Pete].

(8) [Sue hates Pete] and [Sue likes Kim].

The ellipsis analysis predicts that a clausal coor-
dination with a shared argument and the corre-
sponding non-elided version should have the same
meaning. But this is not always the case (Sabbagh,
2007). For instance, while (9) means that the same
student read every paper and summarized every
book, (10) can mean different students read every
paper and summarized every book.

(9) A student read every paper and summa-
rized every book.

(10) A student read every paper and a student
summarized every book.

This takes us to the multiple dominance analy-
sis, first proposed by McCawley (1982), that pos-
tulates that a shared argument is multiply domi-
nated by elements from multiple conjuncts. A ver-
sion of this approach has been developed in Sarkar
and Joshi (1996) within the TAG literature. Sarkar
and Joshi (1996) posit that the shared argument is
located in the canonical position within each con-
junct, and propose an operation, the Conjoin Op-
eration, that applies across elementary trees. This
operation identifies and merges the shared argu-
ment when two elementary trees combine via co-
ordination, yielding a derived tree in which an ar-
gument is multiply dominated by two verbal pro-
jections. The Conjoin Operation analysis has been
used and extended often in TAG-based linguistic
research, including the semantics of clausal coor-
dination and scope (Banik, 2004; Han et al., 2008;
Storoshenko and Frank, 2012), and the syntax of
Right-Node-Raising (Han et al., 2010).

According to the multiple dominance analysis,
as the shared argument is in a dominance relation

within each conjunct, it must be syntactically li-
censed in each conjunct. However, as observed
in Cann et al. (2005), the syntactic requirement
of the shared argument must be met by the ele-
ments within the conjunct it occurs with, and not
by elements in other conjuncts. For instance, the
negative polarity item in the shared object, which
occurs in the second conjunct on the surface, is
licensed by negation in the second conjunct (11),
but not by negation in the first conjunct (12).

(11) John has read, but he hasn’t understood any
of my books. (Cann et al., 2005, 1e)

(12) * John hasn’t understood, but has read any
of my books.

In this paper, using Synchronous Tree Adjoin-
ing Grammar, we propose an alternative to the
TAG analysis of coordination, which does not rely
on the Conjoin Operation. In our proposal, the
shared argument is syntactically present only in
one conjunct, and syntactically missing in other
conjuncts. The syntactic elementary trees repre-
senting the conjuncts with missing arguments are
paired with semantic elementary trees with un-
saturated arguments, and the syntactic elementary
trees with shared arguments are paired with se-
mantic elementary trees that use lambda terms to
abstract over the shared arguments. Composition
of these trees via adjoining allows sharing of ar-
guments to be instantiated in semantics, without
being represented in syntax in the form of ATB
movement, ellipsis or multiple dominance.

The remainder of this paper is organized as fol-
lows. In Section 2, we illustrate in more detail
how the Conjoin Operation identifies a shared ar-
gument. Our STAG analysis where sharing of ar-
guments takes place in semantics, not in syntax, is
presented in Section 3. This analysis is extended
in Section 4 to account for ATB wh-movement,
and the interaction of coordination and quantifi-
cation.

2 Argument Sharing via the Conjoin
Operation

Sarkar and Joshi (1996) utilize elementary trees
with contraction sets and coordinating auxiliary
trees. The elementary trees necessary to derive (1)
are given in Figure 1.1 In each of (αlikes{DP})

1We follow Frank’s (2002) Condition on Elementary Tree
Minimality (CETM), and adopt the DP Hypothesis and the
VP-internal Subject Hypothesis in defining our elementary

44

and (βand hates{DP}), the object DP node is in
the contraction set, notated as a subscript in the
tree name and marked in the tree with a circle
around it, and represents a shared argument. When
(βand hates{DP}) adjoins to (αlikes{DP}) via the
Conjoin Operation, the two trees undergo contrac-
tion, sharing the node in the contraction set. Effec-
tively, this allows the DP tree, (αPete), to simulta-
neously substitute into the contraction nodes, and
in the derived tree, the two nodes are identified,
merging into one. The substitution of (αSue) and
(αKim) into the subject DP nodes of (αlikes{DP})
and (βand hates{DP}), in addition to the simulta-
neous substitution of (αPete) into the object DP
nodes of the two elementary trees, generates the
derived tree (γ1) in Figure 1. The resulting derived
tree is a directed graph as a single node is domi-
nated by multiple nodes. The shared argument,
Pete, is thus represented as a syntactic argument
of both the verbs, likes and hates, capturing the
meaning of the sentence that the person that Sue
likes and the person that Kim hates are the same
individual.

3 Argument Sharing via Semantics using
STAG

According to the NPI examples (11)-(12) dis-
cussed in section 1, the shared argument seems
to be forming syntactic dependencies only with
elements in the conjunct in which it appears on
the surface, but not with elements in other con-
juncts. We capture this intuition with the proposal
that the shared argument is syntactically present
only in one of the conjuncts, and missing in other
conjuncts, resulting in predicates with unsaturated
arguments in semantics. We explain our analysis
with a shared object argument example in subsec-
tion 3.1 and a shared subject argument example in
subsection 3.2.

3.1 Object argument sharing

For the analysis of (1), an example of clausal co-
ordination with a shared object argument, we pro-
pose elementary tree pairs in (βlikes{DP}) and
(β′likes{DP}) in Figure 2. (βlikes{DP}) is an aux-
iliary TP tree that introduces a coordinator and
adjoins to another TP it coordinates with. The
object argument of this auxiliary tree is null, di-
rectly reflecting the fact that it is absent in the

trees. Elementary trees such as (βand hates{DP}) are in ac-
cordance with CETM, as coordinators are functional heads.

first conjunct. The content of the null object ar-
gument, however, must be resolved in semantics.
This requirement is implemented by the semantic
elementary tree (β′likes{DP}), in which the vari-
able corresponding to the object argument (x) has
been λ-abstracted over, turning the conjunct into
a predicate (〈e, t〉). This predicate must adjoin to
another predicate whose object argument has been
similarly λ-abstracted over. This adjunction re-
quirement is represented in the elementary tree by
the obligatory adjunction or oa constraint (Vijay-
Shanker, 1992) on the TP node of (αhates{DP}).
The oa constraint should also provide a list of aux-
iliary trees compatible with this elementary tree in
order to satisfy the object sharing requirement in
the semantic structure. To save space in the fig-
ures, we show the oa constraint but we do not ex-
plicitly provide a list of trees. In all the subse-
quent trees we will also provide such an oa con-
straint and since it serves the same purpose in all of
them we do not comment on it further. The boxed
numeral 1 in (βlikes{DP}) and (β′likes{DP}) in-
dicates a link between the syntactic and seman-
tic tree pairs to ensure the synchronous derivation
between the syntax and the semantics: a DP tree
substitutes into the subject position marked with 1
in (βlikes{DP}), and the semantic tree paired with
this DP must substitute into the position marked
with 1 in (β′likes{DP}).2

The TP and the predicate that (βlikes{DP}) and
(β′likes{DP}) adjoin to are provided by elemen-
tary tree pairs in (αhates{DP}) and (α′hates{DP})
in Figure 2. (αhates{DP}) is a typical transitive
initial tree in syntax with subject and object substi-
tution sites. (α′hates{DP}), however, is an atypical
transitive elementary tree in semantics in which
the object argument has been λ-abstracted over:
here, the variable corresponding to the object ar-
gument (x) is λ-abstracted over to provide a predi-
cate (〈e, t〉).3 This predicate will combine with the
meaning of the object argument to provide a for-
mula (t). Note that the TP node in (αhates{DP})
and the highest 〈e, t〉 node in (α′hates{DP}) are
marked with the link 3 . These are the positions
onto which (βlikes{DP}) and (β′likes{DP}) adjoin
in syntax and semantics respectively.

2For the sake of simplicity, we include only the links that
are relevant for the current discussion.

3Semantic elementary trees in which λ-operators abstract
over argument variables have been proposed and utilized in
Frank and Storoshenko (2012) to handle many difficult cases
of quantifier scope within tree-local MC-TAG.

45

TP

T’

VP

V’

DPV

likes

DP

ti

T

DPi ↓

αlikes{DP}:

TP

TP

T’

VP

V’

DPV

hates

DP

ti

T

DPi ↓

Conj

and

TP*

βand hates{DP}:

TP

TP

T’

VP

V’

DP

D

Pete

V

hates

DP

ti

T

DPi

D

Kim

Conj

and

TP

T’

VP

V’

V

likes

DP

ti

T

DPi

D

Sue

γ1:

DP

D

Sue

αSue:

DP

D

Kim

αKim:

DP

D

Pete

αPete:

Figure 1: Elementary trees and derived tree for Sue likes and Kim hates Pete with the Conjoin Operation

〈 αhates{DP}: TPoa 3

DPi ↓ 1 T’

T VP

DP

ti

V’

V

hates

DP ↓ 2

,

α′hates{DP}: t

〈e, t〉3

λx t

e ↓ 1 〈e, t〉

λy.hates(y, x)

e ↓ 2

〉

〈 βlikes{DP}: TP

TP

DPi ↓ 1 T’

T VP

DP

ti

V’

V

likes

DP

e

Conj

and

TP∗

,

β′likes{DP}: 〈e, t〉

〈e, t〉

λx t

e ↓ 1 〈e, t〉

λy.likes(y, x)

∧ 〈e, t〉∗

〉

〈 αSue: DP

D

Sue

,
α′Sue: e

Sue

〉 〈 αKim: DP

D

Kim

,
α′Kim: e

Kim

〉 〈 αPete: DP

D

Pete

,
α′Pete: e

Pete

〉

Figure 2: Elementary trees for Sue likes and Kim
hates Pete

〈 δ1: αhates{DP}

αKim βlikes{DP}

αSue

αPete

1 3

1

2

,

δ′1: α′hates{DP}

α′Kim β′likes{DP}

α′Sue

α′Pete

1 3

1

2

〉

Figure 3: Derivation structures for Sue likes and
Kim hates Pete

Figure 3 depicts the isomorphic syntactic and
semantic derivation structures for (1). Follow-
ing the convention in Nesson and Shieber (2006;
2007), here we use boxed numerals for links to
denote locations in parent elementary trees where
the TAG operations took place. The syntactic
and the semantic derived trees are given in Fig-
ure 4. In contrast to the Conjoin Operation ap-
proach, in our analysis, (αPete), the syntactic el-
ementary tree representing the shared argument,
composes only with a single predicative elemen-
tary tree, (αhates{DP}). In the syntactic derived
tree (γ1), therefore, Pete is represented as the ob-
ject DP of hates, but not likes. Similarly in seman-
tics, (α′Pete) composes only with (α′hates{DP}).
However, because the object abstracted predicate
of (β′likes{DP}) is adjoining onto the predicate
node in the object abstracted (α′hates{DP}), the
correct meaning of (1) is derived, in which the per-
son Sue likes and Kim hates is Pete, as stated in the
logical form in (1a). (γ′1) can be reduced to (1a)
via λ-conversion following the application of the
Generalized Conjunction (GC) Rule (Barwise and
Cooper, 1981) defined in (13).

(13) Generalized Conjunction (GC) Rule:
[Pred1 ∧ Pred2] = λz[Pred1(z) ∧ Pred2(z)]

3.2 Subject argument sharing
Figure 5 contains our proposed elementary trees
to derive (2), an example of clausal coordination
with a subject shared argument. (βlikes{DPi}) in-
troduces a coordinator and its subject argument is
null, reflecting the fact that it is absent in the sec-
ond conjunct. In (β′likes{DPi}), the variable cor-

46

〈 γ1: TP

TP

DPi

D

Sue

T’

T VP

DP

ti

V’

V

likes

DP

ε

Conj

and

TP

DPi

D

Kim

T’

T VP

DP

ti

V’

V

hates

DP

D

Pete

,

γ′1: t

〈e, t〉

〈e, t〉

λx t

e

Sue

〈e, t〉

λy.likes(y, x)

∧ 〈e, t〉

λx t

e

Kim

〈e, t〉

λy.hates(y, x)

e

Pete

〉

Figure 4: Derived trees for Sue likes and Kim hates Pete

responding to the subject argument (x) has been
λ-abstracted over, turning the conjunct into a pred-
icate (〈e, t〉). This implements the requirement
that the subject argument still needs to be satu-
rated. (αhates{DPi}) is a typical transitive initial
tree in syntax. In (α′hates{DPi}), however, the
variable corresponding to the subject argument (x)
has been λ-abstracted over to provide a predicate
(〈e, t〉) which will combine with the meaning of
the subject argument to provide a formula (t).

〈 αhates{DPi}: TPoa 3

DPi ↓ 1 T’

T VP

DP

ti

V’

V

hates

DP ↓ 2

,

α′hates{DPi}: t

〈e, t〉3

λx t

e ↓ 2 〈e, t〉

λy.hates(x, y)

e ↓ 1

〉

〈 βlikes{DPi}: TP

TP∗ Conj

and

TP

DPi

e

T’

T VP

DP

ti

V’

V

likes

DP ↓ 1

,

β′likes{DPi}: 〈e, t〉

〈e, t〉∗ ∧ 〈e, t〉

λx t

e ↓ 1 〈e, t〉

λy.likes(x, y)

〉

Figure 5: Elementary trees for Sue hates Pete and
likes Kim

The isomorphic syntactic and semantic deriva-
tion structures for (2) are provided in Figure
6 and the derived trees are given in Figure
7. The shared subject argument represented by
the elementary tree pair 〈αSue, α′Sue〉 composes
only with the predicative elementary tree pair

〈αhates{DPi}, α
′hates{DPi}〉. Therefore, in the syn-

tactic derived tree, Sue is represented as the sub-
ject DP of hates, but not likes. In the semantic
derived tree, however, the subject abstracted pred-
icate of (β′likes{DPi}) adjoins onto the predicate
node in the subject abstracted (α′hates{DPi}), and
so the correct meaning of (2) is derived via the
application of λ-conversion and the GC Rule to
(γ′2), in which the person that hates Pete and likes
Kim is Sue, as stated in the local form in (2a).

〈 δ2: αhates{DPi}

αSue βlikes{DPi}

αKim

αPete

1 3

1

2

,

δ′2: α′hates{DPi}

α′Sue β′likes{DPi}

α′Kim

α′Pete

1 3

1

2

〉

Figure 6: Derivation structures for Sue hates Pete
and likes Kim

4 Extensions

4.1 ATB wh-movement

According to the Conjoin Operation analysis, in-
stances of ATB wh-movement, as in (14), involve
a wh-movement in each clausal conjunct followed
by identification and merging of the wh-phrases
as the two clauses compose. In our analysis, a
wh-movement takes place only in one conjunct in
syntax, while the function of the wh-phrase is cap-
tured as a shared argument in semantics.

(14) Who does Sue like and Kim hate?
a. WHx[person(x)][likes(Sue, x)∧hates(Kim, x)]

Additional elementary trees required to derive
(14) are given in Figure 8. (αwh hates{DPj}) is a
typical transitive initial tree with a wh-movement
of the object argument. (α′wh hates{DPj}) is a

47

〈 γ2: TP

TP

DPi

D

Sue

T’

T VP

DP

ti

V’

V

hates

DP

D

Pete

Conj

and

TP

DPi

ε

T’

T VP

DP

ti

V’

V

likes

DP

D

Kim

,

γ′2: t

〈e, t〉

〈e, t〉

λx t

e

Pete

〈e, t〉

λy.hates(x, y)

∧ 〈e, t〉

λx t

e

Kim

〈e, t〉

λy.likes(x, y)

e

Sue

〉

Figure 7: Derived trees for Sue hates Pete and likes Kim

corresponding semantics tree with a λ-abstrated
object argument. Here, we abstract away from
the full semantics of wh-questions and simply rep-
resent the predicate-argument structure. In rep-
resenting the semantics of who, we follow the
tree-local multi-component treatment of quantifi-
cation (Shieber and Schabes, 1990; Nesson and
Shieber, 2006) and implement a generalized quan-
tifier analysis to adopt the model of Han et al.
(2008). We thus propose that the semantics of
who has two components: (α′who) is a vari-
able and substitutes into the argument position e
linked with 2 in (α′wh hates{DPj}), and (β′who)
represents the scope and adjoins onto t again
linked with 2 in (α′wh hates{DPj}). The co-
ordinating auxiliary tree pairs (βlikes{DP}) and
(β′likes{DP}) depicted in Figure 2 will each ad-
join onto the TP node in (αwh hates{DPj}) and the
〈e, t〉 node in (α′wh hates{DPj}), both linked with
3 . The full derivation structures and derived trees
are given in Figure 9 and Figure 10.

In our analysis, the wh-movement of the ob-
ject argument takes place within the predicative
initial tree representing the second conjunct, onto
which the coordinating auxiliary tree representing
the first conjunct adjoins, stretching the distance
between the wh-moved DP in [Spec,CP] and the
trace position within the VP. The application of λ-
conversion and the GC Rule to (γ′14) reduces it
to the logical form in (14a), which correctly states
that the person that Sue likes and Kim hates is the
same individual and the question is asking for the
identity of this individual.

4.2 Quantification and coordination

In clausal coordination with shared arguments, in
general, these shared arguments scope over the

〈 αwh hates{DPj}: CP

DPj ↓ 2 C’

C

does

TPoa 3

DPi ↓ 1 T’

T VP

DP

ti

V’

V

hate

DP

tj

,

α′wh hates{DPj}: t2

〈e, t〉3

λx t

e ↓ 1 〈e, t〉

λy.hates(y, x)

e ↓ 2

〉

〈
αwho: DP

D

who

,

{
α′who: e

z

,

β′who: t

〈〈e, t〉, t〉

λP t

WHx t

person(x)

t

P (x)

〈e, t〉

λz t∗

} 〉

Figure 8: Elementary trees for Who does Sue like
and Kim hate?

〈 δ14: αwh hates{DPj}

αKim βlikes{DPi}

αSue

αwho

1 3

1

2

,

δ′14: α′wh hates{DPj}

α′Kim β′likes{DPi}

α′Sue

{α′who, β′who}
1 3

1

2

〉

Figure 9: Derivation structures for Who does Sue
like and Kim hate?

48

〈 γ14: CP

DPj

D

who

C’

C

does

TP

TP

DPi

D

Sue

T’

T VP

DP

ti

V’

V

like

DP

e

Conj

and

TP

DPi

D

Kim

T’

T VP

DP

ti

V’

V

hate

DP

D

tj

,

γ′14: t

〈〈e, t〉, t〉

λP t

WHx t

person(x)

t

P (x)

〈e, t〉

λz t

〈e, t〉

〈e, t〉

λx t

e

Sue

〈e, t〉

λy.likes(y, x)

∧ 〈e, t〉

λx t

e

Kim

〈e, t〉

λy.hates(y, x)

e

z

〉

Figure 10: Derived trees for Who does Sue like and Kim hate?

coordinator, and the non-shared arguments scope
under the coordinator (Banik, 2004; Han et al.,
2008). This is illustrated in (15) (repeated from
(9)) for a subject shared argument, and (16) for an
object shared argument. In addition, clausal co-
ordination with multiple shared arguments, as in
(17), exhibits scope ambiguity. All three examples
are taken from Han et al. (2008).

(15) A student read every paper and summarized
every book. (∃ > ∧ > ∀)
a. ∃x1[student(x1)][∀x2[paper(x2)][read(x1, x2)]∧

∀x2[book(x2)][summarized(x1, x2)]]

(16) A student takes and a professor teaches ev-
ery course. (∀ > ∧ > ∃)
a. ∀x2[course(x2)][∃x1[student(x1)][takes(x1, x2)]∧

∃x1[professor(x1)][teaches(x1, x2)]]

(17) A student likes and takes every course.
(∃ > ∀ > ∧, ∀ > ∃ > ∧)
a. ∃x1[student(x1)][∀x2[course(x2)][likes(x1, x2)∧

takes(x1, x2)]]

b. ∀x2[course(x2)][∃x1[student(x1)][likes(x1, x2)∧
takes(x1, x2)]]

In Han et al. (2008), semantic derivation of ex-
amples such as (15)-(17) requires a composition
of an initial predicative tree and a coordinating
auxiliary tree, each with a contraction node rep-
resenting the shared argument. These elementary
trees both project to t. The wide scope of the
shared argument is enforced by stipulating that the
scope component of the contraction node is active
only in the coordinating auxiliary tree, which ad-
joins onto the highest t above the coordinator. The

scope information of the contraction node in the
initial predicative tree is inherited from the scope
component of the contraction node in the coordi-
nating auxiliary tree. In our analysis, the shared
argument is present only in one of the conjuncts,
and so a single scope component straightforwardly
interacts with the coordinator as the coordinat-
ing auxiliary tree adjoins below the scope of the
shared argument.

We use (16) to illustrate our analysis with a
single shared argument and briefly discuss (17)
to illustrate how our analysis can be extended to
multiple shared arguments. Additional elemen-
tary trees needed to derive (16) are given in Fig-
ure 11. We represent the semantics of quanti-
fied nominal phrases as multi-component sets, as
we did for the semantics of who. For example,
for the semantics of a student, (α′a student) pro-
vides the argument variable, and (β′a student) in-
troduces the existential quantifier and provides the
scope of the quantification. In addition to the el-
ementary tree pairs for a student, we will utilize
similar elementary tree pairs for a professor and
every course, with one difference being that the
elementary tree representing the scope component
of every course will contain a universal quantifier,
instead of an existential quantifier. The elemen-
tary tree pairs 〈αteaches{DP}, α′teaches{DP}〉
and 〈βtakes{DP}, β′takes{DP}〉 are similar to the
predicative initial tree and the coordinating aux-
iliary tree we have seen before in Figure 2.
The only difference is that (α′teaches{DP}) and
(β′takes{DP}) are now augmented with links to
accommodate the scope components of the quan-

49

〈 αteaches{DP}: TPoa 3

DPi ↓ 1 T’

T VP

DP

ti

V’

V

teaches

DP ↓ 2

,

α′teaches{DP}: t2

〈e, t〉3

λx t1

e ↓ 1 〈e, t〉

λy.teaches(y, x)

e ↓ 2

〉

〈 βtakes{DP}: TP

TP

DPi ↓ 1 T’

T VP

DP

ti

V’

V

takes

DP

e

Conj

and

TP∗

,

β′takes{DP}: 〈e, t〉

〈e, t〉

λx t1

e ↓ 1 〈e, t〉

λy.takes(y, x)

∧ 〈e, t〉∗

〉

〈
αa student: DP

D

a

NP

N

student

,

{
α′a student: e

z1

,

β′a student: t

〈〈e, t〉, t〉

λP t

∃x1 t

〈e, t〉

λy1.student(y1)

e

x1

t

P (x1)

〈e, t〉

λz1 t∗

} 〉

Figure 11: Elementary trees for A student takes
and a professor teaches every course

tified noun phrases. In (β′takes{DP}), the link
1 for the scope component of the subject DP
is on t, which is below the coordinator. In
(α′teaches{DP}), the link 1 for the scope com-
ponent of the subject DP is on the t below the
〈e, t〉 node onto which the coordinating auxiliary
tree adjoins. Together, the non-shared arguments
in each conjunct are guaranteed to scope below the
coordinator. Moreover, in (α′teaches{DP}), the
scope component of the object DP, which is the
shared argument, is linked to the highest t above
the 〈e, t〉 node onto which the coordinating auxil-
iary tree adjoins. This then ensures that the shared
argument scopes over the coordinator.

The isomorphic syntactic and semantic deriva-
tion structures are given in Figure 12 and the
derived trees are given in Figure 13. To save
space, we have reduced all the generalized quan-
tifier (〈〈e, t〉, t〉) nodes in the semantic derived
tree, (γ′16). Application of the GC Rule and λ-

conversion to (γ′16) further reduces it to the logi-
cal form in (16a).

To derive the clausal coordination with sub-
ject and object shared arguments in (17), ele-
mentary tree pairs for likes and takes consis-
tent with our proposal are provided in Figure 14.
(βlikes{DPi,DP}) is a coordinating auxiliary tree
with an empty DP position for the object and a
DP substitution site for the subject, and is paired
with a multi-component set in semantics that in-
cludes an auxiliary tree recursive on 〈e, 〈e, t〉〉, an
e substitution tree for the subject argument vari-
able, and a t auxiliary tree for the scope compo-
nent of the subject argument. (αtakes{DPi,DP}) is
an initial predicative tree with an empty DP posi-
tion for the subject and a DP substitution site for
the object, and is paired with (α′takes{DPi,DP}),
which has e substitution sites for the subject and
the object argument variables. Note that the t node
of (α′takes{DPi,DP}) has multiple links, 1 and 2 ,
for the scope components of the subject and the
object DPs. This indicates that the two scope com-
ponent trees will multiply-adjoin to the t node, as
defined in Schabes and Shieber (1994), and pre-
dicts scope ambiguity, as the order in which the
two trees adjoin is not specified.

5 Conclusion and Future Work

We have outlined a Synchronous TAG analysis of
clausal coordination with shared arguments that
does not rely on the Conjoin Operation, utilizing
only the standard TAG operations, substitution and
adjoining. Therefore, we do not require modified
parsing algorithms to handle the Conjoin Opera-
tion, unrooted trees, or tree nodes with multiple
parents as in Sarkar and Joshi (1996). In our anal-
ysis, the shared argument is present syntactically
only in one conjunct in which it appears on the
surface. In semantics, the conjunct with a miss-
ing argument is represented as a predicate with an
unsaturated argument, and adjoins onto the pred-
icate node that has been λ-abstracted over by the
shared argument. The shared argument, thus, does
not participate in movement, ellipsis or multiple-
dominance in our analysis, eschewing the incor-
rect predictions made by these approaches.

It remains as future work to extend our analysis
to cases where the shared object argument is in an
island, as in (6). The phenomenon where a syntac-
tic constituent at the right periphery of a rightmost
clause appears to be shared is generally known as

50

〈 δ16: αteaches{DP}

αa professor βtakes{DP}

αa student

αevery course

1 3

1

2

,

δ′16: α′teaches{DP}

{α′a prof, β′a prof} β′takes{DP}

{α′a student, β′a student}

{α′every course, β′every course}
1 3

1

2

〉

Figure 12: Derivation structures for A student takes and a professor teaches every course〈 γ16: TP

TP

DPi

D

a

NP

N

student

T’

T VP

DP

ti

V’

V

takes

DP

ε

Conj

and

TP

DPi

D

a

NP

N

professor

T’

T VP

DP

ti

V’

V

teaches

DP

D

every

NP

N

course

,

γ′16: t

〈〈e, t〉, t〉

λP.∀x2(course(x2))(P (x2))

〈e, t〉

λz2 t

〈e, t〉

〈e, t〉

λx t

〈〈e, t〉, t〉

λP.∃x1(stud(x1))(P (x1))

〈e, t〉

λz1 t

e

z1

〈e, t〉

λy.takes(y, x)

∧ 〈e, t〉

λx t

〈〈e, t〉, t〉

λP.∃x1(prof(x1))(P (x1))

〈e, t〉

λz1 t

e

z1

〈e, t〉

λy.teaches(y, x)

e

z2

〉

Figure 13: Derived trees for A student takes and a professor teaches every course

〈 αtakes{DPi,DP}: TPoa 1

DPi

e

T’

T VP

DP

ti

V’

V

takes

DP ↓ 2

,

α′takes{DPi,DP}: t1 2

〈e, t〉

〈e, 〈e, t〉〉1

λxλy.takes(y, x)

e ↓ 2

e ↓ 1

〉

〈 βlikes{DPi,DP}: TP

TP

DPi ↓ 1 T’

T VP

DP

ti

V’

V

likes

DP

e

Conj

and

TP∗

,

{ β′likes{DPi,DP}: 〈e〈e, t〉〉

〈e, 〈e, t〉〉

λxλy.likes(y, x)

∧ 〈e〈e, t〉〉∗ , e ↓ 1 , t ∗ 1

}
〉

Figure 14: Elementary trees for A student likes and
takes every course

Right-Node-Raising (RNR). RNR is not restricted
to coordination, as can be seen in (18) (Hudson,
1976; Goodall, 1987; Postal, 1994).

(18) Politicians [who have fought for] may well
snub those [who have fought against ani-
mal rights]. (Postal, 1994)

A question that must be addressed first though is
whether all apparent RNR constructions should
be given a unified account (Barros and Vicente,
2011). We leave this as future research as well.

Acknowledgments

We thank the three anonymous reviewers of
TAG+13 for their insightful comments. This re-
search was partially supported by SSHRC 435-
2014-0161 to Han and NSERC RGPIN 262313
and RGPAS 446348 to Sarkar.

References
Eva Banik. 2004. Semantics of VP coordination in

LTAG. In Proceedings of the 7th International
Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+7). Vancouver, Canada, pages
118–125.

Matthew Barros and Luis Vicente. 2011. Right node
raising requires both ellipsis and multidomination.

51

University of Pennsylvania Working Papers in Lin-
guistics 17(1):Article 2.

Jon Barwise and Robin Cooper. 1981. Generalized
quantifiers and natural language. Linguistics and
Philosophy 4:159–219.

Ronnie Cann, Ruth Kempson, Lutz Marten, and
Masayuki Otsuka. 2005. Right node raising, coor-
dination and the dynamics of language processing.
Lingua 115:503–525.

Robert Frank. 2002. Phrase Structure Composition
and Syntactic Dependencies. MIT Press, Cam-
bridge, MA.

Robert Frank and Dennis Ryan Storoshenko. 2012.
The shape of elementary trees and scope possibili-
ties in STAG. In Proceedings of the 11th Interna-
tional Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+11). Paris, pages 232–
240.

Grant Goodall. 1987. Parallel structures in syntax.
Cambridge University Press.

Chung-hye Han, David Potter, and Dennis
Storoshenko. 2008. Compositional semantics
of coordination using synchronous tree adjoining
grammar. In Proceedings of the 9th International
Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+9). Tuebingen, Germany, pages
33–40.

Chung-hye Han, David Potter, and Dennis
Storoshenko. 2010. Non-local right node rais-
ing: an analysis using delayed tree-local MC-TAG.
In Proceedings of the 10th International Work-
shop on Tree Adjoining Grammars and Related
Formalisms (TAG+10). Yale University.

Richard A. Hudson. 1976. Conjunction reduction, gap-
ping, and right-node raising. Language 52(3):535–
562.

James D. McCawley. 1982. Parentheticals and dis-
continuous constituent structure. Linguistic Inquiry
13:91–106.

Rebecca Nesson and Stuart Shieber. 2007. Extraction
phenomena in Synchronous TAG syntax and seman-
tics. In Dekai Wu and David Chiang, editors, Pro-
ceedings of the Workshop on Syntax and Structure in
Statistical Translation. Rochester, New York.

Rebecca Nesson and Stuart M. Shieber. 2006. Simpler
TAG Semantics through Synchronization. In Pro-
ceedings of the 11th Conference on Formal Gram-
mar. CSLI, Malaga, Spain.

Paul Postal. 1994. Parasitic and pseudoparasitic gaps.
Linguistic Inquiry 25:63–117.

John Robert Ross. 1967. Constraints on variables in
syntax. Ph.D. thesis, MIT, Cambridge, MA.

Joseph Sabbagh. 2007. Ordering and linearizing right-
ward movement. Natural Language and Linguistic
Theory 25:349–401.

Joseph Sabbagh. 2014. Right node raising. Language
and Linguistic Compass 8/1:24–35.

Anoop Sarkar and Aravind Joshi. 1996. Coordina-
tion in Tree Adjoining Grammars: formalization and
implementation. In Proceedings of COLING’96.
Copenhagen, pages 610–615.

Yves Schabes and Stuart M. Shieber. 1994. An Al-
ternative Conception of Tree-Adjoining Derivation.
Computational Linguistics 20(1):91–124.

Stuart Shieber and Yves Schabes. 1990. Synchronous
Tree Adjoining Grammars. In Proceedings of COL-
ING’90. Helsinki, Finland.

Mark Steedman. 1996. Surface Structure and Interpre-
tation. MIT Press, Cambridge, MA.

Dennis Ryan Storoshenko and Robert Frank. 2012.
Deriving syntax-semantics mappings: node linking,
type shifting and scope ambiguity. In Proceedings
of the 11th International Workshop on Tree Adjoin-
ing Grammars and Related Formalisms (TAG+11).
Paris, pages 10–18.

K Vijay-Shanker. 1992. Using descriptions of trees in a
tree adjoining grammar. Computational Linguistics
18(4):481–517.

Ken Wexler and Peter W. Culicover. 1980. Formal
Principles of Language Acquisition. MIT Press,
Cambridge, MA.

52

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 53–60,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Scope, Time, and Predicate Restriction in Blackfoot using MC-STAG

Dennis Ryan Storoshenko
University of Calgary

2500 University Dr. NW
Calgary, AB, Canada, T2R 1H4
dstorosh@ucalgary.ca

Abstract

We use STAG to model the interaction
between demonstratives and tense found
in Blackfoot (Algonquian). In clauses
with no tense or aspect marking, past
tense can be encoded through a distal
demonstrative on either the internal argu-
ment (transitives, unaccusatives) or the ex-
ternal argument (unergatives). A fourth
class of predicate, semantically transi-
tive but syntactically intransitive with a
pseudo-incorporated object, does not al-
low either argument to mark tense. Us-
ing the scope mechanics described in
Frank and Storoshenko (2012), we first
model the unique scope properties of
pseudo-incorporation, following on the
Bliss (2013) claim that predicate satu-
ration in these cases derives from the
Chung and Ladusaw (2004) operation of
predicate restriction, not function appli-
cation. Modelling the predicate restric-
tion operation within a STAG derivation is
shown to correctly predict the scope facts
in a way such that the tense facts are also
easily captured.

1 Tense and Demonstratives

In this section, we present the basic tense data,
and discuss the challenges it presents for a
GB/Minimalism-style analysis before moving on
to STAG. Blackfoot is an Algonquian language
of Southern Alberta and Montana with a largely
polysynthetic morphology. While the language
has a range of tense and aspect markers, clauses
may appear untensed. As described in Lewis
(2014), untensed predicates may receive an oblig-
atory temporal interpretation from a demonstrative

on one of their arguments:1

(1) amo ninaa ispii
DEM.PROX man dance
‘This man is dancing/danced.’
(either tense)

(2) oma ninaa ispii
DEM.DIST man dance
‘That man danced.’
(past only, Lewis 2014 ex19b)

As shown, while the proximal demonstrative does
not fix the tense, a distal demonstrative fixes the
interpretation in the past. The task of writing a
function which could accomplish this is simply a
matter of lambda gymnastics:

(3) JF K = λPλs′.P (s′) ∧ DIST (s′) →
s′ < s∗

F , a recursive function of type 〈〈s,t〉,〈s,t〉〉 on
the verbal projection inspects its complement for
situation variables in the scope of a DIST func-
tion (assuming demonstratives to also carry situa-
tion variables, see Elbourne (2008)), dictating that
such situations be interpreted as prior to the utter-
ance time s∗. The proposal is not that demonstra-
tives themselves carry any temporal interpretation,
rather that is built into the verbal projection (and
therefore inherently part of the predicate) which
interacts with demonstratives in its scope.

The same pattern of past tense following from
distal demonstratives has been shown for unac-
cusative predicates:

(4) amo ninaa o’too
DEM.PROX man arrive
‘This man arrives/arrived.’(either tense)

1In the interests of space, we will only give the mini-
mal morphemic breakdown necessary to illustrate the facts
salient to our discussion. Readers are encouraged to consult
the sources cited in this paper to appreciate the complexity of
the morphology.

53

(5) oma ninaa o’too
DEM.DIST man arrive
‘That man arrived.’ (past only)

However, in (syntactically) transitive construc-
tions, only the internal argument fixes the tense:

(6) oma ninaa si’kataa amo
DEM.DIST man kick.TR DEM.PROX

ninaa
man
‘That man kick/kicked this man’
(either tense, Lewis 2014 ex20a)

(7) amo ninaa si’kataa oma
DEM.PROX man kick.TR DEM.DIST

ninaa
man
‘This man kicked that man.’
(past only, Lewis 2014 ex20c)

The fact that distal demonstratives do not always
trigger a past interpretation is taken as evidence
that the demonstratives themselves do not inher-
ently carry tense, and that the F operator must be
a part of the predicate, with a narrowly defined
scope. The challenge therefore lies in locating the
position of this F function on the verbal spine. To
account for the transitives and, by extension, unac-
cusatives, the scope of F must exclude the external
argument (specifier of vP); however the unergative
cases show that the specifier of vP can also be in
the scope of F . An additional complication arises
when considering a fourth construction, known in
the literature as the Animate Intransitive + Object
(AI+O) construction:

(8) amo ninaa ooyi mamii
DEM.PROX man eat.INTR fish
‘This man is eating/ate fish.’

(9) oma ninaa ooyi mamii
DEM.DIST man eat.INTR fish
‘That man is eating/ate fish.’

In (8) and (9), the predicates are syntactically in-
transitive, lacking the morphological marking of
transitives, though they still take two arguments
semantically. According to Bliss (2013), the ob-
ject (mamii in this case) is pseudo-incorporated
into the verbal predicate as an NP, not a full DP.
As shown in our data, the subject of this type of
intransitive does not fix the tense, while the object
by definition has no ability to do so as a bare NP.

Assuming that the relevant function which in-
spects demonstratives is contributed by some
functional head on the verbal spine, it would need
to be in a flexible position, sometimes above vP
(unergatives) and sometimes below vP (all oth-
ers). This would also imply that in the case of
a transitive, the function would not even scope
over a fully-saturated predicate, surely an unde-
sirable state of affairs if we want to assume a sin-
gle operator is responsible for this phenomenon.
To solve this, one could adopt a Kratzer (1996)-
inspired deconstruction of predicates, in which ex-
ternal arguments are introduced to a fully satu-
rated predicate through event identification. Tak-
ing this step, and then defining the position of F
as the first opportunity to merge a function of the
semantic type 〈〈s,t〉,〈s,t〉〉 would again correctly
capture the subjects of unaccusatives, objects of
transitives, and correctly exclude the subject of the
AI+O construction saturated by object incorpora-
tion, but would miss the unergatives, as the neces-
sary condition for applying the F function would
be met before event identification ever took place.
The only solution would be to then add a syntactic
constraint in the form of some uninterpretable fea-
ture requiring the functional head to have at least
one nominal (NP or DP) in its scope. While such a
move is possible, the necessary syntactic feature is
not a natural one in the framework, and the notion
of merging a functional head as soon as seman-
tically possible in a derivation, regardless of the
syntactic form of the object derived to that point,
goes against most notions of functional cartogra-
phies. However, the clear judgement particularly
in the case of the intransitive subject of AI+O not
triggering a past tense interpretation strongly sug-
gests that there is some interplay with the mechan-
ics of argument saturation underlying this phe-
nomenon, and that it should not be downplayed as
a spatial metaphor residing in the pragmatics. This
paper argues that implementing an STAG analy-
sis of the Blackfoot clause provides a more natural
way to characterize the position of F .

In an STAG context, this means we should be
looking to define a position for F on the seman-
tic side of the derivation rather than the syntactic
one. However, this first requires a semantics for
pseudo-incorporation. In the next section we look
at the scope differences between canonical transi-
tives with animate agents (so-called TA construc-
tions) and the AI+O construction. This will serve

54

as independent motivation for the STAG account
of these predicates which will in turn more easily
capture the tense data.

2 Blackfoot Scope

Quantification in Blackfoot can be expressed via a
verbal suffix, which is able to associate with either
the subject or the object of a transitive predicate:

(10) nit-ohkana-ohpommatoop-innaan-
1ST-all-buy.TR-1PL-
iaawa
PL.OBJ

‘We all bought them.’ or
‘We bought all of them.’
(Weber & Matthewson 2013 ex10)

Following the Constraint on Elementary Tree Min-
imality defined in Frank (2002), we treat these
quantifiers as being part of the verb’s elementary
tree. This is shown in Figure 1. The only elements
of the morphology we take to be part of the verb’s
elementary tree here are the quantification and the
verb root itself including morphological marking
of valence. The argument positions are DP substi-
tution sites, and the additional agreement affixes
arise as a result of the arguments which substitute
in, both ϕ-feature valued instances of pro in the
case of (10). A discussion of how this agreement
is manifested in an STAG context is orthogonal to
the present discussion. However, it is worth noting
that the universal quantification can also combine
with full DPs:

(11) óm-iksi aakı́ı́koan-iksi
DEM.DIST-PL girl-PL

ik-ohkana-issta-yi-aawa...
DEG-all-want.INTR-3PL-PL.OBJ ...
‘Those girls all want...’
(Weber & Matthewson 2013 ex13)

So, while these argument positions may be oc-
cupied by pro or by overt DPs with determiners,
they take on a complex meaning incorporating the
meaning of the quantifier that originates in the ver-
bal predicate.

Extending further to the Frank and Storoshenko
(2012) treatment of scope, wherein the semantic
form of a predicate in STAG is broken into a pred-
icate part and a scope part, we place this quantifier
in the scope part. Whereas traditional STAG anal-
yses of scope ambiguity make use of an undeter-
mined order of operations leading to two distinct

TP

1 DPi↓ T′

T QuantP

Quant

ohkana

vP

ti v′

v VP

V

ohpommatoo’p

DP↓ 2

Figure 1: Basic syntactic tree for the predicate in
(10)

derivations (Schabes and Shieber, 1994), here we
claim that the Blackfoot facts must be captured
by two different semantic elementary tree sets for
the verbal predicate, shown in Figure 22. Though
not strictly necessary for the example in (10) with
pronominal arguments, the form presented here
is robust enough to accommodate interaction be-
tween predicate modifying affixes and DPs with
determiners, yielding complex expressions such as
all the men. For the moment, we assume that defi-
nite and demonstrative DPs in this language are of
type 〈e〉, consisting of definite descriptions closed
using the iota operator:

(12) Jthe manK = ιx.man(x)

We further assume that forms such as (12) are not
specified for number; following Link (1983), the
unique x variable here may also denote a plurality
of entities. Following the quantification presented
in Figure 2, the semantic content of the argument
DP substitutes into the restrictor of the quanti-
fier, rather than directly into an argument position.
This restrictor contains a simple set membership
function, in this case defining all entities that be-
long to the set defined by the plurality which sub-
stitutes in.

Having established the basic mechanics of the
verbal quantification, we move on to the interac-

2This may be thought of as the output of two distinct el-
ementary tree building operations. The construction of ele-
mentary tree sets in STAG remaining a somewhat unexplored
realm, we step back from this issue and simply assert the two
tree sets.

55

{ t

∀y′′ t

1 e↓ 〈e,t〉

λy.y′′ ∈ y

t

y′′ 〈e,t〉

λy′ t

2 e↓ 〈e,t〉

λx′ t*

t

〈e,t〉

〈e〈e,t〉〉

λxλy.buy(y, x)

e

x′

e

y′

}

{ t

1 e↓ 〈e,t〉

λy′ t

∀x′′ t

2 e↓ 〈e,t〉

λx.x′′ ∈ x

t

x′′ 〈e,t〉

λx′ t*

t

〈e,t〉

〈e〈e,t〉〉

λxλy.buy(y, x)

e

x′

e

y′

}

Figure 2: Semantic tree sets for the predicate in (10)

tion with quantified DPs and the AI+O construc-
tion. In the following examples, the verbal pre-
fix iihkana (a phonological variant of the prefix
in (10)) denotes universal quantification, now in-
teracting with another quantified DP in the same
clause:

(13) iihkana-inoyiiya anniskey piita
all-see.TR one certain eagle
‘They all saw this one eagle’
1 > ∀, *∀ > 1
(Weber & Matthewson 2013 ex21)

(14) iihkana-yaapiiya piita
all-see.INTR eagle
‘They all saw a different eagle’
*1 > ∀, ∀ > 1
(Weber & Matthewson 2013 ex26)

Weber and Matthewson (2013) note that in exam-
ples such as (13), a transitive clause with a quanti-
fied object DP, the DP quantifier obligatorily takes
wide scope over the verbal prefix quantifier, which
in turn associates with the subject. That the ob-
jects obligatorily outscope the verb-affixed quan-
tifiers means that in such cases, the affixed quan-
tifier must associate with the subject. In other
words, only the upper MCS configuration in Fig-
ure 2 is available. We propose that this may be the

result of a semantic well-formedness constraint.
While the affixal quantifiers may associate with
DPs bearing simple determiners or demonstratives
(i.e. objects of type 〈e〉), the available data show
no examples of the affixal quantifier associating
with an independently quantified DP. Such quan-
tified DPs, we assume, combine using the typi-
cal two-tree semantic multi-component set (MCS)
consisting of a type 〈e〉 variable substituting at
the argument site and a 〈t〉-recursive scope tree
which must adjoin high enough to bind the vari-
able. This would be the familiar type of quantifi-
cational MCS as in Figure 3. A constraint against
“overloading” an argument with two quantifiers,
essentially preventing a quantified DP from com-
bining into an argument position already part of
a verb’s quantifier, would block a derivation for
(13) using the lower MCS in Figure 2 and creat-
ing a clash between the verbal suffix universal and
the DP’s specific numeral in this case. From here,
we turn to the type-shifting operation defined in
Storoshenko and Frank (2012) and applying it to
the scope tree in the upper MCS, targeting the root
node as the adjoining site for the DP’s scope, al-
lowing the specific ‘one’ to scope wide3 The sub-

3Another possibility for blocking the unwanted derivation
for (13) may be to invoke a constraint against targeting the

56

{ t

1x t

eagle(x)

t*

e

x

}

Figure 3: Semantic tree set for DP quantifier as in
(13)

ject, again a pronoun, associates with the verbal
quantifier by way of set membership. Note this
is contra Weber and Matthewson who derive the
wide scope of the object through a choice func-
tion.

In the AI+O case (14), they find that the in-
corporated singular object obligatorily takes nar-
row scope, yielding only an interpretation where
each person sees a different eagle. Translated into
STAG, this means that the object is not compos-
ing with the scope tree of the predicate in the
same way as a quantified object. Following Bliss
(and Weber and Matthewson for this example), the
semantic operation is Predicate Restriction (PR).
As defined by Chung and Ladusaw (2004), PR is
an alternative to Function Application (FA) as a
means of saturating the argument position of a
given predicate. PR is a two step process: first the
argument is taken to be of type 〈e,t〉, and acts as
a restrictor on the targeted argument position in-
side the predicate. Then, existential closure binds
the argument position. In an STAG context, this
will of course be a single operation, a compos-
tion of the predicate’s MCS with the tree set of the
incorporated argument. The key distinction will
be that such pseudo-incorporated arguments will
have unique tree sets, shown in Figure 4. Again,
as with a standard GQ, there is a variable portion
of type 〈e〉 which will substitute into the relevant
argument position of a predicate’s scope tree. The
difference here is that the recursive “scope part” of
the MCS is not recursive on 〈t〉, but rather on 〈e,t〉.
The function from 〈e,t〉 to 〈e,t〉 within the auxil-
iary tree accomplishes the operations of restriction
and closure in one step. The type 〈e〉 component
is associated with the restricted and existentially-
closed variable by way of an identity function. Ad-
joining the auxiliary tree into the lowest 〈e,t〉 node
of scope tree in the upper (subject universal quan-
tifier) MCS in Figure 2, while substituting the type
〈e〉 variable into the 2 -linked argument position

2 node in the lower MCS from type shifting.

{ 〈e,t〉

〈e,t〉 〈〈e,t〉,〈e,t〉〉

λPλx∃x′′.P (x′′)∧ eagle(x′′) ∧ID(x, x′′)

e

x

}

Figure 4: Semantic tree set for incorporated object
(first attempt)

yields the form in (15), composed up to the 〈t〉
node immediately dominating 2 in the scope tree.

(15) ∃x′′.see(y′, x′′)∧eagle(x′′)∧ID(x, x′′)

Though inelegant, and leaving the x variable free
but identified with the existentially bound x′′, the
method in Figure 4 allows us to retain the same ba-
sic predicate tree sets regardless of the type of ar-
gument (DP or incorporated object), and to easily
derive the obligatory narrow scope of the object.

An alternative approach would be to take more
seriously the syntactic differences between not just
the objects in (13) and (14), but also the predicates,
which do have different morphology, and assume
that the predicate trees will be different as well.
For (13), we assume the object to be a full DP,
combining into predicate trees similar to those in
Figures 1 and 2. However, a predicate taking a
pseudo-incorporated object may have a distinct se-
mantics, mirroring the fact that on the syntax side
it combines with a bare NP rather than a DP. This
is the scenario sketched in Figure 5. Here, the
scope part of the predicate does not contain an ab-
straction over the object position; instead, the ob-
ject position 2 , which would be an NP substitu-
tion site in the syntax, is now linked to the 〈e,〈e,t〉〉
node in the lower predicate part of the semantic
tree.

The gain from this method can be seen in Figure
6, where we present the updated semantic trees for
the incorporated argument. Here, the only contri-
bution of the nominal is to act as a function over
the semantically transitive predicate, and incorpo-
rate the restriction on the object. The existential
closure is already built into the root of the predi-
cate’s lower tree, which will necessarily be under
the scope of the subject combining into the scope
tree for the same predicate. Simplification of the
resulting expression yields (16) as the final deno-
tation of the lower member of the predicate’s MCS
after the incorporated object adjoins.

(16) ∃x′.see(y′, x′) ∧ eagle(x′)

57

{ t

∀y′′ t

1 e↓ 〈e,t〉

λy.y′′ ∈ y

t

y′′ 〈e,t〉

λy′ t*

t

∃x′ t

〈e,t〉

〈e〈e,t〉〉 2

λxλy.see(y, x)

e

x′

e

y′

}

Figure 5: Alternate Predicate for PR (including universal quantifier over subject)

{ 〈e,〈e,t〉〉

〈e,〈e,t〉〉* 〈〈e,〈e,t〉〉,〈e,〈e,t〉〉〉

λPλx′′λy′′.P (x′′)(y′′)∧ eagle(x′′)

}

Figure 6: Alternate semantic tree set for incorpo-
rated argument

Avoiding the issue of the unbound variable makes
this method preferable, and we will adopt it go-
ing forward, but it comes at the apparent cost of
proposing a different tree set for the predicate. In-
cidentally, this approach also directly encodes the
fact that incorporation is uniquely available for ob-
jects but not subjects, which the prior attempt does
not. With the basics of handling different types of
arguments and quantification settled, we return to
the matter of tense in the next section.

3 Accounting for Tense

To get back on track, recall the formula from (1),
repeated below as (17):

(17) JF K = λPλs′.P (s′) ∧ DIST (s′) →
s′ < s∗

What we need to get the temporal interpretation
correct is a function which inspects a predicate of
type 〈s,t〉 from situations to propositions (truth val-
ues), and dictates that if the current situation has
been taken as the argument of a DISTal function,
then the current situation is in the past relative to
the present speech time defined as s∗. As noted
earlier, this calls upon a treatment of demonstra-
tives described in Elbourne (2008) where situa-
tion variables proliferate; one place predicates are
of type 〈〈s,e〉,〈s,t〉〉, arguments normally taken to
be type 〈e〉 are 〈s,e〉, and so on. Essentially, all
entities and propositions are interpreted with re-
spect to situations. Having already motivated a

treatment of demonstratives and definite DPs as
type 〈e〉, the lift to type 〈s,e〉 is no great stretch.
Revised trees, showing only one argument under
the universal quantifier for the sake of brevity, are
given in Figure 7.

For a definite DP, the update is quite simple:

(18) Jthe manK = λs.ιx.man(x) in s

Combining this form with our updated univer-
sal quantification yields the following (abstracting
away from tense and the object position for the
time being):

(19) λs∀y′′[y′′ ∈ ιx.[man(x) in s] in s]
[kick(y′′, x(s))]

While there is some redundancy, this gives all y′′

who, in the given situation, are part of the plurality
defined as being men in the given situation.

The next ingredient of our account for tense will
be a form for the distal demonstrative. Again, this
is accomplished with a minor simplification of El-
bourne’s form, here conflating temporal and world
variables into the single type 〈s〉 for convenience:

(20) Joma ninaaK = λs.[[[ιx.x is a man in
s] = z] ∧DIST (z, a, s)]

Following Elbourne, the iota operator defines an
x as a man, and then associates that x with an-
other variable of the same type (z here). This
second variable is passed along as an argument
of a second function defined as DIST, here tak-
ing three arguments. The first is the associated en-
tity, while the third is the given situation in which
x’s man-hood is defined. The middle variable a
is a contextually-defined indexical, providing the
frame of reference for distance. In essence, “z is
distant with respect to a in the situation s”.

Once this argument has composed into the pred-
icate tree, the function defined in (17) comes into
play. The action of this function is to check the

58

{ 〈s,t〉

∀y′′ 〈s,t〉

1 〈s,e〉↓ 〈〈s,e〉,〈s,t〉〉

λy.y′′ ∈ y(s) in s

〈s,t〉

y′′ 〈〈s,e〉,〈s,t〉〉

λy′ 〈s,t〉

λPλs′.P (s′) ∧DIST (s′) → s′ < s∗ 〈s,t〉

2 〈s,e〉↓ 〈〈s,e〉,〈s,t〉〉

λx′ 〈s,t〉*

〈s,t〉

〈〈s,e〉,〈s,t〉〉

〈〈s,e〉,〈〈s,e〉,〈s,t〉〉〉

λxλyλs.kick(y(s), x(s) in s)

〈s,e〉

x′

〈s,e〉

y′

}

Figure 7: Semantic tree set for the predicate in (10), updated to situations and including F . For (un-
quantified) unergatives and unaccusatives, F appears at the root, still immediately above the lowest 〈s,e〉
substitution site.

object of type 〈s,t〉 in its scope for any DIST func-
tions taking the given situation as an argument.
The presence of such a function triggers an im-
plication that the given situation is in the past rela-
tive to the present situation of utterance. Recalling
the facts in Section 1, the relevant syntactic po-
sitions triggering this implication were the inter-
nal argument of transitives, and the sole argument
of unergatives and unaccusatives. The latter two
are simplest, as while their arguments may have
different positions in the syntax, the semantic tree
sets for both will have the same basic shape. For
these, we need simply to posit that they will have a
scope tree similar to that for the AI+O case in Fig-
ure 5, and that this function from 〈s,t〉 to 〈s,t〉 is
generated at the root of the scope tree, being a part
of the verb’s semantics. For the syntactically tran-
sitive case, we must make an uncomfortable stipu-
lation, placing the function immediately above the
node marked 2 in Figure 7. This will guarantee
scope over the substitution position for the object
but not the subject.

The crucial step in the derivation of (7), with the
distal demonstrative triggering a past tense inter-
pretation, comes at the stage where F takes its ar-
gument. Assuming the object of kick to have been
oma ninaa, the expression would be as in (21):

(21) λs′.kick(y′(s′),ιx.x is a man in s′ = z∧
DIST (z, a, s′)) ∧ DIST (s′) → s′ <
s∗

Crucially, the material implication is calculated
immediately, such that in this case the statement
that the bound s′ is temporally prior to the present

s∗ is coordinated to the expression for the duration
of the final computation. If s′ is not the argument
of a DIST function at this stage, then F takes no
action and is inert for the rest of the interpretation.

Turning to the AI+O cases, we capitalize on the
conclusion that the best solution to dealing with
PR is to say that the semantic elementary trees of
the predicates involved are substantially different.
It is then not unreasonable to claim that another
consequence of this is that the F function is not
a part of the Figure 5 tree set. This allows us to
claim that for the rest, F is built into the pred-
icate’s scope tree immediately above the lowest
〈s,e〉 substitution site during the generation of the
predicate’s elementary tree. Assuming F has a
syntactic analogue, the separation of syntax and
semantics provided by STAG allows us to define a
consistent syntactic position for F which maps to
an equally consistent semantic one.

4 Conclusion and Future Work

This paper has dealt with three major challenges
arising from an examination of Blackfoot argu-
ments: quantification from the verbal predicate,
predicate restriction as a combinatory operation,
and the definition of a function for deriving past
tense from distal demonstratives. The STAG ap-
proach to the first issue is reasonably straightfor-
ward, building the quantification into the verbal
predicate’s scope tree, while having the DP sub-
stitute into a position linked to the restrictor inside
of a generalized quantifier structure. What is less
clear is how the two different elementary tree sets

59

for this quantification are defined. A quantifier on
a transitive predicate may bind either the subject
or the object; our solution to this has been to stip-
ulate there must be different elementary tree sets
for each eventuality. This suggests that there is
some room for variability in the mapping between
syntax and semantics during the process of ele-
mentary tree construction. More work in this area
is called for, as the complicated interactions be-
tween verbal morphology and argument structure
in this language do suggest that a parallel deriva-
tional process is also at work before the TAG com-
binatory operations begin.

This is reinforced by the second issue, that of
Predicate Restriction. The ideal solution seems to
be to follow the lead of the verb morphology and
again assume that there is a fundamentally differ-
ent semantic tree set for what is essentially the
same predicate. Once this leap is made, the im-
plementation of PR is relatively simple, with the
two steps split between the two lexical items in-
volved: the verb’s semantic MCS provides the ex-
istential closure, while the incorporating argument
provides the restriction over the argument position
by way of a function over the predicate.

The issue of the positioning of the function
which determines temporal interpretations from
the presence of a demonstrative is where the ben-
efits of the STAG approach to semantics shine
though. As discussed above, the expanded scope
trees adopted in this paper allow not only for the
function to be divorced from a given syntactic
position, but they allow for a consistent position
above a saturated predicate in the scope trees to
be defined. The position unifying the subject of
unergatives and unaccusatives, along with the ob-
ject of transitives is that they are all associated
with the lowest λ-abstractor in the scope tree. No
such generalization is possible in a mainstream
framework. We also now have a principled rea-
son for treating the AI+O cases as distinct. The
STAG account may feel somewhat ad hoc, but it
still seems preferable to conceive of this as a func-
tion of syntactic elementary tree building interfac-
ing with a distinct semantic tree than trying to read
the semantics off the syntactic tree directly.

Lastly, we must point out that beyond the contri-
butions of derivational morphology to elementary
tree building in both the syntax and the semantics,
there is a rather intricate agreement system at work
in this language which we have made no effort to

capture. This remains for future work.

Acknowledgments

Thanks go first to the members of the Blackfoot
community for sharing their language; unless oth-
erwise cited, data in this paper are from fieldwork
carried out at the University of Calgary with the
support of a Faculty Start-Up Grant. This paper
has been improved by the detailed comments of
the TAG+ reviewers. All errors are my own.

References
Heather Bliss. 2013. The Blackfoot configurational-

ity conspiracy: Parallels and differences in clausal
and nominal structures. Ph.D. thesis, University of
British Columbia.

Sandra Chung and William Ladusaw. 2004. Restriction
and Saturation. Cambridge, MA: MIT Press.

Paul Elbourne. 2008. Demonstratives as individual
concepts. Linguistics and Philosophy 31:409–466.

Robert Frank. 2002. Phrase Structure Composition
and Syntactic Dependencies. Cambridge, MA: MIT
Press.

Robert Frank and Dennis Ryan Storoshenko. 2012.
The shape of elementary trees and scope possibili-
ties in STAG. In Proceedings of the 11th Interna-
tional Workshop on Tree Adjoining Grammars and
Related Formalisms.

Angelika Kratzer. 1996. Severing the external argu-
ment from its verb. In Johan Rooryck and Laurie
Zaring, editors, Phrase Structure and the Lexicon,
Dordrecht: Kluwer Academic Publishers, pages
109–138.

Blake Lewis. 2014. The syntax and semantics of
demonstratives: A DP-external approach. In Laura
Teddiman, editor, Proceedings of the 2014 An-
nual Conference of the Canadian Linguistics Asso-
ciation. http://cla-acl.ca/wp-content/uploads/Lewis-
2014.pdf.

Godehard Link. 1983. Logical semantics for natural
language. Erkenntnis 19(1-3):261–283.

Yves Schabes and Stuart M. Shieber. 1994. An alterna-
tive conception of tree-adjoining derivation. Com-
putational Linguistics 20(1):91–124.

Dennis Ryan Storoshenko and Robert Frank. 2012.
Deriving syntax-semantics mappings: node linking,
type shifting and scope ambiguity. In Proceedings
of the 11th International Workshop on Tree Adjoin-
ing Grammars and Related Formalisms.

Natalie Weber and Lisa Matthewson. 2013. The se-
mantics of Blackfoot arguments. In Papers of the
45th Algonquian Conference.

60

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 61–70,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Combining Predicate-Argument Structure and Operator Projection:
Clause Structure in Role and Reference Grammar

Laura Kallmeyer
Heinrich Heine University

Düsseldorf, Germany
kallmeyer@phil.hhu.de

Rainer Osswald
Heinrich Heine University

Düsseldorf, Germany
osswald@phil.hhu.de

Abstract

This work presented here is motivated by
the goal of formalizing the theory of Role
and Reference Grammar (RRG; Van Valin
and LaPolla 1997; Van Valin 2005). The
main contribution of this paper is to show
how RRG’s rather flat constituent struc-
ture and its operator projection, which re-
flects the scopal properties of functional
operators, can be integrated in a single
tree. Inspired by Tree Adjoining Gram-
mar (TAG), we model the operator struc-
ture by means of feature structures. Fur-
thermore, we develop an architecture that
allows us to impose constraints on sister
adjunction, which is the mechanism used
for adding operators and modifiers, by ap-
propriate edge and node features.

1 Introduction

Role and Reference Grammar (RRG; Van Valin
and LaPolla 1997; Van Valin 2005) is a non-
transformational linguistic theory whose develop-
ment has been strongly inspired by typological
concerns and in which semantics and pragmatics
play significant roles. One of the basic assump-
tions of RRG is that clauses have a layered struc-
ture which reflects the distinction between pred-
icates, arguments, and non-arguments. The core
(CO) layer consists of the nucleus (NUC), which
specifies the verb, and its arguments. The clause
(CL) layer contains the core as well as extracted
arguments. Each of the layers can have a periph-
ery (PERI) for attaching adjuncts. In the follow-
ing, we refer to the top clause node and its (non-
peripheral) clause, core, and nucleus descendants
as the skeleton of the clause.

Another important aspect of RRG is the rep-
resentation of operators, which are closed-class

CL

CO

RP

Mary

ADV[PERI +]

quickly

NUC

V

V

NUC

CO

CL

enter-ed

TNS

RP

the room

Figure 1: Simplified example of a syntactic repre-
sentation in RRG with operator projection

grammatical categories such as aspect, modality,
and tense. Each type of operator is assumed to at-
tach to a specific layer: tense operators attach to
the clause, modality to the core, aspect to the nu-
cleus. Moreover, the surface order of the operators
reflects their attachment site in that the higher the
layer an operator is attached to, the farther away
from the nucleus the operator occurs on the sur-
face.

While the ordering among the operators is thus
systematically correlated with the scope given by
their attachment site at the clausal skeleton, the
surface order of the operators relative to argu-
ments and adjuncts is much less transparent and
often requires crossing branches. For this reason,
RRG represents the constituent structure and the
operator structure as different projections of the
clause. The syntactic representation in Fig. 1 illus-
trates this idea: The tense (TNS) operator, which is
a clause-level operator, attaches morphosyntacti-
cally to the verb. The example also shows that the
peripheral pace adverb quickly modifies the core.

61

(‘RP’ stands for ‘referential phrase’.)

Johnson (1987) once proposed a formalization
of the projection approach which uses two differ-
ent context free grammars, one for analyzing the
sequence consisting of the verb plus arguments
and adjuncts, and one for the sequence consist-
ing of the verb plus operators. The two grammars
taken together then constitute a “projection gram-
mar”. However, Johnson’s proposal is purely sur-
face oriented and does not capture the fact that the
two projections share basically the same clausal
skeleton.

In the present paper, we propose a new approach
that conflates the operator projection with the con-
stituent structure, preserves the scope-related or-
dering constraints of the operators and avoids
crossing branches with other constituents. The ba-
sic idea is that operators can attach to the clausal
skeleton “in situ” and then project their content
upwards (or downwards) to their respective scope
layer. For instance, a tense operator, whose scope
level is the clause, can be attached by sister ad-
junction to a nuclear node and thereby avoids
crossing branches with argument constituents.

The adjunction of the operators needs to be con-
trolled in the following two respects: (i) The ad-
junction of an operator is obligatory if the infor-
mation conveyed by the operator is required for a
sentence to be complete. (ii) The scope-related or-
dering of the operators must be respected. In our
approach, these constraints are implemented with
the help of feature structures attached to the edges
of the trees.

The rest of the paper is organized as follows:
Section 2 briefly introduces a proposal for defin-
ing tree composition in a way that leads to the
kind of flat syntactic representations postulated by
RRG. The two operations, (wrapping) substitu-
tion and sister adjunction are intended to capture
argument structure constructions, including long
distance dependencies, and the flat adjunction of
modifier expressions. Section 3 presents the core
idea of this paper which is to add feature struc-
tures to edges (as well as to nodes) for bookkeep-
ing purposes. The approach is then applied in
Section 4 for the seamless alignment of the op-
erator projection of RRG with the constituent pro-
jection. Section 5 shows how the proposed repre-
sentation of the operator projection behaves in the
case of complex sentences, in which the structure
of the clausal skeleton interacts with the scope-

taking behavior of the operators in intricate ways.

2 Tree composition in Role and
Reference Grammar

RRG shares some fundamental properties with
Tree Adjoining Grammar (TAG, Joshi and Sch-
abes, 1997; Abeillé and Rambow, 2000), notably
its extended domain of locality and certain under-
lying assumptions about the structure of elemen-
tary syntactic building blocks. In particular, RRG
assumes that a predicate and its arguments are re-
alized within the same elementary tree (cf. Frank,
2002, for similar assumptions in TAG). Therefore
RRG can be formalized as a tree-rewriting gram-
mar in the spirit of TAG, albeit with slightly dif-
ferent operations for combining elementary trees.

Previous work on formalizing tree composition
in RRG (Kallmeyer et al., 2013; Osswald and
Kallmeyer, in press) has identified two operations
that are needed in order to cope with the flat struc-
ture of RRG trees: An operation called (wrapping)
substitution that serves to fill argument slots, i.e.,
to fill substitution nodes, and an operation called
sister adjunction used to add so-called periphery
elements, i.e., modifiers.

2.1 (Wrapping) substitution for argument
composition

Simple substitution, as in TAG, consists of replac-
ing a non-terminal leaf with a new tree of the same
category. The idea behind wrapping substitution is
that a substitution node (i.e., a non-terminal leaf)
in the target tree gets filled by adding a subtree
from a new tree. More concretely, this new tree
gets split at a point where the lower part has the
category of the substitution slot and can be in-
serted there. The higher part is identified with the
root of the target tree. It can add material above
that root but also new material to the right or left
of all the daughters of that root. Potential sites for
splitting a tree are indicated by dominance links.
In other words, wrapping such a tree around an-
other one means stretching the dominance link in
such a way that its upper node merges with the
root while the lower node merges with a substi-
tution node in the target tree. Such a wrapping
substitution occurs for instance in the derivation of
the long-distance dependency (1), given in Fig. 2
(where the dashed edge indicates a dominance re-
lation). The result is the tree in Fig. 3. (‘PrCS’
stands for ‘pre-core slot’.)

62

(1) What does John think Bill smashed?

CL

CO CL

TNS RP NUC

V

Johndoes think

CL

PrCS

RP

what

CL

CO

RP NUC

V

Bill smashed

Figure 2: Derivation for (1): wrapping substitution

CL

CO CL

TNS RP NUC

V

Johndoes think

PrCS

RP

what

CO

RP NUC

V

Bill smashed

Figure 3: Derived tree for (1)

Note that in a first proposal of how to ap-
ply wrapping substitution to tree composition in
RRG, Kallmeyer et al. (2013) assumed a more bi-
nary structure. The version sketched above goes
back to Osswald and Kallmeyer (in press) and
is more in line with the flat structures used in
RRG. The idea of using wrapping substitution is
partly inspired by the operations subsertion in D-
Tree Grammar (Rambow et al., 1995) and gener-
alized substitution in D-Tree Substitution Gram-
mar (Rambow et al., 2001), which, however, are
more general. Wrapping substitution shares with
subsertion the non-locality: the two nodes targeted
by the wrapping substitution (i.e., the substitution
node and the root node of the target tree) need not
come from the same elementary tree and can be far
apart from each other. If the number of wrapping
substitutions that stretch across a node in the de-
rived tree is limited by some constant k, it can be
shown that an equivalent simple Context-Free Tree
Grammar (CFTG) (Kanazawa, 2016) of rank k
can be constructed, which is in turn equivalent to a

well-nested Linear Context-Free Rewriting System
(LCFRS) (Vijay-Shanker et al., 1987; Seki et al.,
1991; Kanazawa, 2009; Gómez-Rodríguez et al.,
2010) of fan-out k + 1 (see Kallmeyer, 2016, for
more details on this equivalence).

2.2 Sister adjunction for modification

So-called peripheral elements in RRG are added
via sister adjunction. An example is the modifier
quickly in the example in (2). The corresponding
derivation is given in Fig. 4. The root of the mod-
ifier tree merges with the target node n of the ad-
junction and the (necessarily unique) daughter is
inserted as a new daughter of n. The categories of
the root and n have to be the same.

(2) Mary quickly entered the room

CL

CO

RP NUC

V

RP

Mary entered the room

CO

ADV

quickly

;

CL

CO

RP NUC

V

RP

Mary entered the room

ADV

quickly

Figure 4: Derivation for (2): modification via sis-
ter adjunction

3 Adding feature structures to the
syntactic trees

In TAG, internal nodes have top and bottom fea-
ture structures. The underlying idea is that the top
reflects properties of the node visible from above
while the bottom reflects properties of the subtree
below the node. These features control the adjunc-
tion possibilities at that node. In particular, mis-
matches between them (i.e., the fact that they do

63

not unify) express an obligatory adjunction con-
straint.

In RRG, we want to pursue a similar strategy,
namely modeling obligatory adjunction via feature
mismatches. However, these mismatches cannot
be on top and bottom features of the nodes as in
TAG. But we can retain the idea that in places
where adjunction occurs, two feature structures
that are not unifiable get separated. In the case of
sister adjunction, we add a new sister between two
nodes or, to put it differently, between two edges.
Therefore we propose the following for feature-
based sister adjunction:

Nodes have just a single feature structure. In
contrast, edges have two feature structures, a left
one and a right one. In a sister adjunction, the
feature structure of the root of the adjoined tree
unifies with the feature structure of the node tar-
geted by the adjunction. In the final derived tree,
the two feature structures between two neighbour-
ing edges have to unify. (Consequently, if they are
not unifiable, this acts as an obligatory adjunction
constraint.) Furthermore, features on the leftmost
(resp. rightmost) edge percolate upwards, except if
there is a substitution node, which blocks feature
percolation. More precisely, the following unifica-
tions occur in the final derived tree:

1. Whenever there are nodes v,v1,v2 with edges
〈v,v1〉 and 〈v,v2〉 such that v1 immediately
precedes v2, the right feature structure fr1 of
〈v,v1〉 unifies with the left feature structure
fl2 of 〈v,v2〉.

fr1 fl2

v

v1 v2

⇒ fr1 and fl2
are replaced
with fr1 t fl2

2. Whenever there are nodes v1,v2,v3 with
edges 〈v1,v2〉,〈v2,v3〉 such that v3 does not
have a sister to the left (to the right) and v2
was not a substitution node, the left (right)
feature structure of 〈v2,v3〉 unifies with the
left (right) feature structure of 〈v1,v2〉.

fl1

fl2

v1

v2

v3 . . .

⇒ fl1 and fl2
are both replaced
with fl1 t fl2
if v2 was not filled
by substitution

For illustration consider the simple example in
Fig. 5. The initial tree α carries an obligatory ad-
junction constraint since the feature structures be-
tween the two edges do not unifiy. β can adjoin
repeatedly in between and, as a result, we obtain
derived trees where the feature structures between
neighbouring edges are unifiable.

[C +] [C −]
α S

a b
[C +] [C 1]

β S∗

c
Figure 5: Obligatory sister adjunction

In a substitution, the feature structure at the root
of the tree that gets added and the one at the substi-
tution site unify as well. In the more general case
of a wrapping substitution with a dominance link
from node n1 to n2 that gets stretched and a target
tree with root nr and substitution node ns, the fea-
ture structures of n1 and nr unify and the ones of
n2 and ns unify.

The constraint in 2. that v2 was not a substitu-
tion site is motivated by the hypothesis that substi-
tution nodes act as islands concerning operators.
An example is (1) where the complement clause
is added by wrapping substitution and each of the
two clauses requires its own tense operator. This
restriction for the feature percolation is a working
hypothesis; further examples of (wrapping) substi-
tution need to be examined in order to determine
whether this assumption makes the right general-
ization or whether it is too restrictive.

With the above definition of feature structure
unification for edge features, the requirement for
a non-finite verbal nucleus to obtain tense from a
finite verb can for instance be modeled in a way
similar to Fig. 5 via a TNS feature with values
+/−, as illustrated in Fig. 6. The sleeping tree
requires that a tense marker adjoins to the core
node somewhere to the left of the nucleus, i.e.,
either preceding or following the subject RP. Be-
sides contributing tense, the finite verb also as-
signs case to the subject RP and it specifies the
agreement features that constrain the subject. This
can be modeled via the node features, using fea-
tures from the XTAG grammar (XTAG Research
Group, 2001).

64

[TNS −]

CL[TENSE 1]

[TNS +]

CO




TENSE 1

ASSIGN-CASE 3

AGR 4




[TNS 2] [TNS 2]

RP
[

CASE 3

AGR 4

] NUC

V

sleeping

[TNS +] [TNS −]

CO




TENSE past
AGR [3SG +]
ASSIGN-CASE nom


∗

TNS

was

RP
[

AGR [3SG +]
CASE nom

]

he

Figure 6: Obligatory adjunction of a tense marker.

4 Modeling the operator projection with
features

We have seen that, in line with Van Valin (2005),
we treat operators as modifiers that are added by
sister adjunction. Moreover, we have illustrated
in Fig. 6 how features can be used to enforce the
adjunction of certain operators.

What is missing is a modeling of the operator
projection of RRG. Each operator belongs to a cer-
tain level of the layered structure (see Fig. 7). The
mapping from operators to levels of the layered
structure explains (i) the scope behavior of opera-
tors, since structurally higher operators take scope

Layer operators
Nucleus Aspect

Negation
Directionals

Core Directionals
Event quantification
Modality
Negation

Clause Status
Tense
Evidentials
Illocutionary Force

Figure 7: Operators in the layered structure of the
clause (cf. Van Valin, 2005, p. 9)

over lower ones, and (ii) surface order constraints
for operators; higher operators are further away
from the nucleus of the structure.

The problem is that the constituent and the oper-
ator structure are not completely parallel, i.e., one
can have structures where an operator belonging
to a specific layer is, on the surface structure, sur-
rounded by elements belonging to a lower layer
in the constituent structure. Examples are (3) and
the Turkish example in (4) (taken from Van Valin,
2005, p.10), where a clause-level tense operator
is embedded in the core. In (3), we have the
RP John and the NUC sleeping that form the CO
constituent. In between, two operators are added,
namely the nucleus-level aspectual operator been
and the clause-level tense operator has. The for-
mer can attach at the NUC node, consistent with
its operator level. The latter, however, cannot ad-
join to the clause node, except if crossing branches
are allowed. Within the constituent structure, it is
part of the CO constituent while its operator level
is higher.

(3) John hasTNS beenASP sleeping.

(4) Gel-emi-yebil-ir-im.
come-ABLE.NEGMOD-PSBLSTA-AORTNS-1SG

‘I may be unable to come’

Similarly, in the Turkish example in (4), the
clause-level status and tense operators occur be-
tween the verb and the pronominal affix, which is
part of the core.

Even though the constituent structure and the
operator structure are not fully aligned, they de-
pend on each other. Their hierarchical order is
the same and the existence of a layer in the op-
erator projection requires that this layer also exists
in the constituent structure. For instance, one can
only have clause-level operators if a clause node
exists in the constituent structure. In the follow-
ing we will show that the feature structure-based
definition of tree rewriting with sister adjunction
proposed above allows us to model the operator
projection within the features while attaching the
operators at their surface position. In other words,
operators sometimes attach lower than their posi-
tion in the operator structure. The features capture
the constraints mentioned above.

Let us illustrate the feature architecture for op-
erators by the analysis of (3) shown in Fig. 8.1 We

1To keep things simple, the analysis does not take into ac-

65

[
TNS 2

OPS 4

] [
TNS 2

OPS 4

] [
TNS −

]

CL[TENSE 1]

[TNS +]

CO[TENSE 1]

RP NUC

[OPS 3




CL −
CO −
NUC −


] [OPS 3]

V

sleeping

[
TNS +
OPS[CL +]

]
[TNS −]

CO[TENSE pres]∗

TNS[OP cl]

has
[OPS[NUC +]] [OPS

[
CL −
CO −

]
]

NUC[ASP perf]∗

ASP[OP nuc]

been

Figure 8: Trees for (3)

assume a feature OPS (for operator structure) used
on the edges that specifies which operator projec-
tion layer(s) have been reached so far. Its value is
a feature structure with features CL, CO and NUC

for the three layers, each with possible values + or
−. This feature is used in such a way as to guar-
antee that nuclear, core and clausal operators have
to appear in this order when moving outwards in
the sentence, starting from the nuclear predicate.
For instance, a nuclear operator such as been that
adjoins to the left of the predicate has a require-
ment to the right that the levels CL and CO have
values −, i.e., are not reached yet. To the left, it
just gives the information NUC +. On the other
hand, a clausal operator such as the tense operator
has, when adjoining to the left of the nucleus, does
not have any requirement for the operator level
that has already been reached (hence there is no
OPS feature specified on the right of the top-most
edge) but it states to the left of the edge that now
CL has value +. In addition to the OPS feature, the
preterminal nodes of the operator trees have a fea-
ture OP indicating the operator level that the tree
targets, which can be different from the root node

count the progressive aspect of the present perfect progressive
construction in (3). A more thorough analysis would derive
perfect from the auxiliary choice ‘have’ and the past partici-
ple morphology of ‘be’, while progressive derives from ‘be’
and the ‘-ing’ form of the main verb.

category of the tree that specifies the constituency
level, i.e., the surface position. For example, has
is a clause-level operator that adjoins at the core
node.

The OPS feature can also be used to make sure
that operator levels are licensed by corresponding
nodes in the constituent structure of the targeted
elementary tree. If, for instance, the core layer
is the highest layer of the predicative elementary
tree, then the OPS features on the left of the left-
most edge and on the right of the rightmost edge
immediately below the core node will have fea-
tures CL −, which means that clausal operators are
not allowed within this core.

Fig. 9 shows the derived tree for sentence (3).
The final feature unifications between neighbour-
ing edges and between leftmost/rightmost edges
below a node and the left feature structure/right
feature structure of the edge to the mother lead to
the following: The NUC + information is passed
from the NUC–ASP edge to the left of the CO–
NUC edge and it gets unified with the feature
structure on the right of the CO–TNS edge. Fur-
thermore, the feature structures between CO–RP
and CO–TNS unify and the resulting values of
TNS and OPS are passed to the left of the CO–RP
edge and from there to the left of the CL–CO edge.

Note that the root category of the operator tree
(in our example CO in the case of has and NUC
in the case of been) determines the attachment site
of the operator in the constituent structure. A pos-
sible constraint on these elementary trees, which
remains to be verified empirically, is that with re-
spect to RRG’s layered structure, the root node la-
bel of an operator tree has to be lower or equal
to the OP value at the operator node (i.e., at the
daughter of that root). This means for instance that
there cannot be an operator with [OP nuc] and root
category CO or CL.2

Since the preterminal nodes of the operators
specify which operator projection layer the oper-
ator belongs to, we can deterministically map a
derived tree to the standard RRG structure where
the constituent structure and the operator projec-
tion are separated. The two structures for our ex-
ample are given in Fig. 10.

Note that a single lexical item can also con-
tribute more than one operator. The operator had
in (5), for instance, contributes aspect (nuclear

2Such constraints can be implemented in a principled way
within a metagrammatical representation using for instance
XMG (Crabbé et al., 2013).

66

[
TNS 2

OPS 4

] [
TNS 2

OPS 4

] [
TNS −

]

CL[TENSE pres]

[TNS +]

CO[TENSE pres]

RP

John

NUC[ASP perf]

[OPS 3




CL −
CO −
NUC −


] [OPS 3]

V

sleeping

[
TNS +
OPS[CL +]

]
[TNS −]

TNS[OP cl]

has
[OPS[NUC +]] [OPS

[
CL −
CO −

]
]

ASP[OP nuc]

been

Figure 9: Derived tree for (3) (before final edge feature unification)

level) and tense (clause level).

(5) John had slept.

We therefore modify the representation slightly in
that we replace non-terminal operator categories
such as TNS, ASP, etc. by a more general category
OP, and the single feature OP by a complex fea-
ture structure that lists all the features contributed
on the different operator layers. In the case of
the operator in (5), this would yield the feature
structure [NUC [ASP perf],CLAUSE [TENSE past]].
Likewise, the node label ASP[OP nuc] in the up-
per tree of Fig. 10 is to be replaced by the label
OP[NUC [ASP perf]] under the new convention.

5 Operators in complex sentences

A crucial assumption of RRG concerning the
structure of complex sentences is the distinction
between embedded and non-embedded dependent
structures. Embedded dependent structures cor-
repsond to subordinations. By contrast, non-
embedded dependent structures, which are re-
ferred to as cosubordination structures, have ba-
sically the form [[]X []X]X. It is characteris-
tic of this type of construction that operators that
apply to category X are realized only once but
have scope over both constituents. Cosubordina-
tion differs from the coordination of two indepen-
dent structures in that the latter type of construc-
tion has the form [[]X []X]Y, where Y is a higher-
level category than X.

The Turkish sentence in (6) (taken from Van
Valin, 2005, p. 201) is an example of a core co-
subordination construction (see also Bohnemeyer
and Van Valin, 2017, p. 155f). On the surface,

the deontic modal operator -meli (‘should, ought
to’) is embedded in the second core, but it takes
scope over the entire complex core. (‘LM’ stands
for ‘linkage marker’.)

(6) [[Gid-ip]CO
go-LM

[gör-meli-yiz]CO]CO.
see-MOD-1PL

‘We ought to go and see.’

In the following, we leave aside the question
of how to derive cosubordination structures. As a
tentative working hypothesis, we may assume that
the second embedded core in (6) is not added by
substitution but, rather, that the first core is added
to the second core by sister adjunction, due to the
possible iteration of the construction. The focus of
the present paper is on the adjunction of the opera-
tor and the construction of the operator projection
from the constituent structure. The modal oper-
ator in (6) adjoins to the second embedded core
node and it carries a feature indicating that it is a
core operator. The result is the derived structure in
Fig. 11 (cf. Van Valin, 2005, p. 204). In the case
of a cosubordination as in Fig. 11, an operator em-
bedded in one part of the complex structure gener-
ally takes scope over the larger category. Accord-
ingly, in all elementary trees for cosubordination
configurations, the relevant features (here MOD)
are shared between the lower and the higher cat-
egory in question (here the two CO nodes). This
is taken to be a general property of cosubordina-
tion structures. Corresponding to this, we assume
that when mapping our derived structure to the
standard RRG structure, the operator targets the
highest corresponding node, as long as there is no
higher operator level and no substitution node in

67

CL[TENSE pres]

CO[TENSE pres]

RP

John

NUC[ASP perf]

V

sleeping

TNS[OP cl]

has ASP[OP nuc]

been

CL[TENSE pres]

CO[TENSE pres]

RP

John

NUC[ASP perf]

V

V

NUC

CO

CL

sleeping

TNS

has

ASP

been

Figure 10: Derived tree for (3) (without edge fea-
tures) and corresponding RRG structure

between. In the case of Fig. 11, this is the core of
the entire sentence.

A similar example from English is given in
(7a) (cf. Van Valin, 2005, p.203) where we have
a core consisting of three embedded core con-
stituents where the first contains the modal opera-
tor must. This operator takes scope over the entire
large core. By contrast, in (7b) we have a struc-
ture consisting of several cores which constitute a
clause. I.e., we have a core coordination and not
a core cosubordination. In this case, as correctly
predicted by our analysis, the modal embedded in
the first core scopes only over this one and not over
both cores.

(7) a. [[Kim mustMOD go]CO [to try]CO [to wash
the car]CO]CO

b. [[Kim mustMOD ask Pat]CO [to wash the
car]CO]CL

The shared operator scope in (7a) is a standard cri-
terion for distinguishing cosubordinate from co-

CL

CO[MOD deont]

CO CO[MOD deont]

NUC LM NUC OP[CO [MOD deont]]
PRO

V V

gid ip gör meli yiz

Figure 11: Derived tree for (6)

ordinate constructions. Another diagnostic is the
independent accessibility of the embedded cores
by time-positional adverbials, which are analyzed
as core-level modifiers (cf. Bohnemeyer and Van
Valin, 2017). While (7b) does allow independent
time-positional modification, as in Kim must ask
Pat now to wash the car tomorrow, this is not an
option for (7a): Both, #Kim must go now to try to
wash the car tomorrow and #Kim must go to try
now to wash the car tomorrow are excluded.

Finally, let us consider a case of subordination
in which the same layer category occurs twice on
a path in the tree but an embedded operator targets
only the lower of the two.

(8) Kim told Pat that she will arrive late.

The example in (8) (adapted from Van Valin, 2005,
p. 200) involves substituting a clausal argument
into the tree anchored by told. This substitution
step is shown in Fig. 12.3 The operator will in the
embedded clause is a clausal operator that con-
tributes tense. In the resulting tree, it will be
dominated by the CL node of the embedded com-
plement clause and, dominating this one, the CL
node of the entire sentence. The latter, however,
is not available as possible scope of this operator
because there is a substitution node between this
node and the operator. Consequently, we correctly
predict that the tense operator only scopes over the
embedded clause. Concering features, this would
be reflected in the elementary tree for told by the
fact that the two CL nodes would not share the
TENSE feature.

3Note that even in a long-distance dependency such as
Who did Kim tell John that Mary likes?, the composition op-
eration is wrapping substitution and not adjunction.

68

CL

CO CL

RP NUC

V

RP

toldKim Pat

CL

LM CO

RP OP NUC

V

ADV

that she will arrive late

Figure 12: Derivation for (8)

6 Conclusion

The work presented in this paper is part of a
larger project of formalizing the theory of Role
and Reference Grammar (Foley and Van Valin,
1984; Van Valin, 2005). Based on extensive typo-
logical research, RRG assumes a rather flat con-
stituent structure that is interleaved with an opera-
tor projection which reflects the scopal properties
of functional elements. We offered a formaliza-
tion of this approach that is inspired from Tree Ad-
joining Grammars (TAG) and that integrates both
structures in one tree, modeling the operator struc-
ture within appropriate feature structures. Further-
more, due to the flat constituency structure, mod-
ifiers are added via sister adjunction and adjunc-
tion constraints are modeled via features attached
to edges. The resulting architecture shares cen-
tral assumptions about elementary trees with TAG
but adopts a flat structure. Therefore, instead of
using the standard TAG top and bottom feature
structure of syntactic nodes, we proposed to use
left and right features of edges in order to express
adjunction constraints. Due to the features, addi-
tional projections such as the operator projection,
that are not completely parallel to the constituency
structure, can be captured as well.

We assume that the scopal structure of periph-
ery modifiers can be modeled in a similar way as
the one of the operators. Their scope order also
depends on their order with respect to the nuclear
predicate: modifiers that are more outwards scope
over modifiers that are closer to the nucleus. At
the same time, the surface position of a modifier
does not always correspond to its scope. For in-
stance, a modifier scoping only over the nucleus
of a clause can be separated from the verb by a
core constituent. An example is the aspectual ad-

verb completely in (9) (Van Valin, 2005, pp. 19f).

(9) Leslie immersed herself completely in the new
language.

This leads to a periphery projection that can be
modeled via features in a way similar to the treat-
ment of operators proposed in this paper.

One of the next steps towards a complete for-
malization of RRG will be a detailed analysis of
the different types of complex sentences (subor-
dination, cosubordination and coordination at the
levels of the different layers) with respect to the
composition operations and the elementary trees
involved. At that point, our hypothesis that substi-
tution nodes block the feature passing on the edges
and act as islands for the operator projection will
be tested again.

Another topic to be investigated concerns a bi-
narization of RRG’s flat structures. We have ar-
gued in the beginning of this paper that the left
and right feature structures between edges, which
are used in the flat RRG structures to constrain sis-
ter adjunction, correspond to the top and bottom
feature structures on the nodes in the more binary
standard TAG trees. A question is then whether
we can actually define a binarization transforma-
tion for RRG that turns the features into top and
bottom on the nodes and that can be used for in-
stance for feature-based RRG parsing.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. The work presented in this paper
has been supported by the Collaborative Research
Centre 991 “The Structure of Representations in
Language, Cognition, and Science” funded by the
German Research Foundation (DFG).

References
Anne Abeillé and Owen Rambow. 2000. Tree Ad-

joining Grammar: An Overview. In Anne Abeillé
and Owen Rambow, editors, Tree Adjoining Gram-
mars: Formalisms, Linguistic Analysis and Process-
ing, CSLI, pages 1–68.

Jürgen Bohnemeyer and Robert D. Van Valin, Jr. 2017.
The macro-event property and the layered structure
of the clause. Studies in Language 41(1):142–197.

Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph
Le Roux, and Yannick Parmentier. 2013. XMG: eX-
tensible MetaGrammar. Computational Linguistics
39(3):1–66.

69

William A. Foley and Robert D. Van Valin, Jr. 1984.
Functional syntax and universal grammar. Cam-
bridge University Press, Cambridge.

Robert Frank. 2002. Phrase Structure Composition
and Syntactic Dependencies. MIT Press, Cam-
bridge, Mass.

Carlos Gómez-Rodríguez, Marco Kuhlmann, and
Giorgio Satta. 2010. Efficient parsing of well-
nested linear context-free rewriting systems. In
Human Language Technologies: The 2010 An-
nual Conference of the North American Chap-
ter of the Association for Computational Lin-
guistics. Association for Computational Linguis-
tics, Los Angeles, California, pages 276–284.
http://www.aclweb.org/anthology/N10-1035.

Mark Johnson. 1987. A new approach to clause struc-
ture in Role and Reference Grammar. In Davis
Working Papers in Linguistics 2, University of Cali-
fornia, Davis, CA, pages 55–59.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
Adjoning Grammars. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages,
Springer, Berlin, pages 69–123.

Laura Kallmeyer. 2016. On the mild context-
sensitivity of k-tree wrapping grammar. In An-
nie Foret, Glyn Morrill, Reinhard Muskens, Rainer
Osswald, and Sylvain Pogodalla, editors, Formal
Grammar. 20th and 21st International Conferences,
FG 2015, Barcelona, Spain, August 2015, Revised
Selected Papers. FG 2016, Bozen, Italy, August
2016, Proceedings. Springer, volume 9804 of Lec-
ture Notes in Computer Science, pages 77–93.

Laura Kallmeyer, Rainer Osswald, and Robert D. Van
Valin, Jr. 2013. Tree wrapping for Role and Ref-
erence Grammar. In Glyn Morrill and Mark-Jan
Nederhof, editors, Formal Grammar 2012/2013.
Springer, volume 8036 of LNCS, pages 175–190.

Makoto Kanazawa. 2009. The pumping lemma for
well-nested Multiple Context-Free Languages. In
V. Diekert and D. Nowotka, editors, DLT 2009.
Springer, Berlin Heidelberg, volume 5583 of LNCS,
pages 312–325.

Makoto Kanazawa. 2016. Multidimensional trees
and a Chomsky-Schützenberger-Weir representa-
tion theorem for simple context-free tree grammars.
Journal of Logic and Computation 26(5):1469–
1516.

Rainer Osswald and Laura Kallmeyer. in press. To-
wards a formalization of Role and Reference Gram-
mar. In R. Kailuweit, E. Staudinger, and L. Künkel,
editors, Applying and Expanding Role and Refer-
ence Grammar.

Owen Rambow, K. Vijay-Shanker, and David Weir.
1995. D-Tree Grammars. In Proceedings of ACL.

Owen Rambow, K. Vijay-Shanker, and David Weir.
2001. D-Tree Substitution Grammars. Computa-
tional Linguistics .

Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science
88(2):191–229.

Robert D. Van Valin, Jr. 2005. Exploring the Syntax-
Semantics Interface. Cambridge University Press.

Robert D. Van Valin, Jr. and Randy LaPolla. 1997. Syn-
tax: Structure, meaning and function. Cambridge
University Press.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. In Pro-
ceedings of ACL. Stanford.

XTAG Research Group. 2001. A Lexicalized Tree Ad-
joining Grammar for English. Technical report, In-
stitute for Research in Cognitive Science, Philadel-
phia.

70

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 71–83,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Parsing with Dynamic Continuized CCG

Michael White and Jordan Needle
Department of Linguistics
The Ohio State University

Columbus, OH 43210
mwhite@ling.osu.edu
needle.6@osu.edu

Simon Charlow
Department of Linguistics

Rutgers University
New Brunswick, NJ 08901

simon.charlow@rutgers.edu

Dylan Bumford
Department of Linguistics

New York University
New York, NY 10003
dbumford@nyu.edu

Abstract

We present an implemented method
of parsing with Combinatory Categorial
Grammar (CCG) that for the first time
derives the exceptional scope behavior
of indefinites in a principled and plau-
sibly practical way. The account im-
plements Charlow’s (2014) monadic ap-
proach to dynamic semantics, in which in-
definites’ exceptional scope taking follows
from the way the side effect of introduc-
ing a discourse referent survives the pro-
cess of delimiting the scope of true quan-
tifiers in a continuized grammar. To effi-
ciently parse with this system, we extend
Barker and Shan’s (2014) method of pars-
ing with continuized grammars to only in-
voke monadic lifting and lowering where
necessary, and define novel normal form
constraints on lifting and lowering to avoid
spurious ambiguities. We also integrate
Steedman’s (2000) CCG for deriving basic
predicate-argument structure and enrich it
with a method of lexicalizing scope island
constraints. We argue that the resulting
system improves upon Steedman’s CCG in
terms of theoretical perspicuity and empir-
ical coverage while retaining many of its
attractive computational properties.

1 Introduction

A long-standing puzzle in natural language se-
mantics has been how to explain the exceptional
scope behavior of indefinites. For example, (1a)
has a reading where there’s a specific relative
(a steel magnate, say) such that if she dies, the
speaker will be rich. By contrast, (1b) has no
analogous reading where the universal takes wide
scope: this sentence cannot mean that every rela-

tive is such that if that particular relative dies, I’ll
be rich.1 If one takes the antecedent of a condi-
tionals to be a scope island (as suggested by the
< . . . > bracketing), then it’s not surprising that
the universal in (1b) is blocked from taking wide
scope; what instead requires explanation is how
the indefinite in (1a) can exceptionally take scope
out of this island.

(1) a. If <a relative of mine dies>, I’ll inherit a
fortune. (∃ > if)

b. If <every relative of mine dies>, I’ll in-
herit a fortune. (* ∀ > if)

Charlow (2014) has recently shown that the
exceptional scope behavior of indefinites can be
derived from their role of introducing discourse
referents in a dynamic semantics. To do so,
he showed that (1) a monadic approach to dy-
namic semantics can be seamlessly integrated with
Barker and Shan’s (2014) approach to scope tak-
ing in continuized grammars, and (2) once one
does so, the exceptional scope of indefinites fol-
lows from the way the side effect of introducing
a discourse referent survives the process of delim-
iting the scope of true quantifiers, such as those
expressed with each and every.

To date, computationally implemented ap-
proaches to scope taking2 have not distinguished
indefinites from true quantifiers in a way that
accounts for their exceptional scope taking. In
Bos’s (2003) implementation of Discourse Repre-
sentation Theory (Kamp and Reyle, 1993, DRT),
for example, scope taking is independent of how

1That is, (1b) cannot mean the same thing as If any rel-
ative of mine dies, I’ll inherit a fortune; see Barker and
Shan (2014) for a compatible treatment of negative polarity
items such as any.

2See e.g. (Copestake et al., 2005; Koller et al., 2003; Gar-
dent and Kallmeyer, 2003; Nesson and Shieber, 2006; Pogo-
dalla and Pompigne, 2012), inter alia.

71

indefinites are treated. Although Steedman (2012)
has developed an account of indefinites’ excep-
tional scope taking in a non-standard static seman-
tics for Combinatory Categorial Grammar (Steed-
man, 2000, CCG), this treatment has not been fully
implemented (to our knowledge); moreover, as
Barker and Shan point out, Steedman’s theory ap-
pears to undergenerate by not allowing true quan-
tifiers to take scope from medial positions.

Barker and Shan offer a brief sketch of how a
parser for their continuized grammars can be im-
plemented, including how lifting can be invoked
lazily to ensure parsing terminates. In this paper,
we show how their approach can be seamlessly
combined with Steedman’s CCG and extended to
include Charlow’s monadic dynamic semantics,
thereby providing the first computational imple-
mentation of a system that accounts for the ex-
ceptional scope behavior of indefinites in a prin-
cipled and plausibly practical way. To efficiently
parse with this system, we devise rules to only in-
voke monadic lifting and lowering where neces-
sary, and define novel normal form constraints
on lifting and lowering to avoid spurious ambi-
guities. We also integrate a method of lexicalizing
scope island constraints (Barker and Shan, 2006),
as Charlow’s account does not provide a practi-
cal and empirically satisfactory means of enforc-
ing such constraints. We argue that the resulting
system improves upon Steedman’s CCG in terms
of theoretical perspicuity—insofar as it builds
upon an account of dynamic semantics that is in-
dependently necessary—and empirical coverage,
in that it allows quantifiers to take scope from me-
dial positions and from some subordinate clauses.
At the same time, it also retains many of CCG’s at-
tractive computational properties; in particular, it
respects Steedman’s Principle of Adjacency, only
combining overtly realized adjacent constituents,
thereby making it easy to use with well-studied
parsing algorithms. An open source prototype im-
plementation, suitable for testing out grammatical
analyses, is available online.3

2 Are Scope Islands Real?

Steedman (2012) observes that although the em-
pirical status of scope islands remains unsettled in
the linguistics literature (Farkas and Giannakidou,
1996; Reinhart, 1997; Ruys and Winter, 2011;
Syrett and Lidz, 2011; Syrett, 2015), the possi-

3https://github.com/mwhite14850/dyc3g

ble scopings of true quantifiers appear to be much
more limited than commonly assumed in compu-
tational approaches to scope taking, arguing there-
fore in favor of a surface-compositional approach
that aims to capture all and only the attested read-
ings; in particular, Steedman takes as his work-
ing hypothesis that scope inversion should be sub-
ject to syntactic island constraints. While we are
sympathetic to Steedman’s point of view, we are
skeptical of his working hypothesis, as it appears
to incorrectly predict that quantifiers should never
be able to take scope from subjects of finite com-
plement clauses. Acknowledging that universals
sometime appear to do so, Steedman appeals to
Fox & Sauerland’s (1996) illusory scope analyis,
where the quantificational force is argued to stem
from a main clause generic. However, Farkas and
Giannakidou (1996) provide numerous examples
in English and Greek of episodic sentences such
as (2) where the universal takes extra-wide scope.

(2) Yesterday, a guide made sure that <every
tour to the Louvre was fun>. (∀ > ∃)

By contrast, a corpus analysis given in the ap-
pendix suggests that conditionals and relative
clauses plausibly represent cases where scope is-
lands should be treated as hard constraints. As
such, in this paper we adopt the working hypoth-
esis that scope island constraints can be given an
accurate lexicalized treatment. Alternatively, one
could pursue an approach based solely on soft con-
straints, where a probabilistic model simply makes
scope taking beyond finite clause boundaries very
unlikely. Even in this scenario, we contend that the
approach to exceptionally scoping indefinites im-
plemented here will greatly simplify the learning
task, since the ability of indefinites to take excep-
tional scope would not need to be learned.

3 Continuized CCG

A continuized grammar is one where the meaning
of expressions can be defined as a function on a
portion of its surrounding context, or continuation
(Barker, 2002; Shan and Barker, 2006; Barker and
Shan, 2014). To make it easier to reason about
continuized grammars, Barker & Shan devised the
“tower” notation illustrated in Figure 1.4 For ex-
ample, everyone has a tower category with NP on

4Semantic types are suppressed in this and subsequent fig-
ures, except where essential for understanding.

72

someone loves everyone

S S

NP (S\NP)/NP

S S

NP
∃x.[]
x λyx.love(x, y)

∀y.[]
y

↑
S S

(S\NP)/NP
[]

λyx.love(x, y)
C,>

S S

S\NP
∀y.[]

λx.love(x, y)
C,<

S S

S
∃x.∀y.[]
love(x, y)

↓
S

∃x.∀y.love(x, y)
(a) Surface Scope with Explicit Lifting

someone loves everyone

S S

NP (S\NP)/NP

S S

NP
∃x.[]
x λyx.love(x, y)

∀y.[]
y
↑L,>

S S

S\NP
∀y.[]

λx.love(x, y)
↑L,↑R,<

S S

S S

S
∀y.[]
∃x.[]

love(x, y)
↓

S
∀y.∃x.love(x, y)

(b) Inverse Scope with Integrated Lifting

Figure 1: Continuized CCG Derivations

the bottom and two Ss on top; reading counter-
clockwise from the bottom, this category repre-
sents a constituent that acts locally as an NP , takes
scope over an S, and returns an S. The seman-
tics is λk.∀y.ky, a function from a continuation
k of type e → t to a universally quantified ex-
pression of type t. A continuized meaning of this
form can be abbreviated by representing the loca-

tion where the continuation argument applies with
[] and putting the argument to the continuation on
the bottom of the tower, as shown.

In a continuized grammar, all expressions can
potentially be given continuized meanings via the
Lift (↑) operation. This is illustrated in Figure 1a
where the category for loves is lifted, taking on
the semantics λk.k(λyx.love(x, y)). Lifting the
category for loves allows it to combine with that
of everyone using scopal combination. The way
in which scopal combination works in the tower
notation is shown in Figure 2b (left): on the tower
top, the continuized functions g[] and h[] compose
in surface order, yielding g[h[]]; meanwhile, re-
cursing on the tower bottom, the expressions a and
b combine as they normally would in CCG (using
the combinators in Figure 2a), yielding c.5 In the
example, [] and ∀y.[] compose to again yield ∀y.[]
on the tower top, with λyx.love(x, y) applying to
y and yielding λx.love(x, y) on the bottom.

As Barker & Shan observe, the explicit lifting
step seen in Figure 1a can be integrated with the
scopal combination step, as shown in the other
recursively defined rules in Figure 2b, thereby
avoiding an infinite regress when applying the lift-
ing rule. Figure 1b shows how Lift Left (↑L) and
Lift Right (↑R) can be applied in sequence—as
part of a single parsing step combining adjacent
signs—to create a three-level tower where every-
one ends up taking inverse scope over the sub-
ject:6 first, in applying Lift Left, the entire tower
for someone is matched as A, while the bottom of
the tower for loves everyone, S\NP , is matched
as B, and then the rules are reapplied with A and
B as inputs; next, Lift Right is applied, with the
bottom of the tower for someone, NP , matched as
A, and S\NP again matched as B, and the rules
are reapplied once more; this time, the categories
can combine directly using Backward Application
(<), ending the recursion; as the rules unwind,
the three-level tower for someone loves everyone
is constructed, with inverse scope semantics, as
shown. The final representations are derived by
collapsing the towers using the recursively defined
Lower (↓) operation in Figure 2c, which repeat-

5The combinator for combining two scopal terms m and
n is λmnk.m(λx.n(λy.k(xy))), assuming forward applica-
tion on the tower bottom. Formulating the rules recursively
allows the base combinator to be factored out while also gen-
eralizing to multi-level towers.

6Though everyone is right peripheral in the example,
nothing would prevent it from taking inverse scope from me-
dial position, in contrast to Steedman’s (2012) approach.

73

Forward Backward Forward Forward
Application Application Composition Type Raising

X/Y Y
f : α→ β a : α

>
X

fa : β

Y X\Y
a : α f : α→ β

<
X

fa : β

X/Y Y/Z
f : β → γ g : α→ β

>B
X

λx.f(gx) : α→ γ

NP
a : e

>T
S/(S\NP)

λp.pa : (e→ t)→ t

(a) Base CCG Combinators (not exhaustive)

Combine Lift Left Lift Right

D E

A

E F

B
g[]

a

h[]

b
C

D F

C
g[h[]]

c

A

E F

B

a

h[]

b
↑L

E F

C
h[]

c

D E

A B

g[]

a b
↑R

D E

C
g[]

c

if A : a B : b

C : c

(b) Combination with Lifting

Lower

S S

S
g[]

a
↓

S
g[a]

S S

A
g[]

a
↓

S
g[c]

if A : a
↓

S : c

(c) Lowering (base and recursive)

Figure 2: Continuized CCG

edly applies the continuized semantics to the iden-
tity continuation λk.k.

4 Monadic Dynamic Semantics

Charlow’s (2014) dynamic semantics makes use
of the State.Set monad (Hutton and Meijer, 1996),
which combines the State monad for handling side
effects with the Set monad for non-determinism.
The State monad pairs ordinary semantic values
with a state, which is threaded through computa-
tions. The Set monad models non-deterministic
choices as sets, facilitating a non-deterministic
treatment of indefinites. For example, the dynamic
meaning of a linguist swims appears in (3): here,
the proposition that x swims, where x is some lin-
guist, is paired with a state that augments the input
state s with the discourse referent x.

(3) λs.{〈swim(x), ŝx〉 | linguist(x)}

More formally, the State.Set monad is defined
as in (4). For each type α, the corresponding
monadic typeMα is a function from states of type
s to sets pairing items of type α with such states.
The η function injects values into the monad, sim-
ply yielding a singleton set consisting of the input

item paired with the input state. The bind opera-
tion (sequences two monadic computations by
sequencing the two computations pointwise, feed-
ing each result of m applied to the input state s
into π and unioning the results.7 Less formally,
the (operation can be thought of as “run m to
determine v in π.”

(4) State.Set Monad

Mα = s→ α× s→ t
aη = λs.{〈a, s〉}

mv (π = λs.
⋃
〈a,s′〉∈ms π[a/v]s

′

Since the only operation on states that we will
be concerned with in this paper is adding discourse
referents, it suffices to leave the states implicit in
the implementation, only explicitly representing
the new discourse referents—much as in compu-
tational implementations of Discourse Represen-
tation Theory (Bos, 2003), where assignments are
not explicitly represented in Discourse Represen-
tation Structures. Consequently, we will represent

7Note that the notation mv (π is just syntactic sugar
for m(λv.π, which may be more familiar.

74

(3) as (5), which can be translated to first-order
logic in much the same way as with DRT.8

(5) {〈swim(x), x〉 | linguist(x)}
; ∃x.linguist(x) ∧ swim(x)

The definition of State.Set sequencing allows us to
define a sequence reduction operation where the
value of m is substituted into π for v and the dis-
course referents and conditions are combined. For
example, the representation of a linguist can be se-
quenced with that of swim and simplified as in (6).

(6) {〈x, x〉 | linguist(x)}y ({〈swim(y), ε〉}
; {〈swim(x), x〉 | linguist(x)}

As in DRT, negation in Charlow’s dynamic se-
mantics is defined in a way that captures dis-
course referents, making them inaccessible for
subsequent reference. Conditionals and universals
are defined in terms of negation, thereby explain-
ing their effects on discourse referent accessiblity;
for representational simplicity, we will instead as-
sume directly defined meanings for conditionals
and universals, as in DRT.

5 Dynamic Combinatory Rules

The rules for combining signs in Dynamic Con-
tinuized CCG appear in Figures 3 and 4, augment-
ing those in Figure 2. We first give an overview of
these rules and then illustrate with examples.9

As Charlow (2014) explains in detail, con-
tinuized grammars can be reconceptualized as op-
erating over an underlying monad, where monadic
lifting is identified with applying the underlying
monad’s sequencing operator (() and monadic
lowering with applying the injection function (η).
Accordingly, we include the rules for monadic
lifting and lowering in Figure 3a-b. The lifting
rule takes a category A with monadic value a of
type Mα and sequences it with a new continu-
ation, yielding a function λk.av (kv of type
(α → Mβ) → Mβ for a tower category with
A on the bottom. Monadic lowering is defined re-
cursively, with the two base cases on the left and

8Explicitly representing the states could simplify the
treatment of discourse referent accessibility; we leave inves-
tigating this alternative for future work.

9The side conditions for these rules (preceded by ‘if’)
sometimes serve to define the rules recursively, as in the ear-
lier Figure 2, and sometimes serve to specify sub-cases of in-
terest. Rules for anaphora resolution are left for future work.

the two recursive cases on the right. The base
cases apply η to the value a on the tower bottom
before filling it in for the continuation; the sec-
ond base case enables lowering to apply to the
CCG categories S/NP and S\NP used in rela-
tive clauses. The recursive cases on the right again
enable multi-level towers to be lowered in one fell
swoop, with the second rule enabling towers with
tower-result categories on the bottom to be fully
lowered.

To implement scope islands, the rules in Fig-
ure 3c together with the unary type constructor 〈·〉
enable categories to specify that their arguments
must be scope delimited by undergoing a reset (i.e.
lower then re-lift) before combination is permit-
ted.10 Figure 3d enables a double-continuation
analysis of determiners by triggering a lowering
when two categories combine to yield a category
with a lowerable tower result. Finally, the rules in
Figure 4 apply when the functor category expects
a monadic value on the tower bottom; the rules
in Figure 4a use η to coerce the input to the right
type, while the ones in Figure 4b invoke lowering
to do so.

An example illustrating exceptional scope for
an indefinite appears in Figure 5a. Even though
the category for if requires the category for its
antecedent someone complains to be reset prior
to combination, the side effect of discourse ref-
erent introduction survives the reset operation—
enabling a wide-scope reading of the indefinite—
irrespective of whether sequence reduction is car-
ried out immediately, as in Figure 5c. (Figure 8
in the appendix shows how side effects are un-
affected by reset in the general case, using the
monadic identity and associativity laws.) Fig-
ure 5b shows how the narrow scope reading for the
indefinite can be derived instead using monadic
type–driven lowering. By contrast, Figure 6 shows
why the narrow scope reading is the only one
available for the universal in if everyone com-
plains, since the reset operation closes off the
scope of the universal, as illustrated in detail in
Figure 6b. The appendix gives two further ex-
amples: Figure 10a illustrates result tower lower-
ing in an inverse linking example—including the
possibility of medial scoping, which is not possi-
ble with Steedman’s CCG—while Figure 9 shows

10The Delimit rules must apply first to ensure that entire
towers are reset. This is accomplished using a cut in the
Prolog implementation; alternatively, these rules could be de-
fined at the level of signs rather than categories.

75

Lift

A
a :Mα

↑
S S

A
av ([] :Mβ

v : α

(a) Monadic Lifting

Lower

A S

S
g[]

a
↓

A
g[aη]

S S

A
g[]

p
↓

A
λx.g[(px)η]

S S

A
g[]

a
↓

C
g[c]

S S

A
g[]

a
↓

C
λk.g[ck]

, if A is

D E

F
S

S

if A is S/Y or S\Y if A : a
↓

C : c

(b) Monadic Lowering (base and recursive)

Delimit Right Delimit Left

...
X/〈Y 〉

...
Y

a b
DR

...
X
c

...
Y

...
X\〈Y 〉

b a
DL

...
X
c

if
...
Y
b
↑,↓

...
Y
b′

by Lower
then Lift,

and
...

X/Y

...
Y

a b′

...
X
c

...
Y

...
X\Y

b′ a

...
X
c

(c) Delimiting Scope with Reset

Lower Result

A : a B : b
↓RS

C : c

if
A : a B : b

D E

F
G

H

: d

and
D E

F
G

H

: d

↓
C : c

(d) Result Lowering

Figure 3: Dynamic Continuized CCG: Monadic Lifting and Lowering

by contrast how universals are trapped in relative
clause scope islands.

6 Prototype Implementation

Barker & Shan suggest that the rules in Figure 2
can form the basis of a practical parser. While the
worst-case complexity of parsing with such rules
has yet to be investigated, the way in which tow-
ers can grow to arbitrary heights is apt to at least
limit the utility of dynamic programming in prac-
tice, potentially posing efficiency problems even
when using aggressive statistical pruning (Clark
and Curran, 2007). However, recent work on pars-
ing with global neural network models has moved
away from dynamic programming solutions, as
the global models are incompatible with dynamic
programming locality requirements. In particular,
Lee et al. (2016) have shown that global neural
models can be used with A* search to obtain a

new state-of-the-art in CCG in parsing accuracy
while maintaining impressive speed, even though
the search space is exponential. As such, given
that our approach respects Steedman’s Principle
of Adjacency, we suggest that it may be possible
to extend CCG statistical parsing methods to the
current setting, thereby resolving scope ambigu-
ities the same way as other derivational ambigui-
ties, rather than in a post-process as in earlier com-
putational work on scope taking. While we are
aware of no large-scale scope-annotated corpora
at present, small-scale corpora do exist that would
enable this conjecture to be tested in future work,
such as the corpora used in work on CCG semantic
parsing (Artzi and Zettlemoyer, 2013, inter alia).

Towards that end, we have implemented a pro-
totype shift-reduce parser in Prolog that uses the
unary and binary combination rules defined in Fig-
ure 2 together with additional rules defined in

76

Forward Application Backward Application
with η with η

X/Y Y
f :Mα→ β a : α

>η

X
faη : β

Y X\Y
a : α f :Mα→ β

<η

X
faη : β

(a) Base CCG Combinators with Monadic Type Coercion
(not exhaustive)

Lower Right Lower Left

...
A

...
B

a :Mα→ β b : γ
↓R

...
C
c : β

...
B

...
A

b : γ a :Mα→ β
↓L

...
C
c : β

if
...
B
b : γ

↓
B′

b′ :Mα

and
...
A B′

a :Mα→ β b′ :Mα

...
C
c : β

B′
...
A

b′ :Mα a :Mα→ β

...
C
c : β

(b) Monadic Type–Driven Lowering

Figure 4: Dynamic Continuized CCG: Monadic
Arguments

Section 5 for implementing Charlow’s monadic
dynamic semantics.11 When implementing the
parser, we found it paid off to only invoke low-
ering where necessary, as discussed in Section 5,
rather than simply invoking lowering whenever
possible. Moreover, in Section 7, we will see how
enforcing scope islands keeps tower heights un-
der control, while also providing an opportunity
to define normal form constraints that limit spu-
rious ambiguity, another important practical con-
sideration. To test the implementation, we devel-
oped an initial test suite of 40 examples of aver-
age length 6.7 words, roughly comparable in size

11https://github.com/mwhite14850/dyc3g

and complexity to Baldridge’s (2002) OpenCCG12

test suite. With the normal form constraints, pars-
ing time was 60ms per item on a laptop, similar
to OpenCCG on the same hardware. By contrast,
with the normal form constraints turned off, the
parsing time increased to 4.6s per item, nearly two
orders of magnitude slower.

7 Normal Form Constraints

A normal form parse is the simplest parse in an
equivalence class of parses yielding the same in-
terpretation. Normal form constraints can play an
important role in practical CCG parsing by elimi-
nating derivations leading to spurious ambiguities
without requiring expensive pairwise equivalence
checks on λ-terms (Eisner, 1996; Clark and Cur-
ran, 2007; Hockenmaier and Bisk, 2010; Lewis
and Steedman, 2014). Continuized CCG can em-
ploy existing CCG normal form constraints at the
base level. The main additional source of spurious
ambiguity is illustrated in Figure 7.13 In the fig-
ure, the two towers at the upper left are combined
via ↑R and ↑L to yield a three-level tower, which
potentially allows an operator to subsequently take
scope between any scopal elements present in the
left and right input signs. However, if this three-
level tower is subsequently lowered without any
operator taking intermediate scope, the derivation
will yield an interpretation that is equivalent to
the one yielded by the simpler derivation that just
combines the two signs in their surface scope order
(i.e., without yielding a three-level tower).14 As
such, the lowering operations triggered by scope
islands or sentence boundaries provide an oppor-
tunity to recursively detect and eliminate such
non–normal form derivations, as follows:

Trigger If a sign is created using a lower op-
eration, check the input sign for a spurious
↑R, ↑L combination.

Base A sign constructed via . . . , ↑R, ↑L, . . . has
a spurious ↑R, ↑L combination.

Non-Scopal A sign that is derived from a non-
scopal input sign—i.e., one whose category

12http://openccg.sourceforge.net/
13Spurious ambiguity can also arise from the inversion of

two indefinites; we leave this issue for future work.
14As noted in Section 5, it remains for future work to add

the lowering rules for multi-level towers that enable Char-
low’s treatment of selective exceptional scope; the normal
form constraints will need to be augmented accordingly.

77

if someone complains Vincent quits

S/〈S〉/〈S〉
S S

NP S\NP S

λxy.(x→ y)η
{〈x, x〉}u([]

u λx.complain(x) quit(v)
↑R,<

S S

S
{〈x, x〉}u([]

complain(u)
DR,↑L,>η

S S

S/〈S〉
{〈complain(x), x〉}p([]

λy.(pη → y)η

DR,↑R,>η
S S

S
{〈complain(x), x〉}p([]

(pη → quit(v)η)η

↓
S

{〈complain(x)η → quit(v)η, x〉}
; ∃x.(complain(x)→ quit(v))

(a) Wide Scope Indefinite

if someone complains Vincent quits

S/〈S〉/〈S〉
S S

S S

λxy.(x→ y)η
{〈x, x〉}u([]

complain(u) quit(v)
Mt→Mt→Mt (t→Mt)→Mt t

DR,↓R,>
S/〈S〉

λy.({〈complain(x), x〉} → y)η

Mt→Mt
DR,>η

S
({〈complain(x), x〉} → quit(v)η)η

Mt

; ∀x.(complain(x)→ quit(v))

(b) Narrow Scope via Type-Driven Lowering

{〈x, x〉}u([]

complain(u)
↓

{〈x, x〉}u({〈complain(u), ε〉}
≡

{〈complain(x), x〉}
↑

{〈complain(x), x〉}p([]

p

(c) Resetting someone complains

Figure 5: Conditional with Indefinite Example

has no tower top—has a spurious ↑R, ↑L
combination if the other input sign has a spu-
rious ↑R, ↑L combination. This case is illus-
trated in Figure 7, where H is such a non-
scopal input sign.

Inversion A sign that is derived by a ↑L, ↑ R in-
version has a spurious ↑R, ↑L combination if
either input sign has a spurious ↑R, ↑ L com-
bination.

Recurse Right A sign that is derived by a C, ↑L
has a spurious ↑R, ↑L combination if the

right input sign has a spurious ↑R, ↑L com-
bination. Note that ↑L,C can derive interme-
diate scope for the left input sign.

Recurse Left A sign that is derived by a ↑R,C
has a spurious ↑R, ↑L combination if the left
input sign has a spurious ↑R, ↑L combina-
tion. Note that C, ↑R can derive intermediate
scope for the right input sign.

These rules have been tested for safety in the
reference implementation by ensuring that all six
(3!) desired interpretations result from a ditransi-

78

if everyone complains Vincent quits

S/〈S〉/〈S〉
S S

S S

λxy.(x→ y)η
(∀x[])η

complain(x) quit(v)
DR,↑L,>η

S S

S/〈S〉
[]

λy.((∀x complain(x)η)η → y)η

DR,↑R,>η
S S

S
[]

((∀x complain(x)η)η → quit(v)η)η

↓
S

((∀x complain(x)η)η → quit(v)η)η

; (∀x.complain(x))→ quit(v)

(a) Narrow Scope for Universal

(∀x[])η
complain(x)

↓

(∀x complain(x)η)η

↑

[]

∀x complain(x)η

(b) Resetting everyone complains

Figure 6: Conditional with Universal Example

A B

C

D E

F H
*** ↑R,↑L,...
A B

D E

G
↑R,...

A B

D E

I
↓,...

J

Figure 7: Non–Normal Form Derivation

tive verb combined with three scopal arguments,
and all 4! desired interpretations result from a 4-
argument verb in combination with four scopal ar-
guments. With the ditransitive verb, all spurious
ambiguity is eliminated, reducing 78 derivations
in an otherwise unambiguous sentence down to
just the six normal form derivations. The rules
are not quite complete though, as six spuriously
equivalent derivations remain with the 4-argument

verb, where 525 derivations are whittled down to
30; safely filtering the remaining six spuriously
equivalent derivations would require more com-
plex rules that track the level at which the ↑R, ↑L
operations apply in the base case, which may not
be worth the added complexity in practice.15

8 Conclusion

We have presented a method of parsing with Dy-
namic Continuized CCG that for the first time de-
rives the exceptional scope behavior of indefinites
in a principled and plausibly practical way. Our
approach (i) extends Barker and Shan’s (2014)
method of parsing with continuized grammars to
only invoke Charlow’s (2014) monadic lifting and
lowering where necessary, (ii) integrates Steed-
man’s (2000) CCG for deriving basic predicate-
argument structure and enriches it with a practical
method of lexicalizing scope island constraints,
and (iii) takes advantage of the resulting scope is-
lands in defining novel normal form constraints for
efficient parsing. We have argued that the account
(i) improves upon Steedman’s (2012) approach to
quantifier scope in terms of theoretical perspicuity
by taking advantage of a dynamic semantics for in-
definites independently needed for anaphora, and
(ii) offers better empirical coverage by allowing
quantifiers to take scope from medial positions and
some subordinate clauses. At the same time, by
respecting the Principle of Adjacency, only com-
bining overtly realized adjacent constituents, our
approach is easy to use with well-studied parsing
algorithms, as with Steedman’s CCG. Although
the normal form constraints are quite effective
in small-scale experiments, it remains for future
work to verify quantitatively whether these con-
straints suffice for practical parsing in conjunc-
tion with statistical filtering techniques. It also re-
mains for future work to computationally explore
the novel analyses made possible by this frame-
work, including order-sensitivity in negative po-
larity items (Barker and Shan, 2014) and selective
exceptional scope for indefinites and focus alter-
natives (Charlow, 2014). Towards that end, we
have made available online an open source proto-
type implementation suitable for testing out gram-
matical analyses.

15Normal form constraints need not be complete to be
practically useful, as any remaining ambiguity can be han-
dled by pairwise checks.

79

Acknowledgments

We thank Carl Pollard, Scott Martin, Mark Steed-
man, the OSU Clippers and Synners Groups, the
Midwest Speech and Language Days 2016 au-
dience and the anonymous reviewers for helpful
comments and discussion. This work was sup-
ported in part by a Targeted Investment in Excel-
lence Grant from OSU Arts & Sciences and by
NSF grant IIS-1319318.

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics 1(1):49–62.

Jason Baldridge. 2002. Lexically Specified Deriva-
tional Control in Combinatory Categorial Gram-
mar. Ph.D. thesis, University of Edinburgh.

Chris Barker. 2002. Continuations and the nature
of quantification. Natural Language Semantics
10(3):211–242.

Chris Barker and Chung-chieh Shan. 2006. Types
as graphs: Continuations in type logical gram-
mar. Journal of Logic, Language and Information
15:331–370.

Chris Barker and Chung-chieh Shan. 2014. Continua-
tions and Natural Language. Oxford Studies in The-
oretical Linguistics.

Johan Bos. 2003. Implementing the bind-
ing and accommodation theory for anaphora
resolution and presupposition projection.
Computational Linguistics 29(2):179–210.
https://aclweb.org/anthology/J/J03/J03-2002.pdf.

Simon Charlow. 2014. On the semantics of exceptional
scope. Ph.D. thesis, New York University.

Stephen Clark and James R. Curran. 2007.
Wide-Coverage Efficient Statistical Pars-
ing with CCG and Log-Linear Models.
Computational Linguistics 33(4):493–552.
https://aclweb.org/anthology/J/J07/.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan
Sag. 2005. Minimal recursion semantics: An intro-
duction. Research on Language and Computation
3:281–332.

Jason Eisner. 1996. Efficient normal-form pars-
ing for Combinatory Categorial Grammar. In
Proceedings of the 34th Annual Meeting of
the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Santa Cruz, California, USA, pages 79–86.
https://doi.org/10.3115/981863.981874.

Donka F. Farkas and Anastasia Giannakidou. 1996.
How clause-bounded is the scope of universals? In
Proceedings of Semantics and Linguistic Theory.
Cornell University, volume 6, pages 35–52.

Danny Fox and Uli Sauerland. 1996. Illusive scope of
universal quantifiers. In Proceedings of the North
Eastern Linguistic Society (NELS). volume 26,
pages 71–86.

Claire Gardent and Laura Kallmeyer. 2003. Semantic
construction in feature-based TAG. In Proceedings
of EACL-03.

Julia Hockenmaier and Yonatan Bisk. 2010. Normal-
form parsing for Combinatory Categorial Grammars
with generalized composition and type-raising. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Coling
2010 Organizing Committee, Beijing, China, pages
465–473. http://www.aclweb.org/anthology/C10-
1053.

Graham Hutton and Erik Meijer. 1996. Monadic Parser
Combinators. Technical Report NOTTCS-TR-96-
4, Department of Computer Science, University of
Nottingham.

Hans Kamp and Uwe Reyle. 1993. From Discourse
to Logic: An Introduction to Modeltheoretic Seman-
tics of Natural Language, Formal Logic and DRT .
Kluwer, Dordrecht, The Netherlands.

Alexander Koller, Joachim Niehren, and Stefan Thater.
2003. Bridging the gap between underspecifica-
tion formalisms: Hole semantics as dominance con-
straints. In Proceedings of EACL-03.

Richard Larson. 1985. Quantifying into NP. MIT
Manuscript.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer.
2016. Global neural CCG parsing with opti-
mality guarantees. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2366–2376.
https://aclweb.org/anthology/D16-1262.

Roger Levy and Galen Andrew. 2006. Tregex
and Tsurgeon: tools for querying and manip-
ulating tree data structures. In Proceedings
of the Fifth International Conference on Lan-
guage Resources and Evaluation (LREC’06). Eu-
ropean Language Resources Association (ELRA).
http://aclweb.org/anthology/L06-1311.

Mike Lewis and Mark Steedman. 2014. Im-
proved CCG parsing with semi-supervised
supertagging. Transactions of the Associa-
tion of Computational Linguistics 2:327–338.
http://aclweb.org/anthology/Q14-1026.

Rebecca Nesson and Stuart M. Shieber. 2006. Simpler
TAG semantics through synchronization. In Pro-
ceedings of the 11th Conference on Formal Gram-
mar.

80

Sylvain Pogodalla and Florent Pompigne. 2012. Con-
trolling extraction in abstract categorial grammars.
In Formal Grammar. Springer, pages 162–177.

Tanya Reinhart. 1997. Quantifier scope: How labor is
divided between QR and choice functions. Linguis-
tics and philosophy 20(4):335–397.

E.G. Ruys and Yoad Winter. 2011. Quantifier scope
in formal linguistics. In Handbook of philosophical
logic, Springer, pages 159–225.

Chung-chieh Shan and Chris Barker. 2006. Explaining
crossover and superiority as left-to-right evaluation.
Linguistics and Philosophy 29(1):91–134.

Mark Steedman. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

Mark Steedman. 2012. Taking Scope: The Natural Se-
mantics of Quantifiers. MIT Press, Cambridge, MA,
USA.

Kristen Syrett. 2015. Experimental support for
inverse scope readings of finite-clause-embedded
antecedent-contained-deletion sentences. Linguistic
Inquiry .

Kristen Syrett and Jeffrey Lidz. 2011. Competence,
performance, and the locality of quantifier raising:
Evidence from 4-year-old children. Linguistic In-
quiry 42(2):305–337.

81

Fact 4.1 (Reset and monadic programs).

*,
m⌫([]

f ⌫
+-
#"
=

m⌫([]
f ⌫

Proof.

*,
m⌫([]

f ⌫
+-
#"
= (m⌫((f ⌫)⌘)" #

=
(m⌫((f ⌫)⌘)u([]

u
"

=
m⌫((f ⌫)⌘u([]

u
Assoc

=
m⌫([]

f ⌫
LeftID

More generally, because " is identified with(, any side e�ects that survive evaluation are free to
take scope post-evaluation: sequencing an evaluated, impure program ⇡ with a new, post-evaluation
continuation/scope k means that any side e�ects in ⇡ inevitably influence the evaluation of k. Thus,
for example, Reset has no e�ect on e.g. a linguist left, see (4.2). Evaluation brings us to a fully
evaluated expression, and Lifting brings us back into a scopal expression. Nothing, however, has
changed. The indefiniteness retains scope over its continuation.

Fact 4.2 (Resetting a linguist left).

*,
a.lingx([]

left x
+-
#"
=

a.lingx([]
left x

Similarly for she left. Reset has no e�ect:

Fact 4.3 (Resetting she left).

*,
prox([]

left x
+-
#"
=

prox([]
left x

However, crucially, the situation is quite di�erent for every linguist left, see Fact 4.4. Evaluating
the derived meaning for this sentence yields a trivial Mt program which just bottles up the truth
condition that every linguist left and lacks either nondeterministic or state-changing e�ects. Evaluation
thus utterly discharges the scope-taking ability of the universal. Even after Lifting back into a
tower, the new continuation scopes over the universal: the quantificational force that inhered in the
pre-evaluated meaning is relegated to a truth condition on the bottom of the derived tower, and that is
where its role ends.

91

Figure 8: Side Effects Not Affected By Reset
(Charlow, 2014, Fact 4.1)

A Supplemental Material

A.1 Exceptional Scope in the Penn Treebank

As noted in Section 2, the empirical status of scope
islands remains unsettled, with further corpus-
based and experimental work necessary to ade-
quately characterize the distribution of true quan-
tifiers. Nevertheless, a search of the Penn Tree-
bank reveals that if scope islands do not represent
hard constraints, then violations are at least very
rare. We used Tregex (Levy and Andrew, 2006) to
search the Wall Street Journal portion of the Penn
Treebank with the pattern

SBAR << /MD|VBD|VBP|VBZ/ << /ˆevery|ˆeach/

and found that only 385 finite subordinate clauses
contain (a form of) every or each, including 80
relative clauses and just 9 conditionals, with none
showing clear evidence of the universal scoping
out of the finite clause. There were, however,
a couple of potential counter-examples, such as
7, that appear amenable to an analysis involving
functional readings, rather than exceptional scope;
these deserve further study.

(7) Tandy said its experience during the short-
age didn’t merit the $5 million to $50 million
investmenti <U.S. Memories is seeking from
eachi investor>.

By contrast, exceptionally scoping indefinites are
quite easy to find.

A.2 Side Effects and Reset

Figure 8 reproduces Charlow’s (2014) proof that
in the general case, side effects in an underlying
monad are not affected by reset if the lift and lower

senator who everyone likes

N N\N/〈S/NP〉
S S

S/NP

senator λqpx.px ∧ qx
(∀y [])η

λx.like(y, x)
DR,↑L,>

S S

N\N
[]

λpx.px ∧ ∀y like(y, x)η
↑L,<

S S

N
[]

λx.senator(x) ∧ ∀y like(y, x)η

Figure 9: Relative Clause Example

operations in the continuized grammar are identi-
fed with the monad’s sequencing (() and injec-
tion (η) operators.

A.3 Relative Clauses and Inverse Linking
Figure 9 gives an example of a relative clause
scope island. The category for the relative pro-
noun requires its clausal argument to be delimited,
triggering a reset via the Delimit Right (DR) rule,
which closes off the semantic scope for everyone.
Not shown is the derivation of the base category
S/NP for everyone likes, which can be derived
using standard CCG rules on the bottom without
invoking empty string elements. The lowering rule
for incomplete clauses is required in order for this
base category to be lowerable.

By contrast, Figure 10 shows how inverse scope
goes through for the nominal PP in every state,
since the preposition category does not require its
argument to be delimited. One-fell-swoop result
lowering implements Larson’s (1985) constraint
barring interleaved inverse scope out of NPs while
preserving the ability of the universal to bind sub-
sequent pronouns. Although Steedman’s (2012)
account handles examples such as the one in Fig-
ure 10, where the inversely linked PP is right pe-
ripheral, his treatment—unlike the present one—
cannot handle examples such as few votersi [in
every state] whoi supported Trump participated in
the protests where the inversely linked PP is in me-
dial position. (Note that the relative clause here
must be interpreted restrictively, and thus is not
tenable as an appositive, contra Steedman’s sug-
gested analysis of related examples.)

82

a voter in every state protests

S S

NP
S

S/N
N N\N/NP

S S

NP S\NP
λk.{〈x, x〉 | []}u(ku

λp.px voter λypx.px ∧ in(x, y)

(∀y state(y)η [])η
y protest

↑L,>
S S

N\N
(∀y state(y)η [])η
λpx.p(x) ∧ in(x, y)

↑L,<
S S

N
(∀y state(y)η [])η

λx.voter(x) ∧ in(x, y)
↓,↑L,↑R,>

S S

NP
(∀y state(y)η {〈x, x〉 | voter(x) ∧ in(x, y)}u([])η

u
↑R,<

S S

S
(∀y state(y)η {〈x, x〉 | voter(x) ∧ in(x, y)}u([])η

protest(u)
↓

S
(∀y state(y)η {〈protest(x), x〉 | voter(x) ∧ in(x, y)})η

; ∀y.state(y)→ ∃x.voter(x) ∧ in(x, y) ∧ protest(x)

(a) Wide Scope for Universal

S S

S S

NP
S

S
(∀y state(y)η [])η

λk.{〈x, x〉 | []}u(ku

voter(x) ∧ in(x, y)
↓

S S

NP
λk.(∀y state(y)η {〈x, x〉 | (voter(x) ∧ in(x, y))η}u(ku)η

(b) Lowering Result Tower

Figure 10: Inverse Linking Example

83

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 84–93,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Multiword Expression-Aware A? TAG Parsing Revisited

Jakub Waszczuk
LIFO

Université d’Orléans
6, rue Léonard de Vinci
45067 Orléans, France

Agata Savary
Laboratoire d’Informatique

Université François-Rabelais Tours
3, place Jean-Jaurès
41000 Blois, France

firstname.lastname@univ-{orleans|tours}.fr

Yannick Parmentier
LIFO

Université d’Orléans
6, rue Léonard de Vinci
45067 Orléans, France

Abstract

A? algorithms enable efficient parsing
within the context of large grammars
and/or complex syntactic formalisms. Be-
sides, it has been shown that promoting
multiword expressions (MWEs) is a ben-
eficial strategy in dealing with syntactic
ambiguity. The state-of-the-art A? heuris-
tic for promoting MWEs in tree-adjoining
grammar (TAG) parsing has certain draw-
backs: it is not monotonic and it com-
poses poorly with grammar compression
techniques. In this work, we propose an
enhanced version of this heuristic, which
copes with these shortcomings.

1 Introduction

In the domain of syntactic parsing, a growing in-
terest is dedicated to A? parsing strategies (Klein
and Manning, 2003) which allow to compute the
most plausible parse tree(s) without having to gen-
erate the space of all the grammar-compliant so-
lutions in advance. Such strategies enable effi-
cient parsing within the context of large gram-
mars and/or complex syntactic formalisms (An-
gelov and Ljunglöf, 2014). They were also shown
to finely combine with probabilistic supertagging,
which can be used to pre-score the individual so-
lutions and, hence, guide the parser to quickly find
the most probable one(s) (Lewis and Steedman,
2014). Once supertagging is correctly performed,
determining the corresponding syntactic structure
is greatly simplified (Bangalore and Joshi, 1999),
and A? parsing allows to backtrack and correct the
possible misestimations of the supertagger.

Lewis and Steedman (2014) showed that it
is possible to obtain a highly accurate and fast
CCG parser by (i) adopting a simple probabilis-
tic model factored on lexical category assign-

ments and (ii) using supertagging techniques to
obtain relatively reliable probability estimations in
a sentence-dependent manner. However, it seems
that this proposal, even though quite generic, is
not easy to extend to the context of a lexicalized
grammar in which various categories of multiword
expressions (MWEs) are represented as elemen-
tary grammar units, which is a standard approach
to modeling MWEs in tree-adjoining grammars,
TAGs (Abeillé and Schabes, 1989; Abeillé, 1995).
While adapting the (Lewis and Steedman, 2014)
approach to continuous MWEs, such as all of a
sudden or a hot dog, could be achieved by using
word lattices to represent ambiguous input seg-
mentations (Constant et al., 2013), non-continuous
MWEs (as in he is making no good decisions)
seem harder to account for.

At the same time, Wehrli (2014) showed that
promoting collocation-based derivations in syn-
tactic parsing – MWEs often are statistical collo-
cations – is potentially beneficial in that it helps
to deal with syntactic ambiguity. MWEs account
for up to 40% of words in a corpus (Gross and
Senellart, 1998) and, due to their lexicalized na-
ture, should be easy to spot before parsing, which
suggests the usefulness of enriching A? parsing
strategies with MWE-dedicated mechanisms.

We previously proposed such a mechanism
(Waszczuk et al., 2016b), extending the (Lewis
and Steedman, 2014) heuristic to a variant allow-
ing multi-anchored TAG elementary trees (ETs).
We showed that considerable speed-up gains can
be achieved by promoting MWE-based analyses
with virtually no loss in syntactic parsing ac-
curacy. This is in contrast to purely statistical
approaches where the idiosyncratic properties of
MWEs are hard to capture, and systematically pro-
moting MWEs may decrease the parser’s accuracy
due to the lack of control of the underlying gram-
mar which would certify the plausibility of the re-

84

Figure 1: A toy TAG grammar

sulting derivations.
However, the MWE-based A? heuristic pro-

posed in (Waszczuk et al., 2016b) has three impor-
tant drawbacks. Firstly, it lacks the proof of cor-
rectness and, therefore, it is not clear whether the
first derivation found by the parser is indeed the
most probable one, a property normally assured by
a well-defined A? heuristic. Secondly, it produces
sub-optimal estimations – the bottom-up Early-
style parser the heuristic relies on (Waszczuk et al.,
2016a) performs predictions in order to identify
the spans over which adjunction can be poten-
tially performed, but the inside probabilities re-
lated to such spans are ignored. Finally, comput-
ing the values of the heuristic is relatively easy (it
can be performed in close to constant time), but it
composes badly with grammar compression. In a
real-world context, different parsing speed-up op-
timizations should ideally combine to provide an
optimal solution. In this work, we propose an en-
hanced version of this heuristic, which copes with
the three drawbacks mentioned above.

We first describe the baseline parser and its
heuristic, and give a motivating example demon-
strating its drawbacks (Sec. 2). Then we formal-
ize a compressed grammar representation (Sec. 3)
and our new parser adapted to it (Sec. 4). We in-
troduce the enhanced heuristic and sketch a proof
of its monotonicity (Sec. 5). Finally we present
some experimental results (Sec. 6), as well as con-
clusions and future work (Sec. 7).

2 Baseline heuristic

In this section, we shortly review the heuristic pro-
posed in (Waszczuk et al., 2016b) and point out its
shortcomings. We assume the toy TAG grammar
from Fig. 1, where each node is marked with a
unique ID. This grammar contains two ETs repre-
senting two possibly discontinuous verbal MWEs

Figure 2: Traversal configurations

(making decisions and is no good). We also as-
sume an input sentence s = s1 . . . sn being a se-
quence of terminal symbols.

The parser in (Waszczuk et al., 2016b) is based
on deduction rules (Shieber et al., 1995), which
serve to infer chart items. Each chart item is a
pair 〈x, r〉, where x is a configuration and r is a
span. Each configuration x represents a position in
the traversal of the corresponding ET tx, and each
span r represents a fragment of the input sentence.
Informally, 〈x, r〉 asserts that the already traversed
part of tx can be matched against the words in r.

Fig. 2 shows three different configurations cor-
responding to the traversal of the ET rooted at
S10. For instance, Fig. 2 (a) stipulates that the
parser has already matched the nodes VP13 and
making16, and that it still needs to match the re-
maining nodes in the ET. We will refer to the
configurations by the nodes at which they are
rooted – i.e., to Fig. 2 (a), (b), and (c) by {V13},
{V13,NP14}, and {VP12}, respectively. Any
configuration x determines the split of the ter-
minals present in tx into two parts: (i) the ter-
minals already scanned by the parser, and (ii)
the remaining terminals, which the parser still
needs to match against the input words. We de-
note by inf (x) and sup(x) the multiset of ter-
minals (written {}ms) in part (i) and (ii), respec-
tively. For instance, inf ({V13}) = {making}ms,
sup({V13}) = {decisions}ms, inf ({AP37}) =
{no, good}ms, sup({AP37}) = {is}ms, etc.1

Let pos(s) = {0, . . . , n} be the set of posi-
tions between the words in s, before s1 and af-
ter sn. In TAGs, the yield of an ET can span
two non-adjacent fragments of s, hence a span
takes the form of a tuple r = 〈i, j, k, l〉, where
i, l ∈ pos(s) and j, k ∈ pos(s) ∪ {−}. 〈j, k〉,
when defined, represents the gap between the two
non-adjacent fragments 〈i, j〉 and 〈k, l〉. For in-
stance, in Fig. 3, 〈2,−,−, 6〉 corresponds to con-
tinuous making no good decisions, 〈2, 3, 5, 6〉 cor-
responds to discontinuous making decisions with

1We extend the standard set operations (sum, difference,
etc.) to multisets.

85

the gap no good, etc. We will refer to spans
of the form 〈i,−,−, l〉 as 〈i, l〉 for short. Each
span r determines the split of the terminals present
in the input sentence into: (i) the terminals in
r, and (ii) the terminals outside r. We denote
by in(r) and out(r) the multiset of terminals
in part (i) and (ii), respectively. For instance,
in(〈2, 6〉) = {making, no, good, decisions}ms,
out(〈2 , 6 〉) = {he, is}ms, in(〈2, 3, 5, 6〉) =
{making, decisions}ms, out(〈2, 3, 5, 6〉) =
{he, is, no, good}ms, etc.

Given a deduced chart item 〈x, r〉, it holds that
inf (x) ⊂ in(r). Moreover, if sup(x) 6⊂ out(r),
then the item is a dead-end – no final derivations
(i.e. the derivations covering the entire input sen-
tence) based on x can be created (the tokens re-
maining to parse do not contain all the terminals
present in the remaining part of tx’s traversal).

To each derivation constructed via the deduction
rules the parser assigns a weight which allows to
discriminate the more probable (lighter) from the
less probable (heavier) derivations. Given a chart
item η, the goal of an A? heuristic h(η) is to esti-
mate α(η), the minimal outside derivation weight
(roughly, the cost remaining to parse the entire in-
put sentence). Formally, α(η) = γ(η) − β(η),2

where γ(η) is the minimal weight of a final deriva-
tion containing η, and β(η) is the minimal weight
of an inside derivation of η (roughly, the cost of
the already parsed part of the sentence).

In (Waszczuk et al., 2016b) we assume a simple
weighting scheme in which each ET t comes with
its own weight ωt ≥ 0 and the weight of a deriva-
tion is the sum of the weights of the participating
ETs. Consider Fig. 3, where each ET has weight
1, and two items: ηgr = 〈{VP21}, 〈1, 2, 6, 6〉〉
corresponding to the derivation marked in green
(solid line), and ηbl = 〈{VP12}, 〈2, 6〉〉 corre-
sponding to the derivation marked in blue (dashed
line). Then, β(ηgr) = 1 and β(ηbl) = 2.

A heuristic should be admissible, i.e., never
overestimate α(η), and monotonic. Monotonic-
ity means that, when a chart item η is inferred
from another item µ contained in its lowest-weight
derivation, h(η) + β(η) should be at least as high
as h(µ) + β(µ) (Klein and Manning, 2002).

The A? heuristic presented in (Waszczuk et al.,
2016b) is based on the observation that the weight
of a particular TAG derivation tree can be refor-

2This equation holds provided that the weighting function
is monotonic in the sense of (Huang and Chiang, 2005).

Figure 3: Projecting the weights of the ETs in a
TAG derivation on the corresponding terminals.
The weights of the ETs are shown, in square
brackets, above their roots, while the projected
weights are shown, also in square brackets, below
the terminals.

mulated as follows. Firstly, the weights of the in-
dividual ETs are projected over the words in the
input sentence to which they are attached. There
are several possible ways of doing that, and the
simplest one is to evenly distribute the weight of
a given ET over its terminals, as shown in Fig. 3.
Secondly, the weight of a derivation tree is rede-
fined as the sum of the weights projected over the
words in the sentence.

When the parser considers a particular item
〈x, r〉, the weights which can be projected over
the words in r are known, but not the weights
which can be projected over the words outside r.
One can easily find the lower-bound estimates of
the latter – i.e., assume that the minimum possi-
ble weight, denoted minw(w) (e.g., minw(is) =
1
3 , minw(making) = 1

2 , etc.), will be projected
over each word w outside r. Consequently, in
(Waszczuk et al., 2016b) we define the baseline
heuristic as:

h(〈x, r〉) =





C(out(r)), if comp(x)

∞, if sup(x) 6⊂ out(r)

ωtx + C(out(r) \ sup(x)), o/w,

where C(m) is the globally minimal cost of scan-
ning all the words in the multiset m (the sum
of their minw values) and comp(x) is true iff
the traversal represented by x is complete (all the

86

nodes in tx have been parsed). For instance:

h(ηgr) = C(out(〈1, 2, 6, 6〉))
= C({he,making, no, good, decisions}ms)

= 1 +
1

2
+

1

3
+

1

3
+

1

2
= 2 +

2

3
,

h(ηbl) = 1 + C({he, is}ms) = 2 +
1

3
.

The heuristic does not take the weight ωtx of
the ET tx being parsed into account if x is com-
plete. This is because ωtx is already added to the
weight of the inside derivation of 〈x, r〉 in this
case. Moreover, comp(x) =⇒ sup(x) = ∅ms.

This heuristic presents some important short-
comings, foremostly non-monotonicity. Given
the predictive nature of the parser, an item
〈x, 〈i, j, k, l〉〉 such that 〈j, k〉 6= 〈−,−〉 is inferred
iff an appropriate derivation, spanning 〈j, k〉, ex-
ists. In Fig. 3, ηgr thus relies on ηbl and when
ηgr is inferred, the weights which can be projected
over the words in 〈2, 6〉 are already known. Never-
theless, h(ηgr) assumes that the globally minimal
weights will be projected over 〈2, 6〉, thus under-
estimating the weights projected over the words no
and good. In Fig. 3, these projections are equal to
1, while minw(no) = minw(good) = 1

3 , since
both words belong to the MWE is no good. As a
result, h(ηgr) + β(ηgr) = 22

3 + 1 is smaller than
h(ηbl) + β(ηbl) = 21

3 + 2, which shows that the
heuristic is not monotonic.

A similar situation occurs in top-down CFG
parsing with prediction when the weight of the
premise item of the prediction rule is not trans-
ferred to the conclusion. Nederhof (2003) shows
that a simplified version of the A? algorithm (the
Knuth’s algorithm, similar to the standard Dijk-
stra’s shortest-path algorithm and relying on no
heuristic) still correctly computes the derivations
with the lowest weights in this case. While it
can be stipulated that his proof applies to the al-
gorithm used in (Waszczuk et al., 2016b), ignor-
ing the weights of the items used for adjunction-
related predictions not only makes the heuristic
non-monotonic, it also means that the already
computed inside weights, which could provide
better estimations of α(x), are sometimes ignored.

3 Grammar representation

The complexity of TAG parsing is polynomial in
the sentence length and linear in the grammar size

(O(n6 ∗ |G|)) (Gardent et al., 2014). With real-
size grammars, especially those containing explic-
itly encoded MWEs, the latter factor can be pro-
hibitive. Therefore – in order to speed up parsing –
an A? algorithm should ideally be combined with
grammar compression, as proposed below.

We assume a twofold representation of a TAG
grammar. It is first transformed into an equiva-
lent directed acyclic graph with ordered outgoing
edges for each node (GDAG). Then, traversals of
the ETs and their subtrees are represented as paths
in finite-state automata (FSAs). This is a simpli-
fied variant of the grammar encoding applied in
(Waszczuk et al., 2016a), where we showed that
grammar compression alone can greatly speed-up
TAG parsing, while using a variant of the stan-
dard, bottom-up Earley-style parser (Alonso et al.,
1999).

Formally, we define a GDAG as a tuple D =
〈VD, ED,ΣD, ND, SD, `D, footD〉 such that VD
and ED are the sets of DAG nodes and (ordered)
edges, respectively, ΣD andND are the sets of ter-
minals and non-terminals, respectively, SD ∈ ND

is the start symbol, `D : VD → ΣD∪ND is a func-
tion assigning non-terminals or terminals to D’s
nodes, and footD : VD → B tells whether a given
node is a foot node. Also, RD, LD ⊂ VD are the
sets of roots and leaves in D, respectively.

Fig. 1 is a straightforward encoding where each
ET is represented by a separate tree. Fig. 4 com-
pares two GDAG representations of three ETs
from Fig. 1: (a) the straightforward encoding, and
(b) the encoding with common subtrees shared
among ETs. Both representations are equivalent,
i.e., they entail the same TAG, which can be ob-
tained by the traversals of the sub-DAGs rooted in
the GDAG roots. For instance, the traversals start-
ing from S10 in (a) and (b) entail the same ET.

We assume that a GDAG satisfies all the rele-
vant, TAG-related well-formedness constraints –
for example, that for each r ∈ RD there exists
at most one v ∈ VD reachable from r such that
footD(v). Moreover, if such v ∈ VD exists, then
`D(r) = `D(v) ∈ ND, i.e., the root and the foot
of an auxiliary tree must be labeled with the same
non-terminal. Each v ∈ VD unambiguously deter-
mines the corresponding ET subtree (ES) rooted at
v, denoted esD(v). Note that, by definition, each
ET is also an ES.

Fig. 5 illustrates two possible FSA encodings,
without and with prefix sharing, of the GDAG

87

Figure 4: Two possible DAG encodings of three
ETs from the grammar in Fig. 1. The values of `D
are put in place of the corresponding nodes, and
the node identifiers (the values of VD) are placed
in subscript on the right. All the edges are implic-
itly oriented downwards.

from Fig. 4 (b).3 From the parsing perspective,
each path in an FSA encoding represents the left-
to-right traversal performed by the parser while
matching, against the input words, a particular ES
of height greater than 0.

Formally, we define an FSA encod-
ing of a GDAG D as a tuple M =
〈QM , δM , SM , headsM 〉 such that QM is the
set of FSA states, δM : QM × VD → QM is
the transition function consuming DAG nodes
(VD thus constitutes the set of the FSA alphabet
symbols), SM ⊂ QM is the set of start states,
and headsM : QM → 2VM is a function which
returns the final symbols outgoing from a given
state. For convenience, we represent the particular
states in the FSA encoding as dotted rules, e.g.,
S1 → NP2 • VP3 corresponds to the state
reached by following the symbol NP2 on the path
(NP2,VP3, S1). Informally, headsM represent
the left-hand-sides of such dotted rules.

Each x ∈ VD ∪ QM represents a particular
traversal configuration (cf. Sec. 2): x ∈ VD stip-
ulates that the parser has matched esD(x), while
x ∈ QM stipulates that it has matched all the
ESs on the path from one of the states in SM to
x ∈ QM . For instance, VP3 → V4NP2• stip-
ulates that the parser has matched both esD(V4)
and esD(NP2).

As mentioned in Sec. 2, when no gram-
mar compression (i.e. no subtree or prefix
sharing) occurs, each traversal configuration

3While a minimal FSA encoding, including both pre-
fix and suffix sharing, might seem optimal, we empirically
showed in (Waszczuk et al., 2016a) that it does not bring sig-
nificant improvements over the prefix-tree encoding in TAG
parsing.

Figure 5: Two possible FSA encodings of the
GDAG illustrated in Fig. 4 (b): (a) a simple FSA
encoding in which each GDAG traversal is repre-
sented by a distinct path, and (b) a prefix-tree-like
FSA encoding.

corresponds to exactly one ET tx. With gram-
mar compression, however, there can be many
ETs corresponding to a given x ∈ VD ∪ QM .
We denote their set by Tx. For instance, in
Fig. 4 (b) and 5 (b), TV4 = TVP3→V4•NP2 =
TVP12→V4•NP14 = {esD(S1), esD(S10)},
TNP7→•N8 = {esD(v) : v ∈ RD}, etc.

This brings us to the second issue with the
heuristic defined in Sec. 2. One of the first steps
of computing the value of h(〈x, r〉) is to check
whether sup(x) ⊂ out(r). This step allows to
obtain better estimations of α(〈x, r〉) – namely, to
exclude the dead-end chart items, which cannot
possibly lead to final derivations. However, with
grammar compression, sup depends not only on
the configuration x, but also on the corresponding
ET t ∈ Tx. Hence, we define a generalized ver-
sion of sup as a two-argument function sup(x, t)
which determines the multiset of words remaining
to parse on t’s traversal starting from x.

When estimating α(〈x, r〉), the parser needs to
consider all the different ET traversals contain-
ing x, leading to different ETs, and with differ-
ent multisets of the words remaining to complete
the traversal. Assuming the prefix-tree grammar
compression and that q0 is the root of the prefix-
tree FSA encoding, Tq0 is the set of all grammar
ETs. Therefore, when grammar compression is
used, computing h’s values is O(N), where N is
the number of ETs.

4 Enhancing the baseline A? TAG parser

In (Waszczuk et al., 2016b,a) we put forward a
version of the bottom-up, Earley-like parser de-
scribed in (Alonso et al., 1999) to test the idea of
promoting MWEs in A? parsing. We now formal-
ize an enhanced version of this parser, adapted to

88

AX (axiom):
(0,0):〈q0,〈i,i〉〉a

i∈pos(s)\{n}
q0∈SM

SC (scan): (w,w′):〈q,〈i,j,k,l〉〉a
(w,w′):〈δM (q,v),〈i,j,k,l+1〉〉a

v∈LD : `D(v)=sl+1

δM (q,v) defined

DE (deactivate): (w,w′):〈q,〈i,j,k,l〉〉a
(w+[ωesD(v)|v∈RD],w′):〈v,〈i,j,k,l〉〉p v∈headsM (q)

PS (pseudo-subst.): (w1,w′1):〈q,〈i,j,k,l〉〉a (w2,w′2):〈v,〈l,j′,k′,l′〉〉p
(w1+w2,w′1+w

′
2):〈δM (q,v),〈i,j∪j′,k∪k′,l′〉〉a δM (q,v) defined

SU (substitution): (w1,w′1):〈q,〈i,j,k,l〉〉a (w2,0):〈v,〈l,l′〉〉p
(w1+w2,w′1):〈δM (q,v′),〈i,j,k,l′〉〉a

v′∈LD : `D(v′)=`D(v)∧¬footD(v′)
δM (q,v′) defined

v∈RD

FA (foot-adjoin): (w1,0):〈q,〈i,l〉〉a (w2,w′2):〈v,〈l,j′,k′,l′〉〉p
(w1,w2+w′2+[A(v)|v/∈RD]):〈δM (q,v′),〈i,l,l′,l′〉〉a

v′∈LD : `D(v′)=`D(v)∧footD(v′)
δM (q,v′) defined

v∈RD =⇒ (j′,k′)=(−,−)

RA (root-adjoin): (w1,w′1):〈w,〈i,j,k,l〉〉p (w2,w′2):〈v,〈j,j′,k′,k〉〉p
(w1+w2,w′2):〈v,〈i,j′,k′,l〉〉p

w∈RD∧(j,k)6=(−,−)
`D(w)=`D(v)

v∈RD =⇒ (j′,k′)=(−,−)

Table 1: Weighted inference rules of the Earley-style, bottom-up parser, where: (in PS) i ∪ j is equal to
i if j = − and j otherwise, and (in DE and FA) [x|p] = x if p is true and [x|p] = 0 otherwise.

the grammar representation introduced in Sec. 3,
and to the new heuristic defined in Sec. 5.

We say that a chart item 〈x, r〉 is active if x ∈
QM , and that it is passive if x ∈ VD. We also write
〈q, r〉a or 〈v, r〉p to refer to an active or a passive
item, respectively.

Tab. 1 specifies the inference rules of the parser,
using the weighted deductive framework (Shieber
et al., 1995; Nederhof, 2003). Each of the in-
ference rules takes zero, one or two chart items
on input (premises, presented above the horizon-
tal line) and yields a new item (conclusion, pre-
sented below the line) to be added to the chart
if the conditions given on the right-hand side are
met. Besides, to each item η in each rule a
pair of weights (w,w′), given before the colon,
is assigned, thus specifying how to compute the
weights corresponding to the conclusion based on
the weights corresponding to the premises. The
meaning of w′ and A (the latter used to compute
w′s values in the FA rule), both specific to the en-
hanced heuristic, will be detailed in Sec. 5. The
value w, on the other hand, represents the weight
of η’s inside derivation. The idea of computing
pairs of weights using inference rules comes from
Nederhof (2003), who showed that such a solution
can be used to overcome the non-monotonicity is-
sue in top-down CFG parsing with prediction.

The way the inside weights are computed by
the parser corresponds to the assumption that the
probability of a derivation is the product of the
probabilities of the participating ETs, hence the

weight computed for the conclusion item is the
sum of the weights of the premise items, with two
exceptions. The DE inference rule, responsible for
matching full ESs, adds the weight esD(v), pro-
vided that esD(v) is an ET. The FA rule, used
to predict that adjunction over a particular span
r is possible, does not transfer the weight of the
premise item spanned over r. In the baseline
parser, the same behavior was precisely the rea-
son of the non-monotonicity in Fig. 3 discussed
in Sec. 2. However, now this weight is accounted
for in w′, which preserves monotonicity, as shown
below.

5 Enhanced heuristic

We now propose an enhanced version of the
heuristic described in Sec. 2, with the goal of
overcoming the issues related to non-monotonicity
and grammar compression. However, for the sake
of clarity, we start by assuming that no grammar
compression is performed.

As mentioned before, w represents the weight
of an inside derivation of the corresponding item
η. The weight w′, on the other hand, represents
(roughly) the weight of η’s witness derivation, i.e.,
the previously obtained derivation which can fill
η’s gap. Consider Fig. 6 (b) and three chart items:
µgr = 〈S8, 〈1, 2, 4, 5〉〉, µbl = 〈S3, 〈2, 2, 3, 4〉〉,
and µrd = 〈S6, 〈2, 3〉〉. Then, the derivation
delimited by the green solid line is µgr ’s inside
derivation, while the derivation delimited by the
blue dashed line is µgr ’s witness derivation. Sim-

89

Figure 6: Copy language

ilarly, the derivation delimited by the blue line is
µbl ’s inside derivation, while the derivation delim-
ited by the red dotted line is µbl ’s witness. Finally,
the derivation delimited by the red line is µrd ’s in-
side derivation, but µrd has no witness derivation,
since it is not gapped. In general, for any non-
gapped item η, w′ = 0.

Given a configuration x ∈ VD ∪QM , we define
x’s amortized weight as:

A(x) = ωtx − C(sup(x)).

For instance, in Fig. 6 (a), A(S3) = A(S10) = 1
2

(since minw(a) = minw(b) = 1
2), and A(S6) =

A(S1) = 1. A(x) accounts for the weight of the
ET tx, and for the fact that tx may still contain
some terminals which need to be consumed (w.r.t.
to the position of x in tx’s traversal). Thus, A(x)
can be intuitively understood as the weight of the
already parsed part of tx.

A version of h which performs no dead-end de-
tection, i.e. never takes the ∞ value unlike h in
Sec. 2, but, otherwise, provides identical estima-
tions as h, can be defined in terms of A as:

hspl (〈x, r〉) =

{
C(out(r)), if x ∈ RD
A(x) + C(out(r)), o/w.

We also define the amortized weight of a deriva-
tion δ as the sum of the amortized weights of the
ESs (more precisely, their roots) present in δ. For
instance, in Fig. 6 (b), the amortized weight of
µbl ’s inside derivation is A(S6) +A(S3) = 1 + 1

2 .
The weight w′, attached to each chart item η,
is precisely the amortized weight of η’s witness
derivation (if η is gapped, otherwise w′ = 0).

Then, given a chart item η = 〈x, r〉 such that
r = 〈i, j, k, l〉 and the corresponding weight w′,
we define the enhanced A? heuristic as:

hadj (η) =

{
C(rest(r)) + w′, if x ∈ RD
A(x) + C(rest(r)) + w′, o/w,

Figure 7: A fragment of an inside derivation of
〈S8, 〈1, 2, 4, 5〉〉p, represented as a hyperpath.

where rest(r) = out(r) \ in(〈j, k〉), i.e. the
multiset of words outside r but not in the gap,
whose cost is already accounted for in w′. The
advantage over the baseline heuristic is precisely
that, instead of assuming that the lowest possi-
ble weights will be projected over all words in the
gap, the weights of the existing derivations span-
ning the gap are considered. The disadvantage is
that, by not checking that the remaining part of the
sentence contains all the tokens required by tx’s
traversal, hadj does not detect the dead-end items,
which is the price to pay for better integration with
grammar compression techniques (see below).

Fig. 7 shows a fragment of the inference corre-
sponding to µgr ’s inside derivation in Fig. 6 (b).
Each node in Fig. 7 represents a deduced chart
item, and each hyperarc (which connects one tar-
get node with zero, one or two tail nodes) repre-
sents an application of an inference rule. Besides,
to each item the corresponding pair of weights
(w,w′) is attached via an undirected dashed edge.
In particular, the pair attached to 〈S8, 〈1, 2, 4, 5〉〉
is (1, 1.5), since the amortized weight of its wit-
ness derivation is 1.5. Note that the baseline
heuristic would assume that the globally minimal
weights minw(a) = 0.5 are projected over both a
in the gap and, thus, underestimate the gap’s pars-
ing cost as 1.

The enhanced heuristic composes smoothly
with grammar compression techniques. To re-
call, under compression, each configuration x ∈
VD ∪ QM can belong to several ETs and, conse-

90

quently, to several ET traversals. To ensure that
the heuristic does not overestimate, it is sufficient
to calculate the minimal amortized weight, i.e., as-
sume that the least-weight traversal will be taken
from any given x ∈ VD ∪QM :

A(x) = min{ωt − C(sup(x, t)) : t ∈ Tx}. (1)

The definition of hadj remains unchanged. The
values of A can be pre-computed on a per-
grammar basis, just as the values of C◦rest4 can be
pre-computed on a per-sentence basis,5 hence the
robustness of hadj w.r.t. grammar compression.

To show that hadj is monotonic, it is sufficient to
consider each inference rule from Tab. 1 separately
and to show that the total weight (w + hadj (η))
it computes for the conclusion item η is at least
as high as the total weight of any of its premise
items. As an example, we sketch below the proof
of monotonicity of the PS rule.

Proposition 1. Let v ∈ VD and q ∈ QM such that
δM (q, v) is defined. Then, TδM (q,v) ⊂ T (q).

Proof. Follows from the fact that any FSA path
crossing δM (q, v) must also cross v.

Observation 1. Let v ∈ VD, q ∈ QM such
that δM (q, v) defined, and t ∈ TδM (q,v). Then,
C(sup(δM (q, v), t)) = C(sup(q, t))− C(inf (v)).

Proposition 2. Let v ∈ VD and q ∈ QM such that
δM (q, v) defined. Then,

A(δM (q, v)) ≥ A(q) + C(inf (v)).

Proof. Follows from Pr. 1, Ob. 1, and Eq. 1.

Proposition 3. Let η = 〈x, r〉 be a chart item such
that x /∈ RD, r = 〈i, j, k, l〉, and (w,w′) be the
corresponding weights. Then,

w + w′ ≥ C(in(〈i, l〉))− C(inf (x)).

Proof. The LHS is the total weight projected by
η’s inside derivation over 〈i, l〉, with the exception
of the words in inf (x). The RHS is, by definition,
a lower-bound for the projected weight.

Observation 2. In the PS rule, it holds that:
C(rest(〈i, l′〉)) = C(rest(〈i, l〉))− C(in(〈l, l′〉)).

Proposition 4. The PS rule is monotonic.
4The symbol ◦ stands for function composition.
5In both cases dynamic programming techniques can be

used to speed up the process.

Proof. Let η be the conclusion and µ be the active
premise. Then:

w1 + w2 + hadj (η)− w1 − hadj (µ) = (hadj)

w2 +A(δM (q, v)) + C(rest(〈i, l′〉)) + w′1 + w′2
−A(q)− C(rest(〈i, l〉))− w′1 = (Ob. 2)

w2 +A(δM (q, v)) + w′2 −A(q)

− C(in(〈l, l′〉)) ≥ (Prop. 2)

w2 + C(inf (v)) + w′2
− C(in(〈l, l′〉)) ≥ 0. (Prop. 3)

It can be shown that PS is monotonic w.r.t. its pas-
sive premise item in a similar fashion.

6 Experiments

We repeated the experimental evaluation proposed
in (Waszczuk et al., 2016b) in order to compare
the new heuristic (cf. Sec. 5) with the baseline
(cf. Sec. 2). The experiment was based on the
version of the Składnica treebank (Świdziński and
Woliński, 2010) annotated with MWEs (Savary
and Waszczuk, 2017). For each sentence in the
corpus, the grammar was first reduced to only
those ETs whose terminals occurred in the sen-
tence, and compressed according to the methods
described in Sec. 3. Then, the parser (specified
in Sec. 4) was run and the search-space-size re-
ductions stemming from promoting MWEs (a be-
havior obtained by assigning the weight 1 to each
ET in the grammar) were measured. We also im-
plemented runtime verification tests which empir-
ically confirmed the monotonicity of (the imple-
mentation of) hadj .

We observed only minor differences between
the results obtained with both heuristics. On av-
erage (at most, respectively), hadj led to search-
space-size reductions of 16.8% (90.6%) vs. 18.1%
(90.7%) reductions obtained with h, a drop in per-
formance related to the lack of dead-end detection
in hadj . Recall, however, that calculating h’s val-
ues can be costly (linear w.r.t. the number of ETs)
when grammar compression is used, and can be
thus infeasible in practical parsing applications. In
our experiment, grammar compression alone de-
creased (on average) the search-space to less than
1
3 of its original size.

7 Conclusions and future work

Our previous state-of-the-art A? heuristic for pro-
moting MWEs in TAG parsing is not monotonic

91

and it composes poorly with grammar compres-
sion methods. We have presented here an en-
hanced version of this heuristic, which improves
the estimations of the outside derivation weights
by making the predictions of the weights related
to items’ gaps more accurate. The new version is
monotonic and combines with our grammar com-
pression techniques with no significant computa-
tional overhead. The price to pay is the lack of
detection of dead-end items, which partially ex-
plains the slight drop in search-space-size reduc-
tions in comparison with the baseline heuristic.
To the best of our knowledge, this is the first ap-
proach explicitly addressing interactions between
A? parsing and grammar compression.

For future work, we plan to repeat the experi-
ment with a truly weighted grammar, i.e., with the
weights corresponding to single-anchored ETs be-
ing estimated from a treebank. We believe that
such an experiment will lead to more insightful
conclusions as to the pros and cons of the new
heuristic. We also plan to optimize the imple-
mentation of the parser, in order to verify that
the search-space-size reductions transfer to pro-
portional reductions in parsing time.

Acknowledgments

This work has been supported by the French Min-
istry of Higher Education and Research via a doc-
toral grant, by the French Centre-Val de Loire Re-
gion Council via the APR-AI 2015-1850 ODIL
project, by the French National Research Agency
(ANR) via the PARSEME-FR6 project (ANR-14-
CERA-0001), and by the European Framework
Programme Horizon 2020 via the PARSEME7 Eu-
ropean COST Action (IC1207).

We are grateful to the anonymous reviewers for
their insightful comments to the first version of
this paper.

References
Anne Abeillé. 1995. The Flexibility of French Idioms:

A Representation with Lexicalised Tree Adjoining
Grammar. In M. Everaert, E-J. van der Linden,
A. Schenk, and R Schreuder, editors, Idioms: Struc-
tural and Psychological Perspectives, Lawrence Erl-
baum Associates, chapter 1.

Anne Abeillé and Yves Schabes. 1989. Pars-
ing idioms in lexicalized tags. In Proceedings

6http://parsemefr.lif.univ-mrs.fr
7http://www.parseme.eu

of the Fourth Conference on European Chap-
ter of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Stroudsburg, PA, USA, EACL ’89, pages 1–9.
https://doi.org/10.3115/976815.976816.

Miguel Alonso, David Cabrero, Eric Villemonte de la
Clergerie, and Manuel Vilares Ferro. 1999. Tabular
algorithms for TAG parsing. In EACL 1999. pages
150–157. http://acl.ldc.upenn.edu/E/E99/E99-
1020.pdf.

Krasimir Angelov and Peter Ljunglöf. 2014. Fast Sta-
tistical Parsing with Parallel Multiple Context-Free
Grammars. In EACL. volume 14, pages 368–376.

Srinivas Bangalore and Aravind K. Joshi. 1999.
Supertagging: An Approach to Almost
Parsing. Comput. Linguist. 25(2):237–265.
http://dl.acm.org/citation.cfm?id=973306.973310.

Matthieu Constant, Joseph Le Roux, and Anthony
Sigogne. 2013. Combining compound recog-
nition and PCFG-LA parsing with word lat-
tices and conditional random fields. ACM
Trans. Speech Lang. Process. 10(3):8:1–8:24.
https://doi.org/10.1145/2483969.2483970.

Claire Gardent, Yannick Parmentier, Guy Perrier, and
Sylvain Schmitz. 2014. Lexical Disambiguation
in LTAG using Left Context. In Zygmunt Vetu-
lani and Joseph Mariani, editors, Human Language
Technology. Challenges for Computer Science and
Linguistics. 5th Language and Technology Confer-
ence, LTC 2011, Poznan, Poland, November 25-27,
2011, Revised Selected Papers, Springer, volume
8387, pages 67–79. https://doi.org/10.1007/978-3-
319-08958-4_6.

Maurice Gross and Jean Senellart. 1998. Nouvelles
bases statistiques pour les mots du français. In Pro-
ceedings of JADT’98, Nice 1998. pages 335–349.

Liang Huang and David Chiang. 2005. Proceed-
ings of the Ninth International Workshop on Pars-
ing Technology, Association for Computational Lin-
guistics, chapter Better k-best Parsing, pages 53–64.
http://aclweb.org/anthology/W05-1506.

Dan Klein and Christopher D. Manning. 2002. A*
Parsing: Fast Exact Viterbi Parse Selection. Tech-
nical Report dbpubs/2002-16, Stanford University.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: Fast exact viterbi parse selection. In
Proceedings of the 2003 Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics.
http://www.aclweb.org/anthology/N03-1016.

Mike Lewis and Mark Steedman. 2014. A* CCG Pars-
ing with a Supertag-factored Model. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Asso-
ciation for Computational Linguistics, pages 990–
1000. http://aclweb.org/anthology/D14-1107.

92

Mark-Jan Nederhof. 2003. Weighted De-
ductive Parsing and Knuth’s Algo-
rithm. Comput. Linguist. 29(1):135–143.
https://doi.org/10.1162/089120103321337467.

Agata Savary and Jakub Waszczuk. 2017. Pro-
jecting multiword expression resources on a
polish treebank. In Proceedings of the 6th
Workshop on Balto-Slavic Natural Language
Processing. Association for Computational
Linguistics, Valencia, Spain, pages 20–26.
http://www.aclweb.org/anthology/W17-1404.

Stuart M Shieber, Yves Schabes, and Fernando CN
Pereira. 1995. Principles and implementation of de-
ductive parsing. The Journal of logic programming
24(1):3–36.

Jakub Waszczuk, Agata Savary, and Yannick Parmen-
tier. 2016a. Enhancing practical TAG parsing effi-
ciency by capturing redundancy. In 21st Interna-
tional Conference on Implementation and Applica-
tion of Automata (CIAA 2016). Séoul, South Korea,
Proceedings of the 21st International Conference
on Implementation and Application of Automata
(CIAA 2016). https://hal.archives-ouvertes.fr/hal-
01309598.

Jakub Waszczuk, Agata Savary, and Yannick Parmen-
tier. 2016b. Promoting multiword expressions in
a* tag parsing. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers. The COLING 2016
Organizing Committee, Osaka, Japan, pages 429–
439. http://aclweb.org/anthology/C16-1042.

Eric Wehrli. 2014. The relevance of colloca-
tions for parsing. In Proceedings of the
10th Workshop on Multiword Expressions
(MWE). Association for Computational Lin-
guistics, Gothenburg, Sweden, pages 26–32.
http://www.aclweb.org/anthology/W14-0804.

Marek Świdziński and Marcin Woliński. 2010. To-
wards a bank of constituent parse trees for Polish.
In Petr Sojka, Aleš Horák, Ivan Kopeček, and Karel
Pala, editors, Text, Speech and Dialogue: 13th In-
ternational Conference, TSD 2010, Brno, Czech Re-
public. Springer-Verlag, Heidelberg, volume 6231
of Lecture Notes in Artificial Intelligence, pages
197–204.

93

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 94–101,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Single-Rooted DAGs in Regular DAG Languages:
Parikh Image and Path Languages

Martin Berglund
Center for AI Research, CSIR
Dept. of Information Science

Stellenbosch University
pmberglund@sun.ac.za

Henrik Björklund
Dept. of Computing Science
Umeå University, Sweden
henrikb@cs.umu.se

Frank Drewes
Dept. of Computing Science
Umeå University, Sweden
drewes@cs.umu.se

Abstract

In a recent survey (Drewes, 2017) of re-
sults on DAG automata some open prob-
lems are formulated for the case where
the DAG language accepted by a DAG au-
tomaton A is restricted to DAGs with a
single root, denoted by L(A)u. Here we
consider each of those problems, demon-
strating that: (i) the finiteness of L(A)u
is decidable, (ii) the path languages of
L(A)u can be characterized in terms of
the string languages accepted by partially
blind multicounter automata, and (iii) the
Parikh image of L(A)u is semilinear.

1 Introduction

In many applications such as natural language pro-
cessing (NLP) great value can be extracted from
extending beyond the strings and trees which are
most commonly offered by traditional language
formalisms. In the other direction, however, mov-
ing to general graphs is a step too far for many
NLP tasks, and directed acyclic graphs form a nat-
ural step between trees and general graphs, en-
forcing the hierarchical nature of sentences. For
these reasons, the study of DAG automata, devices
which accept a class of languages known as the
regular DAG languages, have drawn some interest,
see for example Blum and Drewes (2017); Chiang
et al. (2016). (Here, we only consider the ordered
case, but this makes no practical difference to the
results we present, which apply equally to the un-
ordered case.) In a recent survey (Drewes, 2017)
the distinction between DAG automata which per-
mit multiple roots (which is more natural in the
way the formalism is defined) and ones restricted
to a single root (which is natural from the perspec-
tive of many NLP applications) is considered at
some length. The latter case is, somewhat surpris-

ingly, significantly stronger, and the survey states
four open questions relating to it. We consider all
these questions here, with the following outcomes:

Problem 1. Given a DAG automatonA as input,
is the problem of deciding whether L(A)u is finite
decidable? We demonstrate that it is.

Problem 2. Is there a natural characterization of
the path languages of the regular DAG languages
restricted to a single root? We relate, in both di-
rections, this class of languages to the string lan-
guages accepted by partially blind multicounter
automata (a formalism akin to a string-accepting
Petri net). The only caveat preventing a full
equivalence is that a single-rooted DAG automa-
ton simulating a multicounter automaton will con-
tain some extraneous strings, which are, however,
clearly labeled by an additional alphabet symbol.

Problem 3. This is a variation on Problem 2,
asking for a characterization of the path languages
of regular DAG languages intersected with regu-
lar languages. Intersection with a suitably cho-
sen regular language makes the language equiv-
alence with multicounter automata direct. In fact,
as noted above, an intersection with a language of
the form Σ∗ is already sufficient to achieve this.

Problem 4. Are the Parikh images (see
e.g. (Parikh, 1961)) of L(A) and L(A)u semilin-
ear for all DAG automata A? We demonstrate that
they are.

These results provide further theoretical ev-
idence for the claim by Chiang et al. (2016)
and Drewes (2017) that the regular DAG lan-
guages exhibit an appropriate level of complexity
for the formalization of linguistically reasonable
sets of Abstract Meaning Representations (Ba-
narescu et al., 2013) and that it, in particular, is not
advisable to consider languages of the form Lu in-
stead. It was already known (Blum and Drewes,

94

2017; Chiang et al., 2016) that the path languages
of regular DAG languages have the desired prop-
erty of being regular. Thanks to the results of this
paper, we now also know that their Parikh im-
ages are semilinear, which is another highly desir-
able property. Moreover, while it was concluded
in the above-mentioned papers that the single-root
restriction yields too powerful path languages, we
can now precisely characterize how powerful they
actually are.

2 Preliminaries

For n ∈ N, we write [n] for the set {1, . . . , n}. For
a vector I ∈ Nn, we write Ii for the ith element
of I . The empty string is denoted ε. If f is an is
a function from set S to set T , we extend it to fi-
nite sequences in S∗ by letting f(s1s2 · · · sn) =
f(s1)f(s2) · · · f(sn). Given a string language
L ⊆ S∗ (or a regular expression denoting such
a language) we let Lε denote L ∪ {ε}.

Given two strings u and v over alphabet Σ, the
shuffle of u and v, written u � v, is the set of all
interleavings of u and v. We define the shuffle in-
ductively. The base case is ε� u = u� ε = {u},
for every string u ∈ Σ∗. If u = au′ and v = bv′,
with a, b ∈ Σ, then u� v = a(u′� v)∪ b(u� v′).
For languages L1 and L2 we have L1 � L2 =
{u � v | u ∈ L1 ∧ v ∈ L2}. The shuffle
closure of a language L, written L�, is the set
of interleavings of zero or more strings from L,
i.e., L� =

⋃∞
i=0 L

�i , where L�0 = {ε} and
L�i+1 = L� L�i .

The graphs we are interested in here are di-
rected, node-labeled, and ordered, in the sense that
for each node, there is an order on the incoming
and on the outgoing edges from the node. We for-
mally define them as follows.

Definition 1. Let Σ be an alphabet. A graph over
Σ is a tuple G = (V,E, in, out , lab), where V
and E are the sets of nodes and edges, respec-
tively, in : V → E∗ and out : V → E∗ assign
incoming and outgoing edges to the nodes, and
lab : V → Σ assigns labels to the nodes. An edge
goes from precisely one node to precisely one, that
is, |in−1(e)| = |out−1(e)| = 1 for all e ∈ E.

A (directed) path in such a graph is a sequence
v0e1v1e2 · · · vn such that, for each i ∈ [n], ei
points from vi−1 to vi, i.e., it occurs in both
out(vi−1) and in(vi). Such a path is a cycle if
v0 = vn and n > 0. A graph is a DAG (directed
acyclic graph) if it has no cycles.

We next give the definition, taken from (Blum
and Drewes, 2017; Chiang et al., 2016), of the au-
tomata on DAGs that interest us.

Definition 2. A DAG-automaton is a structure
A = (Q,Σ, R), where Q is a finite set of states, Σ
is an alphabet, and R is a finite set of rules. Each
rule in R has the form α

σ←→ β, where α, β ∈ Q∗
and σ ∈ Σ.

For a DAG G = (V,E, in, out , lab) over Σ a
run of the automaton A = (Q,Σ, R) on G is an
assignment ρ : E → Q of states to the edges of G
such that

ρ(in(v))
lab(v)←−−→ ρ(out(v)) ∈ R

for every node v ∈ V . A DAG G is accepted by
A if there is a run of A on G. The language con-
sisting of all connected DAGs that are accepted (or
recognized) byA is denoted byL(A). A DAG lan-
guage that can be recognized by a DAG automaton
is called a regular DAG language.

Note that we include only connected DAGs in
L(A). Thus, in the following we implicitly as-
sume that all DAGs we consider are connected.
This is reasonable because a DAG is accepted by
A if and only if all its connected components are;
for details, see (Drewes, 2017).

A node in a DAG is a root if it has no incoming
edges. Given a DAG language L, we write Lu for
the set of all graphs in L that are single-rooted,
i.e., that have exactly one root. A node is a leaf if
it has no outgoing edges.

Definition 3. A partially blind multicounter au-
tomaton is a machined defined by a tuple M =
(Q,Σ,m, δ, q0, F) where, as in ordinary (non-
deterministic) finite-state automata, Q is the finite
set of states, Σ is the input alphabet, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of final states.
Furthermore, m ∈ N is the number of counters,
and δ ⊆ (Q× Σε × Nm × Nm ×Q) is the transi-
tion relation.

The counters are numbered from 1 to m and
take values from N. The automaton starts read-
ing a string in state q0 and with all counters
set to 0. When the automaton makes a transi-
tion (p, σ,D, I, q), the vector D is first subtracted
from the counter values. If this results in some
counter having a negative value, the transition and
the computation fail (i.e. the transition cannot be
taken). Otherwise, I is added to the counters, σ is
read, and the automaton changes state to q.

95

The automaton accepts w ∈ Σ∗ if, after read-
ing the string, it can reach a configuration with an
accepting state and all counters set to 0. In this
case, w belongs to the language L(M) accepted
(or recognized) by M .

Note that there is no explicit zero-testing dur-
ing the computation, only at the end. This
is the “partial blindness”. As a consequence,
the automata, as opposed to 2-counter automata
with zero tests, are not Turing complete. In-
stead, they can be seen as string-accepting vec-
tor addition systems with states (VASS) or Petri
nets (Greibach, 1978). Among other things, this
means that the emptiness problem is decidable for
these machines (Kosaraju, 1982; Mayr, 1984).

Since we are only interested in partially blind
multicounter automata here, we will simply refer
to them as multicounter automata.

3 Semilinearity and finiteness

Let Σ be an alphabet and let σ1, σ2, . . . , σn be an
(arbitrary) ordering of its elements. If s is a string
over Σ, the Parikh image of s is a vector ψ(s) such
that ψ(s)i is the number of occurrences of σi in s
for every i ∈ [n]. Similarly, for a DAG G, ψ(G)i
is the number of occurrences of σi as the label of
a node in G. For a language L, over strings or
graphs, ψ(L) is the set {ψ(s) | s ∈ L}.

A subset X of Nn is linear if there are vectors
v0, v1, . . . , vn such that

X = {v0 + i1v1 + · · · invn | i1, . . . , in ∈ N}.

A subset of Nn is semilinear if it is the union of a
finite number of linear sets. In the following, we
are going to use the fact that the semilinear sets
are effectively closed under intersection and pro-
jection to a subset of their dimensions. The former
fact was proved by Ginsburg and Spanier (1964).
The latter is easily seen from the definition of lin-
ear and semilinear sets.

Theorem 1. For every regular DAG language L,
the set ψ(L) is semilinear.

Proof. Let A = (Q,Σ, R) be a DAG automaton
such that L(A) = L. Let G = (V,E, in, out , lab)
be a DAG in L and let ρ : E → Q be a run of
A on G. We describe a kind of linearization of
such a run in the form of a string over the alphabet
Γ = Σ ∪Q ∪Q, where Q = {q | q ∈ Q}. Let the
sequence t = v1, v2, . . . , vn be a topological sort-
ing of the nodes in G. For each node vi ∈ V we

define inρ(vi) to be the sequence ρ(in(vi)), i.e.,
the sequence of states assigned to the incoming
edges of vi by ρ, but with each state replaced by
its counterpart in Q. Similarly, let outρ(vi) be the
sequence ρ(out(vi)), i.e., the sequence of states
assigned to the outgoing edges from vi by ρ. Then
linG,ρ,t, the linearization of ρ on G (with respect
to t) is given by linG,ρ,t = w1 · · ·wn where

wi = inρ(vi)lab(vi)outρ(vi)

for all i ∈ [n]. For each rule r = α
σ←→

β, let string(r) = ασβ and let string(R) =
{string(r) | r ∈ R}. Then, for every DAG
G ∈ L, topological sorting t of VG, and run ρ of
A on G, the string linG,ρ,t belongs to the regular
language rA = string(R)∗.

Not every string in rA is a linearization of a run
of A on some DAG. We need to make sure that
every state on an outgoing edge (represented by
an element of Q) is matched by the same state on
an incoming edge (represented by an element of
Q) and vice versa. For example, in the substring
inρ(v1)lab(v1)outρ(v1) of linG,ρ,t, we must have
that inρ(v1) = ε, since v1 must be a root of G and
thus has no incoming edges. Let rQ be the lan-
guage {qq | q ∈ Q} ∪ Σ. Then r�Q is the language
over Γ such that for every q ∈ Q and w ∈ r�Q,
q and q appear the same number of times in w
and every prefix of w contains at least as many
instances of q as of q.

We now argue that a string belongs to the lan-
guage rA ∩ r�Q if and only if it is a linearization
of a run of A on some DAG. Consider a string
w = α1 · · ·αn ∈ Γ∗. Let O = {i ∈ [n] | αi ∈ Q}
and I = {i ∈ [n] | αi ∈ Q}. Then w ∈ r�Q if
and only if there exists a matching, i.e., a bijection
µ : O → I such that µ(i) > i and αµ(i) = αi for
all i ∈ O. This can be shown by a straightforward
induction on n. With this in hand, for the “if” di-
rection, a linearization will be in rA by construc-
tion, and to demonstrate it is also in r�Q a valid µ
can be constructed along the edges of the DAG, as
follows. By the definition of linG,ρ,t, if the topo-
logical sorting t of V is v1, . . . , vm, then w =
w1 · · ·wm where wj = inρ(vj)lab(vj)outρ(vj).
Thus, every edge e ∈ E leading from v` to v`′

gives rise to an occurrence of ρ(e) in w` and a cor-
responding occurrence of ρ(e) in w`′ . Let i ∈ O
and i′ ∈ I be the positions of these two occur-
rences in w, and define µ(i) = i′. Since `′ > `
we have i′ > i, which means that µ is a match-

96

ing because it is bijective by construction, and
αµ(i) = αi′ = ρ(e) = αi.

For the “only if” direction one can similarly
pick a matching µ (which exists as the string is in
r�Q), and use the related positions as edges (each
rule position forming one vertex), which produces
a graph in L. More precisely, note first that w =
α1 · · ·αn ∈ rA can uniquely be decomposed into
w = w1 · · ·wm such that wj ∈ string(R) for
all j ∈ [m]. Define V = {v1, . . . , vm} and let
lab(vj) be the label in wj , for j ∈ [m]. To de-
fine the edges, assume in addition that w ∈ r�Q
and let µ : O → I be a corresponding matching.
Then we define E = {ei | i ∈ O}. Moreover, if
wj = p1 · · · prσq1 · · · qs, c = |w1 · · ·wj−1|, and
d = |w1 · · ·wj |, then

out(vj) = ed−s · · · ed−1

in(vj) = eµ−1(c+1) · · · eµ−1(c+r).

Since µ(i) > i for all i ∈ O, this defines a DAG,
and by construction defining ρ(ei) = αi for all i ∈
O yields a run of A on G = (V,E, in, out , lab).

The next step is to note that ψ(rA ∩ r�Q) is
a semilinear set. We know that rA is regular
and thus that ψ(rA) is semilinear (Parikh, 1961).
Also, r∗Q is regular and ψ(r�Q) = ψ(r∗Q), which
shows that ψ(r�Q) is semilinear. This means that
ψ(rA ∩ r�Q) is semilinear since the semilinear sets
are closed under intersection.

Finally, to complete the proof, since the semi-
linear sets are closed under projection to any sub-
set of their dimensions, ψ(L), which is the pro-
jection of ψ(rA ∩ r�Q) onto the dimensions which
correspond to Σ, is semilinear.

The following corollary is obtained by com-
bining the above with an observation in (Drewes,
2017) that states that ψ(Lu) is semilinear when-
ever ψ(L) is.

Corollary 1. For every regular DAG language L,
the set ψ(Lu) is semilinear.

The semilinearity of the Parikh image also gives
us the following decidability result.

Corollary 2. Given a DAG automaton A, it is de-
cidable whether L(A)u is finite.

Proof. Let Rroot = {(α σ←→ β) ∈ R | α = ε}
and Rnon-root = R \ Rroot. By replacing the reg-
ular language rA in the proof of Theorem 1 by
RrootR

∗
non-root one ensures that only runs on DAGs

with exactly one root are considered. Since both

intersection and projection are effective for semi-
linear sets, this gives us a way of effectively con-
structing the set ψ(L(A)u). Since finiteness for
semilinear sets is trivially decidable, the indicated
result follows directly.

4 Path languages

As seen in the proof of Theorem 1 above, the
single-rooted regular DAG languages are inti-
mately connected with string languages of the
form L ∩K�, where L and K are regular. These,
in turn, are closely connected to multicounter au-
tomata, as shown by the following result, essen-
tially due to Gisher (1981), explicitly stated, e.g.,
in (Björklund and Bojańczyk, 2007).

Theorem 2. The following language classes are
equal, modulo morphisms.

1. Languages recognized by multicounter au-
tomata.

2. Languages of the form L∩K�, where L and
K are regular.

The statement remains valid if the language K is
required to be finite.

To be precise, every language in class 2 also be-
longs to class 1 and every language in class 1 is
the morphic image of a language in class 2. When
representing the language of a multicounter au-
tomaton as a language from class 2, we sometimes
need to include some bookkeeping that represents
the counter configurations. This bookkeeping can
then be erased by a morphism.

Example 1. Consider the multicounter automaton
at the top of Figure 1. The automaton has two
counters. When the symbol (is read, counter one
is increased by one. When [is read, counter two is
increased by one. Conversely, when the symbol)
or] is read, the respective counter is decreased by
one. If there were only one state, and only these
transitions, the automaton would accept the shuf-
fle of the Dyck language over (and) and the Dyck
language over [and]. The final ε-transition, how-
ever, first decreases counter two by one and then
increases it by one, in effect ensuring that its value
is not zero. This means that the language accepted
by the automaton is the shuffle of the two Dyck
languages, but with the restriction that an open (
can be closed by) only if at least one [is still open.

In order to form a language of class 2 that cap-
tures the same behavior, we introduce the four new

97

p0 p1

), 〈1, 0〉, 〈0, 0〉

ε, 〈0, 1〉, 〈0, 1〉

(, 〈0, 0〉, 〈1, 0〉
[, 〈0, 0〉, 〈0, 1〉
], 〈0, 1〉, 〈0, 0〉

p0 p1

) d1

d2 i2

(i1
[i2
] d2

Figure 1: The multicounter automaton (with its counter operations indicated in brackets) and the corre-
sponding finite automaton from Example 1.

([())]

� �

r r r r r

p0 p0 p0

p0p1p0p1

q1

q2

q2

q1

q2

Figure 2: An example DAG of the form recognized by so-called special DAG automata. Its main path,
consisting of the edges labeled with state r, corresponds to the input string processed by the multicounter
automaton in Figure 1. The relationship will be formalized in Definition 4 and Lemma 2 (though for
technical reasons we will require M to have dedicated initial and final states). Edges labeled with states
q1 and q2 mimic counter actions. For example, an outgoing q1 edge mimics incrementing counter 1 by 1,
whereas an incoming q1 edge decrements counter 1 by 1. The (off the main path) diamonds correspond
to uses of the ε-transition from p0 to p1.

alphabet symbols i1, i2, d1, d2, representing in-
creases and decreases to counters 1 and 2. The au-
tomaton to the right in Figure 1 reads an increase
or decrease symbol each time it reads a parenthesis
symbol. (Here, we let each transition read a string
of symbols. The automaton can easily be trans-
formed into a standard finite automaton by adding
intermediate states.) Additionally, after reading a
) with its corresponding d1, it reads first a d2 and
then an i2. Let L be the language accepted by this
finite automaton, K = {(), [], i1d1, i2d2}, and h
the morphism that is the identity on the four paren-
thesis symbols while simply erasing the increase
and decrease symbols. Then h(L ∩ K�) is the
language of the original multicounter automaton.

Let us now turn to the connection between path
languages and multicounter automata. A path
v0e1v1e2 · · · vn in a DAG is a full path if v0 is a
root and vn is a leaf. The string corresponding to
a path v0e1v1e2 · · · vn is lab(v0 · · · vn). Given a
DAG G and an alphabet Σ, we write πΣ(G) for
the set of all strings in Σ∗ corresponding to full

paths in G. For a DAG language L, πΣ(L) is the
set {πΣ(G) | G ∈ L}.

As the main result of this section (stated for-
mally in Theorem 3 below), we want to prove that
the languages πΣ(L(A)u) for DAG automata A
are exactly the languages L(M)\{ε} accepted by
multicounter automata M . For this, we show first
thatA can be brought into a special form which ac-
cepts only DAGs which contain a unique “main”
path labeled with a string accepted by M , with
nodes not on this path used for bookkeeping and
corresponding to ε transitions in M . An example
graph which is consistent with this form is pre-
viewed in Figure 2.

For the remainder of this section, fix an alpha-
bet Σ, and let Σ� = Σ ∪ {�} where � is a spe-
cial symbol not in Σ. A DAG G = (V,E, in,
out , lab) over Σ� is special if it has a unique
full path with all node labels in Σ and all nodes
not on this path are labeled �. We call this path
the main path of G. Consider a DAG automa-
ton A = ({r} ∪ P ∪ Q,Σ�, R), where P ∩ Q =

98

{r} ∩ (P ∪ Q) = ∅. The DAG automaton A is
special if all rules α σ←→ β are such that either
α, β ∈ rPQ∗ ∪ {ε} and σ ∈ Σ or α, β ∈ PQ∗

and σ = �. We call rules of the former kind path-
generating rules and those of the latter kind book-
keeping rules. Note that special DAG automata
recognize languages of special DAGs. A run of
such a DAG automaton assigns state r to the edges
on the path whose nodes carry labels in Σ (the left-
most path) while all other nodes are labeled by �.
Lemma 1. Let A = (Q,Σ, R) be a DAG automa-
ton and Σ0 ⊆ Σ. Then there is a special DAG
automaton A′ such that

πΣ0(L(A)u) = πΣ(L(A′)u).

Proof. Let p, r be distinct states not in Q and de-
fine P = {p}. Let h : {r, p} ∪ Q → Q be the
homomorphism such that h(q) = q for all q ∈ Q
and h(r) = h(p) = ε. Let R′ be defined as fol-
lows: for every rule α σ←→ β in R, R′ contains
the bookkeeping rule pα �←→ pβ. If σ ∈ Σ0, then
R′ furthermore contains all path-generating rules
α′ σ←→ β′ such that h(α′) = α, and h(β′) = β. If a
bookkeeping rule obtained from α

σ←→ β is applied
in a run, we say that the label � of the correspond-
ing node is a hidden σ.

By construction A′ = ({r} ∪ P ∪Q,Σ�, R′) is
special. To see that πΣ0(L(A)u) = πΣ(L(A′)u),
we consider the two inclusions. Clearly, if ρ is a
run of A′ on a special DAG G′ with πΣ(G′) =
{w}, then w ∈ Σ∗0 and by deleting all edges with
states r or p and replacing every hidden σ by σ we
obtain a run of A on a DAG G with w ∈ πΣ0(G).

For the other direction, consider a DAG G =
(V,E, in, out , lab) ∈ L(A)u with an accepting
run ρ and let v0e1v2e2 · · · vm be a full path with
lab(v0 · · · vm) ∈ Σ∗0. Let u0, . . . , un be a topolog-
ical sorting of V such that un = vm (and u0 = v0

because v0 is the unique root). We define a DAG
G′ by adding fresh edges e1, . . . , en, e

′
1, . . . , e

′
m as

follows:

• ei (i ∈ [n]) is added as the first outgoing edge
of ui−1 and the first incoming edge of ui, and

• afterwards, e′j (j ∈ [m]) is added as the first
outgoing edge of vj−1 and the first incoming
edge of vj .

Finally, the labels of all nodes not in {v0, . . . , vm}
are replaced by �. Now ρ can be extended to a run
ρ′ on G′ by defining ρ′(ei) = p and ρ′(e′j) = r for
all i ∈ [n], j ∈ [m].

Next, we define the notion of relatedness be-
tween a (special) DAG automaton A with states in
{r}∪P ∪Q and a multicounter automatonM with
states in P ∪{q0, qf}. Each state inQ corresponds
to a counter of M . Viewing a run of A as a top-
down computation, the counter actions of m keep
track of how many copies of each q ∈ Q there
are at the frontier of the computation. A path-
generating rule rpw σ←→ rp′w′ of A relates to a
transition of M that reads σ in state p and con-
tinues in state p′. The counter actions reflect how
many times each state in Q occurs in w and w′.
For example, the rule rpq1q3q1

σ←→ rp′q1q2 would
correspond to a transition from p to p′ reading σ,
with counter actions given by the vectors (2, 0, 1)
and (1, 1, 0) (assuming that Q = {q1, q2, q3} and
position i in the vectors corresponds to qi). book-
keeping rules of A relate to ε-transitions of M in
a similar way.

Definition 4. Let A = ({r} ∪ P ∪ Q,Σ�, R) be
a special DAG automaton and M = (Q′,Σ,m, δ,
q0, {qf}) a multicounter automaton, where Q =
{q1, . . . , qm} and Q′ = P ∪{q0, qf} with q0 6= qf
and {q0, qf} ∩ P = ∅.

Let ψ be the Parikh mapping associated withQ.
A rule α σ←→ β inR and a transition (p, σ,D, I, p′)
in δ are related if the following hold:

If α σ←→ β is path-generating then σ ∈ Σ and

• p is the unique state in P that occurs in α
unless α = ε and p = q0,

• p′ is the unique state in P that occurs in β
unless β = ε and p′ = qf , and

• D = ψ(h(α)) and I = ψ(h(β)).

If α σ←→ β is bookkeeping then σ = ε and

• p and p′ are the unique states in P that occur
in α and β, respectively, and

• D = ψ(h(α)) and I = ψ(h(β)).

A and M are related if for every rule in R there
is a related transition in M and vice versa.

Note that relatedness between rules is injective
in both directions. Thus, for every special DAG
automaton A a related multicounter automaton M
can be constructed, and the converse holds as well
provided that the initial state of M has no incom-
ing transitions, there is a single final state that has
no outgoing transitions, and no initial or final tran-
sition is an ε-transition.

99

To simplify the technicalities of the proof of
the next lemma, let us say that a partial DAG
(pDAG, for short) is defined just like a DAG G =
(V,E, in, out , lab), except that in−1(e) may be
empty for some edges e ∈ E, i.e., those edges are
“dangling” without a target. A run of a DAG au-
tomaton on a pDAG is defined exactly as a run on
a DAG. The notion of special DAGs carries over
to the partial case in the obvious way.

Lemma 2. If a special DAG automaton A and
a multicounter automaton M are related, then
L(M) = πΣ(L(A)u).

Proof. Let A, M , ψ, and h be as above. Note
that each tuple in Nm can be seen as an assign-
ment of values to the counters of M . More-
over, given a run ρ on a pDAG G and a subset
D = {e1, . . . , e`} of the set of edges of G, we let
ψρ(D) = ψ(h(ρ(e1) · · · ρ(e`))).

For the inclusion L(M) ⊆ πΣ(L(A)u), let
t1, . . . , tn+1 ∈ δ be a sequence of transitions by
which M accepts a string w. If w = σ ∈ Σ
then t1 = (q0, σ, 0

m, 0m, qf) and R contains the
path-generating rule ε σ←→ ε, thus accepting the
DAG consisting of a single node labeled σ. As-
sume therefore that n ≥ 1. We inductively con-
struct runs ρ1, . . . , ρn on single-rooted pDAGs
G1, . . . , Gn such that the following hold when M
has executed transition t` (` ∈ [n]), where D` is
the set of dangling edges of G`:

(i) D` contains exactly one edge with label r
and exactly one edge e` with a label in P .

(ii) the counters of M store ψρ`(D`), and

(iii) the prefix v of w read by M so far labels the
main path in G`, and ρ`(e`) is the current
state of M .

Transition t1 is of the form t1 = (q0, σ, 0
m, I,

p), which means thatR contains a path-generating
rule ε σ←→ rpα with ψ(α) = I . Choosing G1 to
be the single-node pDAG to which this rule ap-
plies, and defining ρ1 accordingly, obviously sat-
isfies (i)–(iii). For ` > 1, assume that G`−1 and
ρ`−1 have been constructed.

There are two cases. If t` = (p, σ,D, I, p′)
(with p, p′ ∈ P) then it is related to a path-
generating rule rpα σ←→ rp′β in R, and by the
induction hypothesis ψρ`−1

(D`−1) ≥ D. Hence
we can construct G` from G`−1 by taking any se-
quence s ∈ D`−1 of pairwise distinct edges such

that ρ`−1(s) = rpα, and adding a fresh node v
labeled σ with in(v) = s. Further, add |β| + 2
dangling outgoing edges to v, and let ρ` be the ex-
tension of ρ`−1 obtained by setting ρ`(out(v)) =
rp′β. Clearly, this satisfies (i)–(iii) with e` being
the second outgoing edge of v. The case where
t` = (p, ε,D, I, p′) is is similar, except that the
rule in R to which it is related is a bookkeep-
ing rule, and thus the label of v is � and it lacks
incoming and outgoing edges whose state is r.
Again, (i)–(iii) are clearly satisfied.

Thus we have shown that Gn satisfies (i)–
(iii). We also know that tn+1 = (p, σ,D, 0m,
qf) and is thus related to a path-generating rule
rpα

σ←→ ε. Constructing Gn+1 similarly to the
path-generating case above, but the outgoing dan-
gling edge thus ensures that Gn+1 contains a path
labeled w from the root to the newly added node,
which is a leaf. Note that Gn+1 does not contain
any dangling edges because M accepts only with
all counters zero. Consequently, Gn+1 ∈ L(A)u
and thus w ∈ πΣ(L(A)u).

For the other inclusion, note that every run ρ on
a DAG G with n+ 1 nodes v1, . . . , vn+1 arranged
in topological order can be decomposed into runs
ρ1, . . . , ρn+1 on pDAGs G1, . . . , Gn+1 such that
G` is the restriction of G to v1, . . . , v` and their
outgoing edges, and ρ` is the restriction of ρ to
G`. Now, given a root-to-leaf path in G labeled
w it should be clear how transitions t1, . . . , tn+1

related to the rules in R applied to v1, . . . , v` can
be chosen to mirror the arguments above, yielding
a computation of M that accepts w.

Theorem 3. A string language L ⊆ Σ∗ \ {ε} can
be recognized by a multicounter automaton M if
and only if L = πΣ(Lu) for a regular DAG lan-
guage L.

Proof. By Lemmas 1 and 2 it suffices to show that
L can be recognized by a multicounter automaton
M ′ which is related to some special DAG automa-
ton, i.e., the initial state of M ′ has no incoming
transitions, there is a single final state that has no
outgoing transitions, and no initial or final transi-
tion is an ε-transition. The first two requirements
are easily ensured by adding two new states, an
initial and a final one. Making sure that the third
requirement is met is also a straightforward matter
since ε /∈ L.

The relationship between multicounter au-
tomata and path languages of single-rooted regu-

100

lar DAG languages thus resembles that between
multicounter automata and languages of the form
L ∩ K�. Theorem 3 shows that for every DAG
automaton A, the language π(L(A)u) can be rec-
ognized by a multicounter automaton, the other di-
rection needs some bookkeeping that must be re-
moved by intersecting π(L(A)u) with Σ∗. In this
direction, we also have to exclude the empty string
as full paths in DAGs are always nonempty.

An interesting consequence of Theorem 3 is that
the path languages of single-rooted regular DAG
languages are orthogonal to the Chomsky hierar-
chy. While multicounter automata can recognize
all regular languages and some languages that are
not context-free, such as, e.g., {anbncn | n ∈
N}, they cannot recognize all context-free lan-
guages. For instance, they can recognize the lan-
guage {anbn | n ∈ N}, but not its Kleene clo-
sure, which is also context-free (Greibach, 1978).
While the multicounter languages are closed un-
der union, intersection, concatenation, and shuffle,
they are thus not closed under Kleene star; for de-
tails, see, e.g., (Priese and Wimmel, 2008). Their
Parikh images are semilinear, which for example
follows from Theorem 3.

5 Conclusions

To summarize, each of the open problems given
in (Drewes, 2017) (and recalled in the introduc-
tion) has been solved. Corollaries 1 and 2 close
problems 4 and 1 respectively. Problem 3 is closed
by Theorem 3, directly relating the languages cap-
tured by multicounter automata to the path lan-
guages in question. For problem 2 the charac-
terization by multicounter automata very naturally
models the computational power of the formalism
itself, but the language equivalence involves pro-
jecting away some bookkeeping information by
intersection with Σ∗.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. 7th Linguistic Annotation
Workshop, ACL 2013 Workshop.

Henrik Björklund and Mikołaj Bojańczyk. 2007. Shuf-
fle expressions and words with nested data. In Math-
ematical Foundations of Computer Science (MFCS).
pages 750–761.

Johannes Blum and Frank Drewes. 2017. Language
theoretic properties of regular DAG languages. In-
formation and Computation (to appear).

David Chiang, Frank Drewes, Daniel Gildea, Adam
Lopez, and Giorgio Satta. 2016. Weighted
DAG automata for semantic graphs. Unpublished
manuscript.

Frank Drewes. 2017. On DAG languages and DAG
transducers. Bulletin of the EATCS 121.

Seymour Ginsburg and Edwin H. Spanier. 1964.
Bounded Algol-like languages. Transactions of the
American Mathematical Society 113(2):333–368.

Jay Gisher. 1981. Shuffle languages, petri nets, and
context-sensitive grammars. Communications of the
ACM 24(9):597–605.

Sheila A. Greibach. 1978. Remarks on blind and par-
tially blind one-way multicounter machines. Theo-
retical Computer Science 7:311–324.

S. Rao Kosaraju. 1982. Decidability of reachability
in vector addition systems. In ACM Symposium on
Theory of Computing (STOC). pages 267–281.

Ernst W. Mayr. 1984. An algorithm for the general
Petri net reachability problem. SIAM Journal on
Computing 13(3):441–460.

Rohit J. Parikh. 1961. Language generating devices.
Quarterly Progress Report 60, M.I.T.

Lutz Priese and Harro Wimmel. 2008. Petri-Netze,
Springer, chapter Petri-Netz-Sprachen. 2nd edition.

101

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 102–111,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Contextual Hyperedge Replacement Grammars for
Abstract Meaning Representations

Frank Drewes
Umeå University

drewes@cs.umu.se

Anna Jonsson
Umeå University
aj@cs.umu.se

Abstract

We show how contextual hyperedge re-
placement grammars can be used to
generate abstract meaning representations
(AMRs), and argue that they are more suit-
able for this purpose than hyperedge re-
placement grammars. Contextual hyper-
edge replacement turns out to have two
advantages over plain hyperedge replace-
ment: it can completely cover the lan-
guage of all AMRs over a given domain of
concepts, and at the same time its gram-
mars become both smaller and simpler.

1 Introduction

Natural language processing applications that re-
ceive sentences as input mainly make use of lexi-
cal and syntactic properties of the input sentences.
Even though these properties are an important ba-
sis for the analysis of a sentence, one is usually
more interested in the meaning of a sentence, i.e.,
its semantics. This is particularly true in the case
of machine translation where a semantic error can
cause far more bewilderment than a syntactic one.

Thus, a general-purpose formalism for mod-
elling the semantics of sentences in a way that al-
lows for efficient analysis would be widely use-
ful in natural language processing. This study
focuses on the generation of a semantic repre-
sentation that was proposed some years ago, the
abstract meaning representation (AMR) (Langk-
ilde and Knight, 1998; Banarescu et al., 2013).
An AMR1 is a directed, rooted, acyclic, node-
and edge-labelled graph that represents the se-

1We use the term AMR to refer not only to the concept
of Abstract Meaning Representation as such (Langkilde and
Knight, 1998; Banarescu et al., 2013), but also to its individ-
ual graphs.

mantics of an English sentence2; the nodes and
edges represent concepts and their relations, re-
spectively. A corpus of AMRs over a limited do-
main can be found in (Braune et al., 2014). As in
the case of syntax trees, where tree grammars and
tree automata (Knight and Graehl, 2005) provide a
model for distinguishing structurally correct trees
from incorrect ones, the algorithmic processing of
AMRs would benefit from the existence of appro-
priate formal models for their generation or recog-
nition. Here, we focus on the generation of AMRs
by graph grammars, which have previously been
proposed as formal models for this very task (Chi-
ang et al., 2013).

The usefulness of two types of hyperedge re-
placement grammar (HRG, see Habel (1992);
Drewes et al. (1997)) for AMR generation was in-
vestigated by Jonsson (2016a) (see also (Jonsson,
2016b)), namely the predictive top-down (PTD)
parsable grammar (Drewes et al., 2015) and the
restricted directed acyclic graph (rDAG) gram-
mar (Björklund et al., 2016). Both are of particular
interest because their study was, among other pos-
sible application areas, motivated by AMR gen-
eration. A specific advantage of these special
cases of HRGs is that their membership problem
is solvable in polynomial time. However, Jonsson
(2016a) concludes that neither of them is able to
generate the complete set of AMRs over a given
concept domain.

Unrestricted HRGs allow for better coverage at
the expense of greater computational complexity.
However, a general disadvantage of hyperedge re-
placement remains. The nonterminal items in an
HRG are hyperedges – edges that may be attached
to more (or fewer) than two nodes. Replacement
of a hyperedge inserts a new subgraph in its place,

2Although AMR is to some extent language independent,
it is biased towards English (Banarescu et al., 2013), and
therefore not truly an interlingua (Xue et al., 2014).

102

connecting it to the host graph via the nodes the
replaced hyperedge was incident on. Intuitively,
nonterminal hyperedges keep track of a number of
potentially relevant nodes for the purpose of being
able to attach new edges to them later on in the
derivation. This process is well known (and eas-
ily seen) to generate graph languages of bounded
treewidth. As shall be illustrated in Section 6 the
ability of hyperedges to keep track of a bounded
number of previously generated nodes can be used
to ensure structural properties such as those caused
by control verbs. However, it appears that other
types of reentrancies, like those arising from the
use of pronouns, are of a different nature. If,
for example, several instances of the concept boy
have been generated, any of them can in princi-
ple be referred to from anywhere else in the AMR.
As a consequence, there is no reasonable a priori
bound on the treewidth of the graph. Nontermi-
nal hyperedges generating other parts of the AMR
would have to keep track of all boy instances to
accomplish full coverage. On the one hand, this is
not possible in an HRG. On the other hand, it does
not seem to be desirable either, because keeping
track of every boy instance individually would en-
able a level of control far beyond what is needed.

Here we consider contextual hyperedge replace-
ment grammars (CHRGs) (Drewes et al., 2012;
Drewes and Hoffmann, 2015) to learn whether
they can be used to overcome these disadvantages.
CHRGs are also based on hyperedge replacement,
but the left-hand side of a rule can contain so-
called contextual nodes. This provides access to
nodes other than those immediately controlled by
the nonterminal hyperedge, thus enabling rules
to establish connections of the type discussed in
the previous paragraph. The additional ability is
severely limited, far below true context-sensitivity
in power, because nodes are terminal items and
derivation steps cannot distinguish between con-
textual nodes with the same label. For instance,
in the situation sketched above a rule application
would just pick any occurrence of boy elsewhere
in the host graph. As a consequence, however, the
treewidth of generated graphs is not necessarily
bounded anymore.

In the present paper we study and illustrate the
advantages of CHRGs over HRGs for AMR gen-
eration by looking at an example concept domain
in a theoretical case study. To this end, we build
a CHRG that generates AMRs over a restricted

domain and argue that it exhibits perfect cover-
age. The baseline domain is the one introduced
by Braune et al. (2014), consisting of the con-
cepts boy, girl, want and believe along
with two basic relations (called arg0 and arg1)
that are used to bind the concepts together and
correspond to the agent and patient of a want or
believe event. We also consider the construc-
tion of CHRGs for more general AMRs to explore
the advantages of the more generous rule format.
Therefore we add a small set of possible modifiers,
allow an arbitrary number of boys and girls to ap-
pear in an AMR,3 and discuss how to handle con-
trol verbs.

The conclusion of our study is that contextual
hyperedge replacement is indeed a promising for-
malism for describing sets of AMRs. On the one
hand, AMRs contain the mentioned local struc-
tures that must satisfy certain well-formedness
constraints, such as in the case of control verbs.
This can be implemented like it would in an HRG,
using a nonterminal hyperedge to keep track of
the involved nodes. On the other hand, contex-
tual nodes can be used to implement the kinds of
coreferences which may occur anywhere without
following strict local rules, such as those relat-
ing to the use of pronouns. As discussed above,
the latter creates problems in HRGs because non-
terminal hyperedges would have to keep track of
potential antecedents, which seems inappropriate
for various reasons: it is restricted by the rank
of hyperedges, provides an unnecessarily detailed
level of control (thus creating the risk of overfit-
ting), and leads to a huge number of rules to ac-
count explicitly for all the possible nondeterminis-
tic choices arising from the (exponentially) many
ways in which coreferences can be inserted.

The obvious downside of using CHRGs is
that computational problems may potentially be-
come more difficult. However, recent results
on shift-reduce parsing for both HRGs and
CHRGs (Drewes et al., 2017)4 indicate that this
may not be the case. In fact, as the rank of hyper-
edges and the number of rules are central param-
eters in the complexity of membership algorithms
for both unrestricted HRGs and CHRGs, it may
even pay off to turn to CHRGs since this leads
to smaller ranks and much fewer rules, the latter

3Braune et al. (2014) only consider at most one boy and
at most one girl.

4See https://www.unibw.de/inf2/grappa/
for the extension to CHRGs.

103

because the use of contextual nodes removes the
necessity to implement nondeterministic choices
explicitly by creating a separate rule for each.

In Section 2, we lay the ground for the rest of
the paper with some basic definitions. The CHRG
is defined in Section 3, and the subset of AMR
to be considered here is discussed in Section 4.
The construction of a CHRG for this domain is
described in Section 5. In Section 6, we indicate
how to generalise it to larger domains, and in par-
ticular how control verbs can be added. Finally,
the results are discussed in Section 7 followed by
the conclusions and future work in Section 8.

Acknowledgement We thank the reviewers for
useful comments that helped us clarify the line of
argumentation (as we hope).

2 Preliminaries

For a set A, we write A∗ to denote the set of finite
sequences or strings over A, and A~ for the set of
strings over A in which no element is repeated; ε
denotes the empty sequence. Elements of A are
identified with strings of length 1 over A, and thus
subsets ofA are string languages at the same time.

Furthermore, we let 2A denote the power set
of A, i.e., the set of all subsets of A. The ex-
tension of a function f : A → A′ to sequences
a1, . . . , an where ai ∈ A for 0 ≤ i ≤ n is de-
noted f∗ : A∗ → A′∗ and defined by f∗(a0, . . . ,
an) = f(a1) · · · f(an). Concatenation of strings
is denoted by simple juxtaposition, and element-
wise concatenation of two string languages L,L′

is denoted by L · L′, i.e., L · L′ = {uv | u ∈ L,
v ∈ L′}.

A labelling alphabet is a set Σ partitioned into
three mutually disjoint sets ΣV , ΣE and ΣN on
which an arity function arity : ΣE] ΣN → 2Σ∗V

is defined. (See Section 5 for an example of an
alphabet and its arity function.) The sets ΣV , ΣE

and ΣN are referred to as node labels, (hyper)edge
labels and nonterminal labels, respectively.

A hypergraph is a generalisation of directed
graphs by the usage of edges that can connect
an arbitrary number of nodes. Here, we consider
node- and edge-labelled hypergraphs.

Definition 1 (Hypergraph (Drewes et al., 2012)).
A labelled hypergraph (hypergraph, for short) over
a labelling alphabet Σ is a tuple G = (V,E, att ,
labelV , labelE) such that
• V is a finite set of nodes.

• E is a finite set of hyperedges.
• att : E → V ~ is the attachment of hyperedges.
• labelV : V → ΣV is the labelling of nodes.
• labelE : E → ΣE ∪ ΣN with label∗V (att(e)) ∈
arity(labelE(e)) for all e ∈ E is the labelling
of hyperedges.5

The rank of a hyperedge e is |arity(labelE(e))|.
Hyperedges with labels in ΣN are called nonter-
minals; GΣ denotes the set of all hypergraphs over
Σ. For a hypergraph G and a hyperedge e ∈ E,
the hypergraph resulting from removing e from G
is denoted by G − e. The empty hypergraph is
denoted by ().

In illustrations, nodes and hyperedges are drawn
as ellipses and squares, respectively, with in-
scribed labels. The attachment of a hyperedge is
shown by lines, and the attachment order is de-
picted using numbers (these can be left out if the
attachment order is clear from the context or irrel-
evant). If a hyperedge connects exactly two nodes
(i.e., it is binary), it can be drawn as an arrow
directed from the first node of the attachment to
the second with its label next to it. See Section 5
for various examples of hypergraphs. Note that a
hypergraph containing only binary hyperedges is
equivalent to an ordinary directed graph; this is the
case in e.g. Figure 1.

3 Contextual Hyperedge Replacement

Given a hypergraph containing nonterminals, rules
can be applied to it in order to generate a new hy-
pergraph. A set of such rules along with a fixed
hypergraph to which they are to be applied forms
a grammar. The grammar type considered here
was proposed in (Drewes et al., 2012; Drewes and
Hoffmann, 2015) and uses the following rule type.

Definition 2 (Contextual Rule). A contextual hy-
peredge replacement rule (or contextual rule) is a
pair (L,R) where L and R are hypergraphs over
the labelling alphabet Σ such that
• L (the left-hand side) contains exactly one hy-

peredge e that must be a nonterminal, and
• R (the right-hand side) is an arbitrary super-

graph of L− e.
A contextual rule for which all nodes in the left-

hand side are connected to e is called context-free.
The nodes that are not connected to e are referred
to as contextual nodes.

5The arity function used differs from the one in (Drewes
et al., 2012), but the resulting hypergraph definition remains
the same.

104

We denote a contextual rule by letting ::= sep-
arate the left- and right-hand sides. Moreover, we
allow rules that share the same left-hand side to be
drawn more compactly; in this case, the left-hand
side is only drawn once, and a vertical line is used
to separate the right-hand sides from each other.
To save further space, we use rule schemata in
which labels may be variables ranging over a spec-
ified subset of the set of all labels. As an exam-
ple of a set of contextual rules, consider the rules
in (iii) in Figure 4 of Section 5. Every choice of z,
u, v and a1, a2 in the range specified beneath the
rules yields three rules. Each has the nonterminal
N1 in its left-hand side, and the node labelled u is
a contextual node. In addition, the third right-hand
side contains a newly generated node labelled v.

A contextual rule (L,R) can be applied to a hy-
pergraph G containing an isomorphic copy of L,
i.e., a subgraph that is equal to L up to renaming
of nodes and hyperedges. Suppose for simplicity
that L is a subgraph of G. Then the application of
the rule works in the following manner:
1. Remove e from G, yielding G− e.
2. Add R to G− e, disjointly.
3. Identify the nodes in L−ewith the correspond-

ing nodes in R.
The resulting hypergraph is denoted byG[R/e].

Now, we can formally define the grammar type
that makes use of contextual rules.

Definition 3 (Contextual Hyperedge Replace-
ment). A contextual hyperedge replacement gram-
mar (CHRG) is a triple Γ = (Σ,R, Z) where
• Σ is a finite labelling alphabet,
• R is a finite set of contextual rules, and
• Z ∈ GΣ is a start hypergraph.

If G′ = G[R/e] for some contextual rule (L,
R) ∈ R, we say that G′ is derived from G in Γ,
and we write G ⇒R G′. The language gener-
ated by Γ is L(Γ) = {G ∈ GΣ\N | Z ⇒∗R G}
where ⇒∗ is the reflective and transitive closure
of ⇒. Two CHRGs Γ1 and Γ2 are equivalent if
L(Γ1) = L(Γ2), i.e., if they generate the same
language. If all of the rules of Γ are context-
free, then Γ is a hyperedge replacement grammar
(HRG). Thus, CHRG is a generalisation of HRG
through the extension of context-free rules to con-
textual rules. Intuitively, the difference between
the two is that CHRGs can nondeterministically
pick a previously generated node with a specified
label without that node being connected to the re-
placed nonterminal. HRGs do not have this ability.

The graph languages generated by CHRGs are
in NP (Drewes and Hoffmann, 2015), and can thus
be NP-complete, as this already holds for HRGs.
Hence, unless P = NP there are CHRGs which
do not admit a polynomial membership test. For
HRGs, there exist polynomial membership algo-
rithms for nontrivial special cases such as PTD
parsable, shift-reduce parsable, and rDAG HRGs.
The fact that membership testing is not harder for
CHRG than for HRG (at least in theory) strength-
ens the hope that there are subclasses of CHRG
with efficient membership tests. Indeed, this has
partially been confirmed: the membership algo-
rithms for PTD and shift-reduce parsable HRGs
can be extended to CHRGs.4

4 Abstract Meaning Representation

Abstract meaning representation (AMR) (Langk-
ilde and Knight, 1998; Banarescu et al., 2013)
denotes sentence meaning as directed, rooted,
acyclic graphs with node and edge labels. To the
extent possible, AMR aims to provide a unique
representation of semantics, i.e., while numerous
sentences can express the same meaning, they
should all map to the same AMR. The idea is that
the nodes of the graph represent the concepts iden-
tifiable in the sentence, and the edges represent
the relations between the concepts. Intuitively, the
subgraph rooted at any one given node represents
an event, a fact, or an entity. See Figure 1 for ex-
ample AMRs that can be realised into the English
sentences “The boy wants the girl to believe him”
or “[. . .] to believe the other boy.”

The previous example highlights that every
event or entity represented in an AMR should oc-
cur once and only once. In fact, this is the ma-
jor difference between AMRs and syntax trees, in
which several subtrees may refer to the same se-
mantic thing. In the second AMR in Figure 1, the
fact that the wantee is not represented by the same
node as the believee implies that these two are dis-
tinct. Representing the first sentence by the second
AMR (or the second one by the first) is an error.

Thus, to achieve complete coverage, a grammar
for generating AMRs over the given domain must
generate both graphs in Figure 1. Figures 2 and 3
show another pair of AMRs, of which the former
correctly represents the semantics of the sentence
“The boy wants the girl to believe in herself and
this is what the girl wants, too.” The interpretation
of the latter is less obvious. We do not endeav-

105

want

believe

girlboy

arg1arg0

arg0arg1

want

believe

girlboy boy

arg1arg0

arg0 arg1

Figure 1: AMRs representing an event want,
where the wanter is a boy and the wantee is the
event believe for which the believer is a girl
and the believee is either the formerly mentioned
boy (left) or a different one (right).

boy

want

believe

want

girl

arg0 arg1 arg1 arg0

arg0

arg1

Figure 2: Another AMR.

boy

want

believe girl

want

believe

arg0 arg1 arg1arg0

arg0

arg1 arg1

arg0

Figure 3: An AMR similar to the one in Figure 2, but with two distinct believe events.

our to discuss whether this AMR is meaningful at
all, but it certainly seems to be less probable. Un-
fortunately, it turns out that structures such as the
one in Figure 3 are easy to generate by a HRG and
even by the aforementioned PTD parsable HRGs,
whereas trying to include the more desirable one
in Figure 2 meets severe difficulties. This is an in-
stance of the problems mentioned in the introduc-
tion: a HRG generating structures like the one in
Figure 2 (even one that is not PTD parsable) would
have to generate the believe node early on and
then keep track of it in its nonterminal hyperedges
to establish the desired relations later on, when
the two want nodes are generated.6 The non-
deterministic choices this creates seem to destroy
PTD parsability. Further, even if PTD parsability
is abandoned in favour of generative power, the
desired effect can only be approximated: as the
number of believe nodes grows, it eventually
exceeds the number of nodes that the nonterminal
hyperedges have been designed to keep track of.

4.1 The Boy-Girl AMR Corpus

The boy-girl AMR corpus is a set of 10 000
AMRs over a restricted domain that was presented
in (Braune et al., 2014). Each AMR of this corpus
fulfils the following conditions:
• The node label alphabet consists of the concept

names boy, girl, want, and believe.
6This assumes for simplicity that a bottom-up generation

strategy is employed. However, the difficulties arising depend
only marginally on the choice of strategy.

• The edge label alphabet consists of the relation
names arg0 and arg1.
• The node labels boy and girl occur at most

once each, and label the leaves of the graph.
• For each want and believe node, the outgo-

ing edges carry distinct labels and all incoming
edges are labelled arg1.
The relation arg0 is used for marking the agent

of an action expressed by a concept in the form of
a verb, and the patient of the same action is given
by the concept pointed to by arg1. The above
restrictions simply give us the domain and tell us
that a person cannot be used as a verb, and that
verbs cannot be agents, but that an event (a sub-
graph with a verb concept as root) can act as a
patient. The left AMR in Figure 1 is a boy-girl
AMR, whereas the left one is not, as it contains
two copies of boy.

To make things more interesting, we remove the
restriction that there can only be one girl and one
boy, and extend the concept domain by months,
weekdays and the words happy and angry. Let
ΣV denote this extended domain. Finally, we add
the relations manner, month and day, which to-
gether with arg0 and arg1 form ΣE .

5 Construction of a Boy-Girl CHRG

Let us now discuss how to construct a CHRG
that generates the complete language of boy-girl
AMRs. The alphabet used is that of Section 4.1,
enlarged by ΣN = {S,N,N1,M} and with the

106

arity function given as follows: for A ∈ ΣE ,
arity(A) = {want,believe} · TARA where

TARarg0 = {boy,girl}
TARarg1 = ΣV \ {happy,angry}
TARmanner = {happy,angry}
TARmonth = {Jan, . . . ,Dec}
TARday = {Mon, . . . ,Sun}.

Furthermore, arity(S) = arity(N) = ε and
arity(N1) = arity(M) = {want,believe}.
The start hypergraph Z consists of a single nonter-
minal labelled S. The rules of the boy-girl CHRG
can be seen in Figure 4.

The initial rules of the grammar, the ones of
schema (i), simply generate the first leaf of the
graph. The rules of schema (ii) choose between
terminating the derivation by generating the empty
graph or continuing it by generating a non-leaf
node. Schemata (iii) and (iv) connect the newly
generated node with label z to at least one previ-
ously generated node. Moreover, these rules con-
nect a nonterminal labelled M to the node, which
makes it possible to add zero or more outgoing
manner edges from the node currently being han-
dled to suitable (new) leaves. In addition, at most
one month and one day edge can be generated,
and the latter only in connection with the former.
We note here that these restrictions are not in-
tended to be semantically particularly meaningful.
They only serve to illustrate that this type of “reg-

ular control” can be used to put together the com-
bination of outgoing relations a node shall have.

To restart the cycle of either generating an-
other want or believe node or terminating the
derivation, (iii) and (iv) also create a new nonter-
minal labelled N .

We can see that each node must be given all
of its outgoing arg0 and arg1 edges before an-
other one is generated, making sure that the result-
ing AMR is acyclic (because manner, month,
and day edges only point to leaves). Every node
generated by (iii), (iv), or (v) is immediately con-
nected to an already existing node. Moreover, the
new node generated by the second rule of (ii) is
connected to a nonterminal labelled N1 until that
node, by (iii) or (iv), is connected to an older node.
Using this, it follows by induction that only con-
nected graphs are generated.

An example of a derivation using the boy-girl
CHRG can be seen in Figure 5. The rule(s) used in
every step are indicated above the derivation sym-
bol (⇒) combined with the right-hand side index
of the used rule (starting at 1). What variables are
mapped to which labels throughout the derivation
is shown implicitly. The resulting AMR is the pre-
viously discussed one in Figure 2.

It should be clear that this grammar generates
the complete language of AMRs over our small
domain: as we are only interested in generating
acyclic graphs this is always possible by generat-

S
(i)
::=

x

N

where x ∈ {boy,girl}

N
(ii)
::= ()

z

N1

where z ∈ {want,believe}

N1

z

u

(iii)
::=

z

u

M

N

a0

z

u

M

N

a0 a1

u

z

v

M

N

a0 a1

where z ∈ {want,believe}, {a0, a1} = {arg0,arg1},
and u, v ∈ ΣV are such that arity(ai) is respected

N1

z

u v

(iv)
::=

u

z

v

M

N

arg0
arg1

where z ∈ {want,believe}, u ∈ {boy,girl},
and v ∈ {want,believe,boy,girl}

M

z

(v)
::=

z

m

M

manner

z

x y

month day

z

x

month

z

where z ∈ {want,believe}, m ∈ {happy,angry},
x ∈ {Jan, . . . ,Dec}, y ∈ {Mon, . . . ,Sun}

Figure 4: A boy-girl CHRG exemplifying general rule structures. Rules are named for later reference by
a superscript on the operator ‘::=’.

107

S ⇒
(i)

girl

N

⇒
(ii).2

girl

believe

N1 ⇒
(iii).2

believe

girl

N

M

arg0 arg1
⇒∗
(v).4
(ii).2

believe

girl N1

want

arg0 arg1
⇒
(iv)

believe

want

girl

N

M

arg0

arg1

arg0ar
g1 ⇒∗

(v).4
(ii).2

believe

want

girlN1

want

arg0

arg1

arg0ar
g1 ⇒∗

(ii).1
(v).4
(iii).3

boy

want

believe

want

girl
arg0

arg1

arg0ar
g1

ar
g0

arg1

Figure 5: A derivation of an AMR using the boy-girl CHRG.

ing the nodes in reverse topological order. In other
words, the CHRG constructed indeed generates
the complete AMR language described above.

6 Generalisations

Let us now formulate some general rules about
how to create a CHRG that generates AMRs over
a given, finite domain of concepts and relations.

Let ΣV contain the concept names of the do-
main and ΣE its relations – these can be any
sets as long as they are finite. Define the
arity function of Σ as arity(r) = {cicj |
r is a valid relation from ci to cj for ci, cj ∈ ΣV }.
The arity function is used to restrict which con-
cepts can be connected using a particular rela-
tion. (For example, in the boy-girl case, we
know that verbs cannot be agents and that per-
sons cannot have agents. Thus, wantboy and
wantgirl are allowed in arity(arg0), but not
wantbelieve or girlwant.)

As in the boy-girl CHRG, generation starts with
the base case – a single leaf nondeterministically
chosen from all the concept names that may ap-
pear as leaves. A nonterminal similar to N in the
boy-girl case generates one new non-leaf node at
a time. All of the outgoing edges to other non-leaf
nodes are generated before returning to N . This
guarantees acyclicity as it prevents nodes from be-
ing given outgoing edges to nodes generated pos-
terior to them. As in the previous section, con-
textual rules are thus used to (1) enable the gener-
ation to refer back to previously generated nodes

by adding incoming relations and to (2) make sure
that the AMRs are connected. Further leaves can
only be generated along with the generation of an
outgoing relation from another node.

We may also want for a CHRG to generate var-
ious combinations of outgoing relations from the
latest non-leaf node (in the boy-girl grammar rep-
resented as z). This can be done similarly to the
generation of manner, month, and day edges
by M in Figure 4.

In view of the previous discussion the reader
may wonder whether one will ever have the need
to use nonterminal labels A with |arity(A)| >
1. It might seem that arguments can always be
picked using contextual nodes. However, this se-
lects targets exclusively based on their labels and
is thus inappropriate if finer structural control is
required. To illustrate this, let us add the ob-
ject control verb persuade and the subject con-
trol verb try to our concept set (i.e., to ΣV).
We also need a new relation arg2 to connect an
occurrence of persuade to its indirect object,
i.e., arity(arg2) = {persuade} · Σverb where
Σverb = {want,believe,persuade,try}.

Recall that, whenever an arg0 edge is created
in one of the rules in Figure 4, the subsequent
creation of further want and believe nodes is
taken care of by a nonterminal N generated at the
same time. To implement control, we use variants
of these rules which, instead of N , use a nonter-
minal C with arity(C) = Σverb · {boy,girl}.
This nonterminal is attached to the two nodes of

108

the arg0 edge, thus remembering where the con-
trol should take place instead of floating freely.

Some of the new rules are illustrated in Figure 6.
The rules in (vi) work like those in (iii), but cre-
ate nonterminals labelled by C instead of N , in
the way just described. A similar rule obtained
from (iv) is left out to save space.

The remaining rules insert the control verbs:
those in (vii) implement subject control by try
whereas those in (viii) implement object control
by persuade. Each of the rules corresponds to a

succession of two rules in Figure 4, namely (iii).1
followed by rule (ii).2. The first of each pair of
rules initiates another level of control whereas the
second returns to the “uncontrolled” case. Note
that we, for simplicity, drop the nonterminals M
that should be attached to the control verbs to
follow (iii).1 strictly. Also, there should be fur-
ther rules corresponding to (iii).2, (iii).3, and (iv),
which are omitted because they are constructed
along the same lines as those shown in the figure.

N1

z

u

(vi)
::=

z

u

M

C arg0

1

2

z

u

M

C arg1arg0

1

2

z

u v

M

C arg1arg0

1

2

where z ∈ {want,believe}, u ∈ {boy,girl}, v ∈ {want,believe,boy,girl}

C

z

u

1

2

(vii)
::=

try

z

u

C

arg1

arg0

1

2

try

z

u

N
arg1

arg0

where z ∈ {want,believe}, u ∈ {boy,girl}

C

z

xu

1

2

(viii)
::=

persuade

z

xu

C

arg2arg1

arg0

1

2

persuade

z

xu

N
arg2arg1

arg0

where z ∈ {want,believe}, u, x ∈ {boy,girl}

Figure 6: Rules implementing subject control (vii) and object control (viii).

S ⇒
(i)

N

girl
⇒

(ii).2

believe

N1

girl

⇒
(vi).3 believe

girl boy

C

arg0 arg1

1

2 ⇒
(viii).1

persuade

believe

girl boy

C

arg1 arg2 arg0

arg0 arg1

1

2 ⇒
(vii).2
(ii).1

try

persuade

believe

girl boy

arg0

arg1

arg1 arg2 arg0

arg0 arg1

Figure 7: An example derivation using the rules in Figures 4 and 6.

109

Figure 7 shows an example derivation involving
the new rules, the sentence being “The boy tries
to persuade the girl to believe him.” The reader
may wish to add the remaining rules not shown in
Figure 6, so that AMRs for sentences such as “The
boy wants to persuade the girl to try to persuade
the other girl to believe him” can be generated.

7 Discussion

Being able to generate complete AMR languages
is a clear advantage of CHRGs compared to PTD
parsable and rDAG grammars, and even over unre-
stricted HRGs. The latter can only generate graph
languages of bounded treewidth, and despite the
fact that real-world AMRs usually seem to be of
small treewidth (Chiang et al., 2016) it does not
seem to be justified to impose an a priori upper
bound on their treewidth.

However, the advantage of CHRGs for mod-
elling AMR languages exceeds the formal aspect
of unlimited treewidth. In an HRG, nontermi-
nal hyperedges have to keep track of all nodes to
which edges shall (potentially) be attached later
on in the process. This includes the implemen-
tation of non-local phenomena like anaphora, for
which little if any structural control is required,
thus resulting in an artificial increase not only in
the rank of hyperedges but also in the number of
rules. The latter may be significant, even exponen-
tial in the number of additional nodes to be kept
track of, because in a right-hand side every nonter-
minal hyperedge would nondeterministically have
to choose a subset of additional nodes to attach
to. Even so, the number of nodes that can be kept
track of is restricted by a constant depending on
the rank of hyperedges. In contrast, CHRGs do
not need to carry around such additional informa-
tion at all as they can simply view antecedents as
contextual nodes when it is time to insert a ref-
erence. The finer control provided by nonterminal
hyperedges can be reserved for situations in which
structural requirements must be met, such as im-
plementing control verbs, quantifiers, and the like.

It remains to be seen whether the algorith-
mic properties of AMR-generating CHRGs are
sufficiently good, especially when compared to
HRGs. Since CHRGs generalise HRGs one may
expect them to be algorithmically more demand-
ing. However, the preceding discussion indicates
that the converse may be true in practice. The ef-
ficiency of algorithms for analysing graphs with

respect to a given (C)HRG depends most signif-
icantly on two things: the ranks of hyperedges
and the number of rules (see in particular Chiang
et al. (2013)). Thus, the greater algorithmic com-
plexity of CHRGs may very well turn out to be
outweighed by them requiring much smaller ranks
and fewer rules, because the difference in size, as
indicated above, will most likely be exponential in
the desired number of potential antecedents.

The fact that CHRGs allow for structurally
simpler rules may also make it possible to cast
CHRGs like the one discussed here into a spe-
cial form suitable for efficient analysis like shift-
reduce parsing (Drewes et al., 2017) whereas the
same may happen to be impossible for an HRG,
even though the former has better coverage than
the latter. Whether these possibilities can be re-
alised is a question to be addressed by future work.

8 Conclusion

We have shown how CHRGs can generate com-
plete AMR languages in cases where HRGs fail
to do so because they do not provide appropriate
means for the implementation of arbitrary coref-
erences. Whether CHRGs can generate complete
AMR languages over arbitrary concept domains,
including phenomena such as quantification while
excluding structurally incorrect graphs, remains to
be studied. In any case, the simplicity of the gram-
mar discussed here seems to be promising. Future
work, should investigate how efficiently problems
such as the membership problem can be solved in
practise for AMR-generating CHRGs. In this con-
text, a better understanding of how quickly such
CHRGs grow with the size of the input domain
would also be valuable. If CHRGs indeed turn
out to be a suitable device for AMR generation,
a long-term goal should be to define a weighted
version of CHRGs and to devise machine learn-
ing methods that make it possible to extract rule
weights or even entire grammars from AMRbank.

Finally, it should be mentioned that there are
other formalisms for defining languages of di-
rected acyclic graphs that seem promising and
should therefore be investigated for AMR mod-
elling, e.g. DAG automata (Blum and Drewes,
2016, 2017; Chiang et al., 2016). In particular,
it would be interesting to study the relative ad-
vantages and disadvantages of these options, and
whether they can be combined in a fruitful way.

110

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse. pages 178–186.

Henrik Björklund, Frank Drewes, and Petter Ericson.
2016. Between a rock and a hard place — pars-
ing for hyperedge replacement DAG grammars. In
10th International Conference on Language and Au-
tomata Theory and Applications.

Johannes Blum and Frank Drewes. 2016. Properties of
regular dag languages. In 10th International Con-
ference on Language and Automata Theory and Ap-
plications.

Johannes Blum and Frank Drewes. 2017. Language
theoretic properties of regular DAG languages. To
appear.

Fabienne Braune, Daniel Bauer, and Kevin Knight.
2014. Mapping between English strings and reen-
trant semantic graphs. In Proceedings of the Ninth
International Conference on Language Resources
and Evaluation. pages 4493–4498.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge
replacement grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). pages
924–932.

David Chiang, Frank Drewes, Daniel Gildea, Adam
Lopez, and Giorgio Satta. 2016. Weighted DAG au-
tomata for semantic graphs. Submitted.

Frank Drewes and Berthold Hoffmann. 2015. Con-
textual hyperedge replacement. Acta Informatica
52(6):497–524.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2012. Applications of Graph Transformations with
Industrial Relevance: 4th International Symposium,
Revised Selected and Invited Papers, chapter Con-
textual Hyperedge Replacement, pages 182–197.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2015. Predictive top-down parsing for hyperedge
replacement grammars. In Proceedings of the 8th
International Conference on Graph Transformation.
pages 19–34.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2017. Predictive shift-reduce parsing for hyperedge
replacement grammars. In Proc. 10th Intl. Conf. on
Graph Transformation (ICGT’17). Lecture Notes in
Computer Science.

Frank Drewes, Hans-Jörg Kreowski, and Annegret Ha-
bel. 1997. Hyperedge replacement graph grammars.
In Handbook of Graph Grammars and Computing
by Graph Transformation, pages 95–162.

Annegret Habel. 1992. Hyperedge replacement: gram-
mars and languages, volume 643. Springer Science
& Business Media.

Anna Jonsson. 2016a. Generation of Abstract Meaning
Representations by Hyperedge Replacement Gram-
mars – A Case Study. Master’s thesis.

Anna Jonsson. 2016b. On the generation of ab-
stract meaning representations using polynomial-
time parsable hyperedge replacement grammars.
The Sixth Swedish Language Technology Confer-
ence.

Kevin Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In International Conference on Intelli-
gent Text Processing and Computational Linguistics.
pages 1–24.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
Proceedings of the 36th Annual Meeting of the Asso-
ciation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguis-
tics - Volume 1. pages 704–710.

Nianwen Xue, Ondrej Bojar, Jan Hajic, Martha Palmer,
Zdenka Uresova, and Xiuhong Zhang. 2014. Not
an interlingua, but close: Comparison of English
AMRs to Chinese and Czech. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation. pages 1765–1772.

111

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 112–121,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Transforming Dependency Structures to LTAG Derivation Trees

Caio Corro Joseph Le Roux
Laboratoire d’Informatique de Paris Nord,

Université Paris 13 – SPC, CNRS UMR 7030,
F-93430, Villetaneuse, France
{corro,leroux}@lipn.fr

Abstract

We propose a new algorithm for pars-
ing Lexicalized Tree Adjoining Grammars
(LTAGs) which uses pre-assigned bilexi-
cal dependency relations as a filter. That
is, given a sentence and its correspond-
ing well-formed dependency structure, the
parser assigns elementary trees to words
of the sentence and return attachment sites
compatible with these elementary trees
and predefined dependencies. Moreover,
we prove that this algorithm has a linear-
time complexity in the input length. This
algorithm returns all compatible derivation
trees as a packed forest. This result is of
practical interest to the development of ef-
ficient weighted LTAG parsers based on
derivation tree decoding.

1 Introduction

Lexicalized Tree Adjoining Grammars (LTAGs),
that is TAGs where each elementary tree contains
exactly one lexical anchor, have been proposed
as an attractive formalism to model the phrase-
structure construction in natural languages (Sch-
abes et al., 1988; Abeille et al., 1990). An im-
portant property of lexicalized grammars is their
ability to directly encode semantic information in
combination operations. Borrowing the example
provided by Eisner and Satta (2000), in the sen-
tence “She deliberately walks the dog”, the
tree anchored with “dog” is combined to the tree
anchored with “walks”, see Figure 1a.1 Thus,
the object associated with a transitive realization
“walks” can be restricted to a subset of allowed
words, including “dog” but not “river”.

Unfortunately, parsing with a LTAG is hardly
tractable. Eisner and Satta (2000) proposed the

1We use a simplified grammar to ease the presentation.

best-known parsing strategy with a O(n7) worst
case time complexity and O(n5) space complex-
ity where n is the length of the input sentence.
This is a major drawback for downstream applica-
tions where speed and low memory use is impor-
tant. Moreover, by reducing boolean matrix multi-
plication to TAG parsing, Satta (1994) argued that
obtaining a lower complexity bound for the latter
problem is unlikely to be straightforward. Hence,
parsing with weighted TAGs (Resnik, 1992) has
received too little attention even though Chiang
(2000) experimentally demonstrated their useful-
ness in the Penn Treebank parsing task. In order to
bypass this major bottleneck, two main strategies
have been explored. On the one hand, splittable
grammars (Schabes and C. Waters, 1995; Carreras
et al., 2008) are interesting because they have a
lower asymptotic complexity than LTAGs. How-
ever, they cannot directly encode several proper-
ties that make TAGs linguistically plausible, such
as cross-serial dependencies. In fact, they are re-
stricted to context-free languages. On the other
hand, a popular approach to speed up LTAG pars-
ing is to include a preliminary step called su-
pertagging: only a subset of tree fragments per
word are retained as candidates, or exactly one in
the most aggressive form (Chen and Bangalore,
1999). However, this pruning does not improve
the asymptotic complexity of the parser.2 More-
over, it is usually performed via local methods that
can hardly take into account long distance rela-
tionships since lexical dependencies are unknown
at this step. For instance, in the sentence “She

deliberately walks, despite her hatred for

quadruped mammals, the dog”, capturing the
transitive nature of the first verb is difficult without
further analysis (Bonfante et al., 2009).

2Intuitively, even when lexicon assigns only one elemen-
tary tree per word, a sentence can have several derivations
which exhibit different tree structures.

112

walks

VBZ

VP

S

NP

NP
VP

VP*ADVP

RB

deliberately

NP

PRP

She NP

NN

dog

DET

DET

the

(a) Sentence construction with a LTAG

She

PRP

NP

deliberately

RB

ADVP

walks

VBZ

VP

VP

S

the

DET

dog

NN

NP

(b) Resulting phrase-structure

v1
τ1 v2

τ2

v3
τ3

v4
τ4

v5
τ5

1.1
1.2

1.2.2

1.1

She deliberately walks the dog

(c) Associated derivation tree

Figure 1: Phrase-structure of the sentence “She deliberately walks the dog”, its construction thanks
to a LTAG and the associated derivation tree. Dashed arrows in the left figure represent combination
operations. Note that the derivation tree is a a labelled dependency structure.

In this work, we explore a component for a new
alternative in fast and efficient LTAG parsing. De-
pendency structures can be interpreted as sets of
derivation trees which share lexical composition
operations. This property has already been investi-
gated in order to propose efficient phrase-structure
parsers under several formalisms (Section 2). The
derivation tree induced by an LTAG analysis, as
shown in Figure 1c, is a dependency structure ex-
posing bilexical dependencies and labelled with
elementary trees and operation sites (Section 3).
As such, LTAG parsing can be seen as dependency
parsing where both valid tree structures and valid
labellings are constrained. Following the pipeline
used in most labeled dependency parsers:

1. a parser starts by assigning a single head to
each lexical item, without taking into account
the grammar;

2. then, a parse labeler assigns elementary trees
and operation sites.

Regarding the first step, seminal work of
Bodirsky et al. (2005) showed that, ignoring la-
bels, the derivation tree is an arborescence3 that
can be characterized thanks to two structural
properties: 2-bounded block degree and well-
nestedness. Gómez-Rodrı́guez et al. (2009) intro-
duced an algorithm with a O(n7) time complex-
ity for decoding this type of structures. Still, this
is a dependency parsing problem hardly tractable
for sentences longer than 15 ∼ 20 words. More
recently, Corro et al. (2016) proposed an exper-
imentally fast alternative based on combinatorial

3In the rest of the paper, we use tree to denote the lin-
guistic object and arborescence to denote the graph-theoretic
object. The term tree may be confusing because in graph the-
ory it refers to an undirected type of graph.

optimization and the maximum spanning arbores-
cence problem. Either way, this means that it is
now possible to obtain dependency trees that are
compatible with LTAG parsing.

Still, we are left with the second step: the parse
labeler. Our contribution is a novel algorithm for
this second step that can infer elementary trees
and operation sites (Sections 4 and 5) as a post-
processing step to build all compatible derivation
trees, from which derived trees are completely
specified. The time complexity in the length of
the sentence is linear (Section 6).

2 Related work

Syntactic content must not be confused with the
type of representation, as clearly argued by Ram-
bow (2010). As such, phrase structures can be en-
coded into dependency-like structures as long as
the transformation is correctly formalized. One
example of this fact is the correspondence be-
tween derivation trees constructed from lexical-
ized grammar and bilexical dependency relations.
However, the equivalence with dependency-based
linguistic theories may not be as straightforward
as the similarity in the type of representation sug-
gests (Rambow and Joshi, 1997; Kallmeyer and
Kuhlmann, 2012). Following this line of thought,
we reduce LTAG parsing to dependency parsing
where unannotated bilexical dependencies repre-
sents abstract attachment operations and depen-
dency labels specify the type of attachment and the
site of the operation on the head elementary tree.

Historically, many syntactic dependency tree-
banks have been built by transforming phrase-
structures using head-percolation tables (Collins,
2003; Yamada and Matsumoto, 2003), and thus
one could learn a dependency parser from a

113

phrase-structure treebank. More Recently, fol-
lowing this observation, Fernández-González and
Martins (2015) proposed to encode constituents as
bilexical dependency labels without relying on a
grammar, solving the two problems jointly. In this
setting, constituent parse tree is recovered from a
labeled dependency parse, which makes it possi-
ble to use tools developed for dependency pars-
ing. This is appealing because dependency parsing
has received a considerable amount of attention
recently and is now well understood. Moreover,
dependency parsing is usually less complex than
phrase-structure parsing, at least in practice if not
asymptotically. This technique has been showed
to be experimentally efficient but it may be argued
that the lack of an explicit grammar may result in
non-interpretable structures. For instance, the va-
lency of a verbal predicate may be incorrect.

Another line of work used predicted bilexical
dependencies as a filter for a standard grammar
parser. Recently, Kong et al. (2015) applied this
technique to Context-Free Grammars with lexi-
cal projections, ie. head-projections are specified
in right-hand sides of production rules (Collins,
2003). The resulting algorithm is certified to have
quadratic worst time-complexity but, in practice,
they observed a linear running-time with respect to
the sentence length. Our method is very close but
with one major difference. In an LTAG derivation
each word is assigned a single elementary tree,
while in CFGs with lexical projections a word can
anchor several rules. This observation provides us
with way to improve the worst-case time complex-
ity of our algorithm from cubic to linear with re-
gards to the input length. We believe that this ob-
servation could also be adapted to the framework
of Kong et al. (2015). Also, we can interpret the
low-order dependency parsing model explored by
Carreras et al. (2008) as a similar filtering proce-
dure. However, they did not study the theoreti-
cal complexity benefit of their approach. Note that
both of these works only handle context-free lan-
guages whereas we focus on a mildly-context sen-
sitive formalism.

Guided parsing has been studied for TAGs and
related formalisms like RCGs (Barthélemy et al.,
2001). Our approach differs because the prede-
fined dependency tree cannot be considered as a
guide, nor an oracle, since it is not required to be
a superset of the set of possible derivations. Also,
we could see our method as an algorithm to com-

pute the intersection of the tree language defined
by an LTAG and the tree language consisting of a
single dependency tree. In this way our method
can be seen as an instance of the framework de-
fined in (Nederhof, 2009).

Finally, we follow the common idea that deriva-
tion trees should be built directly and that a derived
tree is a by-product of a derivation tree. See for in-
stance Debusmann et al. (2004) which introduced
LTAG parsing as a constraint satisfaction problem.

3 Lexicalized Tree Adjoining Grammar

In this section, we describe notions related to
LTAG parsing that we will use to expose the pars-
ing algorithm in Section 4. We assume the reader
is familiar with the TAG formalism (Joshi, 1987;
Joshi and Schabes, 1992). We start by defining
TAGs, then we introduce the structure of deriva-
tion trees and finally we give an overview of pars-
ing with LTAGs.

3.1 Definition
We define a LTAG as a tuple
〈N,T,ΓI ,ΓA,ΓS , fOA, fSA, fSS〉 where:

• N and T are disjoint finite sets of non-
terminals (constituents) and terminals
(words), respectively;

• ΓI and ΓA are the finite sets of initial and
auxiliary trees, respectively, built uponN and
T and we define the set of elementary trees as
Γ , ΓI ∪ ΓA;

• ΓS ⊆ ΓI is the set of start trees.

We use Gorn addresses4 to index nodes and p ∈
τ is true if and only if address p exists in tree τ . We
use the term site to refer to both the Gorn address
and the corresponding node.

Each node of the elementary tree τ ∈ Γ is la-
belled with a non-terminal except exactly one leaf
labelled with the terminal whose address is de-
noted lex (τ), called the lexical anchor. For any
auxiliary tree τ ∈ ΓA, the address of its manda-
tory foot node is written foot(τ). Without loss of
generality, we restrict Γ to binary trees only.

In order to control combination operations over
nodes in Γ, we use the following functions:

• fOA : Γ×Z+ → B specifies whether adjunc-
tion is obligatory at a site in a tree or not;5

4A Gorn address for a node is a sequence of integers from
Z+ indicating a path from the root to the addressed node.

5B is the set containing boolean values true and false.

114

• fSA : Γ × Z+ × ΓA → B specifies the trees
that can be adjoined at a site;

• fSS : Γ×Z+×ΓI → B is a similar function
for substitution.

To simply notation, we also use function fSA
and fSS in order to check if a site is an adjunction
or substitution site, and thus assume these func-
tions check if the given site is a leaf or not.

The derived tree is built by combining elemen-
tary trees thanks to combination operations: sub-
stitution and adjunction. In this paper, we have
to distinguish three different types of adjunction.
A wrapping adjunction is the attachment of a sub-
analysis which has lexical anchors on both sides of
the adjoined auxiliary tree’s foot node. Similarly,
left adjunction and right adjunction restrict lexi-
cal anchors to the left and right of the foot node,
respectively. 6

3.2 Derivation tree
Given a sentence s = s1 . . . sn and a LTAG, a
derivation tree is a dependency structure repre-
senting a valid parse of the sentence by means of
elementary trees and combination operations. It is
a directed graphG = (V,A) with V = {v1 . . . vn}
the set of vertices, vi corresponding to word si.
The set of arcs A ⊂ V × V describes a spanning
arborescence: A contains n−1 arcs with no circuit
and each vertex has at most one incoming arc. The
unique vertex vr without incoming arc is called the
root vertex. The set of children of a vertex is de-
fined as children(vh) = {vm|vh → vm ∈ A}.
Moreover, vertices are labelled with elementary
trees and arcs with Gorn addresses. Vertex la-
bels indicate supertag assignment, while arc la-
bels specify adjunction or substitution sites. The
derivation tree contains all necessary information
to construct the derived tree. See Figure 1b and
1c for an example. Different derivation trees can
induce the same derived tree.

We borrow notation and definitions from Corro
et al. (2016). The predecessor of a vertex vi ∈ V
is vi−1. We refer to the vertex with the smaller
(resp. larger) index in a set as the leftmost (resp.
rightmost) vertex. The yield of a vertex vk ∈ V is
the set of vertices reachable from vk with respect
to A, including itself. We note (vk)⇐ and (vk)⇒
the leftmost and rightmost vertices in the yield of

6These should not be confused with wrapping, left and
right auxiliary trees which only describe the structure of aux-
iliary trees.

v1

v2

v3

v4

v5

v6

Why, he asks, does she walk ?

Notation Value
(v4)⇐ v1
(v4)⇒ v6
(v4)← v2
(v4)→ v3
(v4)↑ v3

Figure 2: Example of a 2-bounded block degree
and well-nested dependency structure. The right
table exposes notation we use for information we
can extract about vertex v4.

vk respectively. The span of vk corresponds to the
set of vertices delimited by (vk)⇐ and (vk)⇒, pos-
sibly including vertices which are not in the yield
of vk. The block degree of a vertex set W ⊆ V is
the number of vertices of W without a predeces-
sor inside W . The block degree of a vertex is the
block degree of its yield and the block degree of
an arborescence is the maximum block degree of
its incident vertices.

Traditionally, dependency structures have been
characterized as either projective (all vertices have
a yield equal to their span) or non-projective (any
arborescence). Previous work of Bodirsky et al.
(2005) showed that the structure of G is highly
constrained and can be characterized thanks to two
finer-grained structural properties. First, G has a
2-bounded block degree, meaning the block de-
gree of G is less or equal to two. Given a vertex
vk ∈ V with a block degree of 2, its gap is the ver-
tex set of block degree 1 including a vertex with
its predecessor and one with its successor in the
yield of vk. We note (vk)← and (vk)→ the leftmost
and rightmost nodes in the gap of vk, respectively,
(vk)← = (vk)→ = − if there is none (ie. vk as a
block degree of 1, thus its yield is equal to its span
and contains no gap). An example is illustrated
in Figure 2. Second, G is well-nested, that is two
distinct sub-trees may not interleave. We will not
explicitly use this property in the following and re-
fer readers interested dependency structures char-
acterization to Kuhlmann and Nivre (2006). How-
ever, we assume dependency structures to be well-
nested.7

3.3 Parsing
So far we defined LTAGs and discussed the struc-
ture of derivation trees. We will now briefly focus

7 More precisely, the algorithm proposed in Section 4 can-
not parse ill-nested arborescences. Well-nestedness is a re-
quired property of the input.

115

on the parsing problem.
Given a sentence, this term may typically re-

fer to three different but strongly related tasks via
the notion of semi-ring parsing (Goodman, 1999).
First, recognition: can this sentence be generated
by a given grammar? Second, derivation forest
parsing: decoding the set of all possible derivation
trees. Third, weighted disambiguation: what is the
best parse in the derivation forest given a scoring
model? Our work was motivated by the weighted
framework, but can generalize to others with some
limitation.

Thus, a parser takes as input a grammar and a
sentence. Because the LTAG chart-based parser
has a high complexity, a standard approach is to
use a pipeline system. First, a labeler assigns a
single elementary tree to each lexical item. Then,
the chart-based parser is run. This is merely a
beam approach but it does not impact the assymp-
totic complexity of the second step. We propose
to reverse this standard pipeline. In the first stage
of the pipeline, which we consider already per-
formed, a dependency parser assigns bilexical re-
lations that we interpret as an abstract, ie. unla-
belled, derivation tree. Contrary to the standard
pipeline, this first step do not take into account the
grammar, which lead to the development of an ef-
ficient parser based on combinatorial optimization
(Corro et al., 2016). Next, the linear-time algo-
rithm exposed in Section 4 can be used to assign
elementary trees and operation sites.

4 Parsing with given bilexical relations

Not every labelled graph G describing an arbores-
cence is a valid dependency tree. Indeed, many
constraints must be satisfied in order to transform
the derivation tree to into a derived tree. Since an
arc vh → vm represents a combination operation
of the tree of vm into the tree of vh, non-terminals
at attachment sites must be equal and if the desti-
nation site is a leaf (resp. internal) node, the tree of
vm must be an initial (resp. auxiliary) tree, among
others.

In this section, we propose a new algorithm for
LTAG parsing with given bilexical relations in the
form of a deduction system (Pereira and Warren,
1983). We formalize the algorithm as a recog-
nizer: the Goal item can only be obtained if the
input can be generated by the grammar. As usual,
it can be implemented as a chart-based dynamic
program with back-pointers in order to retrieve

every allowed derivation tree. Moreover, rules
can be augmented with scores to build a weighted
parser (Goodman, 1999).

Intuitively, our algorithm is an adaptation of
the standard CYK variant for TAG parsing (Vijay-
Shankar and K. Joshi, 1986; Vijay-Shanker and
J. Weir, 1993), extended to handle constraints of
lexicalized grammars. It is bottom-up in two ways.
First, vertices of the dependency structure are tra-
versed from leaves to root: a vertex is considered
only after all its children. Second, given a vertex
of the dependency structure, its corresponding el-
ementary tree is visited in a similar fashion as in
the CYK-like algorithm. The resulting algorithm
has a linear time complexity. This is due to the
fact that the maximum number of operations on a
given elementary tree is bounded by its size. Thus,
given a word, its maximum number of modifiers
is not bounded by the sentence length but by the
grammar, which leads to a tighter asymptotic com-
plexity.

4.1 Item definition
Given a LTAG 〈N,T,ΓI ,ΓA,ΓS , fOA, fSA, fSS〉,
a sentence s = s1 . . . sn and the corresponding
dependency structure G = (V,A), items are 6-
tuples of the form [vh, τ, p, c, bl, br] with:

1. considered vertex vh ∈ V in the dependency
structure, corresponding to word sh;

2. elementary tree τ ∈ Γ, indicating the associ-
ation of the anchor of τ with word sh;

3. Gorn address p ∈ τ of a node in the elemen-
tary tree;

4. combination flag c ∈ {⊥,>} specifying if a
combination operation has already been in-
vestigated > or not ⊥ at node p;

5. left boundary bl ∈ V ∪{lh, gh,
←
gh,
→
gh} defines

the left boundary of the yield of the item,
which is discussed in more details below;

6. right boundary br ∈ V ∪ {lh, gh,
←
gh,
→
gh} de-

fines its right boundary.

In most approaches, boundaries of the yield are
given using integer indices. Instead, we use either
vertices V or special values lh, gh,

←
gh and

→
gh.8

8 In the literature, the yield is often defined as a pair 〈i, j〉
meaning words from si+1 to sj are covered. We do not fol-
low this convention: a yield 〈i, j〉 indicates that words from
si to sj are covered.

116

If the left boundary of an item is node vm ∈ V ,
the left (resp. right) boundary position is given by
(vm)⇐ (resp. (vm)⇒). Special value lh is used to
indicate that the lexical anchor is used as a bound-
ary, thus we define (lh)⇐ , h and (lh)⇒ , h.
The remaining values are used to indicate that the
boundary is determined by the foot node span. The
boundary is set to special value gh if and only if
the span of vh has a gap, ie. (vh)← 6= −. Sim-
ply, we set (gh)⇐ , (vh)← and (gh)⇒ , (vh)→.
Finally, note that vertices which do not have a gap
in their span, can still be combined through left
or right adjunction (see Figure 1c). Thus, we use
←
gh (resp.

→
gh) in order to qualify the boundary

of an sub-analysis which targets to be combined
through a left (resp. right) adjunction. We set
(
←
gh)⇐ , (vh)⇒ + 1 and (

→
gh)⇒ , (vh)⇐ − 1.

Note that (
←
gh)⇒ and (

→
gh)⇐ are undefined, mean-

ing that rules which use these values can not be
applied.

Tree τ is a candidate for word represented by
vertex vh and its dependants if we can go up at
its root node with boundaries equals to the span of
vh. In order to simplify notation, we use interme-
diate items to represent them. If the item has both
boundaries defined, then:

Full:
[vh, τ, 1,>, bl, br]

(br)⇒ = (vh)⇒

(bl)⇐ = (vh)⇐,

[vh, τ]

If h 6= r, this item will be a candidate to com-
bination through substitution (resp. adjunction) if
τ ∈ T I (resp. τ ∈ TA), or similarly, if vh has
no gap (resp. has a gap). Two other intermedi-
ate items are used specifically to indicate that they
are meaning to be combined through left and right
adjunction:

Full left:
[vh, τ, 1,>, bl,

←
gh]

(bl)⇐ = (vh)⇐
[vh, τ,←]

Full right:

[vh, τ, 1,>,
→
gh, br]

(br)⇒ = (vh)⇒
[vh, τ,→]

A triplet item ending with the← (resp.→) symbol
is a candidate for left (resp. right) adjunction. Ob-
viously, τ in the antecedent of both rules must be
an auxiliary tree. This is constrained by the Foot
scan rule introduced in the following subsection.

4.2 Axioms and goal

The first axiom is:

Lex scan:
τ(p) = sh

lex(τ) = p,

[vh, τ, p,>, lh, lh]

meaning, for each vertex vh and elementary tree
τ , we instantiate items with compatible elemen-
tary trees, starting at the lexical anchor address.
Moreover, we create items at the foot position of
an auxiliary tree for vertices with a gap in their
span:

Foot scan:

(vh)← 6= −
foot(τ) = p,

τ ∈ ΓA,

[vh, τ, p,>, gh, gh]

Finally, the two last axioms are used to predict
possible trees, on vertices without gap, that will
be combined through left or right adjunction:

Foot scan left:

(vh)← = −
foot(τ) = p,

τ ∈ ΓA,

[vh, τ, p>,
←
g h,

←
g h]

Foot scan right:

(vh)← = −
foot(τ) = p,

τ ∈ ΓA,

[vh, τ, p>,
→
g h,

→
g h]

A proof completes if any tree τ ∈ S is a candi-
date for the root vertex vr of the dependency struc-
ture:

Goal:
[vr, τ]

τ ∈ τS

In the rest of this section, we describe rules gov-
erning allowed deductions.

4.3 Traversal rules

We start with tree traversal.9 Obviously, the
premise of any move operation is that we already
checked any potential operation, marked by the >
flag. Given address p · 1 in tree τ , we consider two
cases. First, if node p · 1 do not have any sibling,
ie. p · 2 /∈ τ :

Move unary:
[vh, τ, p · 1,>, bl, br]

(p · 2) /∈ τ
[vh, τ, p,⊥, bl, br]

Secondly, if p ·2 exists, the siblings must share the
same frontier:

9We assume binary elementary trees in the following pre-
sentation, but this can be generalized to other tree structures.

117

Move binary:
[vh, τ, p · 1,>, bl1, br1]
[vh, τ, p · 2,>, bl2, br2]

(br1)⇒ + 1 = (bl2)⇐
[vh, τ, p,⊥, bl1, br2]

4.4 Combination rules

Finally, let us concentrate on combination oper-
ations. The simplest, substitution, can only hap-
pen at substitution nodes and both attachment sites
must be labelled with the same non-terminal. We
assume that these conditions are checked by the
fSS function:

Substitute:
[vm, τ

′]
fSS(τ, p, τ ′)

(vm)← = −,

[vh, τ, p,>, vm, vm]

The wrapping adjunction combines a modifier
with a gap:

Wrapping adjoin:
[vm, τ

′] [vh, τ, p,⊥, bl, br]
fSA(τ, p, τ ′)

(vm)→ = (br)⇒,

(vm)← = (bl)⇐,

[vh, τ, p,>, vm, vm]

Similarly, left and right adjunctions deal with ver-
tices without gap:

Left adjoin:
[vm, τ

′,←][vh, τ, p,⊥, bl, br]
fSA(τ, p, τ ′)

(vm)⇒ = (bl)⇐ − 1,

[vh, τ, p,>, vm, br]

Right adjoin:
[vm, τ

′,→][vh, τ, p,⊥, bl, br]
fSA(τ, p, τ ′)

(br)⇒ = (vm)⇐ − 1,

[vh, τ, p,>, bl, vm]

Finally, adjunction may be skipped if this is al-
lowed at the current site:

Null adjoin:
[vh, τ, p,⊥, bl, br] ¬fOA(τ, p)
[vh, τ, p,>, bl, br]

5 Correctness

Since we use the deductive parsing framework,
proving the correctness of the algorithm is
straightforward from the notion of item invariant.
Proving that every production rule maintains this
invariant gives us soundness. Conversely, com-
pleteness can be proven by induction on items. In
the following we explain our invariant.

An item [vh, τ, p, c, bl, br] can be deduced from
the axioms through the application of deduction

X

Y

X∗

s(bl)⇐ s(vh)←−1 s(vh)→+1 s(br)⇒s(vh)⇐ s(vh)⇒

Figure 3: Invariant of an item [vh, τ, p, c, bl, br]
when vertex vh has a block degree of 2. X is the
root node of τ , X∗ its foot node and Y the node at
address p. Only the gray area has been parsed.

rules if and only if, with respect to the input de-
pendency parse, τ(p) can be derived to generate
the subsequence of terminals and foot nodes:

• if address p in τ does not dominate a foot
node, the subsequence is s(bl)⇐ . . . s(bl)⇒ ;

• if p in τ dominates a foot node and
this is not a left nor a right adjunction
bl, br /∈ {←gh,

→
gh}, the subsequence is

s(bl)⇐ . . . s(vh)←−1X
∗s(vh)→+1 . . . s(br)⇒ ;

• if p in τ dominates a foot node and bl =
←
gh,

the subsequence is X∗s(vh)⇐ . . . s(br)⇒ ;

• if p in τ dominates a foot node and br =
→
gh,

the subsequence is s(bl)⇐ . . . s(vh)⇒X
∗;

withX∗ the foot node of τ . A visualization is pro-
vided on Figure 3.

6 Complexity

It is common practice to directly deduce space
and time complexities from item structures and de-
duction rules, respectively. However, improving
bounds in this setting may lead to algorithms diffi-
cult to understand. Thus, we decided to propose a
rule-based algorithm that is simple to understand
but which naively exposes a loose upper bound
on its underlying complexity. In this section, we
prove that the space and time complexities are lin-
ear.

In order to simplify the analysis, we suppose an
agenda-based implementation (Kay, 1986). Each
deduced item is placed in an agenda. While the
agenda is not empty, the main loop pops out an
item from it and add it to the chart. Then, the

118

popped out item is tested as an antecedent, and all
deduced consequents are pushed in the agenda if
not already present in the chart. See Algorithm 1
for an outline of the algorithm.

Algorithm 1 Outline of the parsing algorithm.
Lines 22-27 apply the Binary move rule.

1: A← [] . Empty Agenda
2: for 1 ≤ m ≤ n do . Init
3: for τ ∈ Γ do . Lex. scan
4: if τ(lex(τ)) = sm then
5: A.push([τ, lex(τ),>, lm, lm])
6: end if
7: end for
8: for τ ∈ ΓA do . Foot scan
9: if (vm)→ 6= − then

10: A.push([τ, foot(τ),>, gm, gm])
11: else
12: A.push([τ, foot(τ),>, ←gm,

←
gm])

13: A.push([τ, foot(τ),>, →gm,
→
gm])

14: end if
15: end for
16: end for
17: C ← [] . Empty Chart
18: while |A| > 0 do
19: [τ, p · 1,>, bl1, br1]← A.pop()
20: C.add([τ, p · 1,>, bl1, br1])
21: . apply Move binary
22: Let bl2 be the unique boundary with

(br1)⇒ + 1 = (bl2)⇐

23: for [τ, p · 2,>, bl2, br2] ∈ C do
24: if [τ, p,>, bl1, br2] /∈ C then
25: A.push([τ, p,>, bl1, br2])
26: end if
27: end for
28: ...Apply other rules...
29: end while

Before analysing the algorithm complexity, we
observe that the first value of an item, the cur-
rent vertex, is redundant. Indeed, given the value
of the left boundary (or right boundary), we can
always retrieve the considered vertex in constant
time. Obviously, when the boundary is given by a
vertex vm, we have vh = (vm)↑.10 For special val-
ues allowed for boundaries, all indexed by a word
position h, a similar operation is straightforward.
For example, if a boundary is given by lh then the
considered vertex is vh.

10We assume that the data structure storing the dependency
graph provides such function in constant time.

The algorithm has a maximum of two nested
loops: the main while loop and for loops match-
ing the second antecedent of binary rules. We
first consider the while loop. An item is added to
the agenda if only if it is not present in the chart.
Thus, each item is considered exactly once by this
loop. We note n the length of the input sentence,
t the maximum number of nodes in an elemen-
tary tree τ ∈ Γ and g , |Γ| the number of ele-
mentary trees.11 Naively, the number of items is
then bounded by O(n2tg). However, the number
of combination operations which can be applied
on an elementary tree is bounded by its number
of nodes, provided we dismiss multiple adjunction
sites. In this case, each node of an elementary tree
may be adjoined or substituted on at most once.
Thus, given an elementary tree and a left bound-
ary, the number of values allowed as a right bound-
ary is limited. This leads to a tighter bound on the
number of items: O(min(t, n)ntg).

We now investigate time complexity. Move bi-
nary is the only rule which has two free an-
tecedents. Indeed, it is easy to see that, in the other
binary rules, fixing the right antecedent always
fixes the left one. For the Move binary rule, given
the left antecedent, the number of candidates for
the right one is naively bounded by O(n). How-
ever, we previously argued that, given a fixed left
boundary, the maximum number of right boundary
alternatives cannot exceed the number of sites on
the current elementary tree. Thus, we can tighten
the bound to O(min(t, n)).

In conclusion, the time complexity of the pro-
posed algorithm is O(min(t, n)2ntg), that is
asymptotically linear with respect to the input sen-
tence length.

7 Conclusion

We proposed an algorithm to compute LTAG
derivations given a sentence and a dependency
structure describing lexical attachments. We
showed that under mild assumptions the worst-
case complexity is linear in the length of the input.

This work fits in the more general project to
interpret LTAG parsing as a dependency struc-
ture decoding problem. In this framework, it is
common to label the graph structure in a post-
processing step. Hence our approach relies on
the availability of valid dependency structures for

11Alternatively, g can be the number of elementary trees
associated with the most ambiguous word of the vocabulary.

119

LTAGs, more precisely well-nested arborescences
with 2-bounded block degree.

Experiments remain to be done in order to vali-
date the practical interest of this approach. More-
over, one limitation of the pipeline system, as in
all pipeline approaches, is the possibility of error
cascades: the first step may decode a dependency
structure that is not recognizable by the grammar
while the sentence is grammatical.

We hope that this work will open new perspec-
tives on parsing with lexicalized grammars. Ex-
ploring a similar technique, one may develop an
efficient parsing algorithm for weighted Lexical-
ized Linear Context Free Rewriting System.

Acknowledgements

We thank the anonymous reviewers for their in-
sightful comments. First author is supported by
a public grant overseen by the French National
Research Agency (ANR) as part of the Investisse-
ments d’Avenir program (ANR-10-LABX-0083).
Second author, supported by a public grant over-
seen by the French ANR (ANR-16-CE33-0021),
completed this work during a CNRS research
leave at LIMSI, CNRS / Université Paris Saclay.

References
Anne Abeille, Kathleen Bishop, Sharon Cote, and Yves

Schabes. 1990. A lexicalized tree adjoining gram-
mar for english. Technical report, University of Pen-
sylvania.

François Barthélemy, Pierre Boullier, Philippe De-
schamp, and Éric Villemonte de la Clergerie.
2001. Guided parsing of range concatena-
tion languages. In Proceedings of 39th An-
nual Meeting of the Association for Compu-
tational Linguistics. Association for Computa-
tional Linguistics, Toulouse, France, pages 42–49.
https://doi.org/10.3115/1073012.1073019.

Manuel Bodirsky, Marco Kuhlmann, and Mathias
Möohl. 2005. Well-nested drawings as models of
syntactic structure. In Proceedings of the 10th Con-
ference on Formal Grammar (FG) and Ninth Meet-
ing on Mathematics of Language (MOL). Edinburgh,
UK, pages 195–203.

Guillaume Bonfante, Bruno Guillaume, and Math-
ieu Morey. 2009. Proceedings of the 11th
International Conference on Parsing Technolo-
gies (IWPT’09), Association for Computational
Linguistics, chapter Dependency Constraints
for Lexical Disambiguation, pages 242–253.
http://aclweb.org/anthology/W09-3840.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
CoNLL 2008: Proceedings of the Twelfth Confer-
ence on Computational Natural Language Learn-
ing, Coling 2008 Organizing Committee, chapter
TAG, Dynamic Programming, and the Perceptron
for Efficient, Feature-Rich Parsing, pages 9–16.
http://aclweb.org/anthology/W08-2102.

John Chen and Srinivas Bangalore. 1999. New
models for improving supertag disambiguation.
In Ninth Conference of the European Chapter
of the Association for Computational Linguistics.
http://aclweb.org/anthology/E99-1025.

David Chiang. 2000. Statistical parsing with
an automatically-extracted tree adjoining gram-
mar. In Proceedings of the 38th Annual Meeting
of the Association for Computational Linguistics.
http://aclweb.org/anthology/P00-1058.

Michael Collins. 2003. Head-driven statistical mod-
els for natural language parsing. Computational
Linguistics, Volume 29, Number 4, December 2003
http://aclweb.org/anthology/J03-4003.

Caio Corro, Joseph Le Roux, Mathieu Lacroix, An-
toine Rozenknop, and Roberto Wolfler Calvo. 2016.
Dependency parsing with bounded block degree
and well-nestedness via lagrangian relaxation and
branch-and-bound. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Associ-
ation for Computational Linguistics, pages 355–366.
https://doi.org/10.18653/v1/P16-1034.

Ralph Debusmann, Denys Duchier, Marco Kuhlmann,
and Stefan Thater. 2004. Tag parsing as model enu-
meration. In Proceedings of the 7th International
Workshop on Tree Adjoining Grammar and Related
Formalisms. Vancouver, Canada, pages 148–154.
http://www.aclweb.org/anthology/W04-3320.

Jason Eisner and Giorgio Satta. 2000. A faster parsing
algorithm for lexicalized tree-adjoining grammars.
In Proceedings of the Fifth International Workshop
on Tree Adjoining Grammar and Related Frame-
works (TAG+5). Université Paris 7, pages 79–84.
http://www.aclweb.org/anthology/W00-2011.

Daniel Fernández-González and André F. T. Mar-
tins. 2015. Parsing as reduction. In Proceed-
ings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1523–1533.
https://doi.org/10.3115/v1/P15-1147.

Carlos Gómez-Rodrı́guez, David Weir, and John Car-
roll. 2009. Parsing mildly non-projective depen-
dency structures. In Proceedings of the 12th Con-
ference of the European Chapter of the ACL (EACL
2009). Association for Computational Linguistics,
pages 291–299. http://aclweb.org/anthology/E09-
1034.

120

Joshua Goodman. 1999. Semiring parsing. Computa-
tional Linguistics, Volume 25, Number 4, December
1999 http://aclweb.org/anthology/J99-4004.

Aravind K Joshi. 1987. An introduction to tree adjoin-
ing grammars. Mathematics of language 1:87–115.

Aravind K Joshi and Yves Schabes. 1992. Tree-
adjoining grammars and lexicalized grammars. Tree
Automata and Languages .

Laura Kallmeyer and Marco Kuhlmann. 2012. A
formal model for plausible dependencies in lex-
icalized tree adjoining grammar. In Pro-
ceedings of the 11th International Workshop
on Tree Adjoining Grammars and Related For-
malisms (TAG+11). Paris, France, pages 108–116.
http://www.aclweb.org/anthology/W12-4613.

Martin Kay. 1986. Readings in Natural Lan-
guage Processing, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, chap-
ter Algorithm Schemata and Data Struc-
tures in Syntactic Processing, pages 35–70.
http://dl.acm.org/citation.cfm?id=21922.24327.

Lingpeng Kong, M. Alexander Rush, and A. Noah
Smith. 2015. Transforming dependencies into
phrase structures. In Proceedings of the 2015
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies. Association
for Computational Linguistics, pages 788–798.
https://doi.org/10.3115/v1/N15-1080.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly
non-projective dependency structures. In Pro-
ceedings of the COLING/ACL 2006 Main
Conference Poster Sessions. Association for
Computational Linguistics, pages 507–514.
http://aclweb.org/anthology/P06-2066.

Mark-Jan Nederhof. 2009. Weighted parsing of
trees. In Proceedings of the 11th Interna-
tional Conference on Parsing Technologies.
Association for Computational Linguistics,
Stroudsburg, PA, USA, IWPT ’09, pages 13–24.
http://dl.acm.org/citation.cfm?id=1697236.1697239.

Fernando C. N. Pereira and David H. D. Warren.
1983. Parsing as deduction. In 21st Annual Meet-
ing of the Association for Computational Linguis-
tics. http://aclweb.org/anthology/P83-1021.

Owen Rambow. 2010. The simple truth about de-
pendency and phrase structure representations: An
opinion piece. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 337–340. http://aclweb.org/anthology/N10-
1049.

Owen Rambow and Aravind Joshi. 1997. A formal
look at dependency grammars and phrase-structure
grammars, with special consideration of word-order

phenomena. Recent trends in meaning-text theory
39:167–190.

Philip Resnik. 1992. Probabilistic tree-adjoining gram-
mar as a framework for statistical natural language
processing. In COLING 1992 Volume 2: The 15th
International Conference on Computational Lin-
guistics. http://aclweb.org/anthology/C92-2065.

Giorgio Satta. 1994. Tree-adjoining grammar pars-
ing and boolean matrix multiplication. Computa-
tional Linguistics, Volume 20, Number 2, June 1994
http://aclweb.org/anthology/J94-2002.

Yves Schabes, Anne Abeille, and Aravind K. Joshi.
1988. Parsing strategies with ’lexicalized’ gram-
mars: Application to tree adjoining grammars.
In Coling Budapest 1988 Volume 2: Interna-
tional Conference on Computational Linguistics.
http://aclweb.org/anthology/C88-2121.

Yves Schabes and Richard C. Waters. 1995. Tree in-
sertion grammar: A cubic-time, parsable formal-
ism that lexicalizes context-free grammar without
changing the trees produced. Computational Lin-
guistics, Volume 21, Number 4, December 1995
http://aclweb.org/anthology/J95-4002.

K. Vijay-Shankar and Aravind K. Joshi. 1986. Some
computational properties of tree adjoining gram-
mars. In Strategic Computing - Natural Lan-
guage Workshop: Proceedings of a Workshop Held
at Marina del Rey, California, May 1-2, 1986.
http://aclweb.org/anthology/H86-1020.

K. Vijay-Shanker and David J. Weir. 1993. Parsing
some constrained grammar formalisms. Computa-
tional Linguistics, Volume 19, Number 4, December
1993 http://aclweb.org/anthology/J93-4002.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the IWPT (Volume 3).

121

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 122–131,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Linguistically Rich Vector Representations of Supertags for TAG Parsing
Dan Friedman∗1 Jungo Kasai∗1 R. Thomas McCoy∗1

Robert Frank1 Forrest Davis2 Owen Rambow3

1Department of Linguistics, Yale University
2 Columbia University

3 DSI, Columbia University
{dan.friedman,jungo.kasai,richard.mccoy,robert.frank}@yale.edu

fld2111@columbia.edu

rambow@ccls.columbia.edu

Abstract

In this paper, we explore several tech-
niques for producing vector representa-
tions of TAG supertags that can be used
as inputs to a neural network-based TAG
parser. In the simplest case, the supertag is
encoded as a 1-hot vector that is projected
to a dense vector. Secondly, we use a
tree-recursive neural network that is given
as input the structure of the elementary
tree. Thirdly, we use hand-crafted feature
vectors that describe the syntactic features
of each supertag, and project these to a
dense vector. These three representations
are learned during the training of a neu-
ral network TAG parser with a layer that
embeds supertags in a low-dimensional
space. Finally, we consider an embedding
that is trained only on patterns of linear
co-occurrence among supertags. By test-
ing the resulting vector representations on
the task of completing syntactic analogies,
we show that these vector representations
capture syntactically relevant information.
While our linguistically-informed embed-
dings outperform atomic embeddings on
the syntactic analogy task, we find that the
same embeddings lead to only a slight im-
provement on the task of TAG parsing, in-
dicating that the neural parser is able to
induce useful representations of supertags
from the data alone.

1 Introduction

In a Tree Adjoining Grammar (TAG), the set of
elementary trees can be thought of as the pos-
sible lexical grammatical category assignments,
much like the part of speech tags in a Context

∗Equal Contribution.

Free Grammar (CFG). However, the number of
elementary trees is considerably larger than the
category set typically found in other formalisms.
In the TAG that is extracted from the Penn Tree-
bank by Chen (2001), there are more than 4,700
distinct elementary trees, as compared to the 48
POS tags found in the Penn Treebank or even the
1,286 categories found in the Combinatory Cat-
egorial Grammar (CCG) bank (Hockenmaier and
Steedman, 2007). While this is indeed a large
number, the set of elementary trees in a linguis-
tically adequate TAG is finely structured, with
systematic relationships holding between elemen-
tary trees. Past work on grammar development in
TAG has explored a variety of methods for captur-
ing the relationships among and within so-called
tree families (Vijay-Shanker and Schabes, 1992;
Evans et al., 1995; XTAG Research Group, 1998;
Becker, 2000), where all members of a tree family
have the same basic argument structure (or have
the same value for some other syntactic dimen-
sion) but differ from each other based on transfor-
mations such as passivization or wh-movement.

Under the approach suggested by Bangalore
and Joshi (1999), the first step of TAG parsing,
called supertagging, involves the assignment of el-
ementary trees to lexical items. Given the high
degree of supertag ambiguity and the fact that
state-of-the-art TAG supertagging accuracy is only
around 90% (using the bi-LISTM supertagger re-
ported in Kasai et al. (2017)) as compared to 95%
for CCG supertagging (Lewis et al., 2016), it is
useful indeed if the parser can be made sensi-
tive to the relationships between elementary trees.
Certain errors in the supertagger might then not
prove fatal to a parser if a single supertag can be
interpreted as related to other elementary trees,
providing potentially useful derivational options.
Furthermore, if relations among supertags are en-
coded, problems of data sparsity during training

122

might be overcome; nearly half of the supertags
present in the PTB WSJ Sections 1-22 appear only
once, but they may be related to other supertags
that occur more frequently.

Previous work by Chung et al. (2016) has pro-
posed a way of exploiting relationships among su-
pertags in a transition-based parser, by adding a
series of hand-coded linguistic features that char-
acterize properties of the elementary trees in the
grammar. Such features had a beneficial effect on
parser performance when used in conjunction with
lexical identity, supertag identity, and POS tag.

In this paper, we demonstrate how the use of
a neural network TAG parsing model, proposed
by Kasai et al. (2017), facilitates the representa-
tion of similarity among supertags. The input to
this parser is a sequence of 1-best supertags output
by a bidirectional LSTM supertagger. As the first
step in computation, the parsing network maps
each supertag into a vector via an embedding ma-
trix. Given a set of supertag vectors, we can study
the similarity relations among them using methods
similar to those that have been applied to lexical
vectors by Mikolov et al. (2013a,b). For example,
we can consider analogies between elementary
trees that correspond to an operation of detransi-
tivization, by asking whether an elementary tree
representing a clause headed by a transitive verb
(t27) stands in the same relationship to an elemen-
tary tree headed by an intransitive verb (t81) that a
subject relative clause elementary tree headed by a
transitive verb (t99) stands in to a subject relative
headed by an intransitive verb (t109). By inter-
preting these elementary trees as vectors, we can
express this analogy by t27 − t81 + t109 ≈ t99.
As we will demonstrate below, this formalization
allows us to study the degree to which a represen-
tational scheme successfully captures a wide range
of linguistic relationships among elementary trees.

Our discussion will compare four alternatives
for constructing supertag embeddings. Three of
these are trained in conjunction with parser, and
differ only in the representation of the supertag
input to the parser: atomic encodings of supertag
identity, recursive encoding of the structure of the
elementary tree, and the hand-coded linguistic fea-
tures from Chung et al. (2016). The fourth derives
embeddings via a GloVe-type model of distribu-
tional similarity (Pennington et al., 2014).

Recent work by McMahan and Stone (2016) has
proposed a method to embed TAG supertags in

the context of natural langauge generation. They
utilize structural information of elementary trees
through convolutional neural networks. Our recur-
sive encoding is similar to their approach in that
the embedding procedure respects tree structure of
supertags. It should be noted, however, that our in-
duction process runs in the opposite direction from
that in McMahan and Stone (2016). In their appli-
cation to natural language generation, the objec-
tive is surface realization from (unlabeled) depen-
dency trees, whereas the problem of interest in this
paper is derivation of dependency trees from sur-
face realization.

In the next section, we briefly describe the pars-
ing model that is the foundation of our experi-
ments, along with our four methods for construct-
ing supertag embeddings. Section 3 lays out our
experimental set-up and Section 4 explains how
we perform evaluation for supertag similarity and
for parsing. Section 5 reports the results and dis-
cusses their implications.

2 Parsing Model and Embedding
Construction

2.1 Neural Network TAG Parser

In our experiments, we make use of the neural net-
work TAG parser from Kasai et al. (2017). This is
an arc-eager shift-reduce parser that uses a feed-
forward neural network as an oracle. At each time
step, the oracle takes as input the configuration of
the parser, which consists of a fixed number of
cells from the top of the stack and the front of the
buffer, each containing a supertag. The parser’s
task is to construct a derivation tree from the indi-
vidual supertags. This derivation is constructed in
the usual way for transition-based parsers, namely
through a series of actions (shift, reduce, left-arc,
and right-arc). Left-arc and right-arc create links
in the derivation tree, and these operations are fur-
ther specified by the type of operation (substitution
and adjoining) as well as the node within the ele-
mentary tree to which the operation applies (spec-
ified for substitution as 0-4, encodings of the deep
grammatical role of the substitution site). The out-
put of the network is a softmax layer, whose acti-
vations can be interpreted as a probability distribu-
tion over actions and labels. The parser is unlex-
icalized; the only information that the parser uses
to determine its action is the supertags in the rel-
evant cells of the stack and buffer. For the cur-
rent work, we make use of the bi-LSTM supertag-

123

ger discussed in Kasai et al. (2017), which is pre-
trained on the WSJ Penn Treebank and does not
vary across the experiments reported here. This
supertagger provides as output a distribution over
possible supertags for each word in a sentence.

Our focus in this paper is the first layer of
the neural network, which maps each supertag
in a parser configuration to a vector in a low-
dimensional space. The input to the subsequent
feed-forward layer is the concatenation of the
dense vectors associated with the relevant cells in
the stack and buffer. In our experiments, we vary
the representation of the supertag that is provided
as input to the parser, and retrain. Our hypothesis
is that using a more linguistically informed em-
bedding function will produce linguistically inter-
pretable vector representations and improve pars-
ing accuracy.

2.2 Atomic Embedding
The first type of embedding function we consider
is the one from Chen and Manning (2014) (POS
tags), Lewis et al. (2016); Xu (2016) (CCG su-
pertags), and Kasai et al. (2017) (TAG supertags):
here, each supertag in a parse configuration is rep-
resented as a one-hot column vector in R|V |, where
|V | is the total number of supertags. That is, each
supertag is represented as a vector in which all en-
tries are 0 except for a single entry, which is 1,
corresponding to the integer ID of the supertag.
The supertags are then projected into a lower-
dimensional space by multiplying the one-hot vec-
tors with an embedding matrix L ∈Md×|V |. Thus
each supertag t is associated with a distinct vector
xt ∈ Rd, corresponding to a column in the em-
bedding matrix L. The embeddings are then con-
catenated and passed to the feed-forward network.
The embedding matrix L is trained jointly with the
parser via the back-propagation algorithm to opti-
mize the negative log-likelihood of outputting the
correct parser actions. As a result, although the
1-hot encoding does not convey any information
about relationships between supertags, the opti-
mization process may favor an embedding matrix
where the vector encoding of the supertag does
convey such information to the degree to which
similar supertags are best treated similarly by the
parser.

2.3 Recursive Tree-Based Embedding
There are several theoretical drawbacks to using
an atomic representation of supertags for parsing.

First, the parser makes no use of the linguistic
meaning of supertags. Each supertag is consid-
ered to be a distinct entity, and the only way for
the parser to associate similar supertags is to learn
associations in the process of optimizing the train-
ing objective. Second, supertag data is sparse:
of the 4,724 supertags in the TAG-annotated ver-
sion of the Penn Treebank, 2,165 occur only once
(Chen, 2001; Kasai et al., 2017). Because each
supertag is considered to be distinct in the input
layer, the parser will learn little information about
nearly half of all supertags.

For these reasons we next consider a tree-
recursive embedding layer that associates each su-
pertag with a low-dimensional vector by passing
the corresponding elementary tree through a recur-
sive neural network. A recursive neural network
(RNN)1 in a bottom-up fashion, by using a neu-
ral network layer to combine the hidden states of
the node’s constituents (Goller and Kuchler, 1996;
Socher et al., 2011). This recursive model has
the advantage of both encoding linguistic informa-
tion about supertags and also making efficient use
of sparse data: even if a supertag appears infre-
quently in the corpus, the parser learns the param-
eters for embedding that supertag from encounter-
ing other, structurally similar supertags.

We use a syntactically untied RNN, similar to
the model described in Socher et al. (2014). First,
for each leaf node j in an elementary tree, the hid-
den state hj is obtained by taking the jth column
of an embedding matrix E ∈ Md×|L|(R), where
|L| is the size of the vocabulary of labels used in
TAG trees. Then, for each non-terminal node i, let
C(i) denote the set of children of node i and let
rel(i, j) denote the relation between node i and its
child j, defined by the label of i and the left-to-
right position of j. For example, if i is a VP node
and j is its leftmost child, then rel(i, j) is VP0.
The hidden state of node i is then

hi = f


 ∑

j∈C(i)

Wrel(i,j)hj


 ,

where f is a nonlinear activation function. We use
tanh as the activation function in all of our experi-
ments. Wrel(i,j) is a square matrix in Md×d(R), so
the resulting hi is a vector in Rd.

1Note that throughout this paper we use the abbreviation
RNN to refer to recursive neural networks, not recurrent neu-
ral networks.

124

S(0)

NP0↓(1) VP(2)

V♦(3) NP1↓(4)

(a) The elementary tree for t27, a transitive verb. Nodes are
indexed by their position in the breadth-first traversal of the
tree.

xt27 =WROOTh0

h0 = f(WS0h1 +WS1h2)

h1 = eNP0↓ h2 = f(WV P0h3 +WV P1h4)

h3 = eV♦ h4 = eNP1↓

(b) The recursive activation states for t27. el is the column in
the embedding matrix E corresponding to label l.

Figure 1: Example of an RNN structure for generating a vector for a supertag.

Once the hidden state for each node in the tree
has been computed, we obtain the final vector rep-
resentation of the supertag by multiplying the hid-
den state of the root node by a special weight ma-
trix WROOT ∈ Md×d(R) and applying the activa-
tion function. Figure 1 gives an example of how
the RNN is used to generate a vector representa-
tion for a transitive verb.

As with the Atomic Embeddings, the weight
matricesW ’s andE can be learned during training
of the parser via backpropogation.

2.4 Feature-based Embeddings

Our third representation of supertags and cor-
responding embedding derives from the hand-
selected features associated with elementary trees
in the grammar used in MICA (Bangalore et al.,
2009). Each elementary tree is associated with
a set of dimensions describing phrase structure,
interpretation (e.g., subcategorization frame), and
linguistic transformations (e.g., dative shift). The
features include binary- and ternary-valued di-
mensions, whose values can be “yes”, “no”, or
“NA,” as well as dimensions whose values are a
part of speech tag or a list of part of speech tags.
See Chung et al. (2016) for the complete list of
features.

To feed these feature vectors to a neural net-
work, and to allow us to compare the vectors di-
rectly with our recursive embeddings, we con-
vert each feature vector into a d-dimensional real-
valued vector. We use two approaches to encod-
ing features. First, we encode binary- and ternary-
valued features as one-hot vectors. Since the other
fields take on a much larger range of possible val-
ues, we choose to embed those features in a low-
dimensional space. Specifically, we randomly ini-
tialize an embedding matrix E ∈ Mk×|L|(R),

where |L| is the number of part of speech labels,
and associate each part of speech label with a col-
umn in the matrix. We set k equal to 8. For
fields with list values–for example, the list of ad-
junction nodes–we pad the list with zeros to en-
sure a fixed width representation. We concatenate
the one-hot vectors and the label embeddings to
obtain an n-dimensional feature representation of
the supertag. In order to compare these vectors
more directly with our d-dimensional recursive
embeddings, we then multiply each vector by a
weight matrix W ∈Mn×d(R) to obtain a final, d-
dimensional vector for each supertag. Once again,
these embedding matrices are trained in conjunc-
tion with training of the parser.

2.5 GloVe Model
As a final point of comparison, we generate vector
representations of supertags by training a GloVe
model on our training corpus of supertags. The
GloVe model is a widely used method for gener-
ating dense representations of words from corpus
co-occurrence counts (Pennington et al., 2014). A
GloVe model is trained on a co-occurrence table
X ∈ M|V |×|V |(R), where Xij is the number of
times word i appears in the context of word j.
Context is determined by a hyperparameter c: an
occurrence of word i is in the context of an oc-
currence of word j if that occurrence of i appears
within the window of cwords on either side of that
occurrence of j. The cost function is

J =

|V |∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logWij)

2.

f is a weighting function defined f(x) =
min(1, (x/xmax)

α), where xmax and α are hyper-
parameters to be tuned. wi and w̃j are the word

125

vector and the context vector for words i and j, re-
spectively. Similarly, bi and b̃j are word and con-
text biases for words i and j. Intuitively, the GloVe
model attempts to learn a dense representation of
words that will allow it to estimate the likelihood
that any pair of words co-occur.

We train a GloVe model to convergence on the
training portion of the TAG-annotated PTB train-
ing corpus, from which we were able to extract a
co-occurrence table for supertags. We then use the
resulting vectors to initialize an embedding matrix
for the parser.

3 Experimental Setups

The experiments we conducted employ the same
experimental setups as Kasai et al. (2017). Specif-
ically, we follow the protocol from Chung et al.
(2016) and Bangalore et al. (2009), and use the
grammar and the TAG-annotated WSJ Penn Tree
Bank extracted by Chen (2001). We use Sec-
tions 01-22 as the training set, Section 00 as the
development set, and Section 23 as the test set.
The training, development, and test sets comprise
39832, 1921, and 2415 sentences, respectively.

We use a publicly available string representa-
tion of supertags to associate each supertag with
an elementary tree.2 We consider the label of a
node in an elementary tree to consist of the part of
speech tag as well as the deep argument position
and the node type, if relevant. For example, an
NP node marked for substitution with a deep argu-
ment position of 0 will be labeled “NP0s” and will
be considered distinct from, for example, an NP
foot node (“NPf”). The relation between a node
i and a child j (rel(i, j)) is then considered to be
the label of i subscripted by the index of j in the
ordered list of children of i.

We implement the recursive neural network in
TensorFlow and TensorFlow Fold, a library for
creating TensorFlow models that take dynamically
sized, structure inputs, like trees (Looks et al.,
2017).3 For the sake of comparison with the re-
sults in Kasai et al. (2017), we use an embedding
size of 50 in all of our experiments and set all of
the hyperparameters of the parser to be the same
as the best performing ones. Specifically, we use
two fully-connected layers with 200 hidden units
each, dropout rates of 0.2 for the input and 0.3 for

2The grammar is available here: http://mica.lif.
univ-mrs.fr

3https://github.com/tensorflow/fold

the hidden layer, and 3 for the stack and buffer
scope. We train stochastically using the Adam op-
timization algorithm and minibatches of size 100.

We use a publicly available TensorFlow im-
plementation of the GloVe model (available
at https://github.com/GradySimon/
tensorflow-glove) training for 50 itera-
tions. The hyperparameters are the same as those
reported in Pennington et al. (2014). We use a
context size of 5, which we found performed
better than larger context windows.

4 Methods of Evaluation

4.1 Supertag Similarity and the Analogy
Task

In the literature on word embeddings (e.g.,
Mikolov et al. (2013a) and Pennington et al.
(2014)), word analogies are often used to evalu-
ate whether the word embeddings have captured
relevant semantic relationships between words.
Similarly, we use syntactic analogies to evalu-
ate whether our supertag embeddings have cap-
tured relevant syntactic relationships between su-
pertags. To create our test set, we considered 9
different syntactic transformations that can relate
two supertags either within or across tree fam-
ilies. These transformations are (i) subject rel-
ativization, (ii) object relativization, (iii) subject
wh-movement, (iv) object wh-movement, (v) tran-
sitivization, (vi) infinitivization,4 (vii) passiviza-
tion with a by phrase, (viii) passivization without
a by phrase, and (ix) dative shift.

For each of these transformations, we identified
all pairs of supertags (tag1, tag2) such that apply-
ing the transformation to tag1 yields tag2. For ex-
ample, if the transformation in question is subject
relativization, an example of such a pair would be
t27 (the supertag for the verb heading a transitive
clause, such as found in the boy found the trea-
sure) and t99 (the supertag for the verb heading a
transitive subject relative clause, such as found in
the boy who found the treasure). We then gener-
ated syntactic analogies by matching up two such
pairs that were both generated based on the same
transformation; for example, the pairs (t27, t99)
and (t81, t109) were both generated based on sub-
ject relativization, so combining these pairs gives

4Infinitivization is the process of turning a verbal tree with
a substitution node in subject position into a tree with an
empty category in its subject position. It is called infinitiviza-
tion because typically trees with empty subjects are anchored
on infinitival verbs.

126

the analogy “t27 is to t99 as t81 is to t109”, since
conducting subject relativization on t27 generates
t99 and conducting subject relativization on t81
generates t109. These trees are shown in Figure 2.

We wish to test if the linear relationships be-
tween our supertag embeddings properly express
the syntactic relationships between the elementary
trees these embeddings represent. To test if this
is the case, we represent each of our analogies in
the form of an equation; for example, the analogy
“t27 is to t99 as t81 is to t109” would be written
as t27 − t99 ≈ t81 − t109. We then rearrange
the equation so that there is only one term on the
right-hand side to get t27−t99+t109 ≈ t81. Each
such equation becomes one test in the test set, and
to test the equation we perform the arithmetic on
the left hand side (here, t27−t99+t109) using the
embeddings we have generated and evaluate how
similar the resulting vector is to the desired right
hand side (here t81).

We use two basic metrics for evaluating perfor-
mance. The first metric (% correct in Table 1) is
the proportion of analogies in the test set for which
the most similar vector to the result of the com-
putation is the desired one as measured by cosine
distance. The second metric (Avg. position in Ta-
ble 1) is the average rank of the correct answer
within the ranked list of the embeddings that have
the smallest cosine distance from the result of the
computation.

In addition, it may be the case that the embed-
dings we generate are better for more frequent su-
pertags due to a larger number of training exam-
ples on which to train the embedding. In order to
ascertain the effects of frequency, we also compute
both of the aforementioned metrics upon various
restricted test sets consisting of only those analo-
gies for which all four supertags in the analogy are
among the n most common supertags in the train-
ing set for some value n, and where the ranked
list of nearest neighbors is filtered to only include
the n most common supertags. These metrics are
listed as % correct (top n) and Avg. position (top
n) in Table 1.

4.2 Parsing

We also present parsing results for models trained
using each embedding scheme. We use the same
neural TAG parser in each experiment, varying
only the embedding layer. In all cases the param-
eters for the embedding layer are trained jointly

with the parser. We give labeled and unlabeled
attachment scores given gold supertags and pre-
dicted supertags from the supertagger in Kasai
et al. (2017), using first a greedy decoding strat-
egy and then beam search with a beam size of 16.

5 Results and Discussion

5.1 Analogy Task

Our results for the analogy task are given in Ta-
ble 1. The GloVe vectors perform significantly
worse than any other embedding, suggesting that
co-occurrence information alone in the absence
of information about grammatical structure is not
enough to learn the kind of syntactic information
tested in the analogy task.

The atomic embeddings trained with the parser
learn a surprising amount of syntactic information
about supertags. Despite initially having no infor-
mation about the underlying syntactic meaning of
supertags, the parser is able to discover syntactic
features in the process of optimizing parsing per-
formance on the training set. As we would ex-
pect, however, the performance of the atomic em-
beddings degrades quickly as n increases. The
atomic embeddings get around two thirds of the
analogy tests correct when the tests and answers
are restricted to the top 300 supertags, but the em-
beddings perform considerably worse with larger
values of n; the embeddings get only 4.62% ac-
curacy on analogy tests drawn from the full set of
supertags. This is consistent with what we would
expect: the atomic embedding scheme treats each
supertag as distinct from the others, and the major-
ity of supertags are very sparse in the training data,
so the parser has scarce information with which to
learn better representations for rare supertags.

In contrast, both the recursive embeddings and
the feature-based embeddings achieve very high
accuracy on the analogy tests, with hardly any
degradation with larger values of n. Of particu-
lar note is average position of the correct supertag
in the ranked list of possible answers. For both
the recursive and the feature-based embeddings,
the target supertag is, on average, within the top
2 supertags most similar to the result of the anal-
ogy tests, even using tests drawn from the full
set of supertags. This is not surprising given that
both embedding schemes encode syntactic infor-
mation about supertags by construction, so, un-
like atomic embeddings, they produce meaning-
ful representations of supertags even when the su-

127

S

NP0↓ VP

V♦ NP1↓
(a) The elementary tree for t27.

NP

NP* S

NP0↓ S

NP

-NONE-

VP

V♦ NP1↓

(b) The elementary tree for t99.

S

NP0↓ VP

V♦
(c) The elementary tree for t81.

NP

NP* S

NP0↓ S

NP

-NONE-

VP

V♦
(d) The elementary tree for t109.

Figure 2: The supertags involved in the subject-relativization-based analogy t27− t99 + t109 ≈ t81.

Embedding n # equations % correct % correct (top n) Avg. position Avg. position (top n)
GloVe 300 246 0.00 0.00 71.21 101.30
Atomic 300 246 50.40 67.07 7.98 2.36
RNN 300 246 83.33 93.50 1.83 1.08
Features 300 246 97.56 100 1.02 1.00
GloVe 500 776 0.13 0.13 128.04 158.16
Atomic 500 776 36.47 41.62 22.15 5.67
RNN 500 776 82.09 91.36 1.68 1.15
Features 500 776 95.62 99.87 1.05 1.00
GloVe 4724 57220 0.02 – 2086.35 –
Atomic 4724 57220 4.62 – 289.48 –
RNN 4724 57220 83.34 – 1.61 –
Features 4724 57220 94.14 – 1.10 –

Table 1: Analogy task results.

pertags appear infrequently in the training data.
The feature-based vectors in particular directly en-
code many of the dimensions we inspect with the
analogy tests since several of the transformations
used in the analogy tests, such as dative shift and
passivization, are among the features derived from
Chung et al. (2016) that we used.

The feature-based embeddings outperform the
recursive embeddings. In particular, the feature-
based embeddings seem to be even more robust
with larger values of n. The recursive embed-
dings achieve above 90% accuracy when the space
of possible answers is limited to the n most com-
mon supertags, but accuracy decreases by around
10% when we are allowed to consider all possible
supertags. Using feature-based embeddings, how-

ever, accuracy remains above 94% for all tests, and
is 100% for low values of n. One reason for this
disparity might be that the recursive neural net-
work, like the atomic embedding matrix, contains
parameters that might be updated rarely; the RNN
includes a weight matrix W for each parent-child
relation, and some relations (e.g., VP6) appear in
only a few rare elementary trees. By contrast, the
parameters trained to produce the feature-based
embeddings are shared across all elementary trees,
so the information learned by the parser general-
izes better to rare or even unseen supertags.

Figures 3 and 4 provide a visual representa-
tion of certain atomic embeddings by plotting their
first two principal components. They show how
even the comparatively syntactically uninformed

128

Figure 3: Graph of the first two principal components
of the atomic embeddings for supertag pairs related by
infinitivization.

Figure 4: Graph of the first two principal components
of the atomic embeddings for supertag pairs related by
subject relativization.

method of using atomic embeddings still creates
relatively consistent linear structure between pairs
of vectors related by the same syntactic transfor-
mations.

5.2 Parsing

The parsing results are in Table 2. Although both
of our linguistically informed representations of
supertags (the RNN embeddings and the feature-
based embeddings) significantly outperform the
atomic embeddings at the analogy task, these large
increases in performance do not carry over to
the task of parsing. When parsing with gold su-
pertags, the atomic embeddings outperform both
the RNN embeddings and the feature-based em-
beddings. With predicted supertags, the feature-
based embeddings do slightly overtake the atomic
embeddings, but the increase in performance is
quite small, while the RNN embeddings continue
to achieve lower scores than the atomic embed-
dings.5

The fact that the parser achieves state-of-the-
art performance even with the atomic embeddings
suggests that the parser may be able to induce
meaningful linguistic relationships from the data
alone. If this is the case, it could explain why the
linguistically informed embeddings do not make
much of a difference in parsing: If the parser can
learn the syntactic relationships between supertags
that are most relevant to parsing solely from the
data, then it does not require the additional linguis-
tic information that the RNN-based and feature-
based embeddings provide.

The fact remains that the linguistically informed

5To see if the two types of linguistically informed embed-
dings are complementary, we also trained a model combin-
ing both RNN embeddings and feature-based embeddings,
but there was no significant improvement over either of the
models with only one form of embedding.

embeddings do perform much better at the anal-
ogy task than the atomic embeddings. This may
be because the analogies contain some syntactic
constructions (such as relativization of an indi-
rect object) that are relatively uncommon. Since
these constructions are uncommon, it may be pos-
sible to attain high parsing performance without
being able to properly handle such constructions.
Thus, the atomic embeddings are able to yield high
parsing performance despite having poorer anal-
ogy task performance. It would be interesting to
parse only those sentences containing uncommon
syntactic constructions to see if the linguistically
informed embeddings outperform the atomic em-
beddings in such cases, since we would expect that
the greatest improvements in performance from
linguistically informed embeddings would come
with the parsing of infrequent supertags, since the
parser would not have much training data with
which to learn representations of these supertags.

6 Conclusions and Future Work

We presented two techniques for computing real-
valued vector representations of TAG supertags
and applied these vector representations to the
shift-reduce parsing system. We showed that
the vectors produced by all but the non-syntactic
GloVe embeddings performed reasonably well on
the syntactic analogy task. The two representa-
tions which were built on the basis of explicitly
represented linguistic structure, namely recursive
tree-based embedding and feature-based embed-
ding, on average produced the correct answer to
an analogy question as one of its top two guesses,
thereby outperforming both the distribution-based
embeddings trained using the GloVe method and
the atomic embeddings. On the parsing task, our
two linguistically-rich embedding methods per-

129

Dev Results Test Results
Gold Stags Predicted Stags Gold Stags Predicted Stags

Parsing Model Beam size UAS LAS UAS LAS UAS LAS UAS LAS
bi-LSTM Stagger + MICA Parser – 97.60 97.30 90.05 88.32 96.97 96.59 90.20 88.66
GloVe 1 93.01 91.97 88.35 86.46 – – – –
Atomic 1 96.82 96.45 89.48 88.00 – – – –
RNN 1 95.53 95.21 89.55 88.05 – – – –
Features 1 94.90 94.74 89.63 88.19 – – – –
GloVe 16 93.91 92.96 89.14 87.32 94.10 93.16 88.83 87.15
Atomic 16 97.67 97.45 90.23 88.77 97.87 97.64 90.25 88.90
RNN 16 96.39 96.10 90.30 88.81 96.73 96.46 90.24 88.85
Features 16 95.78 95.62 90.36 88.91 96.42 96.21 90.31 88.96

Table 2: Parsing results on the development and test sets. In each cell, shown is the mean of 5 trials with different initialization;
the standard deviation for these values ranges from 0.01 to 0.26.

formed comparably with the atomic embedding
method; the fact that the linguistically informed
embeddings did not significantly improve perfor-
mance compared to the atomic embeddings is an
interesting indication that the parser can learn
most relevant syntactic information purely from
its training data. In the future, we will explore
the application of these linguistically-rich embed-
dings in different systems of parsing such as the
graph-based parsing system that has recently been
successful in dependency grammar parsing.

Acknowledgments

We thank the anonymous reviewers for their help-
ful suggestions on this work.

References
Srinivas Bangalore, Pierre Boullier, Alexis Nasr, Owen

Rambow, and Benoı̂t Sagot. 2009. MICA: A Proba-
bilistic Dependency Parser Based on Tree Insertion
Grammars. In NAACL HLT 2009 (Short Papers).

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An Approach to Almost Parsing. Com-
putational Linguistics 25:237–266.

Tilman Becker. 2000. Patterns in metarules for TAG.
In Tree Adjoining Grammars, page 331342.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

John Chen. 2001. Towards efficient statistical parsing
using lexicalized grammatical information. Ph.D.
thesis, Ph. D. thesis, University of Delaware.

Wonchang Chung, Suhas Siddhesh Mhatre, Alexis
Nasr, Owen Rambow, and Srinivas Bangalore. 2016.
Revisiting supertagging and parsing: How to use su-
pertags in transition-based parsing. In Proceedings
of the 12th International Workshop on Tree Adjoin-
ing Grammars and Related Formalisms (TAG+12).
pages 85–92.

Roger Evans, Gerald Gazdar, and David Weir. 1995.
Encoding lexicalized tree adjoining grammars with
a nonmonotonic inheritance hierarchy. In Proceed-
ings of the 33rd Annual Meeting of the Association
for Computational Linguistics. pages 77–84.

Christoph Goller and Andreas Kuchler. 1996. Learning
task-dependent distributed representations by back-
propagation through structure. In IEEE Interna-
tional Conference on Neural Networks. volume 1,
pages 347–352.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: a corpus of CCG derivations and dependency
structures extracted from the penn treebank. Com-
putational Linguistics 33(3):355–396.

Jungo Kasai, Robert Frank, R. Thomas McCoy, Owen
Rambow, and Alexis Nasr. 2017. TAG Parsing with
Neural Networks and Vector Representations of Su-
pertags. In Proceedings of EMNLP.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
Lstm ccg parsing. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 221–231.
http://www.aclweb.org/anthology/N16-1026.

Moshe Looks, Marcello Herreshoff, DeLesley
Hutchins, and Peter Norvig. 2017. Deep learning
with dynamic computation graphs. Proceedings of
the International Conference on Learning Represen-
tations https://openreview.net/pdf?id=ryrGawqex.

Brian McMahan and Matthew Stone. 2016. Syntac-
tic realization with data-driven neural tree gram-
mars. In Proceedings of COLING 2016, the 26th In-

130

ternational Conference on Computational Linguis-
tics: Technical Papers. The COLING 2016 Orga-
nizing Committee, Osaka, Japan, pages 224–235.
http://aclweb.org/anthology/C16-1022.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013a. Distributed
Representations of Words and Phrases and their
Compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information
Processing Systems 26, Curran Associates, Inc.,
pages 3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL HLT 2013). At-
lanta, page 746751.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). pages 1532–1543.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D Manning, and Andrew Y Ng. 2014.
Grounded compositional semantics for finding and
describing images with sentences. Transactions
of the Association for Computational Linguistics
2:207–218.

Richard Socher, Cliff C Lin, Chris Manning, and An-
drew Y Ng. 2011. Parsing natural scenes and nat-
ural language with recursive neural networks. In
Proceedings of the 28th International Conference on
Machine Learning (ICML-11). pages 129–136.

K Vijay-Shanker and Yves Schabes. 1992. Struc-
ture sharing in lexicalized tree-adjoining grammars.
In Proceedings of the 14th conference on Compu-
tational linguistics. Association for Computational
Linguistics, volume 1, pages 205–211.

XTAG Research Group. 1998. A lexicalized tree ad-
joining grammar for English. Technical report, De-
partment of Computer and Information Sciences,
University of Pennsylvania.

Wenduan Xu. 2016. LSTM shift-reduce CCG
parsing. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Austin, Texas, pages 1754–1764.
https://aclweb.org/anthology/D16-1181.

131

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 132–141,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

TAG Parser Evaluation using Textual Entailments

Pauli Xu1, Robert Frank1, Jungo Kasai1, and Owen Rambow2

1Yale University ({pauli.xu, bob.frank, jungo.kasai}@yale.edu)
2Columbia University (rambow@ccls.columbia.edu)

Abstract

Parser Evaluation using Textual Entail-
ments (PETE, Yuret et al. (2013)) is a re-
stricted textual entailment task designed to
evaluate in a uniform manner parsers that
produce different representations of syn-
tactic structure. In PETE, entailments can
be resolved using syntactic relations alone,
and do not implicate lexical semantics
or world knowledge. We evaluate TAG
parsers on the PETE task, and compare our
results to the state-of-the-art. Our TAG
parser combined with structural transfor-
mations to compute entailments outper-
forms the CCG-based results on the de-
velopment set, though it falls behind these
results on the test set. The CCG parser
makes use of a number of heuristics for
entailment comparison, however. Adding
such heuristics to our best TAG parser
yields state-of-the-art results on the test set
when using accuracy as a metric. This
sensitivity to heuristics suggests that the
PETE task may suffer from an unrepresen-
tative development set, and that we need
to improve upon formalism-independent
parsing evaluation methods.

1 Introduction

There has been a flurry of recent work, involving
neural network architectures, on parsing that has
improved performance across a variety of frame-
works that make different assumptions about the
target output for the parsing process: Dependency
grammar (Chen and Manning, 2014; Dyer et al.,
2015; Andor et al., 2016; Kuncoro et al., 2017;
Dozat and Manning, 2017), Combinatory Cate-
gorial Grammar (CCG) (Xu et al., 2015; Ambati
et al., 2016; Lewis et al., 2016), Tree Adjoining

Grammar (TAG) (Kasai et al., 2017), Constituent
structure (Dyer et al., 2017; Kuncoro et al., 2017)).
However, it is as yet unknown the degree to which
these improvements in parsing scores contribute to
downstream NLP tasks. Moreover, since the dif-
ferent frameworks make different representational
assumptions about the target of the parsing pro-
cess, these results are not directly comparable.

Parser Evaluation using Textual Entailments
(PETE) is a shared task from the SemEval-2010
Exercises on Semantic Evaluation (Yuret et al.,
2013). The task was intended to evaluate syn-
tactic parsers across different formalisms, focus-
ing on entailments that could be determined en-
tirely on the basis of the syntactic representations
of the sentences that are involved, without re-
course to lexical semantics logical reasoning or
world knowledge. For instance, syntactic knowl-
edge alone tells us that the sentence Peter, who
loves Mary, left the room entails Peter left the room
and Peter loves Mary but not, for example, that Pe-
ter knows Mary or that Peter was no longer in the
room.

In this paper, we apply a number of TAG parsers
to the PETE task. In the next section, we dis-
cuss the PETE task in further detail. Then in Sec-
tion 3 we describe how we apply TAG parses to
this task. Doing so requires a means of determin-
ing whether one TAG derivation entails another
syntactically. We do this through a set of task-
independent, linguistically-motivated transforma-
tions. After reviewing the TAG supertaggers and
parsers we evaluate in Sections 4 and 5, we dis-
cuss our results in Section 6. We demonstrate
that improvements in TAG parsing and supertag-
ging do indeed contribute to improvements in the
extrinsic PETE task, reaching state-of-the-art re-
sults in accuracy and near state-of-the-art in f-
measure. In particular, we compare our results to
the top-scoring systems of SemEval-2010, Cam-

132

bridge (Rimell and Clark, 2010) and SCHWA (Ng
et al., 2010), both based on the Clark and Curran
(2007) CCG parser, as well as a later system based
on an HPSG-Minimal Recursion Semantics parser
(Lien, 2014). We also conduct an error analysis
and discuss limitations of TAG parsing in the con-
text of this task.

2 The PETE Task

PETE (Yuret et al., 2013) is a restricted instance
of the recognizing textual entailment (RTE) task,
aimed at evaluating syntactic parsers. As in
other RTE tasks, the task includes a set of Text-
Hypothesis pairs, for which a system must deter-
mine whether or not the content of the Text entails
the content of the Hypothesis. For PETE, the texts
are individual sentences that were drawn from
one of three sources: the Unbounded Dependency
Corpus (Rimell et al., 2009), the Brown section
of the Penn Treebank, and a list of sentences in
the Penn Treebank on which the Charniak parser
(Charniak and Johnson, 2005) performed poorly.
A sentence S from these sources were selected as
a candidate Text if S was misparsed by at least one
phrase structure or dependency parsers that was
state-of-the-art in 2009.

Given a candidate Text T, an associated Hypoth-
esis H was constructed by identifying a pair of
content words in T whose syntactic relationship
is implicated in the difference between the gold
parse and the incorrect parse. These words were
then used to form a minimal sentence. If such a
sentence involved a verb that required additional
arguments, these could be filled in with indefinite
expressions (somebody, someone, and something)
or the verb could be passivized. Similarly, in the
case of a head and modifier, a copular sentence,
or one involving existential there, could be con-
structed. The resulting T-H pair would then be
assigned the label ‘YES’ if the content words in
H stand in a relation that is also present in the
gold parse of T, and is otherwise assigned the label
‘NO’. Each of the resulting T-H pairs were then
given to five untrained annotators on Amazon Me-
chanical Turk and was retained in the dataset if
three of them agreed on the presence or absence of
the entailment. This left a dataset containing 367
T-H pairs (of which 51.83% were labeled ‘YES’).
These were then randomly divided into a devel-
opment set containing 66 sentences and a test set
containing 301 sentences. For more details on the

construction process, see Yuret et al. (2013).

3 Applying TAG Parsing to PETE

Our TAG-based PETE system determines the en-
tailment status of a T-H pair through the following
four steps:

1. T and H are tokenized using the NLTK tok-
enizer (Bird et al., 2009).

2. T and H are supertagged and parsed, yielding
derivation trees DT and DH .

3. Structural transformations are applied to DT

to yield a modified derivation graph D′T .

4. Return ‘YES’ ifDH is a subderivation ofD′T .

In the following subsection, we describe the prop-
erties of the TAG grammar we use for supertag-
ging and parsing and the derivation trees which
result from the parser. We then describe the set of
structural transformations that are applied to the
Text’s derivation tree, and define how we deter-
mine the subderivation property.

3.1 The TAG Grammar and Derivation Trees
Our experiments make use of the TAG grammar
extracted from the Penn Treebank by Chen (2001),
and used by the MICA parser (Bangalore et al.,
2009). This grammar makes use of the representa-
tions developed for TAG starting with the XTAG
project (XTAG Research Group, 2001). Positions
for a lexical anchor’s arguments are labeled with
numbers that represent the argument’s deep syn-
tactic role. Deep subjects are labeled 0, direct
objects and objects of prepositions are labeled 1
and indirect objects are labeled 2. These numbers
remain constant across elementary trees that dif-
fer with respect to grammatical operations such as
passivization and dative shift. In the elementary
tree associated with the verb played in the passive
sentence The piano was played by Fred, the pi-
ano will be labeled as role 1, while Fred will be
labeled as role 0, just as in the active counterpart
Fred played the piano.

In the derivation trees that result from a parse
with this grammar, the arcs deriving from substi-
tution are labeled by the deep role of substituted
argument. Distinct labels in the derivation tree are
used for the insertion of co-heads and of adjoining
(which are not distinguished by locus of adjoin-
ing). Nodes in the derivation tree are associated

133

with a token in the sentence and its corresponding
elementary tree. A derivation tree can be thought
of as a set of parent-child-relation triples.

Because of the use of deep labels in the gram-
mar, the derivation trees of active and passive sen-
tences will be structurally identical, apart from the
identity of the elementary trees. As a result, the
most common kind of mismatch between T and
H in the PETE task, namely passivization, is han-
dled directly by the parser without any further ad-
dition.1

3.2 Transformations on the Derivation Tree
As we noted earlier in the description of the PETE
task, the sentences comprising T and H may differ
in certain syntactically defined ways, giving rise to
distinct TAG derivations. As a result, we apply a
set of transformations to these derivations to make
them more comparable. These were motivated by
well-understood properties of TAG derivations as
well as by divergences found in the T-H pairs in
the development set. The phenomena dealt with
by these transformations include NP modification,
relative clauses, clausal complementation by pred-
icative auxiliaries, predicative clauses, and coordi-
nation.

Modification in a TAG derivation is dealt with
via adjoining. In the derivation tree, this will result
in the modifier being a child of the head it modi-
fies, with the arc labeled as adjunction. However,
there are entailments where we will want to con-
sider a different relationship between these words.
For example, in the sentence I reached into that
funny little pocket (from the PETE development
set), the NP modifier funny is adjoined to pocket.
However on a hypothesis like The pocket is funny,
a predicative sentence, pocket is a 0-argument (i.e.,
subject) of funny. To deal with this mismatch,
when we find a adjoining dependency between an
N-headed tree and an auxiliary tree headed by an
adjective, preposition or noun, we add a triple to
the derivation tree in the reverse direction with the
arc label 0, signifying that the head is a subject ar-
gument of the predicate (as it would be in a pred-
icative sentence. This is depicted in the top line of
Figure 1.

1Note however that the grammar does not retain argument
labels across alternations like the causative-inchoative. In
The vase broke, the vase will be argument 0, while in I broke
the vase, it will be argument 1. Consequently, the entailment
from the latter to the former would not follow directly from
the parse. We would need PropBank-style argument labeling
to recognize such cases.

When the elementary tree that is adjoined to the
noun is a relative clause, we do something simi-
lar but slightly more complex. In order to deter-
mine the role that the reverse dependency should
have, we must consult the properties of the relative
clause elementary tree. For a subject relative, we
add a 0-labeled arc, for an object relative, we add
a 1-labeled arc, etc. This is shown on the second
line of Figure 1. For adjectival passives that are
adjoined to a noun (e.g., the thrown ball), we add
a 1-labeled arc between the head noun and the ver-
bal head, yielding the inference that the ball was
thrown.

Sentential complementation in TAG derivations
can be analyzed via either adjoining the higher
clause into the embedded clause (necessarily so in
cases of long-distance extraction from the embed-
ded clause) or substituting the embedded clause in
the higher clause. For example, on the third line
of Figure 1, we see the derivation tree for want to
watch, where want adjoins into watch. In order
to normalize this divergence, for adjunction links
involving a predicative auxiliary tree, we add a re-
verse link involving the 1 relation (i.e., that involv-
ing sentential complements).

For predicative clauses, like trading is some-
thing we want to watch, we want to allow for en-
tailments like we want to watch trading. Given
the transformations we have considered thus far,
we will only derive that we want to watch some-
thing (via the relative clause and predicative auxil-
iary transformations). However, for auxiliary trees
involving nominal predication (A is B), we add a
derivational link that asserts that A stands in the
same relation to predicates which have B as their
argument. Thus, since something in our example
is a 1-argument of watch, this rule will assert that
trading is such an argument as well.

The final structural transformation involves co-
ordination. Under the TAG analysis, VP coordina-
tion involves a VP-recursive auxiliary tree headed
by the coordinator that includes a VP substitution
node (for the second conjunct). We see part of the
resulting derivation for the sentence My host went
over and stared out the window in the top line of
Figure 2. In order to allow the first clause’s sub-
ject argument (as well as modal verbs and nega-
tions) to be shared by the second verb, we add the
relevant relations to the second verb.2

2There is some indeterminacy concerning the label of the
argument that should be added to the second verb, since this
VP tree does not encode what role its subject would be, at

134

Figure 1: Structural transformations for features NP modifier, relative clause, predicative auxiliary, and
predicative clauses

In the case of conjuncts that are the argument
of some other predicate, seen in the bottom line
of Figure 2 for the sentence I like John and Mary,
the second conjunct (Mary in this example) will
inherit any numbered parents of the first conjoined
word.

This set of structural transformations is applied
in the order in which we have presented it, so that
the output of previous transformations can feed
subsequent ones.

3.3 Recognizing Entailment

Having applied this series of transformations to
the Text’s derivation, we determine the presence
or absence of an entailment essentially by ask-
ing whether the derivation of the Hypothesis is a
subset of the derivation of the Text. This can-
not however be done in the simplest fashion, be-
cause of possible superficial divergences between
the derivations, concerning upper and lower case,
the location of punctuation and the derivational

least not in the current grammar. As a result, we follow the
heuristic of adding the subject with the same argument label
that it has in the first conjunct, unless the second verb already
has that argument, in which case we do not add anything.
Neither do we add modals or negations if the second verb
already has them.

root, contraction, and the presence of extra func-
tional material (auxiliary verbs or determiners).
We therefore ignore these differences when we
consider whether DH is a subderivation of D′T .
We say that D1 is a subderivation of D2 iff for
every (w1, w2, Rel) ∈ D1

1. (Subset) there is a triple (w′1, w
′
2, Rel) ∈ D2

such that w1 ≈ w′1 and w2 ≈ w′2; or

2. (Ignore root, punctuation and some function
words) w1 or w2 is ROOT, a punctuation
symbol or is lemmatized as one of be, have
or the and is adjoined to its parent; or

3. (wildcard indefinites) w1 ∈ {somebody,
something, someone} and there is a triple
(w′1, w2, Rel) ∈ D2 where w′1 is a noun.

This definition depends on a near equality re-
lation ≈ between holding between words a and b
when

1. (lowercase) lowercase(a) = lowercase(b); or

2. (contraction) a =‘’s’ and b =‘is’ or a =‘n’t’
and b =‘not’ (or vice versa)

135

Figure 2: Structural transformations for coordination.

In Section 6.2, we report our main results based
on the transformations and this notion of sub-
derivation above, and compare those results to
other systems. It is interesting to observe that the
Cambridge system (Rimell and Clark, 2010) made
use of the following heuristic procedure to deter-
mine whether the result of one CCG derivations
(converted into a dependency structure) entails an-
other:

1. Lowercase and lemmatize all tokens

2. From DH , discard dependencies involving
tokens not present in DT .

3. Let core(DH) be the dependencies with sub-
ject and object relations inDH . Answer YES
if core(DH) ⊂ core(DT) andDH∩DT = ∅,
NO otherwise.

We see little a priori motivation for the whole-
sale elimination of tokens in H not present in T,
or for the restriction to subject and object rela-
tions. Nonetheless, for comparability, we also in-
clude separate results where we apply our struc-
tural transformations, but rather than using our no-
tion of subderivation, instead follow the heuristic
procedure adopted in the Cambridge system.

4 Supertagging Models

In the experiments reported below, we compare
performance with two different supertaggers.

4.1 bi-LSTM Supertagger

The current state-of-the-art in TAG supertagging
is reported in (Kasai et al., 2017), a model based
on a bidirectional LSTM that get as input word
sequences and predicted part of speech tags, and
produces as output a probability distributions over
the TAG supertags at the last softmax layer. This
supertagger is trained on Section 1-22 in the TAG-
annotated WSJ Penn Tree Bank extracted by Chen
(2001). Its supertagging accuracy on Section 0 is
89.32%. For more details, see Kasai et al. (2017).

4.2 MICA Supertagger

The MICA supertagger is a maxent model, which
uses lexical and part-of-speech attributes of words
in a 3-word window on either side of the target
word in a one-versus-all classification task. (The
tagger does not use tagging history.) It achieves
88.52% accuracy on Section 0.

5 Parsing Models

We compare two parsing models here, one a neural
network-based transition based parser, and another
a chart parser.

136

5.1 Shift-Reduce Neural Network TAG
Parser

The currently best performing TAG parser is re-
ported in Kasai et al. (2017). This is an arc-eager
shift-reduce parser that uses a feed-forward neural
network as an oracle. At each time step, the ora-
cle takes as input the configuration of the parser,
which consists of a fixed number of cells from the
top of the stack and the front of the buffer, each
containing a 1-best supertag from the supertagger.
The parser’s task is to construct a derivation tree
from the individual supertags. This derivation is
constructed in the usual way for transition-based
parsers, namely through a series of actions (shift,
reduce, left-arc, and right-arc). Left-arc and right-
arc create links in the derivation tree, and these
operations are further specified by the type of op-
eration (substitution and adjoining) as well as the
node within the elementary tree to which the op-
eration applies (specified for substitution as 0-4,
encodings of the deep grammatical role of the sub-
stitution site). The output of the network is a soft-
max layer, whose activations can be interpreted
as a probability distribution over actions and la-
bels. It should be noted that the parser is unlexi-
calized; the only information that the parser uses
to determine its action is the supertags in the rel-
evant cells of the stack and buffer. We train this
parser on WSJ Sections 1-22 similarly to the bi-
LSTM supertagger. For more details, see Kasai
et al. (2017).

5.2 MICA Parser

The MICA parser (Bangalore et al., 2009) is based
on the SYNTAX system (Boullier, 2003), a full
Earley parser with additional performance opti-
mizations to deal with large grammars. The
TAG grammar is transformed into a variant of a
probabilistic CFG which allows Kleene stars on
righthand side nonterminals to model adjunction.
MICA produces a full parse forest and can out-
put n-best parses, but in these experiments we only
consider the 1-best parse.

5.3 Intrinsic task results

Table 1 shows that the NN parser outperforms the
MICA parser on both the development set (Section
0) and the test set (Section 23).

6 Results and Discussions

The results of PETE are provided using both ac-
curacy and f-measure for finding the entailment
cases (which represent around 52% of the cases
in the test set). Both metrics are reasonable met-
rics for the task, and the choice of primary metric
depends on exactly why one wants to perform this
extrinsic textual entailment task. The fact that both
metrics are reasonable ways of assessing perfor-
mance makes it more difficult to rank the systems,
and we comment on both accuracy and f-measure.

6.1 Previous Results

The top part of Table 2 shows the previous re-
sults from the best performing systems in the 2010
SEMEVAL PETE task. All of these involve sys-
tems which make use of grammatical formalisms
that provide rich linguistic description: the CCG-
based Cambridge and SCHWA systems, and the
HPSG/MRS-based system from Lien (2014). The
Cambridge system does best by accuracy, the
SCHWA system by f-measure. We note that the
MRS system, which uses a grammar to derive a
deeper semantics from the parse than we are using
in our approach, gets the highest precision among
these systems, but at the cost of a lower recall, as
is often the case with grammar-based systems.

6.2 Performance

The middle part of Table 2 shows results using
structural transformations and our notion of sub-
derivation. We evaluate our system with three
combinations of MICA and neural network su-
pertaggers and parsers. In general, the more neu-
ral networks, the better. We note a large discrep-
ancy between our results for development and test
set (accuracies 78.8% v.s 68.4% for bi-LSTM+NN
system). We note that all of our transformations
and subderivation notion increase the number of
yes-answers (by enlarging T or reducing H). Yet,
our high precision and low recall values show that
we miss a significant amount of ’yes’-answers.
Thus, we evidently did not devise enough trans-
formations; or perhaps our formulation of the cri-
terion for entailment was not applicable to the test
set.

6.3 Cambridge Heuristics

Because of the drop off when using our subderiva-
tion notion, we also explored the use of the Cam-
bridge heuristics. The bottom part of Table 2

137

Dev Results Test Results
Gold Stags Predicted Stags Gold Stags Predicted Stags

Parsing Model Beam size UAS LAS UAS LAS UAS LAS UAS LAS
MICA Stagger + MICA Parser – 97.60 97.30 87.91 86.14 96.97 96.59 86.66 84.90
bi-LSTM Stagger + MICA Parser – 90.05 88.32 90.20 88.66
bi-LSTM Stagger + NN Parser 1 96.82 96.45 89.48 88.00 – – – –
bi-LSTM Stagger + NN Parser 16 97.67 97.45 90.23 88.77 97.87 97.64 90.25 88.91

Table 1: Intrinsic task parsing results on the development and test sets.

Entailment Dev Results Test Results
Supertagger Parser Identification %A %P %R %F1 %A %P %R %F1
Cambridge Cambridge Cambridge 66.7 78.6 57.9 66.7 72.4 79.6 62.8 70.2
SCHWA SCHWA SCHWA 78.8 84.2 80.0 82.0 70.4 68.3 80.1 73.7
MRS MRS MRS 77.3 92.6 65.8 76.9 70.7 88.6 50.0 63.9
bi-LSTM Feed-Forward NN Subderivation 78.8 92.9 68.4 78.8 68.4 90.7 43.6 58.9
bi-LSTM MICA Subderivation 74.2 92.0 60.5 73.0 66.1 90.9 38.5 54.1
MICA MICA Subderivation 68.2 90.5 50.0 64.4 63.8 87.3 35.3 50.2
bi-LSTM Feed-Forward NN Cambridge 66.7 73.5 65.8 69.4 72.4 85.4 56.4 68
bi-LSTM MICA Cambridge 69.7 75 71.1 73 75.7 88.1 61.5 72.5

Table 2: PETE task previous system scores and TAG system scores on dev and test sets, using structural
transformations together with either our notion of subderivation or Cambridge’s heuristics. Accuracy
(A) gives the percentage of correct answers for both YES and NO. Precision (P), recall (R) and F1 are
calculated for YES.

shows results using our structural transformations
together with Cambridge heuristics for entailment
identification.

Surprisingly, the system comprised of the neural
supertagger and MICA parser is the best perform-
ing of our systems now, based on both accuracy
and f-measure. In fact, it has the best result on ac-
curacy compared to all systems, and is beat only
by SCHWA in f-measure. We note that the devel-
opment set results with the Cambridge heuristics
are much lower than with our subderivation no-
tion. This shows that the heuristics are crucial in
this evaluation, and that they apply differently for
the development and test sets.

6.4 Discussion

We note a disconnect from parser performances
when we use the Cambridge heuristic. We can
compare these results to the intrinsic evaluation
results of Table 1. The bi-LSTM+NN model
performs better on the intrinsic parsing evalua-
tion metrics UAS and LAS (unlabeled and labeled
attachment scores) than the bi-LSTM+MICA
model. This is reflected in the results using struc-
tural transformations and our subderivation no-
tion. However, this performance difference is in-
verted with structural transformations and Cam-
bridge heuristics.

These results also document that the heuris-
tics are crucial in this evaluation; the Cambridge

heuristics do not appear to be motivated by gen-
eral linguistic considerations. It appears to be im-
portant to understand the specific data chosen for
the evaluation in order to derive good heuristics.
As noted in Section 2, the T sentences were man-
ually selected and transformed by the workshop
organizers, in order to maximize the presence of
certain syntactic phenomena known to be difficult.
The entailment sentences (H) were constructed by
hand using certain types of transformations, which
are not completely specified in the task descrip-
tion. So there is a certain human idea (that of
the workshop organizers) of “entailment” operat-
ing here which we are trying to reverse engineer.
As we created our heuristics based only on the
development set and kept to linguistically well-
grounded notions, we ended up with low recall on
the test set. Consequently, a good understanding
of the data creation process will probably benefit
performance. This is not to say PETE is not an
interesting evaluation exercise, but it is (necessar-
ily) limited in what it shows because of the data
creation process.

6.5 Error analysis

6.5.1 Sources of Errors

In order to better understand the nature of the data
set as well as what kinds of cases are causing prob-
lems for the neural network TAG parser, we in-
spected the examples from the development set

138

that led to errors. A number of these were pars-
ing errors without any simple diagnosis. However
a number of the others were more intriguing.

One case in the development set was misparsed
because of an attachment ambiguity: It is the last
of the three tests of manhood which the women im-
pose is supposed to entail that the women impose
tests. The NN parser mistakenly attaches the rela-
tive clause headed by impose to the noun manhood
instead of to tests. Such examples inevitably pose
difficulties for our TAG-based parsers, since they
are unlexicalized and therefore cannot make use of
lexical information to make attachment decisions.

Another case in the test set involves the res-
olution of an anaphoric dependency: Mary said
’I have seen’ is supposed to entail Mary has
seen something. It is not clear to us that such
cases should be treated as syntactically governed
(or even if the entailment is correct – she could
be mistaken or lying). If the verb is changed
from said to heard, the entailment no longer goes
through, suggesting that the lexical semantics of
the embedding predicate, not to mention the in-
dexical, is at issue.3

The fine-grained character of TAG derivations
gives rise to derivational ambiguities that do not
exist in other frameworks, but which can prevent
the recognition of entailments. The development
set contains the phrase Japan hadn’t come up with
specific changes. For reasons that are not clear to
us at present, the phrasal verb is parsed correctly
in H, with both up and with treated as co-heads to
the verb come. However in the parse of T, which
also contains this phrasal verb, only up is treated
as a co-head, while with is treated as the head of
a PP modifying the VP. One of the major differ-
ences between the Cambridge heuristics and our
subderivation notion is the former’s exclusive fo-
cus on “core arguments”. This would allow mis-
parses of this sort to be ignored, though it might
pose problems for other cases.

Finally, we note a surprising parsing error aris-
ing from an error in Part of Speech tagging that
is input to our supertagger. For the Hypothesis
Many bear resemblances to movie personalities,
both our bi-LSTM supertagger and the Stanford
PCFG Parser (Manning et al., 2014) tag many bear
resemblances as an adjective, noun, and verb (as in

3Rimell and Clark (2010) also cite the example discussed
earlier, trading is something we want to watch, as anaphoric.
However, we believe that a syntactic treatment can be given
if predicative sentences are correctly recognized.

red bear runs), instead of the correct sequence de-
terminer, verb, and noun. In the pre-trained Parsey
McParseface model (Andor et al., 2016), many
bear resemblances is tagged as an adjective, noun,
and noun, a sequence that is locally possible, but
not compatible with the sentence as a whole. This
is surprising, given that POS tagging is often re-
garded as a largely solved task. This sentence is
short and contains no unbounded dependencies,
nor are its lexical items unusual.

6.5.2 Differences between Subderivation
Condition and Cambridge Heuristics

To compare our subderivation condition to the
Cambridge heuristics, we compared their respec-
tive test set results under the bi-LSTM+NN model:
out of 301 entailment hypotheses, there are 20
cases that are correctly recognized by Cambridge
heuristics but not our heuristics, and eight cases
for which the opposite is true.

All of the 20 cases that Cambridge heuristics
succeed in are True entailments that our heuristics
mislabeled as False. Eight cases involve parser er-
rors: either one of two coheads was mislabeled as
an adjunction, a relative clause was misattached
due to an attachment ambiguity, the grammatical
function of the relative clause head is misiden-
tified, or quotation marks are misparsed. Eight
cases stemmed from the fact that our subderivation
condition does not involve lemmatization of non-
auxiliary verbs; hence it will fail on cases where a
non-auxiliary verb is in different forms in the hy-
pothesis and entailment, for example Something
includes vs. Examples include. One further fail-
ure involved ellipsis, whose underlying structure
our TAG parse does not allow us to recover: with
the text Consider the ingredients, not the name,
our parse attaches not to name, whereas with the
hypothesis Do not consider the name, our parse
attaches not to consider. Another case involved
a difference in choice of determiner between the
hypothesis and text, i.e., the vs. an. A final case
involved what we take to be a contestable gold la-
bel, where the text he would have a place to hang
is granted the hypothesis he would hang as a True
entailment.

For these cases, the Cambridge heuristics suc-
ceed by lemmatizing all tokens (8 cases), by con-
sidering only the core arguments (11 cases), and
by skipping an unseen token (1 case).

In contrast, the eight cases where Cambridge
heuristics fail but where the subderivation condi-

139

tion succeeds are all instances of False entailments
that Cambridge heuristics mislabels as True. Here,
we see that the Cambridge heuristics lose relevant
grammatical distinctions as a result of ignoring
non-core arguments (6 cases) or skipping unseen
tokens (2). For example, with the text that is ex-
actly what I’m hoping for and hypothesis I’m hop-
ing exactly, it is the non-core adjunction relation
between exactly and hoping that makes the hy-
pothesis False. Or, with the text to live like Chris-
tians and hypothesis someone likes Christians, it
is the unseen token someone with the tokens like
or likes that make the hypothesis False.

As observed in Table 2, precision is higher
but accuracy is lower for our subderivation con-
dition than for Cambridge heuristics under the
bi-LSTM+NN model. Based on the inspection
above, Cambridge heuristics result in gains and
losses in entailment prediction as a result of their
coarse-grained nature. Our subderivation condi-
tion fails to predict certain entailments because of
its lack of verb lemmatization and its lack of ro-
bustness to “minor” parse failures.4 However, its
success is more directly tied to parser performance
in a more linguistically rigorous way.

7 Conclusions and Future Work

In this paper, we have presented results for the
PETE task using three systems for TAG parsing.
Our results confirm previous exploration of this
task in which parsers that provide rich linguistic
descriptions fare best. Using linguistically moti-
vated structural transformations and a subderiva-
tion criterion for detecting entailments, we have
shown that TAG parsers can outperform the state-
of-the-art on the development sets. However, on
the test set, our results decrease sharply. In con-
trast, when we instead apply the heuristics used by
the (previously) best performing CCG-based sys-
tem (Cambridge) to detect entailment, we obtain
accuracy results that surpass the state-of-the-art on
this task. These results demonstrate that heuristics
greatly affect task performance.

Since the development set is small, and we in-
ferred structural transformations by observing the
linguistic changes in the development set, there

4Note that if we add lemmatization of main verbs to our
subderivation condition, we gain 8 additional correct predic-
tions (the aforementioned lemmatization failures), but lose
no other cases. This would yield the following performance
scores: accuracy 71.1, precision 91.6, recall 48.7, and F1
63.6.

may be linguistic features that TAG parses do pro-
vide, but which we did not think to make use
of. This reflects a common challenge for rule-
based systems. More rules could be derived by
observing the Penn Treebank and our particular
grammar. We intend to analyze which cases the
Cambridge heuristics perform better on than our
subderivation-based heuristics; in so doing, we
will treat the test set as an expanded development
set, but we feel the provided development set is too
small to truly understand this problem. We hope it
will be possible to create a new test set in the fu-
ture if there is sufficient community interest.

Finally, because our structural transformations
are based on general properties of TAG deriva-
tions and are task-independent, this suggests that
the utility of the current work may extend to other
extrinsic tasks, such as semantic role labeling and
textual entailment tasks that involve lexical se-
mantics, world knowledge and logical reasoning.
We leave such explorations for the future.

140

References
Bharat Ram Ambati, Tejaswini Deoskar, and Mark

Steedman. 2016. Shift-Reduce CCG Parsing using
Neural Network Models. In Proceedings of NAACL-
HLT 2016. pages 447–453.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally Nor-
malized Transition-Based Neural Networks. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics. pages 2442–
2452.

Srinivas Bangalore, Pierre Boullier, Alexis Nasr, Owen
Rambow, and Benoı̂t Sagot. 2009. MICA: A Proba-
bilistic Dependency Parser Based on Tree Insertion
Grammars. In NAACL HLT 2009 (Short Papers).

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python. OReilly
Media.

Pierre Boullier. 2003. Guided Earley parsing. In Pro-
ceedings of the 8th International Workshop on Pars-
ing Technologies (IWPT03). Nancy, France, pages
43–54.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics.
pages 173–180.

Danqi Chen and Christopher D Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

John Chen. 2001. Towards efficient statistical parsing
using lexicalized grammatical information. Ph.D.
thesis, University of Delaware.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics 33(4).

Timothy Dozat and Christopher D. Manning.
2017. Deep biaffine attention for neural de-
pendency parsing. In Proceedings of ICLR.
http://arxiv.org/abs/1611.01734.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based Dependency Parsing with Stack Long Short-
term Memory. In Proceedings of the conference on
Empirical Methods in Natural Language Processing
(EMNLP). pages 334–343.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2017. Recurrent Neural Net-
work Grammars. In Proceedings of NAACL. pages
1249–1258.

Jungo Kasai, Robert Frank, R. Thomas McCoy, Owen
Rambow, and Alexis Nasr. 2017. Tag parsing with
neural networks and vector representations of su-
pertags. In Proceedings of EMNLP. Association for
Computational Linguistics.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What Do Recurrent Neural Network
Grammars Learn About Syntax? In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics (EACL).
pages 1249–1258.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG Parsing. In Proceedings of NAACL-
HLT 2016. pages 221–231.

Elisabeth Lien. 2014. Using minimal recursion seman-
tics for entailment recognition. In Proceedings of
the Student Research Workshop at the 14th Confer-
ence of the European Chapter of the Association
for Computational Linguistics. Gothenburg, Swe-
den, page 7684.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. 2014. The Stanford
CoreNLP natural language processing toolkit.
In Association for Computational Linguistics
(ACL) System Demonstrations. pages 55–60.
http://www.aclweb.org/anthology/P/P14/P14-5010.

Dominick Ng, James W.D. Constable, Matthew Hon-
nibal, and James R. Curran. 2010. SCHWA: PETE
using CCG dependencies with the C&C parser. In
Proceedings of the 5th International Workshop on
Semantic Evaluation. page 313316.

Laura Rimell and Stephen Clark. 2010. Cambridge:
Parser evaluation using textual entailment by gram-
matical relation comparison. In Proceedings of the
5th International Workshop on Semantic Evaluation.
pages 268–271.

Laura Rimell, Stephen Clark, and Mark Steedman.
2009. Unbounded dependency recovery for parser
evaluation. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Pro-
cessing. Singapore, page 813821.

XTAG Research Group. 2001. A lexicalized tree ad-
joining grammar for English. Technical Report
IRCS-01-03, Institute for Research in Cognitive Sci-
ence, University of Pennsylvania.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG supertagging with a recurrent neural network.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Short Papers). pages 250–255.

Deniz Yuret, Laura Rimell, and Aydin Han. 2013.
Parser Evaluation Using Textual Entailments. Lan-
guage Resources and Evaluation 47(3):639–659.

141

Author Index

Aggazzotti, Cristina, 31

Berglund, Martin, 94
Björklund, Henrik, 94
Bumford, Dylan, 71
Burkhardt, Benjamin, 21

Charlow, Simon, 71
Corro, Caio, 112

Davis, Forrest, 122
Drewes, Frank, 94, 102

Fowlie, Meaghan, 11
Frank, Robert, 122, 132
Friedman, Dan, 122

Han, Chung-hye, 43

Jonsson, Anna, 102

Kallmeyer, Laura, 21, 61
Kasai, Jungo, 122, 132
Koller, Alexander, 1, 11

Le Roux, Joseph, 112
Lichte, Timm, 21

McCoy, R. Thomas, 122

Needle, Jordan, 71

Osswald, Rainer, 61

Parmentier, Yannick, 84

Rambow, Owen, 122, 132

Sarkar, Anoop, 43
Savary, Agata, 84
Shieber, Stuart M., 31
Storoshenko, Dennis Ryan, 53

Waszczuk, Jakub, 84
White, Michael, 71

Xu, Pauli, 132

143

	Program
	A Feature Structure Algebra for FTAG
	Parsing Minimalist Languages with Interpreted Regular Tree Grammars
	Depictives in English: An LTAG Approach
	Reflexives and Reciprocals in Synchronous Tree Adjoining Grammar
	Coordination in TAG without the Conjoin Operation
	Scope, Time, and Predicate Restriction in Blackfoot using MC-STAG
	Combining Predicate-Argument Structure and Operator Projection: Clause Structure in Role and Reference Grammar
	Parsing with Dynamic Continuized CCG
	Multiword Expression-Aware A* TAG Parsing Revisited
	Single-Rooted DAGs in Regular DAG Languages: Parikh Image and Path Languages
	Contextual Hyperedge Replacement Grammars for Abstract Meaning Representations
	Transforming Dependency Structures to LTAG Derivation Trees
	Linguistically Rich Vector Representations of Supertags for TAG Parsing
	TAG Parser Evaluation using Textual Entailments

