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Abstract

Sub-character components of Chinese
characters carry important semantic
information, and recent studies have
shown that utilizing this information
can improve performance on core se-
mantic tasks. In this paper, we
hypothesize that in addition to seman-
tic information, sub-character compo-
nents may also carry emotional infor-
mation, and that utilizing it should im-
prove performance on sentiment analy-
sis tasks. We conduct a series of ex-
periments on four Chinese sentiment
data sets and show that we can sig-
nificantly improve the performance in
various tasks over that of a character-
level embeddings baseline. We then fo-
cus on qualitatively assessing multiple
examples and trying to explain how the
sub-character components affect the re-
sults in each case.

1 Introduction
Chinese characters are composed of one or
more components, which may have a phonetic
or semantic meaning. A special type of compo-
nent is a radical, which is the component under
which a character is traditionally listed in the
dictionary. Radicals, in particular, often carry
a semantic meaning. For example, the charac-
ter 媽 (mā, “mother”) is composed of the se-
mantic component, which is also the radical,
女 (nǔ, “female”) and the phonetic component
馬 (mǎ, “horse”).

Recently, there has been growing focus
on utilizing sub-character components, such
as radicals, in natural language processing.
These components can carry intrinsic semantic

information that complements the contextual
information that is utilized, e.g., in building
word embeddings. It has been shown that em-
beddings which are constructed with a com-
bination of radical, character and word level
granulairty outperform those that lack the ra-
dical information on classical semantic tasks
such as analogy and paraphrasing (Sun et al.,
2014; Li et al., 2015; Yin et al., 2016; Yu et al.,
2017).

In this paper, we explore the hypothesis
that in addition to the sort of hard seman-
tic tasks that they have so far been applied to,
sub-character components can also carry sen-
timent-related or emotional information, and
therefore should be useful in sentiment ana-
lysis as well. In particular, we have in mind
three types of sentiment-related information in
semantic components:

1. Components that have a specific pola-
rity, such as 疒 (“disease”) which is gene-
rally found in negative characters, or 子
(“child”) which is somewhat more com-
mon in positive characters

2. Components that do not specify a pola-
rity, but specify subjectivity or emotional
content, such as 心 (“heart”) or 忄 (“he-
art” in vertical form)

3. Components that are objective, but be-
cause of human tendencies are more likely
to appear in characters that tend to ap-
pear in subjective context and may tend
towards a particular polarity or intensity,
such as 虫 (“insect”) or 贝 (“treasure”)

To test our hypothesis, we conduct expe-
riments on multiple Chinese datasets anno-
tated for sentiment or emotion, both at the
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word level and the phrase level, and show that
using various forms of sub-character informa-
tion significantly helps with correctly determi-
ning the sentiment of the text, and that com-
bining them achieves the best results.

2 Related Work

Work on sentiment analysis started in the mid
1990’s (Wiebe and Bruce, 1995; Hatzivassilo-
glou and McKeown, 1997), and initially relied
heavily on lexicon-based methods and applied
mostly to newswire data. Later on, statisti-
cal and distributional methods (Pang and Lee,
2005; Wilson et al., 2005; Socher et al., 2011)
became prevalent, most recently with Deep
Neural Nets (Tang et al., 2015; Poria et al.,
2015; Qian et al., 2017). The domain of inte-
rest has also shifted, from newswire to social
media, in particular blogs (Mei et al., 2007; Yu
and Kübler, 2011) and microblogs (Go et al.,
2009; Agarwal et al., 2011; Kiritchenko et al.,
2014).

Although the availability of sentiment anno-
tated Chinese corpora is limited, Chinese lan-
guage sentiment analysis has also become an
active research area in recent years. Most work
in this area fits into three broad categories.
One approach relies on bilingual knowledge to
first translate the Chinese text into English
text, and then leverage the abundance of En-
glish resources for sentiment analysis (Wan,
2008). The second focuses on lexical-based
or rule-based sentiment scoring. For exam-
ple, Xianghua et al. (2013) classify the polarity
of the text using the HowNet lexicon, while
Zhang et al. (2009) use word dependency rules
to determine the sentiment of a sentence. The
third approach employs supervised learning on
a manually tagged dataset using specialized fe-
atures (Tan and Zhang, 2008) or on automa-
tically labeled data, e.g. Chinese tweets con-
taining unambiguous emoticons (Zhao et al.,
2012). Shared tasks relevant to Chinese senti-
ment analysis have become prevalent in recent
years, and include the SIGHAN 2015 task on
Topic-Based Chinese Message Polarity Classi-
fication (Liao et al., 2015), the IALP 2016 task
on Dimensional Sentiment Analysis for Chi-
nese Words (Yu et al., 2016b), and the upco-
ming IJCNLP 2017 task on Dimensional Sen-
timent Analysis for Chinese Phrases.

Work utilizing radicals and other sub-
character components is fairly uncommon.
One line of research which has become in-
creasingly popular is focused on augmenting
word- and character-level embeddings with
sub-character information. Sun et al. (2014)
and Li et al. (2015) used radicals to enhance
the C&W model (Collobert and Weston, 2008)
and the word2vec model (Mikolov et al., 2013),
respectively. Yin et al. (2016) and later Yu
et al. (2017) had shown that word embeddings
of the CWE variety (Chen et al., 2015) created
from a combination of word-level, character-
level, and sub-character-level information out-
performed those coming from a single granula-
rity level on semantic tasks. Yu et al. (2017),
in particular, show that in addition to radicals,
other sub-character components are useful as
well.

Ke and Hagiwara (2017) used embeddings
created from the radicals of characters and
used them in sentiment classification. They
showed that their model performs as well
on this task with these embeddings as with
character-level embeddings, which require a
higher-dimensional model and many more pa-
rameters. This is the only work, to our kno-
wledge, which uses sub-character components
for a sentiment task. Their work differs from
ours in several ways, the most important being
that they aim to use the radical-level embed-
dings instead of the character-level ones, sho-
wing that they can replicate the performance
with fewer parameters; in contrast, our work
investigates whether or not sub-character com-
ponents contain useful sentiment information
beyond that of contextual embeddings, and
shows that they complement one another. In
addition, we explore the use of non-radical
components, in addition to radicals.

The only work, to our knowledge, which ma-
kes use not of a list of components but of the
order of strokes (Bishun), which are the ato-
mic units of Chinese characters, is by Mi et al.
(2016) who used the stroke order predict the
correct pronounciation of a character.

3 Approach

Since we are interested mostly in showing the
value of the sub-character information, our fo-
cus is on performing experiments with various
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tasks, data sets and representations, and less
on the model used in classification. We the-
refore perform all experiments with a single,
straightforward Neural Network (NN) archi-
tecture, described below. In addition to using
the radicals from a provided list, we devised
a second representation of sub-character com-
ponents, derived directly from the stroke order
of the character.

3.1 Character level Embedding
Word embeddings have been very popular in
recent years because of the significant impro-
vement they brought about in almost all the
subfields of NLP. Across these subfields, this
meant not only a good way of dealing with
the dimensionality problem, which is often en-
countered with one-hot encoding, but also a
completely unsupervised, i.e. cheap, solution
to create semantic spaces that encode most of
the relationships among words in the vocabu-
lary of a language.

The idea of encoding each word as a D-
dimensional vector is not new (Levy et al.,
2015); however, since the publication of the
word2vec (Mikolov et al., 2013) paper we fi-
nally have a method that encompasses the al-
gorithm together with the right negative sam-
pling approach and hyper-parameters. In the
paper, the authors explain that in order to
compute the vectors representing the words wi

of a certain vocabulary V (of dimension |V |), it
suffices to use a one hidden layer NN that tries
to predict the current word given the neighbo-
ring words (CBOW) or the other way around
(Skip-Gram).

The optimization function that aims at
maximizing the probability between a word w
and a context c is thus expressed as follows:

p(w|c) =
es(w, c)∑|V |

i=1 es(wi, c)
(1)

By making the hidden layer of a much lower
dimensionality than |V | we end up with word
representations that are much lighter (we can
now represent each word with only D dimensi-
ons) and bear semantic value (words that ap-
pear in similar contexts have vectors that are
closer to each other in the semantic space).

In the work we present in this paper,

we wanted to use Chinese word embeddings
instead of a one-hot representation to take ad-
vantage of these properties. However, since
our goal was also to investigate an appro-
ach that does not rely on heavy preproces-
sing (such as word segmentation) and that
could work equally well on words, phrases
and sentences, we found it challenging to
use word2vec. A more convenient approach,
which we employ here, is fastText (Bojanow-
ski et al., 2017). This approach relies on the
same intuition as word2vec, but has the ad-
vantage that it builds embeddings for the cha-
racter n-grams that compose a word. By ta-
king morphology into consideration, fastText
is able to build embeddings for unseen words
(including words with typos) which word2vec
cannot. From a Chinese morphology per-
spective, however, this allows to build embed-
dings for a word, phrase or sentences using
its constituent characters without the need of
any preprocessing. In a sense, this is similar
to computing the vector representing a sen-
tence as the average of the word2vec vectors
of its constituent words. Despite the simpli-
city of this approach and its undermining of
syntax, it has proved to work very well in com-
bination with deep dense networks yielding re-
sults that surpass those obtained with LSTMs
(Iyyer et al., 2015). Our choice of learning mo-
del, which we describe in Section 3.2, is based
on this idea.

3.2 Our Learning Machine
As we previously mentioned, Deep Averaging
Networks (DANs) (Iyyer et al., 2015) is one of
the most successful approaches to classifying
embedded representations. As the authors
describe in the paper, the results show that
through applying N layers of non-linearity, the
network is capable of boosting/shrinking the
values of the dimensions that most/least con-
tribute to the classification task. In their work,
the authors have a first layer that computes
the pointwise average embedding of the words
in a sentence as follows:

av =
∑W

i=1 wi

W
(2)

In our architecture, this layer is removed
and the averaging operation is delegated to
fastText as we want it to be performed at
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Figure 1: Architecture of a dense NN using fastText embeddings as an input. Output is a one
dimension layer in case of regression and softmax for classification.

the character n-gram level. The sub compo-
nent representations are subsequently conca-
tenated (see Figure 1).

At each hidden layer hi we apply a non-
linear function to its input that can be des-
cribed as:

hi = f(Wi + bi) (3)

Where Wi and bi are the parameters of the
hidden layer. When performing classification,
we apply the softmax function to the last layer.
The softmax function ensures that our out-
put is a probability distribution over our set
of classes.

We experiment with one and three hidden
layers and report the results accordingly. We
keep the optimization function (adam) and the
activation function (ReLU) fixed in all of the
reported results. The dimensionality of the
embeddings is 300.

3.3 Sub-Component Representations
We use the code made available by Yu et al.
(2017) to collect the list of the components
(one of which is the radical) for 20, 879 cha-
racters. In our experiments, we use a one-hot
representation for the 214 radicals and conca-
tenate this representation with fastText em-

beddings (Bojanowski et al., 2017).
In addition, we employ a bottom-up appro-

ach using the stroke order for each character1.
From this data, we collect all stroke n-grams
for n = 1 . . . 7 and sort them by frequency. In
our experiments, we use a one-hot representa-
tion of the k most frequent n-grams (trying a
range of values for k) and concatenate these
with the fastText embeddings. Unlike the
radicals representation above, this approach
has the potential of using non-radical sub-
character information, and even information
coming from combinations of components; it
also has the advantage that it comes directly
from the order of strokes, of which there are
just over 20 types, instead of representing each
component as a unique unit.

4 Data Sets

In order to investigate the usefulness of our
approach on a variety of tasks, domains and
text characteristics (e.g., length and style) we
perform experiments on four datasets.

The first data set is the widely used
NTUSD (Ku and Chen, 2007) - a senti-
ment dictionary containing binary polarity an-

1We scraped the stroke order for 25, 723 Chinese
characters from https://bihua.51240.com/
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Data set Total size Entry length # of labels # of categories
NTUSD 11, 088 Single word 1 2
CVAW 3, 552 Single word 2 Continuous
CVAP 3, 000 Short phrase 2 Continuous
Weibo 333, 044 Microblog entry 1 4

Table 1: The four data sets and their properties.

notations (positive/negative) for over 11, 000
words.

The next two data sets come from this year’s
IJCNLP shared task on Dimensional Senti-
ment Analysis for Chinese Phrases (DSAP).
In this task, terms are labeled with two nu-
meric values, one for the valence of the term
and one for the arousal, together comprising
the term’s location in the valence-arousal af-
fect space (Russell, 1980). The task is evalua-
ted on two data sets: CVAW, which contains
2, 802 and 750 annotated single words in its
training and test set, respectively (Yu et al.,
2016a); and CVAP, which similarly contains
2, 250 and 750 short phrases.

Finally, we include the Weibo emotion data
set, collected by Fan et al. (2014) from Weibo,
a Chinese microblogging service, and automa-
tically annotated with emotional content. The
data set contains over 333, 000 entries, each
labeled with one of four emotions: joy, anger,
sadness or disgust. In comparison with the
words of NTUSD and CVAW, and even the
short phrases of CVAP, the Weibo entries are
significantly longer (the longest entries contain
over 400 characters) and like most social me-
dia, exhibit unusual linguistic style.

In the cases of NTUSD and Weibo, since
there is no pre-determined separation into trai-
ning and test sets, we randomized the data and
set apart 10% of the instances as a test set.

Table 1 summarizes the differences between
the four data sets.

5 Experiments
We conduct experiments on all four data sets
with the following representation combinati-
ons. The baseline is the fastText embed-
dings, without any sub-character information;
we then try the embeddings plus our radi-
cals representation, and the embeddings plus
the top k n-grams representation for k ∈
{100, 250, 500, 700}. Finally, we use the em-

beddings, radicals, and n-gram representation
together.

For each combination, we try both a single-
layer NN and a 3-layer NN, to see whether
or not depth has a significant impact on the
results.

Note that because of the different tasks (and
label types), the four data sets require diffe-
rent evaluation metrics. In particular, CVAW
and CVAP are evaluated using the mean abso-
lute error (MAE) and the Pearson correlation
coefficient (PCC) for valence and arousal sepa-
rately, while NTUSD and Weibo are evaluated
with Micro-F1.

5.1 Results
The results for the single-layer architecture are
shown in Table 2, and the results for the three-
layer architecture in Table 3.

Across the board, adding the sub-
components representations to the fastText
embeddings always outperforms the approach
that resorts only to the latter. The only
exception observed is when we predict valence
for phrases, i.e. CVAP1, in a three layer NN.

For valence, adding sub-component repre-
sentations reduced the MAE by up to 0.07
points (from 0.91 to 0.839) in a one layer NN,
and 0.03 points when using a three layer net-
work; whereas for arousal, the MAE was redu-
ced by 0.18 in (from 1.12 to 0.94) in the one
layer NN and 0.104 in a three layer NN. PCC
was also improved accordingly.

Similarly, for the NTUSD data set, we obtai-
ned an improvement of 3.4 f-score points in the
one layer NN (from 61.2 to 64.6) and 0.4 points
in a three layer NN.

When classifying long sentences, i.e. Weibo
data, we obtained an improvement of 2 points
of f-measure in the one-layer NN and up to 6
(0.54 vs 0.60) points of improvements in the
3 layer NN. This result is interesting because
it shows how the sub component representa-
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NTUSD Weibo CVAW CVAP
Valence Arousal Valence Arousal

Combination F1 F1 MAE PCC MAE PCC MAE PCC MAE PCC
FastText 61.2 59.2 0.91 0.694 1.125 0.436 0.827 0.781 0.658 0.727
FT+radicals 63.5 60.1 0.882 0.71 1.024 0.488 0.803 0.78 0.609 0.755
FT+ngrams(100) 63.4 59.1 0.855 0.724 1.055 0.479 0.832 0.765 0.603 0.756
FT+ngrams(250) 61.9 56.6 0.871 0.735 1.0 0.523 0.861 0.737 0.576 0.758
FT+ngrams(500) 62.6 57.4 0.896 0.726 0.979 0.52 0.825 0.755 0.586 0.758
FT+ngrams(700) 64.6 56.7 0.907 0.728 0.949 0.532 0.813 0.755 0.589 0.754
FT+rad.+ng(100) 62.1 60.8 0.839 0.739 0.982 0.554 0.793 0.764 0.677 0.766
FT+rad.+ng(250) 62.2 59.7 0.861 0.74 0.966 0.557 0.794 0.772 0.567 0.772
FT+rad.+ng(500) 57.8 61.6 0.867 0.742 0.969 0.533 0.777 0.772 0.586 0.773
FT+rad.+ng(700) 64.3 60.1 0.859 0.739 0.945 0.553 0.787 0.763 1.869 0.708

Table 2: The experimental results with one layer.

NTUSD Weibo CVAW CVAP
Valence Arousal Valence Arousal

Combination F1 F1 MAE PCC MAE PCC MAE PCC MAE PCC
FastText 63.7 54.1 0.827 0.738 1.029 0.497 0.652 0.847 0.587 0.765
FT+radicals 62.3 59.3 0.81 0.756 0.975 0.518 0.69 0.821 0.559 0.786
FT+ngrams(100) 63.6 58.3 0.824 0.752 0.972 0.534 0.71 0.803 0.596 0.758
FT+ngrams(250) 62.7 59.9 0.834 0.754 0.953 0.547 0.742 0.79 0.639 0.722
FT+ngrams(500) 61.8 60.8 0.798 0.762 0.94 0.549 0.719 0.795 0.551 0.776
FT+ngrams(700) 63.6 57.2 0.838 0.753 0.93 0.556 0.772 0.773 0.572 0.767
FT+rad.+ng(100) 61.4 60.2 0.796 0.764 0.948 0.557 0.706 0.821 0.568 0.773
FT+rad.+ng(250) 63.6 60.1 0.809 0.763 0.939 0.554 0.698 0.807 0.624 0.741
FT+rad.+ng(500) 64.1 55.7 0.799 0.756 0.925 0.574 0.769 0.765 0.588 0.757
FT+rad.+ng(700) 63.5 55.5 0.833 0.765 0.948 0.556 0.777 0.766 1.341 0.347

Table 3: The experimental results with three layers.

tions can help maintain a high performance
even when the text is long. Using fastText
only, however, yields poor results even if we
increase the number of hidden layers.

Overall, the sub-component representations
consistently improve results although the im-
provement is bigger for shallower networks.

5.2 Analysis
In this section, we go through a number of ex-
amples where the sub-character features were
helpful and a few where they introduced er-
rors. In all cases, we try to explain why the
difference might have emerged.

In NTUSD, there are many cases where
one or both of the variants made the correct
prediction while the embeddings-only baseline
did not. For example, the baseline predicts
that 好学 (“studious”) is negative, which is
wrong; the two radicals, 女 (“woman”) and子
(“child”) are both somewhat more likely to ap-
pear in positive characters, which in this case
pushes the classifier in the right direction. Ot-
her words which are classified correctly by all
of our variants, but not the baseline, include
严酷的 (“cruel”) and 勇敢的 (“brave”).

In the case of 败俗 (“ruined”), the baseline
as well as the radicals representation made
an error. The ngrams representation, howe-
ver, got it right. We believe this is because
of the radical 贝 (“treasure”), which usually
appears in positive characters. In this case,
the ngram representation has multiple variants
of this radical and some subsequent strokes,
which may explain how it can more accurately
separate between sets of characters. Other ca-
ses like this include狼心狗肺 (“ungrateful and
cold-blooded”) and法西斯党员 (“fascist party
members”). In contrast, in the case of 犯过错
(“made a mistake”), the radicals representa-
tion made the correct prediction, possibly be-
cause of the radical 犭 (“dog”), which despite
seeming objective often appears in characters
having to do with animals or animal characte-
ristics, which in Chinese tend to appear in ne-
gative contexts. The baseline made an incor-
rect prediction here, and so did the n-gram va-
riants, for reasons that are not entirely clear to
us. In general, we expect the ngram represen-
tations to be wrong more often for words with
rare radicals that may not make the threshold,
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or with radicals that are composed of many
strokes and cannot be represented well by 7-
grams.

In some cases, the baseline gets it right while
all of our variants fail. In some of these cases,
it is not immediately intuitive that these really
are subjective words: 命运注定的 (“predesti-
ned”) and 有贵族气派的 (“aristocratic”), for
example. This semantic ambiguity may make
it a task more suitable for embeddings, and
the sub-character components could simply be
adding noise. Another example where our va-
riants fail is雄辩 (“eloquent”); in this case, we
have two fairly rare radicals -隹 (“short-tailed
bird”) and 辛 (“bitter”), which we likely have
sparse data for. In addition, the second radi-
cal is more often seen in negative characters,
which may in this case push the classifier in
the wrong direction.

In CVAW, instead of binary labels, we have
continuous dimensions which provides a more
granular view. One interesting example from
this data set is 异常死亡 (”abnormal death”),
which has a valence of 1.42, very negative.
With embeddings alone, the classifier ends up
with a very bad prediction: 6.38 - far into the
positive side. This is likely because the first
two characters of 异常死亡 are not negative,
while the last two (both having to do with de-
ath) appear in a diverse context which is not
always (perhaps not often) negative. The ra-
dical 歹 (”death”) of the third word, however,
is a clearly negative radical which pushes our
variants towards the negative end, arriving at
a prediction of 4.97 - still not great, but on
the negative side of valence. Similar examples
include 极为优秀 (“very good”) and 本来有点
同情 (“originally a bit sympathetic”).

The sub-character components add much
more to arousal prediction, however. It may
be because arousal is less likely to be mo-
deled well in embeddings (since the context
for similar words with different arousal levels
can be very similar), while some radicals mo-
del it directly. The word 极为震怒 (“extre-
mely angry”) has a gold arousal value of 8.56,
very high. the embeddings alone predict 4.21,
which is far from it and on the low arousal
side. With radicals, we arrive at 5.46, much
closer and on the high arousal side. This is
likely because of two radicals associated with

higher arousal, on average: 心 (”heart”) and
雨 (”rain”). The stroke ngrams, in this case,
do better than the baseline but not as well as
the radicals: 4.91. In other cases, such as很担
心 (“very worried”), the ngrams perform sig-
nificantly higher than the radicals.

Although interesting, examples from the
longer texts in CVAP and Weibo are very dif-
ficult to analyze. We leave it to future work
to explore these data sets beyond our quanti-
tative evaluation.

6 Conclusion

We showed through experiments on multiple
data sets that sub-character components, re-
presented either as a set of radicals or as stroke
n-grams, contain information that is useful in
sentiment classification beyond the semantic
information encoded in character-level embed-
dings. We showed that with a few exceptions,
this effect can be seen with a variety of text
lengths and linguistic styles, as well as with
varying model depths.

One problem that is inherent to both the
word2vec and fastText approaches is that the
embeddings of negative and positive sentiment
words, e.g. good and bad, tend to be very si-
milar because they occur in similar contexts;
similar behavior exists for emotional dimensi-
ons other than polarity (e.g., arousal). In ide-
ographic languages such as Chinese, we can
leverage the fact that the characters themsel-
ves contain sentiment cues which cannot easily
be found with a distributional approach.

We illustrated with specific examples the
advantages and disadvantages of the two
representations, and showed experimentally
that they are in fact complementary, and we
can generally achieve the best performance by
using both. We also show that using sub-
character components yield much more impro-
vement when dealing with long text. We leave
the exploration of additional useful represen-
tations, as well as the best model to use them
with, to future work.
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