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Abstract

Spelling errors occur frequently in edu-
cational settings, but their influence on
automatic scoring is largely unknown.
We therefore investigate the influence of
spelling errors on content scoring perfor-
mance using the example of the short
answer data set of the Automated Stu-
dent Assessment Prize (ASAP). We con-
duct an annotation study on the nature of
spelling errors in the ASAP dataset and
utilize these finding in machine learning
experiments that measure the influence of
spelling errors on automatic content scor-
ing. Our main finding is that scoring meth-
ods using both token and character n-gram
features are robust against spelling errors
up to the error frequency seen in ASAP.

1 Introduction

Spelling errors occur frequently in educational as-
sessment situations, not only in language learn-
ing scenarios, but also with native speakers, espe-
cially when answers are written without the help
of a spell-checker.1 In automatic content scoring
for short answer questions, a model is learnt about
which content needs to be present in a correct an-
swer. Spelling mistakes interfere with this pro-
cess, as they should be mostly ignored for content
scoring. It is still largely unknown how severe the
problem is in a practical setting.

Consider the following answer to the first
prompt of the short answer data set of the Auto-
mated Student Assessment Prize (ASAP):2

1Note that we do not distinguish between the terms error
and mistake used by Ellis (1994) to denote competence and
performance errors respectively. We use the two terms inter-
changeably.

2https://www.kaggle.com/c/asap-sas

(1) Some additional information you will
need are the material. You also need to
know the size of the contaneir to measure
how the acid rain effected it. You need to
know how much vineager is used for each
sample. Another thing that would help is
to know how big the sample stones are by
measureing the best possible way.

In this answer, three non-word spelling errors
(printed in bold) occur. In addition, there is also
one real-word spelling error, which leads to an ex-
isting word: effected, which should be affected.

While a teacher who is manually scoring learner
answers can simply try to ignore spelling mis-
takes as far as possible, automatic scoring meth-
ods must include a spell-checking component to
normalize an occurrence of vineager to vinegar.
Thus spell-checking components are also a part of
some content scoring systems, such as the top two
performing systems in the ASAP challenge (Tan-
dalla, 2012; Zbontar, 2012). However, it is unclear
what impact spelling errors really have on the per-
formance of content scoring systems.

Many systems in the ASAP challenge, as well
as some participating systems in the SemEval
2013 Student Response Analysis Task (Heilman
and Madnani, 2013; Levy et al., 2013), used
shallow features such as token n-grams (Zbontar,
2012; Conort, 2012). If a token in the test data is
misspelled, then there is no way of knowing that
it has the same meaning as the correct spelling of
the word in the training data. At the same time, in-
dividual spelling error instances are often not oc-
curring uniquely in a dataset: Depending on fac-
tors such as the learner group (for example native
speakers or language learners with a certain na-
tive language) or the data collection method (hand-
writing vs. typing) some spelling errors will oc-
cur frequently while others will be rare. The mis-
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spelled form vineger, for example, might be fre-
quent enough that an occurrence feature for the
misspelled version provides valuable information
which a classifier can learn. Whether this observa-
tion mitigates the effect of spelling errors depends
on the frequency of individual errors and therefore
also on the shape of error distributions.

Contributions In this paper, we investigate how
the presence or absence of spelling errors in-
fluences the task of content scoring, taking the
afore-mentioned influence criteria of error fre-
quency and error distribution into account. We
conduct our analyses and experiments on the fre-
quently used ASAP content scoring dataset (Hig-
gins et al., 2014). The dataset contains 10 different
prompts about different topics ranging from sci-
ences over biology to literature questions. Each
prompt comes with 2,200 answers on average.
Although this dataset has been used in a lot of
studies concerning content scoring, much about
the spelling errors in the dataset is still unknown.
Our manual annotations and corpus analyses will
therefore also provide insight on the number, the
nature and the distribution of spelling errors in this
dataset.

First, we present an analysis of the frequency
and distribution of non-word spelling errors in the
ASAP corpus and compare several spelling dictio-
naries. We provide a gold-standard correction for
the non-word errors found automatically by a spell
checker in the test section of the data. We com-
pare error correction methods based on phonetic
and edit distance and extend them with a domain-
specific method that prefers suggestions occurring
in the material for a specific prompt.

Next, we investigate the effect of manipulating
the number and distribution of spelling errors on
the performance of an automatic content scoring
system. We experiment with two ways of regu-
lating the number of misspellings. We automati-
cally and manually spell check the corpus to re-
place non-word spelling errors by their corrected
version. This only allows us to decrease the num-
ber of errors. To increase the amount of spelling
errors further, we also introduce errors artificially
in two conditions: (i) adding random noise as a
worst-case scenario, and (ii) adding mistakes ac-
cording to the error distribution in the test data.

We find that token and character n-gram scoring
features are largely robust against spelling errors
with a frequency present in our data. Character

n-gram features are contributing towards this ro-
bustness. When introducing more errors, we see a
substantial drop in performance, such that the im-
portance of spell-checking components in content
scoring depends on the frequency of errors in the
data.

2 Annotating Spelling Errors

In order to evaluate the influence of spelling errors
on content scoring, we need an error-annotated
corpus. However, a full manual annotation of
the complete dataset, which contains around one
million tokens, was beyond our means. Instead,
we decided to annotate a representative sample of
the ASAP corpus which we utilize to evaluate the
performance of spelling error detection methods.
This allows us to estimate whether we can draw
reliable conclusions from applying existing spell
checking methods to the full dataset.

We manually annotated the first 20 answers
in each prompt using WebAnno (Yimam et al.,
2013). In order to facilitate the annotation process,
we automatically pre-annotate potential spelling
errors using the Jazzy spelling dictionary.3 Two
annotators (non-native speakers and two of the au-
thors of this paper) reviewed the error candidates
and either accepted or rejected them, but could
also mark additional spelling errors which were
not detected automatically.

In this manual annotation process, we distin-
guish between non-word and real-word spelling
errors. We annotate a mistake as real-word error
if another word with a different root is clearly in-
tended in the context, such as “Their are two sam-
ples”. We do not distinguish between spelling er-
rors and grammatical errors among the non-word
errors, i.e., we do not filter out non-words that
could originate from grammatical errors such as
incorrect 3rd person forms like dryed instead of
dried. We do not mark grammatical errors that
lead to a real-word error, such as wrong preposi-
tions. Equally, we do not mark lexically unsuitable
words which are morphologically possible, but do
not fit in the context, such as counter partner in a
context where counter part was clearly intended.

In total, we annotated 9,995 tokens and reach an
inter-annotator agreement of 0.87 Cohen’s kappa
(Cohen, 1960) on the binary decision whether a

3https://sourceforge.net/projects/
jazzy/files/Dictionaries/English/
english.0.zip/download

46



word is a spelling mistake or not. Main sources of
disagreement were (i) misses of real word spelling
errors not marked in the pre-annotation (e.g. koala
beer), and (ii) disagreements as to whether com-
pounds may be written as one word or not (e.g.
micro debris vs. microdebris), a decision which is
often ambiguous. In case of disagreement between
the annotators, the final decision is made through
adjudication by both annotators.

The resulting dataset contains 297 spelling er-
rors, including 48 real-word errors which will not
be considered for further evaluations and exper-
iments. The resulting ratio of spelling errors in
the dataset is about 3%, which is in line with the
expected frequency of spelling errors in human-
typed text (Kukich, 1992). However, it would be
an interesting follow-up work to determine the fre-
quency of spelling errors in other content scoring
datasets.

2.1 Evaluating Automatic Spell-checking

Using our annotated answers, we now evaluate
different spell-checking dictionaries. Note that
the size and quality of those dictionaries influence
the trade-off between precision and recall of error
detection. For example, a very small dictionary
yields almost perfect recall, as most spelling errors
are not in the dictionary and flagged accordingly.
However, precision would be rather low as some
of the detected errors are perfectly valid words
that are just missing from the dictionary. On the
other hand, a very large dictionary lowers recall
as some words that are definitely a spelling error
in the context of the writing task in this dataset
might be valid words in some very special context.
For example, the HunSpell dictionary contains the
abbreviation AZT, standing among others for ‘azi-
dothymidine’ and ‘Azerbaijan time’. In the con-
text of our learner answers, the string would likely
never occur as a valid word, but would be counted
as a non-word misspelling.

In order to find a suitable dictionary for our
task, we evaluate the following setups: As base-
line dictionary, we use the one that comes with the
Jazzy spell checker.4 It is relatively small (about
47,000 entries) and does not contain inflected
forms (such as third person singular). Thus, we
also use the English HunSpell dictionary with
more than 120,000 entries.5 Both are general

4http://jazzy.sourceforge.net
5https://sourceforge.net/projects/

Dictionary P R F

Jazzy .25 .98 .39
HunSpell .63 .89 .74

HunSpell -abbr .63 .95 .76
HunSpell +prompt .88 .88 .88
HunSpell -abbr +prompt .86 .94 .90

Table 1: Evaluation of different error detection
dictionaries

purpose dictionaries, which we can adapt in or-
der to get better performance. First, we remove
all-uppercase abbreviations from the dictionary
(-abbr), as they can lead to the above-mentioned
problem.6 Second, we extend the dictionary
with prompt-specific lexical material (+prompt),
which we extract automatically from the reading
material and scoring rubrics associated with each
prompt. This step adds about 600 tokens to the
dictionary. Third, we combine both strategies
(-abbr +prompt), keeping a word if it is contained
both in the list of abbreviations and in the prompt
material.

After checking the first results, we found that
some artifacts influence the results. First, the to-
kenizer splits words like can’t into two tokens ca
and n’t, which are then detected as spelling errors.
Second, the learner answers often contain bullets
used in lists, such as a), b), etc. For the final re-
sults, we do not count these cases as spelling er-
rors.

Results Table 1 gives an overview of the results.
As expected, the rather small Jazzy dictionary has
very high recall as many words are not found in
the dictionary, including almost all spelling er-
rors but also a lot of valid words, which results
in low precision. Using the larger HunSpell dic-
tionary lowers recall a bit, but dramatically im-
proves precision. Excluding abbreviations has less
effect than expected. It might even hurt a bit, if
words such as DNA are removed, which are fre-
quently used in the biology prompts. Extending
the dictionary with the small number of prompt-
specific terms brings large boosts in detection pre-
cision with an – in comparison – moderate drop of
recall. Excluding the abbreviations before adding
the prompt-specific terms recovers most of the lost

hunspell/files/Spelling%20dictionaries/
en_US/

6Note that in our experiments, we lowercase all material
before the comparison so that we factor out capitalization
problems.
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recall and trades in some precision, but yields the
best F-score.

It might be surprising that we do not reach a
perfect recall in error detection, i.e. that there are
words in the dictionary which we mark as incor-
rect. These include tokens from the prompt mate-
rial which were annotated as incorrect (such as mi-
crodebris instead of micro debris), as well as erro-
neously tokenized words such as a ddition where
both parts have been marked as part of a non-word
spelling error although a appears in the dictionary.

Hunspell -abbr +prompt gives us overall the
best performance and is thus used in the following
experiments.

3 Annotating Error Corrections

In order to evaluate the performance of error cor-
rection methods, we manually correct part of the
data. We use the Hunspell -abbr +prompt dic-
tionary with the Jazzy spell-checker to detect and
correct all errors in the test data part of ASAP. A
list of these errors and their corrections are then
presented to two human annotators (the same as in
the previous annotation task). We showed each in-
stance within a 20 character window to the left and
right to allow for a decision in context, but anno-
tators could inspect the full learner answer if that
window was not sufficient. Annotators performed
two consecutive tasks: First they accepted or re-
jected a word as a spelling error, thus sorting out
words that should not have been flagged as an er-
ror in the first place. Next, they either accepted
a proposed correction or changed it to a different
one.

This approach was much less time consuming
than performing manual error detection and cor-
rection on raw data, and allowed us to annotate the
complete test data section of the corpus with 6,400
proposed error candidates. As the recall of the er-
ror detection approach is expected to be around
90-95% (see evaluation results in Table 1), we will
miss some errors. However, we decided that an
imperfect annotation of the full test data section is
more useful than an almost perfect annotation of
only parts of the answers.

For prompts 1 and 2, two annotators checked
all instances on the training as well as on the
test data. On these items, annotators reached an
inter-annotator agreement of κ=0.90 on the deci-
sion whether a word should be considered an er-
ror. For those candidates considered an error by

both annotators, they found the same correction in
86% of all cases. In addition, the test data for all
10 prompts was annotated by one annotator each.
On this data, out of 6,400 error candidates, about
5,200 were accepted as errors. The resulting error
detection precision of 81% is close to the values
shown in Table 1.

There was a surprisingly high number of errors
for which it was not possible to annotate a correc-
tion, because the answer was so garbled that anno-
tators could not find a target hypothesis. An exam-
ple for such a sentence is the following: [. . . ] but
they don;t tell me to subtract the end mass from the
slurhnf. When looking at the wider context, it is
somewhat plausible that slurhnf should be some-
thing along the lines of start mass, it remains un-
clear what the student meant. We checked some
of these candidates with a native speaker, but still
remained with almost 3% of uncorrectable errors.
We ignore these cases when we evaluate different
spell-checkers.

3.1 Evaluating Automatic Error Correction

We compare four setups of error correction meth-
ods. As a baseline, we use the original Jazzy
spellchecker7, which only generates candidates
with the same phonetic code using Metaphone en-
coding. If there is more than one candidate, we
select one randomly.

As a variant to random error candidate se-
lection, we additionally use prompt knowledge
(+prompt), i.e. we make use of the prompt ma-
terial and of the frequency of words and bigrams
in all answers for a prompt. We prefer material
occurring in the prompt of an answer, if there are
several candidates, we take the one occurring most
frequently in the data. We observed in our annota-
tions that a number of identified errors (1,065) are
the result of tokenization errors on the side of the
students, i.e. they often omit whitespace between
two words. Often these errors evolve around punc-
tuation marks (e.g. content.they), in which cases
they are easy to detect and correct. In cases with-
out punctuation showing the token boundary, we
check whether an unknown word can be split into
two in-dictionary words and accept the candidate
if the resulting bigram also occurs in the answers
for that prompt.

We also built our own spellchecker, which does
not only take phonetically identical candidates

7http://sourceforge.net/projects/jazzy
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into account, but all candidates up to a certain Lev-
enshtein distance (3 was an optimal value in our
case) using LibLevenshtein8 for an efficient im-
plementation, but prefers candidates with a shorter
distance if possible. In analogy to the Metaphone
setup, we test (i) a basic version where a candidate
is randomly selected should several occur and (ii)
a prompt-specific version.

Table 2 shows correction accuracy of the differ-
ent methods on the annotated gold-standard, i.e.
we check how often the correction method found
the same correction as annotated, ignoring capi-
talization and ignoring words we could not manu-
ally correct. We also show coverage values, which
specify for how many gold standard errors the
respective method was able to provide a correc-
tion candidate at all. For our following experi-
ments, we select the best-performing Levenshtein
+prompt method.

Method Variant acc coverage

Jazzy Metaphone .51 .85
Jazzy Metaphone +prompt .55 .82
Our Levenshtein .46 .96
Our Levenshtein +prompt .69 .95

Table 2: Performance of different error correction
methods

4 Dataset Analysis

To get a better understanding of the nature of
spelling errors, we provide additional analyses on
our annotations.

4.1 Error Detection Analysis
For the error detection annotations, we compare
the length of a token in characters to its likelihood
of being misspelled and find that longer words
have higher chances to be misspellings (see Fig-
ure 1).

To further drill down on the nature of errors we
compute the probability of spelling errors across
different coarse-grained POS tags. We map the
Penn Treebank tagset to 12 coarse-grained tags as
described in (Petrov et al., 2011). Table 3 shows
that error occur mainly in content words (only
17 out of 255 annotated errors occur in function
words).

Next, we investigate, how many errors are au-
tomatically detected in ASAP using the best per-

8https://github.com/
universal-automata/liblevenshtein-java
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Figure 1: Probability for words of a certain length
to be misspelled in our annotated data

POS # instances P(error|POS)

. 1 0.1
ADJ 26 4.2
ADP 5 0.5
ADV 27 4.8
CONJ - -
DET 3 0.3
NOUN 140 6.2
NUM - -
PRON 3 0.4
PRT 1 0.3
VERB 45 2.2
X 4 0.2

Table 3: Probability for tokens from a certain POS
class to be misspelled.

forming dictionary. Table 4 provides an overview
of the frequency of errors for each prompt, as
well as the type-token-ratio for error tokens. We
see that many errors occur more than once, which
might have consequences for content scoring if a
model is able to associate frequent misspellings
with a certain label. Table 5 shows as an ex-
ample the top 10 most frequent misspellings for
prompt 2. We see that there are a few very fre-
quent misspellings centered around important vo-
cabulary for that prompt and a long tail of infre-
quent misspellings (not shown in the table).

We also check whether there is a correlation be-
tween the number of spelling errors in an answer
and the content score assigned by a teacher. We
normalize by the number of tokens in the answer
to avoid length artifacts and find no significant cor-
relation. This is in line with our general assump-
tion that spelling errors are ignored by teachers
when scoring a learner answer.

4.2 Error Correction Analysis

In order to understand the nature of spelling mis-
takes better, we perform additional analyses on the
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prompt # errors TTR

1 1.2 .69
2 1.2 .64
3 1.0 .62
4 2.0 .51
5 7.7 .43
6 5.8 .62
7 1.5 .63
8 2.3 .42
9 2.1 .59
10 2.2 .43

∅ 2.3 .56

Table 4: Average number of spelling mistakes
per 100 tokens (punctuation excluded) and type-
token-ratio for errors for the individual ASAP
prompts.

Misspelling #

streched 117
strech 31
strechable 18
nt 16
streching 15
expirement 13
streached 10
expiriment 9
strechiest 8
streches 6

Table 5: Top-10 most frequent misspellings for
prompt 2

corrected test data. First, we categorized errors
according to the Levenshtein distance between an
error and its corrected version (see Figure 2). A
number of instances with very high distances orig-
inate from errors involving tokenization, e.g. sev-
eral words concatenated without a whitespace. To
avoid such artifacts in the analysis, we counted
only cases where both the original token and its
corrected version did not include any whitespace.

There is still a surprisingly high number of
words with a Levenshtein distance greater than 1.
An example for a word with a high Levenshtein
distance would be satalight instead of satellite.
This shows that finding the right correction can be
a challenging task, as correction candidates with
a lower distance often exist. For example, in the
answer The students could have impared the ex-
periment by (. . . ), it becomes clear from the ques-
tion context (Describe two ways the student could
have improved the experimental design) that the
right correction for impared is improved and not
impaired.
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Figure 2: Distribution of errors across different
Levenshtein distances.

5 Influence of Spelling Errors on Scoring

In the following experiments, we vary the amount
of spelling errors in the data systematically. We
use automatic and manual spell-checking to de-
crease the error rate and add artificial errors for
a higher number of errors.

5.1 Experimental Setup

In our experimental studies, we examine the in-
fluence of spelling deviations and spell-checking
on content scoring. We train one classification
model for each of the ten ASAP prompts, using the
published data split into training data and “pub-
lic leaderbord” data for testing. We preprocess
the data using the ClearNLP segmenter and POS
tagger provided through DKPro Core (Eckart de
Castilho and Gurevych, 2014). We use a standard
feature set often used in content scoring (Higgins
et al., 2014) and extract token 1–3 grams and char-
acter 2–4 grams using the top 10,000 most fre-
quent n-grams in each feature group. We then
train a SVM classifier (Hall et al., 2009) with de-
fault parameter settings provided through DKPro
TC (Daxenberger et al., 2014). We evaluate using
both accuracy and quadratically weighted kappa
(QWK, Cohen (1968)), as proposed in the Kaggle
competition for this dataset and present results av-
eraged across all 10 prompts.

One important property of this feature setup is
that the character n-gram features could be able to
cover useful information from misspelled words.
If the word experiment is, for example, misspelled
as expirment, there are n-grams shared between
these two versions, such as the character trigrams
exp, men or ent. Therefore, we also use a reduced
feature set, where we only work with token n-gram
features, in order to quantify the size of this effect.
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tokens & chars tokens only
QWK acc QWK acc

baseline .68 .71 .66 .70

spell-check train .66 .70 .66 .70
spell-check test .68 .70 .66 .70
spell-check both .68 .70 .66 .70

gold test .68 .70 .66 .70

Table 6: Scoring performance on ASAP with and
without spell checking

5.2 Experiment 1 – Decreased Error
Frequency

In a first machine learning experiment, we investi-
gate the influence of spell-checking on the perfor-
mance of content scoring. We systematically vary
three sets of influence factors: First, we use either
our automatically corrected learner answers as a
realistic spell checking scenario or the corrected
gold-standard version of the learner answers. We
consider the latter an oracle condition to estimate
an upper bound of improvement that filters out
noise introduced by the spell checker. Second,
we use two different feature sets: either the full
feature set covering both token and character n-
grams or the reduced feature set with only token
n-grams. Third, we vary which part of the data is
spell-checked. We either correct both the training
and the test data or only training or only test data.
In the oracle condition, we have only annotations
for the test set, so that we use only the test condi-
tion here.

Table 6 shows the results. We see that it makes
little difference whether we spell-check the data
(be it automatically or manually). One possible
explanation for the very small difference is that
there are many answers without any spelling mis-
takes at all. Thus, we also comparing the perfor-
mance for answers with different minimal num-
ber of errors. Table 7 shows the breakdown of
the results per number of errors. We observe a
reduced performance in kappa for answers with
more spelling errors, but do not see that repeated in
the accuracy, i.e. misclassified answers with more
errors have a higher tendency to be completely
misclassified.

5.3 Experiment 2 – Simulating Increased
Error Frequencies

As we have seen in the above experimental study,
there is little difference between the scoring qual-

# errors # test items QWK acc

≥ 0 522 .66 .70
≥ 1 269 .65 .69
≥ 2 132 .63 .68
≥ 3 52 .62 .70

Table 7: Scoring performance on ASAP when us-
ing only answers with a certain minimal number
of errors for testing.

ity on original data vs. spell-checked data. We al-
ready ruled out that this might be due to a noisy
spell-checker by also evaluating on the annotated
gold standard. Another potential reason for our
findings is that the amount of errors present in the
data is just not large enough to make a difference.
To check that, we artificially introduce different
amounts of new errors into the learner answers. In
this way, we can also simulate corpora with differ-
ent properties, so that practitioners can check the
average amount of spelling errors in their data and
can get an estimation of what performance drop to
expect.

Generating Spelling Errors In order to gener-
ate additional spelling errors, we use two different
models:

Random Error Generation introduces errors
by either adding, deleting, or substituting a letter
or by swapping two letters in randomly selected
words. This error generation process is a worst
case experiment in the sense that there is no pre-
dictable pattern in the produced errors.

Informed Error Generation produces errors
according to the distribution of errors in the data.
This means we introduce errors only to words that
were misspelled in our annotated gold-standard,
and we introduce errors by using the misspelled
version actually occurring in the data consider-
ing the error distribution. In this way, there are
chances that – like in real life – some errors will
be more frequent than others such that a classifier
might be able to learn from them.

We use both models with different configura-
tions of the experimental setup. We vary whether
the errors are added to all words (all) or only to
content words (cw). This is because we observed
that mainly longer and content words are mis-
spelled. We argue that these words can be more
important in content scoring than small function
words. Therefore, those realistic errors might do
more harm than random errors. In both conditions,
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Figure 3: Scoring performance on ASAP with in-
creasing amounts of additional introduced errors.

we make sure that the overall error rate across
all tokens matches the desired percentage. Addi-
tionally, we use either only token features (tok),
that will be more sensitive towards spelling errors,
or also include the character features (tok+char),
which we know to be more robust.

Figure 3 shows the performance of the two er-
ror generation models in their different variants
for different amounts of artificial errors. Note that
there was a natural upper bound for the amount of
errors which can be introduced using the informed
error generator. As expected, we see that content
words are more important for scoring than func-
tion words as introducing errors to only content
words yields a larger performance drop. We see
for both generation models that a scoring model
using character n-grams is largely robust against
spelling mistakes while a model using only infor-
mation on the token level is not. We also see that
a more realistic error generation process is not as
detrimental for the scoring performance as ran-
dom errors. Of course, our error model might be
slightly over-optimistic and in real life with such
a high number of errors we might see new ortho-
graphic variants for individual words that were not
covered in our annotations. We therefore believe
the realistic curve to be somewhere between the
informed and the random model.

6 Related Work

We are not aware of other works studying the im-
pact of spelling errors on content scoring perfor-

mance.
In general, spell checking is often used as a pre-

processing step in educational applications, espe-
cially those dealing with input written by learn-
ers, either non-natives or natives. In some works
the influence of spell-checking is explicitly ad-
dressed. Pilan et al. (2016) predict the proficiency
level of language learners using textbook material
as training data and find that spell-checking im-
proves classification performance. Keiper et al.
(2016) show that normalizing reading comprehen-
sion answers written by language learners is bene-
ficial for POS tagging accuracy.

In some areas however, spelling errors can also
be a useful source of information: In the related
domain of native language identification, a disci-
pline also dealing with learner texts, Chen et al.
(2017) found that spelling errors provide valuable
information when determining the native language
of an essay’s author.

7 Conclusions

We presented a corpus study on spelling errors in
the ASAP dataset and provide gold-standard anno-
tations for error detection and correction on large
parts of the data.

Next, we examined the influence of spelling er-
rors on content scoring performance. Surprisingly,
we found very little influence of spelling mistakes
on grading performance for our model and on the
ASAP dataset. In our setup, spellchecking seems
negligible.

There are several explanations for that: First,
we found that we observe a drop in performance
if we artificially increase the number of spelling
errors. This drop is especially pronounced, if (a)
no character n-gram information is used for scor-
ing and (b) if errors follow no specific pattern. If
a dataset is expected to contain a higher percent-
age of spelling errors it will therefore be helpful to
correct errors automatically and/or to mitigate the
effect of misspelled word by the usage of character
n-gram features.

Second, our scoring models relied on shallow
features. We assume that scoring models using
higher linguistic processing such as dependency
triples might suffer more substantially, a question
that will be pursued further in future work.

Our gold standard annotations are available
under https://github.com/ltl-ude/
asap-spelling in order to encourage more
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work on spell-checking in the educational domain.
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