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Abstract

In this paper, we describe our neural ma-
chine translation (NMT) system, which
is based on the attention-based NMT
(Luong et al., 2015) and uses long short-
term memories (LSTM) as RNN. We im-
plemented beam search and ensemble de-
coding in the NMT system. The system
was tested on the 4th Workshop on Asian
Translation (WAT 2017) (Nakazawa et al.,
2017) shared tasks. In our experiments,
we participated in the scientific paper
subtasks and attempted Japanese-English,
English-Japanese, and Japanese-Chinese
translation tasks. The experimental re-
sults showed that implementation of beam
search and ensemble decoding can effec-
tively improve the translation quality.

1 Introduction

Recently, neural machine translation (NMT) has
gained popularity in the field of machine trans-
lation. The conventional encoder-decoder NMT
(Sutskever et al., 2014; Cho et al., 2014) uses two
recurrent neural networks (RNN); one is an en-
coder, which encodes a source sequence into
a fixed-length vector; the other is a decoder,
which decodes this vector into a target se-
quence. Attention-based NMT (Bahdanau et al.,
2015; Luong et al., 2015) can predict output words
by using the weights of each hidden state of the en-
coder as the context vector, thereby improving the
adequacy of the translation.

Despite the success of attention-based models,
several open questions remain in NMT. In gen-
eral, a unique output word is predicted at each time
step. Therefore, if a wrong word is predicted, sub-
sequent words will not be correctly output. To
enable better predictions, best practices such as

beam search and ensemble decoding are recom-
mended to improve the robustness of the predic-
tions. Beam search keeps better hypotheses dur-
ing decoding, while ensemble decoding reduces
the variance of output during decoding.

In this paper, we describe the NMT system that
was tested on the shared tasks at 4th Workshop on
Asian Translation (WAT 2017) (Nakazawa et al.,
2017). We implemented beam search and ensem-
ble decoding in our NMT system. We applied
our NMT system to Japanese-English, English-
Japanese, and Japanese-Chinese scientific paper
translation subtasks. The experimental results
show that beam search and ensemble decoding
improve the translation accuracy by 3.55 points
in Japanese-English translation and 3.28 points
in English-Japanese translation in terms of BLEU
(Papineni et al., 2002) scores.

2 Neural Machine Translation

Herein, we describe the architecture of our NMT
system as shown in Figure 1. The designed
system is based on the attention-based NMT
(Luong et al., 2015) and uses long short-term
memories (LSTM) as RNN. Our NMT system
comprises mainly two components:

• Encoder : one-layer bi-directional LSTM

• Decoder : one-layer uni-directional LSTM

2.1 Encoder

The source sentence is converted into a sequence
of one-hot word vectors (X = [x1, · · · , x|X|])
where |X| is the length of source sentence.

At each time step i, the source word embedding
vector es

i is computed by the following equation.

es
i = tanh(Wxxi) (1)
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Figure 1: The architecture of our NMT system.

where Wx ∈ Rq×vs is a weight matrix. q is the
dimension of the word embeddings and vs is the
size of source vocabulary.

The hidden state h̄i of the encoder is computed
as given by the following equation.

h̄i =
−→
hi +

←−
hi. (2)

Here, the forward state
−→
hi and the backward state←−

hi are computed by

−→
hi = LSTM(es

i ,
−−→
hi−1) (3)

and ←−
hi = LSTM(es

i ,
←−−
hi+1). (4)

Note that the computation of hidden state h̄i of the
encoder can be regarded as an addition instead of
a concatenation.

2.2 Decoder
As with the source sentence, the target sentence is
converted into a sequence of one-hot word vectors
(Y = [y1, · · · , y|Y |]) where |Y | is the length of
target sentence.

At each time step j, the hidden state hj of the
decoder is represented as

hj = LSTM([et
j−1 : h̃j−1], hj−1) (5)

where et
j−1 is the target word embedding vector,

h̃j−1 is the attentional hidden state, and hj−1 is
the hidden state at the previous time step.

The target word embedding vector et
j is com-

puted by
et

j = tanh(Wyyj) (6)

where Wy ∈ Rq×vt is a weight matrix. vt is
the target vocabulary size. The attentional hidden
state h̃j is represented as

h̃j = tanh(Wa[hj : cj ] + ba) (7)

where Wa ∈ Rr×2r is a weight matrix and ba ∈
Rr is a bias vector. r is the number of hidden units.

The context vector cj is a weighted sum of each
hidden state h̄i of the encoder. It is represented as

cj =
|X|∑
i=1

αijh̄i. (8)

Its weight αij is a normalized probability distri-
bution, which is computed using a dot product of
hidden states, as follows:

αij =
exp(h̄T

i hj)∑|X|
k=1 exp(h̄T

k hj)
. (9)

The conditional probability of the output word
ŷj is computed by

p(ŷj |Y<j , X) = softmax(Wph̄j + bp) (10)

where Wp ∈ Rvt×r is a weight matrix and bp ∈
Rvt is a bias vector.

Incidentally, the rare words that did not fit in
the vocabulary are replaced with unknown tokens
“<unk>”. When the unknown word is predicted,
our NMT system does not process it and outputs
this unknown token as it is.
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Japenese-English Japanese-Chinese
train 1,456,278 672,315
dev 1,790 2,741
test 1,812 2,300

Table 1: Numbers of parallel sentences.

2.3 Training

The objective function is defined by

L(θ) =
1
D

D∑
d=1

|Y |∑
j=1

log p(y(d)
j |Y (d)

<j , X(d), θ)

(11)

where D is the number of data and θ are the
model parameters. On training, this objective
function is maximized. The model parameters of
word embedding are initialized using Word2Vec
(Mikolov et al., 2013). The other model parame-
ters are randomly initialized.

2.4 Testing

In general, a unique output word is predicted at
each time step. Then the next output word is pre-
dicted on the premise that this unique output word
is correct. Therefore, if a wrong word is once pre-
dicted, then it is difficult to correctly output subse-
quent words. To make better predictions, we im-
plemented beam search and ensemble decoder.

2.4.1 Beam Search
In general, the word that has the highest probabil-
ity is output. In beam search, we keep hypotheses
of beam size n at each time step. At the subse-
quent time step, for each hypothesis, we compute
n hypotheses; then, we keep n hypotheses in total
n2 hypotheses. Adopting this approach reduces
the risk of generating wrong sentences.

2.4.2 Ensemble Decoding
In ensemble decoding, the conditional probabil-
ity of the output word ŷj is the average of each
model’s score. It is computed by

p(ŷj |Y<j , X) =
1
M

M∑
m=1

p(m)(ŷj |Y<j , X)

(12)
where M is the number of models. Adopting this
approach reduces the risk of predicting a wrong
word at each time step.

3 Experiments

We experimented our NMT system on Japanese-
English, English-Japanese, and Japanese-Chinese
scientific paper translation subtasks.

3.1 Datasets

We used the Japanese-English and Japanese-
Chinese parallel corpora in Asian Scientific Pa-
per Excerpt Corpus (ASPEC) (Nakazawa et al.,
2014). As regards the Japanese-English parallel
corpus, Japanese sentences were segmented by the
morphological analyzer MeCab1 (version 0.996,
IPADIC) and English sentences were tokenized
by tokenizer.perl of Moses2. On the other hand,
as regards the Japanese-Chinese parallel corpus,
Japanese and Chinese sentences were tokenized
by SentencePiece3. The vocabulary size of the to-
kenizer was set to 50,000.

As regards the training data in Japanese-English
parallel corpus, we used only the first 1.5 million
sentences sorted by sentence-alignment similarity;
sentences with more than 60 words were excluded.
On the other hand, as regards the training data in
Japanese-Chinese parallel corpus, we used all the
sentences. Table 1 shows the numbers of the sen-
tences in each parallel corpus.

3.2 Japanese-English and English-Japanese
translation tasks

Settings In these tasks, we conducted the exper-
iment using the following configuration:

• Number of hidden units: 1,024

• Word embedding dimensionality: 512

• Source vocabulary size: 100,000

• Target vocabulary size: 30,000

• Minibatch size: 128

• Optimizer: Adagrad

• Initial learning rate: 0.01

• Dropout rate: {0.1, 0.2, 0.3, 0.4, 0.5}

• Beam size: {1, 2, 5, 10, 20}
1https://github.com/taku910/mecab
2http://www.statmt.org/moses/
3https://github.com/google/sentencepiece
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Japanese-English
Model BLEU RIBES AMFM HUMAN

Previous system (Yamagishi et al., 2016) 18.45 0.711542 0.546880 -
beam 1 21.00 0.725284 0.585710 +56.750
beam 2 22.21 0.733571 0.591740 -
beam 5 22.85 0.737631 0.595180 -
beam 10 22.99 0.739629 0.595030 -
beam 20 23.03 0.741175 0.595260 +61.000
5 ensemble + beam 1 22.78 0.738325 0.587630 -
5 ensemble + beam 2 24.02 0.743581 0.596840 -
5 ensemble + beam 5 24.46 0.744955 0.597760 -
5 ensemble + beam 10 24.55 0.744928 0.596360 -

Table 2: Japanese-English translation results.

English-Japanese
Model BLEU RIBES AMFM HUMAN

beam 1 33.72 0.811057 0.740620 +50.750
beam 2 34.54 0.817303 0.744730 -
beam 5 35.10 0.820389 0.744370 -
beam 10 35.30 0.821341 0.744660 -
beam 20 35.32 0.821563 0.744890 +56.500
5 ensemble + beam 1 35.63 0.825683 0.751660 -
5 ensemble + beam 2 36.35 0.829732 0.750950 -
5 ensemble + beam 5 36.90 0.831559 0.750360 -
5 ensemble + beam 10 37.00 0.832569 0.749410 -

Table 3: English-Japanese translation results.

We trained five models with different dropout
rates for each task. Then, we selected the best
model based on the development set for a single
model. The best dropout rate of 0.2 was achieved
in a preliminary experiment. We applied various
beam sizes during testing. In addition, we ensem-
bled five trained models.

Results Tables 2 and 3 show the translation ac-
curacy in BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010), AMFM (Banchs and Li,
2011) and HUMAN evaluation scores. In the
“Model” column, “beam n” indicates the model
with the beam size of n, “n ensemble” indi-
cates the model ensembled by n trained models
on testing. “Previous system” in Table 2 indi-
cates our previous NMT system for WAT 2016
(Yamagishi et al., 2016). This system is based on
the attention-based NMT (Bahdanau et al., 2015)
and did not implement dropout, beam search, and
ensemble decoding.

The results show that beam search and en-
semble decoding improve the translation accu-
racy by 3.55 points in Japanese-English translation
and 3.28 points in English-Japanese translation in
BLEU scores. As regards Japanese-English trans-
lation, our NMT system improved the translation
accuracy by 6.10 points compared with our previ-
ous NMT system. From a BLEU score standpoint,
with increasing beam size, the translation accuracy
is enhanced. However, it does not always improve
translation accuracy in other metrics.

Table 4 shows examples of outputs of Japanese-
English translations. In Example 1, the output is
significantly poor when the beam size is 1. How-
ever, by increasing the beam size, the output is im-
proves significantly. In Example 2, increasing the
beam size does not improve the output; however,
by ensemble decoding, the output is improved.
The experimental results indicate that beam search
and ensemble decoding can effectively improve
the translation quality.
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Example 1
Source 単純桁橋より接合金具を始め多種部材を組合せるため ,工法が

複雑である。
beam1 since a joint metal metal metal metal metal metal metal metal metal metal

metal metal metal metal metal metal metal metal metal metal metal metal
metal metal metal metal metal metal metal metal metal metal metal metal
metal metal metal metal metal metal metal metal metal metal metal metal
metal metal metal metal metal metal metal metal metal metal metal

beam20 the method is complicated in order to combine a joint metal metal fitting to a
simple girder bridge and a lot of member .

5ensemble + beam10 the method is complicated in order to combine various kinds of members from
simple girder bridges to combine various kinds of members .

Reference the construction was more complicated than simple girder bridge because of
combinating various members including connecters .

Example 2
Source 小型甲殻類では ,アミ類のアカイソアミ ,ワレカラ類の

ニッポンワレカラとツガルワレカラは茨城県で初めて確認された。
beam1 <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,

<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> and <unk> , <unk> and <unk> ,

beam20 <unk> , <unk> and <unk> of <unk> , <unk> , <unk> , <unk> , <unk>
, <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> and <unk>
, respectively , in Ibaraki Prefecture , for the first time .

5ensemble + beam10 in small crustaceans , <unk> and <unk> of <unk> and <unk> were con-
firmed for the first time in Ibaraki Prefecture .

Reference among the small-type Crustacea , Paracanthomysis hispida of Mysidae , and
Caprella japonica and C. tsugarensis of Caprellidae were confirmed for the
first time in Ibaraki Prefecture .

Table 4: Examples of outputs of Japanese-English translation.

3.3 Japanese-Chinese translation task
Settings In this task, we conducted the experi-
ment using the following configuration:

• Number of hidden units: 1,024

• Word embedding dimensionality: 1,024

• Source vocabulary size: 30,000

• Target vocabulary size: 30,000

• Minibatch size: 64

• Optimizer: Adagrad

• Initial learning rate: 0.01

• Dropout rate: 0.1

• Beam size: 1

Japanese-Chinese
BLEU RIBES AMFM HUMAN
22.92 0.798681 0.700030 +4.250

Table 5: Japanese-Chinese translation result.

Results Table 5 shows the translation accuracy
in terms of BLEU, RIBES, AMFM, and HUMAN
evaluation scores. The experimental result indi-
cates that the translation quality is significantly
poor compared with the other NMT systems in
this task at WAT 2017. As regards this task, be-
cause this research is in its infancy, so we could
not apply the proper settings. Therefore, we will
attempt to pre- or post-process a corpus properly,
tune the hyper parameters, and improve the trans-
lation quality.
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4 Conclusion

In this paper, we described our NMT system,
which is based on the attention-based NMT and
uses long short-term memories as RNN. We
evaluated our NMT system on Japanese-English,
English-Japanese, and Japanese-Chinese scientific
paper translation subtasks at WAT 2017. The ex-
perimental results show that the implementation
of beam search and ensemble decoding can effec-
tively improve the translation quality.

In our future work, we will attempt to use the
byte pair encoding (BPE) (Sennrich et al., 2016)
and compare it with SentencePiece that was ex-
plored in this work. In addition, we plan to im-
plement the adversarial NMT (Wu et al., 2017;
Yang et al., 2017), which is based on generative
adversarial networks (GAN). GAN consist of two
networks; one is a discriminator, which distin-
guishes whether the input data is real or not; the
other is a generator, which generates the data that
the discriminator cannot distinguish. This ap-
proach attempts to generate high quality transla-
tions that are comparable to human translations.
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