A Simple and Strong Baseline: NAIST-NICT Neural Machine Translation
System for WAT2017 English-Japanese Translation Task

Yusuke Oda'*
Masao Utiyama*

Katsuhito Sudoh!

Satoshi Nakamura'
Eiichiro Sumita?

1 Nara Institute of Science and Technology
8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan
T National Institute of Information and Communications Technology
3-5 Hikaridai, Seika-cho, Kyoto 619-0289, Japan

Abstract

This paper describes the details about the
NAIST-NICT machine translation system
for WAT2017 English-Japanese Scientific
Paper Translation Task. The system con-
sists of a language-independent tokenizer
and an attentional encoder-decoder style
neural machine translation model. Ac-
cording to the official results, our sys-
tem achieves higher translation accuracy
than any systems submitted previous cam-
paigns despite simple model architecture.

1 Introduction

Neural machine translation (NMT) methods be-
came one of the main-stream techniques in
current machine translation studies. Previous
WAT campaign showed that NMT methods can
achieve higher translation accuracy in spite of
simple model configurations (Nakazawa et al.,
2016a). In this year, we chose the NMT ar-
chitecture as our translation systems submitted
for WAT2017 English-Japanese Scientific Paper
Translation Task (Nakazawa et al., 2017). The
main translation model is constructed by an
encoder-decoder model (Sutskever et al., 2014)
enforced by an attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015). This paper
describes the details of our system, including
whole model architecture, training criteria, decod-
ing strategy, and data preparation. Results show
that our system achieves higher translation accu-
racy than any systems submitted in previous WAT
campaigns.

2 Architecture of the System
2.1

Our translation model is built by an atten-
tional encoder-decoder network implemented in

Model formulation

135

NMTKit !. Overall model structure is based on the
combination of Bahdanau et al. (2014) and Luong
et al. (2015). This translation model represents
a conditional probability Pr(e|f), where e
le1, €2, ep| and f = [f1, fa,- -, fF| are se-
quences of target/source words, and E, F' are
the numbers of the target/source words. Encoder-
decoder style NMT models behaves a sequential
word generators, which yields target words one-
by-one along the time step. Formally, the whole
translation model is separated into the product of
token-wise conditional probabilities:

E
Pr(e|f) = [] Pr(ede<s, f), ey
t=1
where e<; := [e1, -, €] is the history of gener-

ated target words. In each time step ¢, the condi-
tion (e, f) is represented as a condition vector
1; and each conditional probability in Equation (1)
is calculated by the softmax function as follows:

Pr(e/le<, f) Pr(e¢|n;) )

softmax(Wen; + be).(3)

where W, and b, are the parameters to be trained:
weight matrix and bias vector respectively. We
calculate the condition vector 7); using three sub-
models: encoder, decoder and attention described
in the following sections.

2.1.1 Encoder

The encoder converts given source sequence f to
a set of vectors R := [ry,r2,---,rp|. Each vec-
tor at the position ¢ is calculated as follows:

r; = concat(7;, T;), 4)
?i = RNN(emb(fZ), (Fi+1), (6)

'https://github.com/odashi/nmtkit

Proceedings of the 4th Workshop on Asian Translation, pages 135-139,
Taipei, Taiwan, November 27, 2017. (©2017 AFNLP



where concat(- - -) represents the concatenation of
given vectors, emb(w) represents the lookup of
embedding vectors corresponding to the token w,
and RNN(+, -) represents an independent recurrent
unit. We use the long short-term memory units
(Gers et al., 2000) with input/forget/output gates
to all recurrent units. We also introduce the n-
stacked encoder to represent richer source infor-
mation as follows:

T = concat(?gn)y?z(n))’ @)

P o RNNEED FE) @
7= RNN(ETU ), O
?Z(O) = emb(f;), (10)
‘FZ(O) = emb(f;). an

We set all initial recurrent states 7)8”) and <F;Z’LJ)rl

to 0.

2.1.2 Decoder and attention

The decoder calculates the condition vector 7; as
follows:

n := tanh(Wconcat(ct, bt) +by),  (12)

where W, and b, are the parameters. h; is
the current decoder’s state calculated by a uni-
directional recurrent unit:

h; := RNN(concat(emb(e;—1), mt—1), ht—1)),

(13)
and we extend this formulation to the n-stacked
version with the notation hﬁ”) by the similar mod-
ification to that of the encoder. In this calculation,
we also introduce the previous condition vector
7¢—1 as an additional input of the recurrent unit.
This is called as the input feeding (Luong et al.,
2015), allows to propagate previous decision of
the decoder with keeping differentiability of the
network. ¢; is the context vector calculated from
R using an attention mechanism:

Ct = Rat, (14)

where R is a matrix created by substituting all
vectors r; to the i-th columns. a; represents the
weight of each vector r; at the time ¢, which is

calculated by an arbitrary score function o:
a; := softmax(a(R, hy)). (15)

We follow the multi-layer perceptron based score
function proposed by Bahdanau et al. (2014):

a;(R,hy) := ’Ul tanh(W concat(r;, ht)), (16)

136

where «; represents the i-th element of «, v, and
‘W, are the parameters.

For the initial values h(()n), we use the dense
bridge connection from the encoder units as fol-

lows:

(n)

hy) = tanh(s))), (17)
.s;:% = U(")s(%)f + V(”)SS?’1 + b%),
(18)

where U, V(") and b%) are the parameters, and

S(n

wz denotes the internal states of the LSTMs cor-

(n).

responding to the outputs x;

2.1.3 Hyper-parameters

The translation model described in previous sec-
tions has several hyper-parameters: number of
units in source/target embeddings emb(-), RNN
states 7, 7 and h, the hidden layer in the atten-
tion network, and the condition vector 7. We con-
strained all these numbers same to prevent increas-
ing combination of hyper-parameters. In addition,
each recurrent unit also has the depth of stack as an
additional hyper-parameter. We also constrained
these numbers same due to the Equations (17) and
(18). Eventually, we varied the number of units
from 256 to 1024 and depth of the recurrent stack
from 1 to 4 to construct models that have a differ-
ent power of model expressiveness and finally se-
lected 512 as the former and 2 as the latter hyper-
parameter respectively.

2.2 Model Training

To find an optimal parameters in the model de-
scribed in the previous sections, we minimize the
cross-entropy loss function:

L(O):==> > 1ogPpms(d), (19

Prni(8) :=Pr(e, = egm)|e<t = e(g), f=Fm. 0),
(20)
where £(™) and e(™ represents the m-th parallel
corpora, and 6 represents the set of all parameters
in a translation model.
To achieve this optimization problem, we use
the Adam optimizer (Kingma and Ba, 2014) for
all training settings.

Hyper-parameters Since Adam has several
hyper-parameters that may directly affect conver-
gence speed and model quality, we tried to train



our models with various combination of hyper-
parameters, and finally chose as follows: a =
0.0001 (default/10), 81 = 0.9 (default), (2
0.999 (default), and € = 10~2 (default).

2.3 Tokenization

Tokenization is one of the worrisome problems
of machine translation systems. Since there are
no linguistically unified criteria about separating
words from original sentences, we often have to
choose tokenization methods carefully according
to selected languages. In contrast, we use the Sen-
tencePiece tokenizer? instead of some language-
dependent tokenization methods. This tokenizer
basically requires only an untokenized training
corpora to acquire actual tokenization strategies
and frees us from selecting actual tokenizers. In
our system, all raw sentences are tokenized using
the SentencePiece tokenizer trained by the corpus
used to train translation models, and resulting to-
kens generated by the translation models are de-
tokenized by simply removing boundary markers
in the concatenated strings. Through the whole
process of our translation systems, we never use
any other pre/post-processing methods.

Hyper-parameters SentencePiece requires the
vocabulary size V' as the hyper-parameter. We
tried to use V' = 4096, 8192, 16384, 32768, and
finally chose V' = 16384 for each language.

2.4 Decoding

In decoding actual target sentences, we performed
greedy n-best beam search method with the word
penalty heuristic, which simply multiplies the con-
stant exp(W P) to all word probabilities in each
time. The word penalty introduces an exponential
distribution as a prior knowledge about the length
of the target sentence. If we set the penalty fac-
tor WP > 0, then the system penalizes shorter
sentences, and tends to generate longer sentences.
Note that if the beam width is 1, there is no effect
from word penalty, because the translation system
can generate only 1-best results.

Hyper-parameters In our decoding strategy,
We have 2 hyper-parameters: beam width BW
and word penalty factor WP. We varied BW
from 1 to 128, and W P from O to 1.5, and finally
chose BW =16 and WP = 0.75.

*https://github.com/google/sentencepiece

137

Table 1: Official evaluation results of our systems.

System BLEU  Place (All / Single)
One-best 36.47 11/6
Adjusted 38.25 873
(last-year) 36.19 —/ —

System RIBES  Place (All / Single)
One-best | 0.821989 13/6
Adjusted | 0.834492 5172
(last-year) | 0.819836 —/ —

System AM-FM  Place (All / Single)
One-best | 0.763310 574
Adjusted | 0.770480 1/1
(last-year) | 0.758740 —/ —

System Human  Place (All / Single)
One-best 63.500 8/3
Adjusted 70.000 41/ 1
(last-year) — —/ —

2.5 Model Ensembling

Although the model ensembling techniques im-
prove the translation accuracy, they also impose a
great deal of computation back-ends (e.g., if a sin-
gle model requires a full resource of one GPU, the
N-ensemble system basically occupies N GPUs
while executing it) and this behavior is typically
not fit to the most situations of real production sys-
tems. Because of this issue, we did not introduce
any model ensembling techniques while decoding
test inputs.

3 Results

We trained all translation systems varied by
model/training/tokenization hyper-parameters de-
scribed in previous sections, and performed a grid
search to find an optimal set of hyper-parameters
for this task. For the training data, we used top
2M sentences in ASPEC corpus (Nakazawa et al.,
2016b) provided by the organizer. We chose the
optimal model that achieves the best BLEU (Pa-
pineni et al., 2002) score over the dev corpus.
For the optimal model, we also performed a grid
search about decoding-time hyper-parameters. All
the optimal hyper-parameters described in pre-
vious sections are found as the results of these
searches.

We submitted two results generated from the
same optimal model: one-best results, i.e., the re-
sults with fixing BW = 1, and adjusted results,
i.e., the results with optimal BW and WP de-



Table 2: JPO adequacy results.

Scores
System  Ensemble | ) 3 4 5
(this-year) 8 models | 0.25 1.75 825 36.50 53.25
Adjusted  Single 0.25 1.75 17.50 37.75 42.75
(last-year) 3 models | 2.00 2.75 19.25 43.50 32.50

scribed in Section 2.4.

Table 1 shows the official evaluation scores of
our systems, including BLEU, RIBES (Isozaki
et al., 2010), AM-FM (Banchs and Li, 2011), and
the human evaluation. The rows labeled last-year
shows the best system in all previous WAT cam-
paigns. We can see that our one-best system al-
ready achieves higher translation accuracy in all
automatic evaluation metrics than last-year sys-
tems. In addition, adjusted system achieves fur-
ther better scores than one-best, which means ap-
plying better decoding strategy can improve trans-
lation accuracy even using the same model.

Table 1 also shows the place of our systems in
this year. Because official results do not separate
scores of single (no-ensemble) models and ensem-
ble models, we also calculated the place of our
systems out of only single models for fair compar-
ison. In AM-FM and human evaluation, we can
see that our adjusted model marks the 1st place of
this year’s campaign.

Table 2 shows the results of the JPO pairwise
adequacy evaluation provided by the organizer.
We also showed the this-year system, the 1st place
system (by NTT team) of the same task in this
year’s campaign, as well as the Adjusted and the
last-year systems. By comparing with Adjusted
and last-year, we can see that our system clearly
increases the number of the highest (5) score and
reduces all other (1 to 4) scores. In particular, our
system reduces the number of lower-range (1 or 2)
scores by the same level of the this-year system
although we did not use model ensembling. How-
ever, there is still room for improvement about
higher-range (3 to 5) scores.

4 Conclusion

This paper described the details of the NAIST-
NICT neural machine translation systems submit-
ted to WAT2017 English-Japanese Scientific Pa-
per Translation Task. Although the model struc-
ture is not new, our model achieved higher transla-
tion accuracy compared with past systems in this

language pair. In addition, we also tried to use
SentencePiece, an unsupervised tokenizer to avoid
complicated tokenization problems, and also con-
firmed that the resulting translation systems can
perform with no accuracy reduction.

Acknowledgement

Part of this work was supported by JSPS
KAKENHI Grant Numbers JP17H06101 and
JP16H05873.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Rafael E. Banchs and Haizhou Li. 2011. Am-fm: A
semantic framework for translation quality assess-
ment. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 153—-158, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
LSTM. Neural computation, 12(10):2451-2471.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language
pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 944-952. Association for Computational
Linguistics.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412-1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

138



Toshiaki Nakazawa, Chenchen Ding, Hideya MINO,
Isao Goto, Graham Neubig, and Sadao Kurohashi.
2016a. Overview of the 3rd workshop on asian
translation. In Proceedings of the 3rd Workshop on
Asian Translation (WAT2016), pages 1-46, Osaka,
Japan. The COLING 2016 Organizing Committee.

Toshiaki Nakazawa, Shohei Higashiyama, Chenchen
Ding, Hideya Mino, Isao Goto, Graham Neubig,
Hideto Kazawa, Yusuke Oda, Jun Harashima, and
Sadao Kurohashi. 2017. Overview of the 4th Work-
shop on Asian Translation. In Proceedings of the 4th
Workshop on Asian Translation (WAT2017), Taipei,
Taiwan.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016b. Aspec:
Asian scientific paper excerpt corpus. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC 2016),
pages 2204-2208, Portoro, Slovenia. European Lan-
guage Resources Association (ELRA).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104-3112.

139



