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Abstract

In this paper, we describe the team UT-
IIS’s system and results for the WAT 2017
translation tasks. We further investigated
several tricks including a novel technique
for initializing embedding layers using
only the parallel corpus, which increased
the BLEU score by 1.28, found a practical
large batch size of 256, and gained insights
regarding hyperparameter settings. Ulti-
mately, our system obtained a better result
than the state-of-the-art system of WAT
2016. Our code is available on https:
//github.com/nem6ishi/wat17.

1 Introduction

The advent of neural networks in machine trans-
lation has contributed greatly to the translation
quality. Since proposed in (Cho et al., 2014;
Sutskever et al., 2014), the sequence-to-sequence
(SEQ2SEQ) model has been achieving the state-
of-the-art performance when combined with the
attention mechanism (Bahdanau et al., 2015).
Many studies have focused on modifying the
SEQ2SEQ network structure, including modifying
the encoder (Eriguchi et al., 2016; Gehring et al.,
2017; Li et al., 2017; Chen et al., 2017), or the de-
coder (Ishiwatari et al., 2017; Eriguchi et al., 2017;
Aharoni and Goldberg, 2017; Wu et al., 2017).

While these network structure modifications
have been found to improve the translation qual-
ity, many systems, including the best system from
WAT 2016 (Cromieres et al., 2016), still depend
on the vanilla SEQ2SEQ model, the model with
the attention mechanism. Denkowski and Neu-
big (2017) confirmed the large impact of com-
mon techniques such as training algorithms, sub-
words (Sennrich et al., 2016) and model ensem-
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bles upon this vanilla SEQ2SEQ model. This sug-
gests that there may be some unexplored tricks we
may apply to the vanilla model to significantly im-
prove the translation quality.

This paper describes the system that we have
built for the ASPEC (Nakazawa et al., 2016) en-
ja translation subtask for WAT 2017 (Nakazawa
et al., 2017), which incorporates a novel trick, em-
bedding layer initialization. This trick improves
upon the vanilla SEQ2SEQ model by initializing
the word embedding layers of both the encoder
and the decoder with word embeddings that are
pretrained on the parallel corpus. Our system in-
volves generating multiple models using SEQ2SEQ

with embedding layer initialization, exhaustively
searching for a combination of models with the
highest ensemble score, and finally, conducting a
beam search on the best ensemble. We achieved a
BLEU score of 38.93 on the ASPEC en-ja trans-
lation task as the team UT-IIS, which outperforms
the state-of-the-art system of WAT 2016.

Furthermore, we have provided insight on NMT
by detailing experiments on the tricks used in our
system. This includes testing embedding layer ini-
tialization with multiple word embedding meth-
ods (§ 5.3.1), a thorough investigation of the point
where increasing the batch size ceases to be ben-
eficial (§ 5.3.2), finding the optimal learning rate
(§ 5.3.3), and investigating the relation between
the number of models used in the ensemble and
translation performance (§ 5.3.4). We believe that
these findings, particularly regarding embedding
layer initialization and practical batch size, can
serve as useful tricks for future neural machine
translation (NMT) systems.

The structure of this paper is as follows. In § 2,
we review related work, and in § 3, we present an
overview of NMT. We describe our system in § 4
and show the official evaluation result and further
investigations in § 5. We conclude our work in § 6.
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2 Related Work

In this section, we will survey existing techniques
used in NMT systems. We first focus on pretrain-
ing, for which we have proposed a new method,
and then batch size, of which we have confirmed
the effect.

2.1 Pretraining

Training deep neural networks with a relatively
small amount of training data risks creating a
model that performs poorly. One technique used
to minimize this drawback is pretraining of the
model (Hinton et al., 2006; Bengio et al., 2007),
which initializes (part of) the parameters of the
model using parameters of another model.

Pretraining has led to promising results in NLP
tasks using SEQ2SEQ models. In languages with a
small amount of supervised data, it has been found
that NMT results can be improved by transferring
parameters from a high-resource language pair to
a low-resource one (Zoph et al., 2016). Gülçehre
et al. (2015) proposed a method using a combi-
nation of the output probabilities of a language
model trained on large monolingual corpora and
a SEQ2SEQ NMT model, which are both trained
separately. Venugopalan et al. (2016) studied dif-
ferent types of systems combined with a language
model under the video description generation task
and also introduced a method to initialize the em-
bedding layer and the RNN layer of the decoder
of the SEQ2SEQ based model with pretrained pa-
rameters of the language model. They addition-
ally proposed a method to initialize the embedding
layer of the decoder with pretrained GloVe (Pen-
nington et al., 2014) embeddings. Ramachandran
et al. (2017) initializes both the encoder and de-
coder of the SEQ2SEQ model with attention us-
ing language models trained on monolingual, un-
labeled corpus of the source and target domains,
respectively. This led to a significant improvement
over the baseline.

The aforementioned studies, however, demand
a large computational cost for pretraining a com-
plex language model on large external data. Al-
though Ramachandran et al. (2017) has provided
a comparison of a system initialized using a lan-
guage model trained only on the parallel corpus
(in addition to their proposed method) to a base-
line system without initialization, the translation
performance did not improve but rather degraded
with this setting.

Our work investigates the effect of initializing
only the embedding layer using embeddings pre-
trained at low cost from the parallel corpus. We
will later confirm that this initialization leads to a
BLEU score increase of 1.28 (§ 5.3.1).

2.2 Batch Size

Batch size is the number of data points in a mini-
batch, which is a representative portion of the
training data from which the gradient is calcu-
lated at each step in the stochastic gradient descent
(SGD) optimizer (or its variants). In general, the
batch size chosen for deep neural networks ranges
from 32 to 512. It is known that a batch size that is
too large leads to performance degradation in deep
neural networks (Keskar et al., 2017).

Recent studies in NMT have used values such
as 64 (Rush et al., 2015) or 128 (Wu et al., 2016).
While Britz et al. (2017) conducted a thorough in-
vestigation of hyperparameters in NMT, they fixed
batch size to 128. The specific effect of batch size
on NMT was studied by Morishita et al. (2017),
who found that, for batch sizes of 8 to 64, a larger
batch size has a positive impact on model perfor-
mance.

In this study, we seek to empirically clarify the
point where increasing the batch size no longer
improves NMT performance. Our work expands
upon Morishita et al. (2017) and further investi-
gates how NMT performance varies with larger
batch sizes, up to 512.

3 The Vanilla SEQ2SEQ Model

The SEQ2SEQ (or encoder-decoder) model have
been achieving the state-of-the-art in machine
translation (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014). Bah-
danau et al. (2015) further improved this model by
proposing the attention mechanism.

This neural machine translation (NMT) ap-
proach involves an RNN-based encoder that con-
verts the source sentence into vector representa-
tions which are then converted into the output sen-
tence by an RNN-based decoder.

While there are several variations in encoder
implementation, including long-short term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
gated recurrent unit (GRU) (Cho et al., 2014),
and convolutional neural network (CNN) (Gehring
et al., 2017), our system implements a two-layer
bidirectional LSTM for the encoder. A bidirec-
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Figure 1: Basic structure of our system.

tional LSTM consists of a forward LSTM and a
backward LSTM that move from left to right and
right to left respectively to update their hidden
states. The hidden states of the last layer are the
outputs of the encoder which is then fed into the
decoder.

Given the encoder output, the decoder generates
an output sequence. Following Sutskever et al.
(2014) and Bahdanau et al. (2015), we decided to
use a multi-layer LSTM decoder with an attention
mechanism. At each step, an attention mechanism
computes a weighted average of vectors in the en-
coder output, called an attention context vector. A
weight of a hidden state vector is computed using
both itself and the hidden state of the decoder at
that step. In addition to the attention context vec-
tor, the decoder also receives an embedding vec-
tor of the previous output token in order to retain
the information of tokens it has already generated.
These two vectors, an attention context vector and
an embedding vector of the previous output token,
are concatenated and given to the decoder LSTM,
which then generates tokens and updates its state.

4 System Description

Our system implemented two tricks on a vanilla
SEQ2SEQ model implemented by Google (Britz

et al., 2017)1 on Tensorflow2 (ver. 1.0). The
tricks are embedding layer initialization (§ 4.2)
and batch size expansion (§ 4.3).

In what follows, we explain our system in de-
tail. The basic structure of our system is depicted
in Figure 1. The configuration and the default pa-
rameters used in our experiments are described in
§ 5.1 and in Appendix.

4.1 Preprocessing
As for the preprocessing, we basically followed
the description of WAT 2017 Baseline Systems
Data preparation.3 We used scripts included in
Moses toolkit4 (ver. 2.2.1) (Koehn et al., 2007) for
English tokenization and truecasing, and KyTea5

(ver. 0.4.2) (Neubig et al., 2011) for Japanese seg-
mentations.

After the above basic preprocessing, we applied
SentencePiece,6 which is an unsupervised text to-
kenizer and detokenizer, to the corpus. Senten-
cePiece decides token boundaries using raw sen-
tences (a white space is treated as a character)
based on statistical models like character n-grams.
This alleviates the problem of unknown tokens in
a similar manner as using subword units. For this
model, we picked unigram which is a default set-
ting in the given implementation.

4.2 Embedding Layer Initialization
Because of the nature of the neural network model,
each layer in the NMT model can only handle
fixed-length inputs and outputs. Since our model
is an end-to-end NMT model, both the first en-
coder layer and the decoder layer which feeds
the previous output into the decoder accepts a
vocabulary-size-length one-hot vector. In this re-
gard, both layers are embedding layers which con-
vert a one-hot vector into a word embedding vec-
tor.

Usually, all the layers, including embedding
layers, are initialized randomly and trained in the
exact same way. We attempted pretraining of these
embedding layers, initializing them with word em-
beddings from an unsupervised neural language
model trained on the training datasets in the source

1https://google.github.io/seq2seq/
2https://www.tensorflow.org/
3http://lotus.kuee.kyoto-u.ac.jp/WAT/

WAT2017/baseline/dataPreparationJE.html
4http://www.statmt.org/moses/
5http://www.phontron.com/kytea/
6https://github.com/google/

sentencepiece
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and target languages. It is expected that these word
embeddings improve the translation performance
as well as speeding up convergence.

In addition to the original vocabulary, there
are three special tokens in our system, “SE-
QUENCE START,” “SEQUENCE END,” and
“UNK.” The embeddings for the first two tokens
were trained by adding them into the training
dataset before the pretraining procedure. On
the other hand, the embedding for “UNK” was
generated by averaging all the out-of-vocabulary
token embeddings.

Our proposed embedding layer initialization is
a quick and simple trick, but effective on NMT
systems (§ 5.3.1).

4.3 Using Large Batch Size
Gradient descent (GD) computes a gradient of pa-
rameters based on the entire dataset to update the
parameters at each step. While this gives the most
accurate gradient, it is computationally inefficient,
as all data points need to be evaluated.

To overcome this issue, stochastic gradient de-
scent (SGD) and its variants computes a gradient
using a small portion of the dataset, called a mini-
batch. We may consider the gradient computed in
SGD as an expectation of the gradient which is in-
accurate. However, as SGD is faster than GD, we
can execute more steps which leads to better train-
ing in the same amount of time.

The accuracy of a gradient at each step depends
on batch size, the number of samples in a mini-
batch. A larger batch size leads to a more accurate
gradient. The impact of large batch size on the
translation quality will be investigated in § 5.3.2,
in which we found that large batch size improves
the translation significantly up to 256.

4.4 Ensemble
Ensemble of models is a widely used technique
that improves the translation quality. After train-
ing several models, the decoders’ outputs are com-
bined to get the ensemble output. The effective-
ness of ensemble was investigated in Denkowski
and Neubig (2017).

For our system, we implemented a simple aver-
aging ensemble. Let N be the number of mod-
els to ensemble, X = {x1, x2, · · · , xTx} and
Y = {y1, y2, · · · , yTy} be the source and target
sequences respectively, and pn(w|X,Y:j−1) be the
probability of word w of the nth model at step j,
where Y:j−1 denotes the first j − 1 tokens in the

sequence Y . Then, the probability of word w is
determined by taking the average of all models.

p(w|X,Y:j−1) =
1
N

N∑
n=1

pn(w|X,Y:j−1)

Each model is independently trained in the
training phase and the decoders’ outputs are
combined in the prediction phase. This sim-
ple technique gave us a significant BLEU score
boost (§ 5.3.4).

4.5 Beam Search
Another technique to improve the translation qual-
ity is a beam search. The objective of translation
system is

Ŷ = arg max
Y ∈Y

p(Y |X)

where Y is the set of all possible translations and
X is the input sequence. However, Y is such a
huge set that computing p(Y |X) for all Y ∈ Y is
not realistic. A simple solution to this problem is
to decide yj to be

yj = arg max
w∈V

p(w|X,Y:j−1).

This algorithm is called a greedy search. A greedy
search algorithm is fast but may miss the best out-
put sequence if the early portion of the sequence
has a low probability.

The beam search algorithm addresses this issue
by keeping multiple possible hypotheses, which
are incomplete output sequences (Boulanger-
Lewandowski et al., 2013). At each step, the top
l hypotheses with the highest scores are kept for
the next step. When every hypothesis terminates
with an EOS token, the hypothesis with the high-
est score is chosen as the final result.

The beam search algorithm favors shorter se-
quences on average because a longer sequence
tends to have a lower probability, p(Y |X).

To overcome this problem, Wu et al. (2017) pro-
posed a length penalty which gives advantages to
longer sentences. With a length penalty, the score
of a sequence Y given a source sequence X is
computed by

score(Y |X) =
log(P (Y |X))

lp(Y )

lp(Y ) =
(5 + |Y |)α
(5 + 1)α

where α is a hyperparameter.
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Train Dev Test
en ja en ja en ja

# sentences 1,783,817 1790 1812
Ave. # tokens 31.08 33.13 31.06 34.58 30.69 34.03

Table 1: Details of corpus after preprocessing.

5 Evaluation

In this section, we report the default configuration
of our system (§ 5.1) and the official evaluation re-
sult of our system for ASPEC English to Japanese
translation subtask (§ 5.2). Furthermore, we report
several other experiments that aim to show the ef-
fects of our tricks (§ 5.3).

5.1 Setup
The following settings are used as our default con-
figuration in the experiments and the final sys-
tem, unless otherwise noted. We use a two-layer
bidirectional LSTM with dropout on input with
p = 0.8 for the encoder, and a four-layer LSTM
with the same dropout settings for the decoder.
The number of units in hidden layers and the em-
bedding dimension are set to 512. Adam (Kingma
and Ba, 2015) is used for the optimizer, with a
learning rate of 0.0001 and batch size is set to 256.

The vocabulary size after SentencePiece pre-
processing is 16,000. The number of sentences
and the average number of tokens after preprocess-
ing in a single sentence are shown in Table 1.

As the default embedding method for embed-
ding layer initializaion, we use Continuous Bag of
Words (CBOW) (Mikolov et al., 2013) with win-
dow size of 5. We use word2vec (ver. 1.0)7 with
default parameters, except for the embedding di-
mension which was changed to 512. We train
the word embeddings using only the preprocessed
training dataset, in which both languages are con-
catenated to share the source and target vocabu-
lary. All other layers were initialized randomly
using uniform distribution.

We train the model for 200,000 steps, and at ev-
ery 2000 steps during training, the current model
is saved as a “checkpoint.” When the training is
done, all the checkpoints are evaluated using a
greedy search algorithm on the development cor-
pus. Only the checkpoint with the highest BLEU
score is used for all of the following experiments
and our final translation system. If the checkpoint
with the highest BLEU score is at or near 200,000

7https://github.com/svn2github/
word2vec

ID Hyperparameters Dev Test
batch hidden learning greedy beam greedy beam
size layer rate

1 256 256 0.0001 34.22 35.65 34.40 35.54
2 256 384 0.0001 35.32 36.74 34.85 36.28
3 256 512 0.0001 35.22 36.48 34.81 36.29
4 256 512 0.0002 35.19 36.43 34.29 35.60
5 256 512 0.0005 34.40 36.08 34.19 35.57
6 256 768 0.0001 34.78 36.37 34.70 35.92
7 256 768 0.0002 34.97 36.46 34.88 36.43
8* 512 512 0.0001 34.62 36.61 34.68 36.35
9* 512 768 0.0001 34.31 36.42 34.28 35.97

10* 800 512 0.0001 30.05 33.73 29.35 33.36
Average 34.31 36.10 34.04 35.73
Best ensemble

(2, 3, 4, 5, 6, 8, 9, 10) 38.00 39.03 37.40 38.93

Table 2: List of models trained for use in ensemble
(* 200k steps unattained due to time constraints).

steps (we define this as larger than 190,000 steps),
we regard this model as not having converged, and
will be identified as such in the results.

For all evaluations, KyTea segmentation was
used to compute the BLEU score. For a prediction
with the beam search algorithm, we used beam
width of 128 except in our final system, which we
used 256. For length penalty, we choose α = 1
after parameter turning. Detailed settings are pro-
vided in the Appendix.

5.2 Official Evaluation Result
This section briefly explains how we built our fi-
nal system and its result for the ASPEC English to
Japanese translation subtask. We trained ten mod-
els with different hyperparameters which are listed
in Table 2. For these models, we evaluated ev-
ery possible ensemble combination using greedy
search on the development corpus.8 We chose
the ensemble combination with the highest BLEU
score to make prediction on the test corpus using a
beam search algorithm. Consequently, we chose
an ensemble of eight models, which achieved a
BLEU score of 38.93 and an official human eval-
uation score of 68.000.

5.3 Further Investigations
In addition to the official evaluation, we conducted
several other experiments. This section reports re-
sults and analyses of these experiments. We first
confirm the impact of the embedding layer initial-
ization, and then compare several word embed-
ding methods (§ 5.3.1). Next, we investigate the

8Due to GPU memory limitations, three combinations are
not evaluated: (2, 3, 4, 5, 6, 7, 8, 9, 10), (1, 3, 4, 5, 6, 7, 8, 9,
10), and (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).
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Figure 2: Training curve for models with different
initialization methods. Arrows indicate the steps
that achieved the best BLEU score on develop-
ment data.

effect of batch size (§ 5.3.2). We then conduct
experiments to discover the optimal learning rate
when our initialization trick is employed (§ 5.3.3).
Lastly, we examine the relation between the num-
ber of models used in the ensemble and translation
performance (§ 5.3.4).

5.3.1 Impact of Embedding Layer
Initialization

We first investigated the impact of our embedding
layer initialization. The embeddings for the ini-
tialization are trained only on the training dataset
of ASPEC using word2vec with CBOW and win-
dow size of 5. The question here is whether or not
initialization with those word embeddings which
were trained without any external data, by a task-
independent, unsupervised method, improves the
NMT model. In these experiments, the greedy
search algorithm was used in order to obtain the
training curve, as there are too many checkpoints
to be evaluated by a beam search.

Figure 2 shows the training curve of three mod-
els, one initialized using CBOW, and the rest ini-
tialized randomly, with one using a Gaussian dis-
tribution, and the other a uniform distribution. The
best score of the model with the CBOW initializa-
tion is 35.50 at step 138,000, and the best score
of the model with random initialization is 34.20
with the Gaussian distribution at step 186,000. We
observed that embedding layer initialization im-
proves both the translation performance and the
convergence time, increasing the former and de-
creasing the latter. Along with the following batch

Initialization Window Greedy Beam ∆

Random (Gaussian) - 34.20 35.57 -
Random (Uniform) - 33.71 35.02 −0.55

2 34.97 36.38 +0.81
CBOW 5 35.50 36.85 +1.28

10 35.25 36.57 +1.00
2 34.17 35.90 +0.33

Skip-gram 5 34.44 36.04 +0.47
10 34.38 36.00 +0.43
2 34.04 35.16 −0.41

SI-Skip-gram 5 34.44 35.91 +0.34
10 34.33 35.69 +0.12
2 34.50 36.01 +0.44

GloVe 5 34.58 35.86 +0.29
10 33.98 35.39 −0.18
15 34.35 36.00 +0.43

Table 3: Translation performance by embedding
methods and window size. Evaluation is done on
development dataset.

size experiment in § 5.3.2, the same experiment
was done (using the greedy search algorithm) with
batch sizes of 32, 64, 128, and 512, and this effect
was observed across all batch sizes.

The results indicate that embedding layer ini-
tialization works in our NMT model, even though
the embeddings are generated by CBOW, which is
a totally task-irrelevant method.

Since we confirmed the effectiveness of our
embedding layer initialization, we then investi-
gate the effect of different embedding methods on
translation performance. There are various meth-
ods other than CBOW to create word embeddings.
Mikolov et al. (2013) proposed Skip-gram. Pen-
nington et al. (2014) proposed another method
called GloVe. Bojanowski et al. (2017) proposed
Subword Information Skip-gram (SI-Skip-gram)
that utilizes morphological information by includ-
ing character n-grams of words in the model.

These methods train word embeddings using
windows that obtain co-occurrences of neighbor-
ing words. It is known that a smaller window size
leads to more syntactic embeddings and a larger
one leads to more semantic embeddings (Lin and
Wu, 2009; Levy and Goldberg, 2014).

The question is: which embedding method and
window size yield the best results for the trans-
lation task when used to initialize the embedding
layer? To answer this question, we trained 13
models using CBOW, Skip-gram, Subword In-
formation Skip-gram (SI-Skip-gram), and GloVe,
with window sizes of 2, 5, and 10, as well as a win-
dow size of 15 with GloVe, as this was its default
value. For implementations of CBOW and Skip-
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Figure 3: Translation performance by initializa-
tion and batch size. The values in the parentheses
indicate the step that resulted in the best BLEU
score on development data.

gram, we used word2vec (ver. 1.0). For GloVe and
SI-Skip-gram, we used GloVe (ver 1.2)9 and fast-
text (ver. 1.0),10 respectively.

The results are shown in Table 3. Most of the
embedding methods outperformed random initial-
ization by Gaussian distribution. This confirms
the effectiveness of embedding layer initialization.
Among those embedding methods, CBOW yields
the best BLEU score of 35.50 for greedy search
and 36.85 for beam search. For the window sizes,
we found that each method has a different window
size that yields the best result. Given this result,
we decided to use CBOW with window size of 5
as our default setting.

5.3.2 Impact of Large Batch Size
We used the mini-batch method to train the net-
work. While Morishita et al. (2017) investigated
the effect of large batch size up to 64, it is unclear
how an even larger batch size will impact transla-
tion performance. To evaluate this, we conducted
experiments with different batch sizes.

Figure 3 confirms our idea and shows that, up
until 256,11 a larger batch size results in a better
BLEU score, indicating that batch size has a sig-
nificant impact on translation performance. The

9https://github.com/stanfordnlp/GloVe
10https://github.com/facebookresearch/

fastText
11Initialized randomly by uniform distribution, the mod-

els achieved BLEU scores of 35.02 and 36.15 for batch sizes
256 and 512 respectively, and are seemingly still improving.
However, we think this is within fluctuation range caused by
random initialization.
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Figure 4: Training curve for different learning
rates. Arrows indicate the steps that achieved the
best BLEU score on development data.

significance of the results are surprising, given the
trick’s simplicity.

When using this trick in NMT systems, it is im-
portant to recognize the tradeoff between trans-
lation performance and the memory and time re-
quired. In terms of the required memory, we were
able to conduct the experiments up to a batch size
of 256 on a server with 12GB of GPU memory,
but a server with 24GB of GPU memory was re-
quired for experiments with a batch size of 512.
Also, when we compared the time required to
reach 200,000 steps when trained with batch sizes
of 128 and 256, which were both trained on the
same server, the larger batch size took 1.57 times
as much time. The steps needed to reach the max-
imum BLEU score on development set became
larger as the batch size increases, which indicates
slower convergence with the larger batch size.

With the above factors taken into consideration,
a batch size of 256 is a practical choice, and we
can also expect an additive effect in translation
quality by the use of CBOW initialization.

5.3.3 Impact of Learning Rate
An improperly large learning rate changes the val-
ues of each layers in a neural network drastically.
Since we hypothesize that the pretrained embed-
dings have well-adjusted values, a drastic change
in these values would spoil the effect of embed-
ding layer initialization. To confirm this hypoth-
esis, we compared four different learning rates of
[0.01, 0.001, 0.0001, 0.00001] with the same con-
figuration including initialization method.

Figure 4 shows the training curve of these four
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search is costly, a greedy search was used.

different models. A learning rate of 0.01 per-
formed abysmally, not only in terms of the worst
best score but also in terms of the unstable training
curve. The neural network could not be success-
fully trained at this learning rate. With the learn-
ing rate less than or equal to 0.001, the training
curve becomes stable and the best score marks a
reasonable value. A learning rate of 0.001 resulted
in the best score of 33.99 at step 42,000, which
is good and fast enough. As expected, a learning
rate of 0.0001 raised the best score to 35.50 at step
138,000, which is 1.51 higher than the score with a
learning rate of 0.001, but at a much later step. The
best score for learning rate of 0.00001 was 29.92
at step 198,000, but the model did not converge.

It is difficult to confirm our hypothesis that
smaller learning rate is always better for keeping
the well-adjusted values by the initialization, with
the above results. However, considering the fact
that the time spent on training is limited, we be-
lieve 0.0001 to be the most practical learning rate
among them, because it marked a score almost 1.0
higher than the second best one.

5.3.4 Ensemble Strategy
It is known that ensemble technique improves
translation (Denkowski and Neubig, 2017). The
intuition is that the larger the number of models is,
the better the translation will be. To test this hy-
pothesis, we exhaustively compared the results of
ensembles with a different number of models.

The ten models from Table 2 were used for this
experiment. We evaluated ensembles of all possi-
ble combinations. As mentioned in the footnote in
§ 5.2, three combinations are omitted because of

the memory limitation, which yielded 1,020 com-
binations in total.

The result is reported in Figure 5. We can see
the positive correlation between number of models
used in the ensemble and the performance. How-
ever, as the number of models gets bigger, the ef-
fect of adding models gets smaller; the difference
between a single model and two model ensemble
is significant, but the difference between an eight
model ensemble and a nine model ensemble is not
so evident.

6 Conclusion

We have described the translation system, experi-
ments, and the results of the team UT-IIS. As for
the result of our system on the ASPEC En-Ja task,
we were able to achieve a BLEU score of 38.93,
which is higher than the score for the state-of-the-
art system of WAT 2016. This reflects the effec-
tiveness of our word embedding layer initializa-
tion technique, when combined with model en-
semble and a beam search on the vanilla SEQ2SEQ

model. Our findings are as follows:

• Embedding layer initialization technique us-
ing only the parallel corpus improves transla-
tion quality (§ 5.3.1).

• Embedding layer initialization trick with
CBOW works the best (§ 5.3.1).

• Benefits of a larger batch size reached satu-
ration at 256, and we believe this to be the
practical setting (§ 5.3.2).

• A learning rate of 0.0001 is both good and
fast enough to be practical with the initializa-
tion trick (§ 5.3.3).

• Ensemble of many models improves transla-
tion quality significantly (§ 5.3.4).

We believe that the embedding layer initializa-
tion technique, as well as the insights gained from
our experiments, will contribute to the improve-
ment of NMT when used in combination with
other novel techniques.

We have published our code on https://
github.com/nem6ishi/wat17.
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model AttentionSeq2Seq
model params

attention.class seq2seq.decoders.attention.AttentionLayerBahdanau
attention.params

num units 512
bridge.class seq2seq.models.bridges.ZeroBridge
embedding.dim 512
encoder.class seq2seq.encoders.BidirectionalRNNEncoder
encoder.params

rnn cell
cell class LSTMCell
cell params

num units 512
dropout input keep prob 0.8
dropout output keep prob 1.0
num layers 2

decoder.class seq2seq.decoders.AttentionDecoder
decoder.params

rnn cell
cell class LSTMCell
cell params

num units 512
dropout input keep prob 0.8
dropout output keep prob 1.0
num layers 4

optimizer.name Adam
optimizer.params

epsilon 0.0000008
optimizer.learning rate 0.0001
source.max seq len 50
source.reverse false
target.max seq len 50

Table 4: Configuration of seq2seq model.

A Hyperparameters and configuration

Table 4 lists the default hyperparameters and con-
figuration for our system, which is built based
on Google’s implementation of the SEQ2SEQ

model (Britz et al., 2017).
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