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Abstract

In this year, we participated in four trans-
lation subtasks at WAT 2017. Our model
structure is quite simple but we used it
with well-tuned hyper-parameters, leading
to a significant improvement compared to
the previous state-of-the-art system. We
also tried to make use of the unreliable part
of the provided parallel corpus by back-
translating and making a synthetic cor-
pus. Our submitted system achieved the
new state-of-the-art performance in terms
of the BLEU score, as well as human eval-
uation.

1 Introduction

In this paper, we describe our systems submitted
to this year’s translation shared tasks at WAT 2017
(Nakazawa et al., 2017). For this year, we focused
on scientific paper (ASPEC Japanese-English,
English-Japanese) and newspaper (JIJI Corpus
Japanese-English, English-Japanese) translation
subtasks.

We use a simple Neural Machine Translation
(NMT) model with an attention mechanism (Lu-
ong et al., 2015). In addition, for ASPEC, we
made a synthetic corpus for the unreliable part
of the provided corpus, in a way similar to that
reported by Sennrich et al. (Sennrich et al.,
2016a). This technique and the well-tuned hyper-
parameters led to new state-of-the-art results in all
the subtasks in which we participated.

2 Common Settings

2.1 Model Structure

Our model is based on the encoder-decoder with
a global attention model proposed by Luong et al.
(2015), with a general scoring function and input

feeding. The original model uses a uni-directional
encoder, but we changed it to a bi-directional one
proposed by Bahdanau et al. (2015). After running
the bi-directional encoder, we simply added each
state and used it for a decoder.

We implemented this model with Chainer
toolkit (Tokui et al., 2015), and the implementa-
tion is now open for further experiments1.

2.2 Data Preprocessing

First, we tokenize the provided corpus using
KyTea (Neubig et al., 2011) for the Japanese side,
and Moses tokenizer2 for the English side. We
remove the sentences over 60 words to clean the
corpus. Then we further split it into sub-words us-
ing joint byte pair encoding (joint-BPE) (Sennrich
et al., 2016c) with applying 16,000 merge opera-
tions.

For ASPEC subtasks, though the provided train-
ing data contained over 3.0M sentences, we only
used the first 2.0M sentences, in the same way
as the previous participants (Neubig, 2014). AS-
PEC was collected by aligning parallel sentences
automatically and sorting them on the basis of
the alignment confidence score (Nakazawa et al.,
2016). This means that the latter side of the cor-
pus may contain noisy parallel sentences, which
would have a negative impact on training. We used
the latter 1.0M sentences as a monolingual corpus
and made a synthetic corpus (see section 3.1.1 for
details).

2.3 Training

Table 1 shows the settings of hyper-parameters we
used and tested. We tried several combinations

1https://github.com/nttcslab-nlp/
wat2017

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl
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Hyper-parameter Used Tested
Vocabulary size 16,000 1,000, 5,000
Embedding dimension 512 —
Hidden dimension 512 —
Attention dimension 512 —
Encoder layer 2 4, 1
Decoder layer 2 4, 1
Optimizer SGD —
Initial learning rate 1.0 0.5
Gradient clipping 5.0 6.0
Dropout rate 0.3 0.2, 0.0
Mini-batch size 128 sent 64, 256

Table 1: Hyper-parameter settings

and we found that these settings were the best.
For the vocabulary, we only included the most fre-
quent 16,000 sub-words in the training set3. Af-
ter 13 epochs, we multiplied the learning rate by
0.7 for every epoch, then continued training till 20
epochs.

2.4 Testing
2.4.1 Length Normalized Re-ranking
Naive beam searches with a large beam size may
tend to output shorter sentences, leading to a drop
in performance (Tu et al., 2017). To reduce this
negative effect, we re-ranked the candidate out-
put sentences t by using the following score func-
tion once we finished the beam search (Cromieres
et al., 2016):

t̂ = arg max
t∈t

{
p(t)
|t|

}
, (1)

where p(t) is the predicted log-probability of a
candidate output sentence t and |t| is the length
of t.

With this length normalized re-ranking, we can
use a large beam size without taking the above ex-
plained negative effect into account. Through pre-
liminary experiments, we found that a beam size
of 20 was sufficient.

2.4.2 Ensembling
It has been reported that ensembling several differ-
ent models together significantly improves perfor-

3Applying joint-BPE with 16,000 merge operations
should make the vocabulary size under 16,000 sub-words,
but for Japanese, it may contain some unknown characters
(kanji). The actual vocabulary size for each corpus was
the following: ASPEC Ja:11271, En:10942, JIJI Ja:16000,
En:15795

NMT Model

(1) Train

1.0M TRG(2) Translate

(3) Make a synthetic corpus

2.0M Parallel

1.0M SRC

1.0M Synthetic

Figure 1: Overview of making a synthetic corpus.
First, we make an NMT model with a reliable par-
allel corpus, then translate the unreliable part of
the corpus to make a synthetic parallel corpus.

mance. In an ensembling process, several models
are run at each time step and an arithmetic mean
of predicted probability is obtained, which is used
to determine the next word. In our settings, we
trained eight models independently and used them
for the ensemble.

3 Task-Specific Settings

3.1 ASPEC

3.1.1 Synthetic Corpus
As we mentioned in section 2.2, ASPEC con-
tains some unreliable sentence pairs. For SMT,
we can use these sentences as monolingual data
to train a language model. However in the cur-
rent NMT model architecture, the model cannot be
trained with monolingual data, so the previous par-
ticipants with NMT models simply ignored these
parts of the data (Neubig, 2016; Eriguchi et al.,
2016).

In a way similar to that reported by Sennrich et
al. Sennrich et al. (2016b), we tried to use the un-
reliable part of the corpus by making a synthetic
corpus. Figure 1 illustrates the overview of how
we made the synthetic corpus. First, we made an
NMT model with the reliable part of the provided
data (in our case, the first 2.0M sentences), then
translated the unreliable part of the corpus by us-
ing it to make a synthetic corpus. Finally, we made
a corpus of 3.0M sentences by concatenating this
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synthetic corpus and the reliable part of the data.
With this corpus, we continued the training of the
model for a further 10 epochs.

It should be noted that the target side of the syn-
thetic corpus should be the original sentences (not
those generated by the NMT model). This is be-
cause an NMT model includes a target side lan-
guage model and uses it to generating a natural
sentence, so it would be better to keep the target
side original to train an NMT model effectively.
Thus, the synthetic corpus used for Japanese-
English training is made with an English-Japanese
NMT model, and vice versa.

3.2 JIJI

3.2.1 Model Fine-tuning
We thought the JIJI corpus was too small to train
an NMT model, so we tried to train the model with
other large parallel corpora and then fine-tune it
with the JIJI corpus (Luong and Manning, 2015).
In our settings, we first trained the model with AS-
PEC (2.0M) and Japan Patent Office Patent Cor-
pus (JPC) (1.0M). We learned BPE codes with the
JIJI corpus and applied them to ASPEC and JPC.
We trained the model with ASPEC and JPC for 20
epochs, then continued training with the JIJI cor-
pus for a further 20 epochs.

4 Official Results

Tables 2 and 3 show the official results of our sub-
missions4. Our system achieved the best BLEU
scores and adequacy for all the subtasks in which
we participated. For pairwise crowdsourcing eval-
uations, our system also obtained the best evalua-
tions except for the ASPEC Ja-En subtask. Even
in this case, it obtained the second best evaluation.

5 Analysis

5.1 Synthetic Corpus

From Table 2, we can see that the synthetic cor-
pus has a positive impact on the performance, es-
pecially for the En-Ja subtask, and contributes to
achieving better performance. We also tried to use
the original 3.0M corpus for training, but could
not see any improvements over the model that uses
only the first 2.0M sentences.

Manually comparing the synthetic corpus and
the originally provided corpus, we found that the

4In these tables, we exclude the organizer’s submissions
for ranking.

quality of the synthetic corpus was much better
than the original one. The original corpus often in-
cludes noisy pairs where the contents are different
on each side. Table 4 shows an example sentence
of the original parallel corpus and our synthetic
corpus. The original Japanese sentence does not
contain the words for “a nonlinear least squares
method” and “the method of steepest decent”, but
the synthetic sentence contains these words and
improves the quality of the parallel corpus. Us-
ing a synthetic corpus makes it possible to allevi-
ate the noisy sentences and helps to achieve better
performance.

5.2 Model Fine-tuning
We thought that training with a larger amount of
data would enable the model to use more sen-
tences and that this would be beneficial for further
training. However, as is clear from Table 3, we
couldn’t find any improvements over fine-tuning.
We suspect that the parallel corpus used to initial-
ize the model is quite out-of-domain, so the model
couldn’t get any benefits from it.

5.3 JIJI Corpus Quality
In the JIJI corpus subtasks, we were only able to
see a small correlation between BLEU scores and
human evaluation. To find out the reason for this,
we manually looked into the JIJI corpus. In do-
ing so, we found that it was too noisy for efficient
learning. It contained a lot of parallel sentences
with different content, which can be noise for
NMT training. The JIJI corpus originally comes
from Japanese news articles that were translated
into English. During this process, translators often
add or remove the content of the article to make it
easy to understand for English readers. However,
this makes it hard to find clean one-by-one sen-
tence alignment and leads to make the parallel cor-
pus dirty. As a result, the trained model learns to
generate a sentence with a different meaning, and
it leads to a higher BLEU score but lower human
evaluations. To deal with this problem, it would
be better to consider how to train a cleaner model
from a noisy parallel corpus.

5.4 BLEU Scores and Tokenizer
After the evaluation period finished, we found that
our BLEU scores tended to be better with KyTea
tokenizer. In the English-Japanese subtasks, par-
ticipants de-tokenize system outputs and the sub-
mission system will re-tokenize them with JU-
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System BLEU Rank Pairwise Rank Adequacy Rank
En-Ja Single (3.0M) 37.15 — — — — —

Single (2.0M) 37.90 7/14 — — — —
Single (2.0M + 1.0M Synthetic) 38.87 4/14 — — — —
8 Ensemble (2.0M) 39.80 3/14 72.250 3/11 — —
8 Ensemble (2.0M + 1.0M Synthetic) 40.32 1/14 75.750 1/11 4.41 1/4

Ja-En Single (3.0M) 26.07 — — — —
Single (2.0M) 27.43 6/13 75.000 4/10 — —
Single (2.0M + 1.0M Synthetic) 27.62 4/13 — — — —
8 Ensemble (2.0M) 28.36 1/13 77.250 2/10 4.14 1/2
8 Ensemble (2.0M + 1.0M Synthetic) 28.15 2/13 — — — —

Table 2: Official results of our submitted systems for ASPEC subtasks. For the En-Ja subtask, we show
the BLEU scores with JUMAN tokenizer.

System BLEU Rank Pairwise Rank Adequacy Rank
En-Ja Single 19.13 3/4 14.500 2/3 — —

8 Ensemble 20.37 1/4 17.750 1/3 2.03 1/2
Ja-En Single 19.44 2/8 32.000 1/6 2.05 1/2

Fine-Tuning 15.77 7/8 — — — —
8 Ensemble 20.90 1/8 26.750 2/6 — —

Table 3: Official results of our submitted systems for JIJI corpus subtasks. For En-Ja subtasks, we show
the BLEU scores with JUMAN tokenizer.

MAN, KyTea or MeCab tokenizers, then calculate
the BLEU scores. In our experiments, we first pre-
tokenized sentences with KyTea tokenizer, and
then further split them into sub-words by applying
BPE. Therefore, we suspect that our systems are
likely to be optimized with KyTea, so we carried
out experiments using JUMAN as a pre-tokenizer.
Table 5 shows the BLEU scores of our systems
pre-tokenized with KyTea or JUMAN. From the
results, we found that if we used JUMAN as a pre-
tokenizer, we achieved better BLEU scores calcu-
lated with JUMAN tokenizer.

5.5 Beam Size and Length Normalized
Re-ranking

Figure 2 shows the BLEU score changes in terms
of increasing the beam size with the length nor-
malized re-ranking described in section 2.4.1 (w/
LN), and without it (w/o LN). In the case of w/
LN, the BLEU score tends to gradually get bet-
ter by increasing the beam size. In contrast, the
BLEU score dropped as we enlarge the beam size
from the highest score at the beam size of 3 in the
case of w/o LN.

The reason behind these observations is that the
BLEU score is strongly penalized if the length of
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Figure 2: Relations between beam size and BLEU
score on ASPEC En-Ja. With length normaliza-
tion, we achieved better BLEU scores as the beam
size became larger.

the hypothesis sentence is shorter than the corre-
sponding reference sentence. This penalty is re-
ferred to as “Brevity Penalty (BP)”. Figures 3 (a)
and (b) respectively show the BP and the ”raw
BLEU score” (BLEU score while discarding the
BP term) changes in w/ LN and w/o LN in terms
of increasing the beam size. Clearly, the BP in-
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Source The search procedure utilizes a nonlinear least squares method coupled with the
method of steepest descent.

Original また，具体的な探索の手順を示した。
(We also show the specific search procedure.)

Synthetic 探索手順は最急降下法と結合した非線形最小二乗法を用いた。
(The search procedure utilizes a nonlinear least squares method coupled with the
method of steepest descent.)

Table 4: An example sentence pair in the original and synthetic corpus.

System BLEU (JUMAN) BLEU (KyTea) BLEU (MeCab)
En-Ja Single (KyTea pre-tokenized) 37.90 40.48 38.61

Single (JUMAN pre-tokenized) 38.12 40.22 38.80

Table 5: Experimental results of ASPEC En-Ja subtask with different pre-tokenziers.

creasingly penalized the raw BLEU scores as the
beam size increased in the case of w/o LN, while
for w/ LN it maintained the BP. This observation
reveals that the length normalized re-ranking (w/
LN) effectively works to keep the length of the
best hypothesis sentences even if we enlarge the
beam size. This is basically good behavior for ac-
tual use since we do not need to pay much atten-
tion to tuning the beam size.

5.6 Ensemble
Figure 4 shows the relation between the num-
ber of model ensembles and the BLEU score5.
As we increased the number of models used, the
BLEU scores improved but the impact gradually
decreased. We only ensembled eight models for
our submissions due to time and computational
cost limitations but it would be more effective to
ensemble more models.

6 Conclusion

In this paper, we described the systems we submit-
ted to WAT 2017 shared translation tasks. We tried
to make a synthetic corpus for an unreliable part of
the provided corpus, and found it effectively im-
proves the translation performance. Even though
we achieved the highest BLEU score on JIJI cor-
pus subtasks, the human evaluation of our system
was worse than we had expected. We suspect that
this is due to the noise on the JIJI corpus, so for
future work, it would be beneficial to find out how
to train the model with the noisy parallel corpus.

5In this figure, we simply ensembled the models in ran-
dom order. However, it may be more effective to fix the order
in accordance with the BLEU score on the dev set .
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