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Preface

Many Asian countries are rapidly growing these days and the importance of communicating and
exchanging the information with these countries has intensified. To satisfy the demand for
communication among these countries, machine translation technology is essential.

Machine translation technology has rapidly evolved recently and it is seeing practical use especially
between European languages. However, the translation quality of Asian languages is not that high
compared to that of European languages, and machine translation technology for these languages has not
reached a stage of proliferation yet. This is not only due to the lack of the language resources for Asian
languages but also due to the lack of techniques to correctly transfer the meaning of sentences from/to
Asian languages. Consequently, a place for gathering and sharing the resources and knowledge about
Asian language translation is necessary to enhance machine translation research for Asian languages.

The Workshop on Machine Translation (WMT), the world’s largest machine translation workshop,
mainly targets on European languages and does not include Asian languages. The International
Workshop on Spoken Language Translation (IWSLT) has spoken language translation tasks for some
Asian languages using TED talk data, but these is no task for written language.

The Workshop on Asian Translation (WAT) is an open machine translation evaluation campaign focusing
on Asian languages. WAT gathers and shares the resources and knowledge of Asian language translation
to understand the problems to be solved for the practical use of machine translation technologies among
all Asian countries. WAT is unique in that it is an "open innovation platform": the test data is fixed and
open, so participants can repeat evaluations on the same data and confirm changes in translation accuracy
over time. WAT has no deadline for the automatic translation quality evaluation (continuous evaluation),
so participants can submit translation results at any time.

Following the success of the previous WAT workshops (WAT2014, WAT2015, and WAT2016), WAT2017
brings together machine translation researchers and users to try, evaluate, share and discuss brand-new
ideas about machine translation. For the 4th WAT, we proudly include new domains: Newswire and
Recipe in addition to scientific paper, patent, and mixed domain for the machine translation evaluation
shared tasks. We had 12 teams who submitted their translation results, and about 300 submissions in
total.

In addition to the shared tasks, WAT2017 also feature scientific papers on topics related to the machine
translation, especially for Asian languages. The program committee accepted 4 papers, which focus on
on neural machine translation, and construction and evaluation of language resources.

We are grateful to "SunFlare Co., Ltd." for partially sponsoring the workshop. We would like to thank all
the authors who submitted papers. We express our deepest gratitude to the committee members for their
timely reviews. We also thank the IJCNLP 2017 organizers for their help with administrative matters.

WAT2017 Organizers
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Invited talk: Turning NMT Research into Commercial Products

Adrià de Gispert

SDL

Abstract

Recently, neural machine translation has revolutionised the field of machine translation, and now re-
sults in many research tasks keep improving every year. The new neural models have greatly improved
translation quality, but have very different sorts of errors than the traditional statistical machine transla-
tion technology. An important challenge is to incorporate this technology improvement into commercial
products and ensure that machine translation users get the best value while still keeping the product fea-
tures they rely on for their work. SDL provides machine translation technology in a variety of products
and markets. Our customers have expectations related to decoding speed, support for dictionaries and
tags, and other functionality, so they can successfully integrate MT in their workflows. When it comes to
commercialising MT, ensuring that these expectations are met is as important as improvements in BLEU
score. In this talk I will focus on these important practical aspects in the context of the current NMT
developments.

Biography

Dr. Adrià de Gispert is a senior research scientist at SDL Research, as well as a senior research associate
at the Engineering Department in the University of Cambridge, UK. He received his PhD on Statisti-
cal Machine Translation from Universitat Politècnica de Catalunya (UPC, Barcelona) in 2007. Then
he moved to Cambridge, where he has continued working in this field since, both in academia and in
industry. He has published more than 30 major research papers on MT, and has contributed to the de-
velopment of multiple state-of-the-art research and commercial machine translation engines, including
phrase-based, syntax-based and neural. He is a Fellow of Clare College, Cambridge.
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Abstract
This paper presents the results of
the shared tasks from the 4th work-
shop on Asian translation (WAT2017)
including J↔E, J↔C scientific pa-
per translation subtasks, C↔J, K↔J,
E↔J patent translation subtasks,
H↔E mixed domain subtasks, J↔E
newswire subtasks and J↔E recipe
subtasks. For the WAT2017, 12 in-
stitutions participated in the shared
tasks. About 300 translation results
have been submitted to the automatic
evaluation server, and selected submis-
sions were manually evaluated.

1 Introduction
The Workshop on Asian Translation (WAT)
is a new open evaluation campaign focusing
on Asian languages. Following the success of
the previous workshops WAT2014 (Nakazawa
et al., 2014), WAT2015 (Nakazawa et al.,
2015) and WAT2016 (Nakazawa et al., 2016),
WAT2017 brings together machine translation
researchers and users to try, evaluate, share
and discuss brand-new ideas of machine trans-
lation. We have been working toward practi-
cal use of machine translation among all Asian
countries.

For the 4th WAT, we adopted new transla-
tion subtasks with English-Japanese news cor-
pus and English-Japanese recipe corpus in ad-
dition to the subtasks at WAT2016 1. Fur-

1This year we did not conduct Indonesian-English
newswire subtask, which is conducted in WAT2016,
due to corpus license reasons.

thermore, we invited research papers on top-
ics related to machine translation, especially
for Asian languages. The submitted research
papers were peer reviewed by three program
committee members and the committee ac-
cepted 4 papers, which focus on on neural ma-
chine translation, and construction and evalu-
ation of language resources. We also launched
the small NMT task, which aims to build a
small NMT system that keeps a reasonable
translation quality. There are, however, no
submissions to the task this year.

WAT is the uniq workshop on Asian lan-
guage transration with the following charac-
teristics:

• Open innovation platform
Due to the fixed and open test data, we
can repeatedly evaluate translation sys-
tems on the same dataset over years.
There is no deadline of translation re-
sult submission with respect to auto-
matic evaluation of translation quality
and WAT receives submissions at any
time.

• Domain and language pairs
WAT is the world’s first workshop
that targets scientific paper do-
main, and Chinese↔Japanese and
Korean↔Japanese language pairs. In the
future, we will add more Asian languages
such as Vietnamese, Thai, Burmese and
so on.

• Evaluation method
Evaluation is done both automatically

1



Lang Train Dev DevTest Test
JE 3,008,500 1,790 1,784 1,812
JC 672,315 2,090 2,148 2,107

Table 1: Statistics for ASPEC.

and manually. For automatic evalua-
tion, we use three metrics: BLEU, RIBES
and AMFM. As human evaluation, we
evaluate translation results by pairwise
evaluation and JPO adequacy evaluation.
JPO adequacy evaluation is conducted for
the selected submissions according to the
pairwise evaluation results.

2 Dataset
WAT2017 uses the Asian Scientific Paper Ex-
cerpt Corpus (ASPEC) 2, JPO Patent Corpus
(JPC) 3, JIJI Corpus 4, IIT Bombay English-
Hindi Corpus (IITB Corpus) 5 and Recipe
Corpus 6 as the dataset.

2.1 ASPEC
ASPEC was constructed by the Japan Science
and Technology Agency (JST) in collaboration
with the National Institute of Information and
Communications Technology (NICT). The
corpus consists of a Japanese-English sci-
entific paper abstract corpus (ASPEC-JE),
which is used for J↔E subtasks, and a
Japanese-Chinese scientific paper excerpt cor-
pus (ASPEC-JC), which is used for J↔C sub-
tasks. The statistics for each corpus are shown
in Table 1.

2.1.1 ASPEC-JE
The training data for ASPEC-JE was con-
structed by NICT from approximately two
million Japanese-English scientific paper ab-
stracts owned by JST. The data is a compara-
ble corpus and sentence correspondences are
found automatically using the method from
(Utiyama and Isahara, 2007). Each sentence

2http://lotus.kuee.kyoto-
u.ac.jp/ASPEC/index.html

3http://lotus.kuee.kyoto-
u.ac.jp/WAT/patent/index.html

4http://lotus.kuee.kyoto-u.ac.jp/WAT/jiji-
corpus/index.html

5http://www.cfilt.iitb.ac.in/iitb_parallel/index.html
6http://lotus.kuee.kyoto-u.ac.jp/WAT/recipe-

corpus/index.html

pair is accompanied by a similarity score that
are calculated by the method and a field ID
that indicates a scientific field. The corre-
spondence between field IDs and field names,
along with the frequency and occurrence ra-
tios for the training data, are descripted in the
README file of ASPEC-JE.

The development, development-test and
test data were extracted from parallel sen-
tences from the Japanese-English paper ab-
stracts that exclude the sentences in the train-
ing data. Each dataset consists of 400 docu-
ments and contains sentences in each field at
the same rate. The document alignment was
conducted automatically and only documents
with a 1-to-1 alignment are included. It is
therefore possible to restore the original docu-
ments. The format is the same as the training
data except that there is no similarity score.

2.1.2 ASPEC-JC
ASPEC-JC is a parallel corpus consisting of
Japanese scientific papers, which come from
the literature database and electronic journal
site J-STAGE by JST, and their translation to
Chinese with permission from the necessary
academic associations. Abstracts and para-
graph units are selected from the body text
so as to contain the highest overall vocabulary
coverage.

The development, development-test and
test data are extracted at random from docu-
ments containing single paragraphs across the
entire corpus. Each set contains 400 para-
graphs (documents). There are no documents
sharing the same data across the training, de-
velopment, development-test and test sets.

2.2 JPC
JPC was constructed by the Japan Patent Of-
fice (JPO). The corpus consists of Chinese-
Japanese patent description corpus (JPC-CJ),
Korean-Japanese patent description corpus
(JPC-KJ) and English-Japanese patent de-
scription corpus (JPC-EJ) with the sections
of Chemistry, Electricity, Mechanical engi-
neering, and Physics on the basis of Interna-
tional Patent Classification (IPC). Each cor-
pus is partitioned into training, development,
development-test and test data. This corpus
is used for patent subtasks C↔J, K↔J and
E↔J. The statistics for each corpus are shown

2



Lang Train Dev DevTest Test
CJ 1,000,000 2,000 2,000 2,000
KJ 1,000,000 2,000 2,000 2,000
EJ 1,000,000 2,000 2,000 2,000

Table 2: Statistics for JPC.

in Table 2.
The Sentence pairs in each data were ran-

domly extracted from a description part of
comparable patent documents under the con-
dition that a similarity score between two sen-
tences is greater than or equal to the threshold
value 0.05. The similarity score was calculated
by the method from (Utiyama and Isahara,
2007) as with ASPEC. Document pairs which
were used to extract sentence pairs for each
data were not used for the other data. Fur-
thermore, the sentence pairs were extracted
so as to be the same number among the four
sections. The maximize number of sentence
pairs which are extracted from one document
pair was limited to 60 for training data and
20 for the development, development-test and
test data.

The training data for JPC-CJ was made
with sentence pairs of Chinese-Japanese
patent documents published in 2012. For
JPC-KJ and JPC-EJ, the training data was
extracted from sentence pairs of Korean-
Japanese and English-Japanese patent docu-
ments published in 2011 and 2012. The de-
velopment, development-test and test data for
JPC-CJ, JPC-KJ and JPC-EJ were respec-
tively made with 100 patent documents pub-
lished in 2013.

2.3 JIJI Corpus
JIJI Corpus was constructed by Jiji Press, Ltd.
in collaboration with NICT. The corpus con-
sists of news text that comes from Jiji Press
news of various categories including politics,
economy, nation, business, markets, sports
and so on. The corpus is partitioned into
training, development, development-test and
test data, which consists of Japanese-English
sentence pairs. The statistics for each corpus
are shown in Table 3.

The sentence pairs in each data are identi-
fied in the same manner as that for ASPEC

Lang Train Dev DevTest Test
EJ 200,000 2,000 2,000 2,000

Table 3: Statistics for JIJI Corpus.

Lang Train Dev Test Mono
H – – – 45,075,279
EH 1,492,827 520 2,507 –
JH 152,692 1,566 2,000 –

Table 4: Statistics for IITB Corpus. “Mono”
indicates monolingual Hindi corpus.

using the method from (Utiyama and Isahara,
2007).

2.4 IITB Corpus
IIT Bombay English-Hindi corpus contains
English-Hindi parallel corpus (IITB-EH) as
well as monolingual Hindi corpus collected
from a variety of sources and corpora devel-
oped at the Center for Indian Language Tech-
nology, IIT Bombay over the years. This cor-
pus is used for mixed domain subtasks H↔E.
Furthermore, mixed domain subtasks H↔J
were added as a pivot language task with a
parallel corpus created using publicly available
corpora (IITB-JH) 7. Most sentence pairs in
IITB-JH come from the Bible corpus. The
statistics for each corpus are shown in Table
4.

2.5 Recipe Corpus
Recipe Corpus was constructed by Cookpad
Inc. Each recipe consists of a title, ingredi-
ents, steps, a description and a history. Every
text in titles, ingredients and steps consists of
a parallel sentence while one in descriptions
and histories is not always a parallel sentence.
Although all of the texts in the training set can
be used for training, only titles, ingredients
and steps in the test set is used for evaluation.
The statistics for each corpus are described in
Table 5.

3 Baseline Systems
Human evaluations were conducted as pair-
wise comparisons between the translation re-
sults for a specific baseline system and trans-
lation results for each participant’s system.

7http://lotus.kuee.kyoto-u.ac.jp/WAT/Hindi-
corpus/WAT2017-Ja-Hi.zip

3



Lang TextType Train Dev DevTest Test

EJ
Title 14,779 500 500 500
Ingredient 127,244 4,274 4,188 3,935
Step 108,993 3,303 3,086 2,804

Table 5: Statistics for Recipe Corpus.

That is, the specific baseline system was the
standard for human evaluation. A phrase-
based statistical machine translation (SMT)
system was adopted as the specific baseline
system at WAT 2017, which is the same sys-
tem as that at WAT 2014 to WAT 2016.

In addition to the results for the baseline
phrase-based SMT system, we produced re-
sults for the baseline systems that consisted
of a hierarchical phrase-based SMT system,
a string-to-tree syntax-based SMT system,
a tree-to-string syntax-based SMT system,
seven commercial rule-based machine transla-
tion (RBMT) systems, and two online trans-
lation systems. We also experimentally pro-
duced results for the baseline systems that
consisted of an neural machine translation sys-
tem using the implementation of (Vaswani
et al., 2017). The SMT baseline systems con-
sisted of publicly available software, and the
procedures for building the systems and for
translating using the systems were published
on the WAT web page8. We used Moses
(Koehn et al., 2007; Hoang et al., 2009) as the
implementation of the baseline SMT systems.
The Berkeley parser (Petrov et al., 2006) was
used to obtain syntactic annotations. The
baseline systems are shown in Table 6.

The commercial RBMT systems and the on-
line translation systems were operated by the
organizers. We note that these RBMT com-
panies and online translation companies did
not submit themselves. Because our objective
is not to compare commercial RBMT systems
or online translation systems from companies
that did not themselves participate, the sys-
tem IDs of these systems are anonymous in
this paper.

8http://lotus.kuee.kyoto-u.ac.jp/WAT/
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3.1 Training Data
We used the following data for training the
SMT baseline systems.

• Training data for the language model: All
of the target language sentences in the
parallel corpus.

• Training data for the translation model:
Sentences that were 40 words or less in
length. (For ASPEC Japanese–English
training data, we only used train-1.txt,
which consists of one million parallel sen-
tence pairs with high similarity scores.)

• Development data for tuning: All of the
development data.

3.2 Common Settings for Baseline
SMT

We used the following tools for tokenization.

• Juman version 7.09 for Japanese segmen-
tation.

• Stanford Word Segmenter version 2014-
01-0410 (Chinese Penn Treebank (CTB)
model) for Chinese segmentation.

• The Moses toolkit for English and Indone-
sian tokenization.

• Mecab-ko11 for Korean segmentation.
• Indic NLP Library12 for Hindi segmenta-

tion.

To obtain word alignments, GIZA++ and
grow-diag-final-and heuristics were used. We
used 5-gram language models with modified
Kneser-Ney smoothing, which were built us-
ing a tool in the Moses toolkit (Heafield et al.,
2013).

3.3 Phrase-based SMT
We used the following Moses configuration for
the phrase-based SMT system.

• distortion-limit
– 20 for JE, EJ, JC, and CJ
– 0 for JK, KJ, HE, and EH
– 6 for IE and EI

• msd-bidirectional-fe lexicalized reorder-
ing

9http://nlp.ist.i.kyoto-
u.ac.jp/EN/index.php?JUMAN

10http://nlp.stanford.edu/software/segmenter.shtml
11https://bitbucket.org/eunjeon/mecab-ko/
12https://bitbucket.org/anoopk/indic_nlp_library

• Phrase score option: GoodTuring

The default values were used for the other sys-
tem parameters.

3.4 Hierarchical Phrase-based SMT
We used the following Moses configuration for
the hierarchical phrase-based SMT system.

• max-chart-span = 1000
• Phrase score option: GoodTuring

The default values were used for the other sys-
tem parameters.

3.5 String-to-Tree Syntax-based SMT
We used the Berkeley parser to obtain tar-
get language syntax. We used the follow-
ing Moses configuration for the string-to-tree
syntax-based SMT system.

• max-chart-span = 1000
• Phrase score option: GoodTuring
• Phrase extraction options: MaxSpan =

1000, MinHoleSource = 1, and NonTerm-
ConsecSource.

The default values were used for the other sys-
tem parameters.

3.6 Tree-to-String Syntax-based SMT
We used the Berkeley parser to obtain source
language syntax. We used the following Moses
configuration for the baseline tree-to-string
syntax-based SMT system.

• max-chart-span = 1000
• Phrase score option: GoodTuring
• Phrase extraction options: MaxSpan =

1000, MinHoleSource = 1, MinWords =
0, NonTermConsecSource, and AllowOn-
lyUnalignedWords.

The default values were used for the other sys-
tem parameters.

4 Automatic Evaluation
4.1 Procedure for Calculating

Automatic Evaluation Score
We evaluated translation results by three met-
rics: BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010) and AMFM (Banchs
et al., 2015). BLEU scores were calculated us-
ing multi-bleu.perl which was distributed
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with the Moses toolkit (Koehn et al., 2007).
RIBES scores were calculated using RIBES.py
version 1.02.4 13. AMFM scores were calcu-
lated using scripts created by the technical col-
laborators of WAT2017. All scores for each
task were calculated using the corresponding
reference.

Before the calculation of the automatic eval-
uation scores, the translation results were to-
kenized with word segmentation tools for each
language. For Japanese segmentation, we used
three different tools: Juman version 7.0 (Kuro-
hashi et al., 1994), KyTea 0.4.6 (Neubig et al.,
2011) with Full SVM model 14 and MeCab
0.996 (Kudo, 2005) with IPA dictionary 2.7.0
15. For Chinese segmentation, we used two
different tools: KyTea 0.4.6 with Full SVM
Model in MSR model and Stanford Word Seg-
menter (Tseng, 2005) version 2014-06-16 with
Chinese Penn Treebank (CTB) and Peking
University (PKU) model 16. For Korean seg-
mentation we used mecab-ko 17. For English
segmentation, we used tokenizer.perl 18 in
the Moses toolkit. For Hindi segmentation,
we used Indic NLP Library 19. The detailed
procedures for the automatic evaluation are
shown on the WAT2017 evaluation web page
20.

4.2 Automatic Evaluation System
The participants submit translation results via
an automatic evaluation system deployed on
the WAT2017 web page, which automatically
gives evaluation scores for the uploaded re-
sults. Figure 1 shows the submission inter-
face for participants. The system requires par-
ticipants to provide the following information
when they upload translation results:

• Subtask:
Scientific papers subtask (J↔E, J↔C),
Patents subtask (C↔J, K↔J, E↔J),

13http://www.kecl.ntt.co.jp/icl/lirg/ribes/index.html
14http://www.phontron.com/kytea/model.html
15http://code.google.com/p/mecab/downloads/detail?

name=mecab-ipadic-2.7.0-20070801.tar.gz
16http://nlp.stanford.edu/software/segmenter.shtml
17https://bitbucket.org/eunjeon/mecab-ko/
18https://github.com/moses-

smt/mosesdecoder/tree/
RELEASE-2.1.1/scripts/tokenizer/tokenizer.perl

19https://bitbucket.org/anoopk/indic_nlp_library
20http://lotus.kuee.kyoto-

u.ac.jp/WAT/evaluation/index.html

Newswire subtask (J↔E),
Mixed domain subtask (H↔E, H↔J) or
Recipe subtask (J↔E);

• Method:
SMT, RBMT, SMT and RBMT, EBMT,
NMT or Other;

• Use of other resources in addition to the
provided data ASPEC / JPC / IITB Cor-
pus / JIJI Corpus / Recipe Corpus;

• Permission to publish automatic evalua-
tion scores on the WAT2017 web page.

Although participants can confirm only the
information that they filled or uploaded, the
server for the system stores all submitted in-
formation including translation results and
scores. Information about translation results
that participants permit to be published is dis-
closed via the WAT2017 evaluation web page.
Participants can also submit the results for hu-
man evaluation using the same web interface.
This automatic evaluation system will remain
available even after WAT2017. Anybody can
register an account for the system by following
the procesures in the registration web page 21.

21http://lotus.kuee.kyoto-
u.ac.jp/WAT/WAT2017/registration/index.html
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5 Human Evaluation

In WAT2017, we conducted 2 kinds of human
evaluations: pairwise evaluation and JPO ad-
equacy evaluation.

5.1 Pairwise Evaluation
The pairwise evaluation is the same as the
last year, but not using the crowdsourcing this
year. We asked professional translation com-
pany to do pairwise evaluation. The cost of
pairwise evaluation per sentence is almost the
same to that of last year.

We randomly chose 400 sentences from the
Test set for the pairwise evaluation. We used
the same sentences as the last year for the
continuous subtasks. Each submission is com-
pared with the baseline translation (Phrase-
based SMT, described in Section 3) and given
a Pairwise score.

5.1.1 Pairwise Evaluation of Sentences
We conducted pairwise evaluation of each of
the 400 test sentences. The input sentence
and two translations (the baseline and a sub-
mission) are shown to the annotators, and the
annotators are asked to judge which of the
translation is better, or if they are of the same
quality. The order of the two translations are
at random.

5.1.2 Voting
To guarantee the quality of the evaluations,
each sentence is evaluated by 5 different anno-
tators and the final decision is made depending
on the 5 judgements. We define each judge-
ment ji(i = 1, · · · , 5) as:

ji =


1 if better than the baseline
−1 if worse than the baseline
0 if the quality is the same

The final decision D is defined as follows using
S =

∑
ji:

D =


win (S ≥ 2)
loss (S ≤ −2)
tie (otherwise)

5.1.3 Pairwise Score Calculation
Suppose that W is the number of wins com-
pared to the baseline, L is the number of losses
and T is the number of ties. The Pairwise

score can be calculated by the following for-
mula:

Pairwise = 100× W − L

W + L + T

From the definition, the Pairwise score ranges
between -100 and 100.

5.1.4 Confidence Interval Estimation
There are several ways to estimate a confi-
dence interval. We chose to use bootstrap re-
sampling (Koehn, 2004) to estimate the 95%
confidence interval. The procedure is as fol-
lows:

1. randomly select 300 sentences from the
400 human evaluation sentences, and cal-
culate the Pairwise score of the selected
sentences

2. iterate the previous step 1000 times and
get 1000 Pairwise scores

3. sort the 1000 scores and estimate the 95%
confidence interval by discarding the top
25 scores and the bottom 25 scores

5.2 JPO Adequacy Evaluation

The participants’ systems, which achieved the
top 3 highest scores among the pairwise eval-
uation results of each subtask22, were also
evaluated with the JPO adequacy evaluation.
The JPO adequacy evaluation was carried out
by translation experts with a quality evalua-
tion criterion for translated patent documents
which the Japanese Patent Office (JPO) de-
cided. For each system, two annotators evalu-
ate the test sentences to guarantee the quality.

5.2.1 Evaluation of Sentences
The number of test sentences for the JPO ad-
equacy evaluation is 200. The 200 test sen-
tences were randomly selected from the 400
test sentences of the pairwise evaluation. The
test sentence include the input sentence, the
submitted system’s translation and the refer-
ence translation.

22The number of systems varies depending on the
subtasks.
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5 All important information is transmitted cor-
rectly. (100%)

4 Almost all important information is transmit-
ted correctly. (80%–)

3 More than half of important information is
transmitted correctly. (50%–)

2 Some of important information is transmitted
correctly. (20%–)

1 Almost all important information is NOT
transmitted correctly. (–20%)

Table 7: The JPO adequacy criterion

5.2.2 Evaluation Criterion
Table 7 shows the JPO adequacy criterion
from 5 to 1. The evaluation is performed
subjectively. “Important information” repre-
sents the technical factors and their relation-
ships. The degree of importance of each ele-
ment is also considered to evaluate. The per-
centages in each grade are rough indications
for the transmission degree of the source sen-
tence meanings. The detailed criterion can be
found on the JPO document (in Japanese) 23.

6 Participants List
Table 8 shows the list of participants for
WAT2017. This includes not only Japanese or-
ganizations, but also some organizations from
outside Japan. 12 teams submitted one or
more translation results to the automatic eval-
uation server or human evaluation.

23http://www.jpo.go.jp/shiryou/toushin/chousa/tokkyohonyaku_hyouka.htm
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7 Evaluation Results
In this section, the evaluation results for
WAT2017 are reported from several perspec-
tives. Some of the results for both automatic
and human evaluations are also accessible at
the WAT2017 website24.

7.1 Official Evaluation Results
Figures 2, 3, 4 and 5 show the official evalu-
ation results of ASPEC subtasks, Figures 6,
7, 8, 9 and 10 show those of JPC subtasks,
Figures 11 and 12 show those of IITBC sub-
tasks, Figures 13 and 14 show those of JIJI
subtasks and Figures 15, 16, 17, 18, 19 and 20
show those of RECIPE subtasks. Each figure
contains automatic evaluation results (BLEU,
RIBES, AM-FM), the pairwise evaluation re-
sults with confidence intervals, correlation be-
tween automatic evaluations and the pairwise
evaluation, the JPO adequacy evaluation re-
sult and evaluation summary of top systems.

The detailed automatic evaluation results
for all the submissions are shown in Appendix
A. The detailed JPO adequacy evaluation re-
sults for the selected submissions are shown
in Table 9. The weights for the weighted κ
(Cohen, 1968) is defined as |Evaluation1 −
Evaluation2|/4.

From the evaluation results, the following
can be observed:

• The translation quality of this year is bet-
ter than that of last year for all the sub-
tasks.

• There is no big difference between the
neural network based translation models
according to the JPO adequacy evalua-
tion results for ASPEC subtasks.

7.2 Statistical Significance Testing of
Pairwise Evaluation between
Submissions

Tables 10, 11 and 12 show the results of statis-
tical significance testing of ASPEC subtasks,
Tables 13, 14 and 15 show those of JPC sub-
tasks, Table 16 shows those of IITBC subtasks,
Table 17 shows those of JIJI subtasks and Ta-
bles 18, 19 and 20 show those of RECIPE sub-
tasks. ≫, ≫ and > mean that the system in

24http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/

the row is better than the system in the col-
umn at a significance level of p < 0.01, 0.05
and 0.1 respectively. Testing is also done by
the bootstrap resampling as follows:

1. randomly select 300 sentences from the
400 pairwise evaluation sentences, and
calculate the Pairwise scores on the se-
lected sentences for both systems

2. iterate the previous step 1000 times and
count the number of wins (W ), losses (L)
and ties (T )

3. calculate p = L
W+L

Inter-annotator Agreement
To assess the reliability of agreement between
the workers, we calculated the Fleiss’ κ (Fleiss
et al., 1971) values. The results are shown in
Table 21. We can see that the κ values are
larger for X → J translations than for J → X
translations. This may be because the major-
ity of the workers are Japanese, and the eval-
uation of one’s mother tongue is much easier
than for other languages in general.

8 Submitted Data

The number of published automatic evalua-
tion results for the 14 teams exceeded 300 be-
fore the start of WAT2017, and 67 translation
results for pairwise evaluation were submitted
by 12 teams. Furthermore, we selected several
translation results from each subtask accord-
ing to the pairwise evaluation scores and eval-
uated them for JPO adequacy evaluation. We
will organize the all of the submitted data for
human evaluation and make this public.

9 Conclusion and Future
Perspective

This paper summarizes the shared tasks of
WAT2017. We had 12 participants worldwide,
and collected a large number of useful submis-
sions for improving the current machine trans-
lation systems by analyzing the submissions
and identifying the issues.

For the next WAT workshop, we plan to
change the baseline system from the PBSMT
to NMT because the pairwise scores are sat-
urated for some of the subtasks. Also, we

12



are planning to do extrinsic evaluation of the
translations.

Unfortunately, there was no participants for
the small NMT task this year. We will brush-
up the task definition and invite participants
for the next WAT.

Appendix A Submissions
Tables 22 to 41 summarize all the submissions
listed in the automatic evaluation server at the
time of the WAT2017 workshop (27th, Novem-
ber, 2017). The OTHER column shows the use
of resources such as parallel corpora, monolin-
gual corpora and parallel dictionaries in addi-
tion to ASPEC, JPC, IITB Corpus, JIJI Cor-
pus, RECIPE Corpus.
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Figure 2: Official evaluation results of ASPEC-JE.
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Figure 3: Official evaluation results of ASPEC-EJ.
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Figure 4: Official evaluation results of ASPEC-JC.
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Figure 5: Official evaluation results of ASPEC-CJ.
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Figure 6: Official evaluation results of JPC-JE.
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Figure 7: Official evaluation results of JPC-EJ.
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Figure 8: Official evaluation results of JPC-JC.
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Figure 9: Official evaluation results of JPC-CJ.
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Figure 10: Official evaluation results of JPC-KJ.
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Figure 11: Official evaluation results of IITBC-HE.
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Figure 12: Official evaluation results of IITBC-EH.
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Figure 13: Official evaluation results of JIJI-JE.
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Figure 14: Official evaluation results of JIJI-EJ.
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Figure 15: Official evaluation results of RECIPE-TTL-JE.
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Figure 16: Official evaluation results of RECIPE-TTL-EJ.
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Figure 17: Official evaluation results of RECIPE-ING-JE.
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Figure 18: Official evaluation results of RECIPE-ING-EJ.
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Figure 19: Official evaluation results of RECIPE-STE-JE.
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Figure 20: Official evaluation results of RECIPE-STE-EJ.

32



SYSTEM DATA Annotator A Annotator B all weighted
Subtask ID ID average varianceaverage varianceaverage κ κ

ASPEC-JE
NTT 1681 4.15 0.58 4.13 0.52 4.14 0.29 0.41

AIAYN 1736 4.16 0.67 4.05 0.75 4.10 0.26 0.42
Kyoto-U 1717 4.11 0.69 4.09 0.54 4.10 0.26 0.40
2016 best 1246 3.76 0.68 4.01 0.67 3.89 0.21 0.31

ASPEC-EJ

NTT 1729 4.54 0.56 4.28 0.49 4.41 0.33 0.43
AIAYN 1737 4.38 0.83 4.21 0.76 4.30 0.36 0.52
NICT-2 1479 4.43 0.73 4.16 0.69 4.29 0.35 0.48
Kyoto-U 1731 4.37 0.84 4.15 0.74 4.26 0.39 0.54

NAIST-NICT 1507 4.36 0.69 4.06 0.57 4.21 0.26 0.36
2016 best 1172 3.97 0.76 4.07 0.85 4.02 0.35 0.49

ASPEC-JC
NICT-2 1483 4.25 0.73 3.71 0.98 3.98 0.10 0.18
Kyoto-U 1722 4.25 0.79 3.64 1.07 3.95 0.12 0.23
AIAYN 1738 4.26 0.69 3.54 1.03 3.90 0.17 0.27

2016 best 1071 4.00 1.09 3.76 1.14 3.88 0.20 0.36

ASPEC-CJ
NICT-2 1481 4.63 0.47 3.99 0.98 4.31 0.17 0.23
Kyoto-U 1720 4.62 0.56 3.97 0.94 4.30 0.16 0.22
AIAYN 1740 4.59 0.61 3.96 1.04 4.27 0.14 0.23

2016 best 1256 4.25 1.04 3.64 1.23 3.94 0.23 0.34

JPC-JE
JAPIO 1574 4.80 0.26 4.78 0.51 4.79 0.34 0.42
u-tkb 1472 4.24 1.26 4.08 2.27 4.16 0.43 0.64
CUNI 1666 4.12 1.49 3.99 2.35 4.05 0.40 0.63

2016 best 1149 4.09 0.80 4.51 0.58 4.30 0.25 0.39

JPC-EJ
JAPIO 1454 4.74 0.45 4.76 0.38 4.75 0.32 0.48
EHR 1407 4.64 0.61 4.61 0.65 4.63 0.42 0.60
u-tkb 1470 4.39 1.07 4.42 0.99 4.40 0.43 0.61

2016 best 1098 4.03 0.91 4.51 0.57 4.27 0.23 0.41
JPC-JC u-tkb 1465 3.99 1.12 4.19 0.94 4.09 0.22 0.32

2016 best 1150 3.49 1.72 3.02 1.75 3.25 0.27 0.51

JPC-CJ
JAPIO 1484 4.41 0.68 4.51 0.64 4.46 0.26 0.34
EHR 1414 4.27 0.92 4.35 1.03 4.31 0.33 0.48
u-tkb 1468 3.84 1.16 4.04 1.36 3.94 0.23 0.43

2016 best 1200 3.61 1.89 3.27 1.76 3.44 0.26 0.52

JPC-KJ
JAPIO 1448 4.82 0.24 4.87 0.11 4.84 0.55 0.55
EHR 1417 4.76 0.30 4.86 0.23 4.81 0.35 0.47

2016 best 1209 4.58 0.32 4.66 0.30 4.62 0.33 0.36
IITBC-HE XMUNLP 1511 3.43 1.64 3.60 1.74 3.51 0.22 0.45

IITB-MTG 1726 2.14 1.45 2.45 1.87 2.29 0.30 0.51

IITBC-EH
XMUNLP 1576 3.95 1.18 3.76 1.85 3.86 0.17 0.36
IITB-MTG 1725 2.78 1.74 2.58 1.87 2.68 0.15 0.38
2016 best 1032 3.20 1.33 3.53 1.19 3.36 0.10 0.16

JIJI-JE
Online A 1523 3.03 1.60 3.28 2.24 3.15 0.15 0.37

NTT 1599 1.87 1.25 2.23 1.69 2.05 0.26 0.46
XMUNLP 1442 1.91 1.26 2.19 1.56 2.05 0.24 0.44

JIJI-EJ
Online A 1518 3.31 1.92 3.78 2.06 3.54 0.23 0.50

NTT 1679 1.78 1.18 2.28 1.97 2.03 0.29 0.52
XMUNLP 1443 1.72 1.02 2.20 1.70 1.96 0.33 0.51

RECIPE-TTL-JE XMUNLP 1637 3.90 1.98 3.62 1.57 3.76 0.30 0.56
Online A 1534 3.52 2.04 3.16 2.07 3.34 0.36 0.60

RECIPE-TTL-EJ Online B 1533 4.56 0.55 3.84 2.02 4.20 0.25 0.35
XMUNLP 1636 4.54 0.62 3.62 2.40 4.08 0.26 0.34

RECIPE-ING-JE XMULNP 1635 4.68 0.65 4.58 0.85 4.63 0.47 0.67
Online A 1544 4.29 1.44 4.23 1.57 4.26 0.55 0.76

RECIPE-ING-EJ XMUNLP 1634 4.71 0.43 4.43 1.03 4.57 0.40 0.53
Online A 1542 4.50 0.95 4.54 0.91 4.52 0.50 0.65

RECIPE-STE-JE XMUNLP 1632 4.61 0.76 3.98 0.96 4.29 0.13 0.28
Online A 1551 3.34 1.54 2.69 1.21 3.01 0.14 0.36

RECIPE-STE-EJ XMUNLP 1633 4.75 0.36 4.04 1.33 4.39 0.12 0.21
Online A 1549 4.18 0.42 3.16 1.52 3.67 0.11 0.17

Table 9: JPO adequacy evaluation results in detail.
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Table 10: Statistical significance testing of the ASPEC-JE Pairwise scores.
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Table 11: Statistical significance testing of the ASPEC-EJ Pairwise scores.

K
yo

to
-U

(1
64

2)
O

R
G

A
N

IZ
ER

(1
73

8)
N

IC
T

-2
(1

48
3)

N
IC

T
-2

(1
47

8)
O

R
G

A
N

IZ
ER

(1
33

6)
T

M
U

(1
74

3)

Kyoto-U (1722) - > ≫ ≫ ≫ ≫
Kyoto-U (1642) - > ≫ ≫ ≫
ORGANIZER (1738) - ≫ ≫ ≫
NICT-2 (1483) > ≫ ≫
NICT-2 (1478) ≫ ≫
ORGANIZER (1336) ≫

K
yo

to
-U

(1
57

7)
N

IC
T

-2
(1

48
1)

O
R

G
A

N
IZ

ER
(1

74
0)

N
IC

T
-2

(1
47

7)
O

R
G

A
N

IZ
ER

(1
34

2)

Kyoto-U (1720) ≫ ≫ ≫ ≫ ≫
Kyoto-U (1577) - - - ≫
NICT-2 (1481) - - ≫
ORGANIZER (1740) - ≫
NICT-2 (1477) ≫

Table 12: Statistical significance testing of the ASPEC-JC (left) and ASPEC-CJ (right) Pairwise
scores.
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Table 13: Statistical significance testing of the JPC-JE (left) and JPC-EJ (right) Pairwise scores.
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Table 14: Statistical significance testing of the JPC-JC (left) and JPC-CJ (right) Pairwise scores.
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Table 15: Statistical significance testing of the JPC-KJ Pairwise scores.
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Table 16: Statistical significance testing of the IITBC-HE (left) and IITBC-EH (right) Pairwise
scores.
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Table 17: Statistical significance testing of the JIJI-JE (left) and JIJI-EJ (right) Pairwise scores.
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Table 18: Statistical significance testing of the RECIPE-TTL-JE (left) and RECIPE-TTL-EJ
(right) Pairwise scores.
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Table 19: Statistical significance testing of the RECIPE-ING-JE (left) and RECIPE-ING-EJ
(right) Pairwise scores.
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Table 20: Statistical significance testing of the RECIPE-STE-JE (left) and RECIPE-STE-EJ
(right) Pairwise scores.
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ASPEC-JE
SYSTEMDATA κ
Online D 1333 0.230
AIAYN 1736 0.204
Kyoto-U 1717 0.217
Kyoto-U 1733 0.204
TMU 1695 0.188
TMU 1703 0.191
NTT 1616 0.201
NTT 1681 0.173
NICT-2 1476 0.274
NICT-2 1480 0.257
CUNI 1665 0.241
ave. 0.216

ASPEC-EJ
SYSTEM DATA κ
Online A 1334 0.290
AIAYN 1737 0.338
Kyoto-U 1731 0.321
TMU 1704 0.269
TMU 1709 0.260
NTT 1684 0.353
NTT 1729 0.341
NICT-2 1475 0.315
NICT-2 1479 0.395
UT-IIS 1710 0.305
NAIST-NICT 1506 0.301
NAIST-NICT 1507 0.339
ave. 0.319

ASPEC-JC
SYSTEMDATA κ
Online D 1336 0.189
AIAYN 1738 0.183
Kyoto-U 1642 0.159
Kyoto-U 1722 0.128
TMU 1743 0.171
NICT-2 1478 0.222
NICT-2 1483 0.194
ave. 0.178

ASPEC-CJ
SYSTEMDATA κ
Online A 1342 0.215
AIAYN 1740 0.310
Kyoto-U 1577 0.284
Kyoto-U 1720 0.254
NICT-2 1477 0.191
NICT-2 1481 0.279
ave. 0.255

JPC-JE
SYSTEMDATA κ
Online A 1338 0.424
JAPIO 1574 0.280
JAPIO 1578 0.296
CUNI 1666 0.249
u-tkb 1472 0.380
ave. 0.326

JPC-EJ
SYSTEMDATA κ
Online A 1339 0.410
EHR 1406 0.364
EHR 1407 0.385
JAPIO 1454 0.409
JAPIO 1462 0.280
u-tkb 1470 0.349
ave. 0.366

JPC-JC
SYSTEMDATA κ
Online A 1340 0.185
u-tkb 1465 0.176
ave. 0.180

JPC-CJ
SYSTEMDATA κ
Online A 1341 0.194
EHR 1408 0.201
EHR 1414 0.170
JAPIO 1447 0.257
JAPIO 1484 0.247
u-tkb 1468 0.172
ave. 0.207

JPC-KJ
SYSTEMDATA κ
Online A 1344 0.257
EHR 1416 0.413
EHR 1417 0.459
JAPIO 1448 0.224
JAPIO 1450 0.235
ave. 0.317

IITBC-HE
SYSTEM DATA κ
XMUNLP 1511 0.376
IITB-MTG 1726 0.626
ave. 0.501

IITBC-EH
SYSTEM DATA κ
XMUNLP 1576 0.269
IITB-MTG 1725 0.371
ave. 0.320

JIJI-JE
SYSTEM DATA κ
Hiero 1396 0.117
Online A 1523 0.035
RBMT B 1526 0.004
NTT 1599 0.095
NTT 1677 0.077
NICT-2 1473 0.078
NICT-2 1474 0.064
XMUNLP 1442 0.070
CUNI 1668 0.060
ave. 0.067

JIJI-EJ
SYSTEM DATA κ
Hiero 1395 0.104
RBMT A 1514 0.167
Online A 1518 0.179
NTT 1603 0.189
NTT 1679 0.155
XMUNLP 1443 0.151
ave. 0.157

RECIPE-TTL-JE
SYSTEM DATA κ
RBMT B 1531 0.305
Online A 1534 0.333
XMUNLP 1637 0.366
ave. 0.334

RECIPE-TTL-EJ
SYSTEM DATA κ
RBMT B 1528 0.340
Online B 1533 0.356
XMUNLP 1636 0.341
ave. 0.345

RECIPE-STE-JE
SYSTEM DATA κ
RBMT B 1548 0.290
Online A 1551 0.289
XMUNLP 1632 0.261
ave. 0.280

RECIPE-STE-EJ
SYSTEM DATA κ
RBMT B 1546 0.108
Online A 1549 0.138
XMUNLP 1633 0.162
ave. 0.136

RECIPE-ING-JE
SYSTEM DATA κ
RBMT B 1539 0.537
Online B 1544 0.551
XMUNLP 1635 0.614
ave. 0.567

RECIPE-ING-EJ
SYSTEM DATA κ
RBMT B 1537 0.665
Online B 1542 0.515
XMUNLP 1634 0.618
ave. 0.599

Table 21: The Fleiss’ kappa values for the pairwise evaluation results.
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Abstract

We propose prefix constraints, a novel
method to enforce constraints on tar-
get sentences in neural machine transla-
tion. It places a sequence of special
tokens at the beginning of target sen-
tence (target prefix), while side constraints
(Sennrich et al., 2016) places a special to-
ken at the end of source sentence (source
suffix). Prefix constraints can be predicted
from source sentence jointly with target
sentence, while side constraints must be
provided by the user or predicted by some
other methods. In both methods, special
tokens are designed to encode arbitrary
features on target-side or metatextual in-
formation. We show that prefix constraints
are more flexible than side constraints and
can be used to control the behavior of neu-
ral machine translation, in terms of out-
put length, bidirectional decoding, domain
adaptation, and unaligned target word gen-
eration.

1 Introduction

It is difficult to change the behaviors of a current
neural machine translation system, because the in-
ternal states of the system are represented by vec-
tors of real numbers. There are no symbols to be
manipulated and end-to-end optimization makes it
impossible to identify the source of poor perfor-
mance.

Some studies control the output of the
encoder-decoder model, through the use of ad-
ditional information such as target-side informa-
tion and meta-textual information. Target-side
information includes politeness (Sennrich et al.,
2016), voice (Yamagishi et al., 2016), sentence

∗∗Currently, Retty Inc.

length (Kikuchi et al., 2016), and target language
(Johnson et al., 2016). Meta-textual information
include dialogue act (Wen et al., 2015), user per-
sonality (Li et al., 2016), topic (Chen et al., 2016),
and domain (Kobus et al., 2016)

Two approaches can be used to provide addi-
tional information to the encoder-decoder model,
word-level methods and sentence-level meth-
ods. Word-level methods encode the addi-
tional information as a vector (embedding) that
is input together with a word at each time
step of either (or both) encoder and decoder
(Wen et al., 2015; Li et al., 2016; Kikuchi et al.,
2016). Sentence level methods encode the addi-
tional information as special tokens. Side con-
straints are placed at the end of source sen-
tence (Sennrich et al., 2016; Johnson et al., 2016;
Yamagishi et al., 2016), while our proposal, pre-
fix constraints, is placed at the beginning of target
sentence.

The advantage of sentence-level methods over
word-level methods is their simplicity in appli-
cation. The network structure of the underlying
encoder-decoder model does not have to be mod-
ified. The problem with side constraints is that,
at test time, additional information must be either
specified by the user or automatically predicted by
some other method. As prefix constraints move
the special tokens from source to target, they can
be predicted by the network jointly with target sen-
tence. Like side constraints, the user can specify
prefix constraints by using prefix-constrained de-
coding (Wuebker et al., 2016), which can be im-
plemented by a trivial modification of the decoder.

The following sections start by describing the
framework of prefix constraints. We then show
three simple use cases, namely, length control,
bidirectional decoding, and domain adaptation.
We then show a more sophisticated usage of prefix
constraints: unaligned target word generation.
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2 Encoder-Decoder Model with Prefix
Constraints

2.1 Encoder-Decoder Model
First, we briefly describe the attention-based
encoder-decoder model (Bahdanau et al., 2015;
Luong et al., 2015), which is the state-of-the-art
neural machine translation method and the base-
line of this study.

Given input sequence x = x1 . . . xn and model
parameters θ, the encoder-decoder model formu-
lates the likelihood of the output sequences y =
y1 . . . ym as follows:

log p(y|x) =
∑m

j=1
log p (yj |y<j , x; θ) (1)

The encoder is a recurrent neural network (RNN)
which projects input sequence x into a sequence of
hidden states h = h1 . . . hn via non-linear trans-
formation. The decoder is another RNN which
predicts target words y sequentially, one word at
a time. The encoder-decoder model is trained to
maximize the conditional likelihood on a parallel
corpus by stochastic gradient descent.

J = −
∑

(x,y)∈D

log p(y|x) (2)

Attention-based encoder-decoder models have
an additional single-layer feed-forward neural net-
work, called attention layer. It calculates a weight
for each source word xi to predict target word yj

from previous target word yj−1 and hidden states
of the encoder hi.

2.2 Side Constraints
Sennrich et al. (2016) proposed a method to con-
trol the level of politeness in target sentence in
English-to-German translation. They add a T-V
distinction tag at the end of the source sentence,
so that target sentence is either familiar (Latin Tu)
or polite (Latin Vos).

Are you kidding? [T] → Machst du Witze?
Are you kidding? [V] → Machen Sie Witze?

In their method, the features that the generated
target sentence must satisfy are called side con-
straints. At training time, the correct feature is ex-
tracted from the sentence pair. At test time, the
special token is assumed to be provided by the
user. Automatic prediction of the side constraints
from the source sentence at test time is an open
problem. Johnson et al. (2016) used the frame-
work for multilingual translation.

2.3 Prefix Constraints
In our proposed method, a sequence of special to-
kens is placed at the beginning of the target sen-
tence. In other words, they are the prefix to the
extended target sentence.

Let a sequence of features extracted from a pair
of source sentence x and target sentence y be
c = c1 . . . ck, and extended target sentence be
ỹ = cy. The baseline encoder-decoder model
Eq. (1) is extended as follows.

log p(ỹ|x) = log p(c|x) + log p(y|x, c) (3)

log p(c|x) =
∑k

j=1
log p (cj |c<j , x; θ)

log p(y|x, c) =
∑m

j=1
log p (yj |y<j , x, c; θ)

and the objective function becomes

J = −
∑

(x,y)∈D

log p(y|x, c) + log p(c|x). (4)

Prefix constraints can be either automatically
predicted or specified by the user. In the de-
fault use of the decoder, both prefix and target
sentence are jointly generated (predicted) from
source sentence. Prefix can be specified by us-
ing prefix-constrained decoding (Wuebker et al.,
2016), which is a beam search method that con-
strains the output to match a specified prefix. In
the constrained mode, we feed cj directly to the
next time step regardless of the current prediction
of the decoder. Once the specified prefix has been
utilized, the decoder switches to standard (uncon-
strained) beam search and the most probable word
yj is passed to the next time step.

3 Basic Examples

3.1 Length Control
The first example encodes the desired length of the
target sentence for length control.

京都が好きです→ #3 I love Kyoto

Length control is extremely be useful when
translating headlines, captions, and subtitles.
Kikuchi et al. (2016) proposed four methods to
control the length of the sentence generated by
an encoder-decoder model in a text summarization
task; they considered two learning-based methods
using length embeddings, namely LenEmb and
LenInit. LenEmb method explicitly enters the re-
maining length to the decoder at each time step,
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while LenInit method enters the desired length
once at the initial state of the decoder. They
designed a dedicated network structure for each
method.

In spirit, our method is similar to the LenInit
method, but we don’t have to modify the under-
lying network structure. Note that we do not tell
the network that ’#3’ is the length of the target sen-
tence. The network automatically learns the mean-
ing of the symbol from the regularity of the train-
ing data and then calculates its embedding.

3.2 Bidirectional Decoding

The second example encodes the decoding direc-
tion of target sentence for bidirectional decoding.

京都が好きです→ #L2R I love Kyoto
京都が好きです→ #R2L Kyoto love I

We make two sentence pairs, one with prefix
’#L2R’ (left-to-right) and the other with prefix
’#R2L’ (right-to-left) for each sentence pair, and
train a single model. At test time, given an input
sentence, the decoder automatically selects opti-
mal decoding direction either ’#L2R’ or ’#R2L’
depending on their probabilities.

Liu et al. (2016) proposed a target-bidirectional
decoding method that encourages the agreement
between left-to-right and right-to-left decoding.
Their method requires two separate models, one
for left-to-right n-best decoding and the other for
right-to-left rescoring, and an additional mecha-
nism for encouraging agreement (rescoring). Our
method implements bidirectional decoding in one
pass decoding without changing the underlying
network structure.

3.3 Domain Adaptation

The third example encodes dataset names of
a bilingual text for domain adaptation. Here,
IWSLT is a travel expression corpus and KFTT is
a corpus of Japanese Wikipedia pages on Kyoto
and its English translation.

朝食はいくらですか。
→ #IWSLT How much is the breakfast ?
妙法蓮華経を根本経典とする。
→ #KFTT Its fundamental sutra is lotus sutra .

Kobus et al. (2016) proposed a domain adap-
tation method using side constraints. They used
a separate classifier for predicting the domain of
a sentence before translation if it is not known.
Li et al. (2016) used Speaker IDs of Twitter to

add personality to a conversational agent. Speaker
embeddings are learned jointly with word embed-
dings and entered into the decoder at each time
step. Luong and Manning (2015) proposed a do-
main adaptation method based on fine tuning in
which an out-of-domain model is further trained
on in-domain data.

Our method can automatically predict domain
jointly with target sentence. We don’t have to
change the underlying network structure and do-
main embeddings are jointly learned with word
embeddings as a part of target vocabulary. One
of the potential benefits of our method is that only
one model is made and used for all domains. If
multiple domains must be supported, the methods
based on fine tuning (Luong and Manning, 2015)
have to make a model for each domain.

4 Unaligned Target Word Generation

The fourth example encodes information on un-
aligned target words for generating target sen-
tences. It is significantly more complex than the
previous examples. We first describe its moti-
vation and then derive two types of prefix con-
straints.

4.1 Unaligned Target Words

Given a pair of sentences that are translations of
each other, some words in one language cannot be
aligned to any words in the other language. We
call them unaligned words.

Japanese case markers such asが (ga),を (wo),
に (ni) and English articles such as a, an, the do
not have counterparts in the other language. Other
than these grammatical differences between two
languages, unaligned words can be caused by spe-
cific linguistic phenomena in one language, such
as zero pronouns (dropped subject and object) in
Japanese and expletives in English (there in there-
construction, do in interrogative sentence, it in for-
mal subject, etc.).

In machine translation, unaligned words in
target sentence are problematic because the in-
formation required for translation is not explic-
itly present in the source sentence. There are
many works that aim at improving machine
translation performance by supplementing un-
aligned words, but they focus on specific lin-
guistic phenomena such as Japanese case marker
(Hisami and Suzuki, 2007), Chinese zero pro-
noun (empty category) (Chung and Gildea, 2010;
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Xiang et al., 2013; Wang et al., 2016), Japanese
zero pronoun (Taira et al., 2012; Kudo et al.,
2014) and English determiner (Tsvetkov et al.,
2013). There are no language independent meth-
ods that can cope with unaligned target words.

4.2 Identifying Unaligned Target Words

We first propose a language independent method
for automatically identifying unaligned target
words. We assume word alignment is given for
a bilingual sentence pair, where NULL represents
empty word. We define a score Su(w). It repre-
sents the likelihood that a word w in target sen-
tence e aligns to the NULL in source sentence f .
The most straightforward way to define Su(w) is
to use the word translation probability obtained
from the word alignment in the training corpus,

Su(w) = p(f = NULL|e = w) (5)

Our preliminary experiment showed that the
scores yielded by Eq. (5) are not reliable for low
frequency target words. We therefore use the fol-
lowing equation to filter out low frequency NULL-
generated target words.

Su(w) = p(e = w|f = NULL)
∗ p(f = NULL|e = w) (6)

We use GIZA++ (Och and Ney, 2003) to ob-
tain word alignment for both translation direc-
tions. Word alignment is symmetrized by inter-
section heuristics, because the word alignment ob-
tained by grow-diag-final-and, is noisy for un-
aligned words.

Table 1 shows the top 50 unaligned target words
as determined by Eq. (6) in the IWSLT-2005
Japanese-to-English translation dataset, which is
described in the experiment section. We can see
that the automatically extracted unaligned target
words include zero pronouns (i, you, it), articles
(a, the), light verbs (take, get, make), and exple-
tives (do, does).

4.3 Prefix Constraints for Unaligned Target
Words

We propose here two types of prefix constraints
for improving the translation of unaligned target
words: LEX and COUNT.

LEX places a sequence of unaligned target
words at the beginning of the target sentence in
the same order they appear in the target sentence.

A special token, #GO, is added to delimit the vari-
able length prefix relative to target sentence. In the
following examples, words with underline indicate
unaligned target words.

赤ワインを頂けますか。
→#i #GO may i have some red wine ?
では当日御待ちして居ります。
→#we #you #GO we are waiting for you that day
.

COUNT uses the number of unaligned target
words as a prefix. As shown in the following ex-
amples, the number of unaligned target words are
surrounded by “[” and “]” to distinguish the (fixed
length) prefix from target sentence 1.

赤ワインを頂けますか。
→ [1] may i have some red wine ?
では当日御待ちして居ります。
→ [2] we are waiting for you that day .

5 Experiment

5.1 Datasets and Tools
The experiments used five publicly available
Japanese-English parallel corpora, namely
IWSLT-2005, KFTT, GVOICES, REUTERS, and
TATOEBA, as shown in Table 2. IWSLT-2005 is a
dataset for Japanese-English Tasks of the Interna-
tional Workshop on Spoken Language Translation
(Eck and Hori, 2005). It is available from ALA-
GIN2. KFTT (Kyoto Free Translation Task) is a
Japanese-English translation task on Wikipedia
articles related to Kyoto3. Parallel Global Voices
is a multilingual corpus created from Global
Voices websites which translate social media
and blogs (Prokopidis et al., 2016). Tatoeba is a
collection of multilingual translated example sen-
tences from Tatoeba website. These last two are
available from OPUS (Tiedemann, 2012). Reuters
are Japanese-English parallel corpus made by
aligning Reuters RCV1 RCV2 multilingual text
categorization test collection data set (RCV1 for
English and RCV2 for other languages) available
from NIST (Utiyama and Isahara, 2003)4.

The unaligned target word generation exper-
iments used two additional proprietary spoken

1The COUNT feature can be thought of a substitute
for the fertility of the IBM model (Brown et al., 1993),
or the generative model for NULL-generated target words
(Schulz et al., 2016).

2http://alagin.jp/
3http://www.phontron.com/kftt/index.html
4The aligned parallel corpus is available from the home-

page of the first author of (Utiyama and Isahara, 2003)
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Su(w) Su(w) Su(w) Su(w) Su(w)
i 0.263 like 0.119 ’s 0.090 be 0.070 want 0.060

the 0.233 of 0.118 can 0.090 ’ll 0.070 that 0.059
a 0.214 me 0.114 ’m 0.089 take 0.068 there 0.059

you 0.171 in 0.109 at 0.084 would 0.068 one 0.054
, 0.166 my 0.108 how 0.082 and 0.067 could 0.051
it 0.155 have 0.101 some 0.078 what 0.067 was 0.051
to 0.133 on 0.098 your 0.077 get 0.066 make 0.051
for 0.132 we 0.097 will 0.075 any 0.066 this 0.049
do 0.129 ’d 0.094 with 0.074 an 0.064 here 0.049

please 0.126 is 0.091 are 0.074 does 0.063 by 0.048

Table 1: Top 50 unaligned target words in IWSLT2005

Name Label Sents. len.(ja) len.(en)
IWSLT-2005 train 19,972 9.9 9.4
(Conversation) dev 506 8.1 7.5

test 1,000 8.2 7.6
KFTT train 440,288 27.0 26.3
(Wikipedia) dev 1,235 27.8 25.1

test 1,160 24.5 23.5
GVOICES train 43,488 26.3 19.8
(Blog) dev 1,000 25.1 18.9

test 1,000 28.7 21.2
REUTERS train 54,011 34.3 25.2
(News) dev 1,000 34.4 25.2

test 1,000 34.6 25.5
TATOEBA train 185,426 10.1 9.14
(Examples) dev 1,000 10.2 9.21

test 1,000 11.8 9.23
ALL train 753,185 23.3 21.2

dev 4,741 23.2 18.6
test 5,160 22.2 17.5

Table 2: Datasets Statistics

language corpora as the IWSLT-2005 dataset is
very small. One is the Daionsen parallel sen-
tence database, made by Straightword Inc5, which
is a phrase book for daily conversation. It has
50,709 sentences with 431,258 words in English
and 471,677 words in Japanese. The other is
the HIT (Harbin Institute of Technology) paral-
lel corpus (Yang et al., 2006) developed for speech
translation. It is a collection of 62,727 sen-
tences with 635,809 words in English and 796,200
words in Japanese. We call this dataset IWSLT-
2005+EXTRA.

English sentences are tokenized and lower-
cased by the scripts used in Moses (Koehn et al.,
2007). Japanese sentences are normalized by
NFKC (a unicode normalization form) and word
segmented by MeCab6 with UniDic. For neural

5http://www.straightword.jp/
6http://taku910.github.io/mecab/

machine translation, we used seq2seq-attn7, which
implements an attention-based encoder-decoder
(Luong et al., 2015). We used default settings un-
less otherwise specified. Translation accuracy is
measured by BLEU (Papineni et al., 2002).

5.2 Length Control
Table 3 compares side constraints with prefix con-
straints in terms of length control for IWSLT-2005
dataset. Baseline is a NMT system trained on
the parallel corpus without length tag. Side Con-
straints and Prefix Constraints stand for NMT sys-
tems trained on the corpus with length tags placed
at the end of source sentence and at the begging
of target sentence, respectively. In None, source
sentences without length tag are entered into the
system at test time. In Oracle, reference length
is encoded as length tag and prefix constrained de-
coding is used in Prefix Constraints. In the training
for Side Constraints, we mixed tagged sentences
and non-tagged sentences to avoid over-fitting to
length tag as described in (Sennrich et al., 2016).

None Oracle
Baseline 34.8 -
Side Constraints 33.0 35.4
Prefix Constraints 31.7 35.7

Table 3: Comparison between side constraints and
prefix constraints on length control

As shown in Table 3, Prefix Constraints are
comparable to or better than Side Constraints in
controlling the length of the target sentence if the
correct length is known and provided as an oracle.
It is difficult to predict the length of target sen-
tence from source sentence, which lowered the ac-

7
https://github.com/harvardnlp/seq2seq-attn
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curacy of Prefix Constraints for None. The accu-
racy of length prediction for short sentences (less
than 10 words) is 97.7%, while that for long sen-
tences (more than or equal to 10 words) is 45.7%.

We found that length control for short sentence
worked surprisingly well. The following is an ex-
ample of prefix constrained decoding where length
tags were changed from #2 to #9 for the source
sentence どういたしまして (You’re welcome).
All of them are acceptable and have the specified
length.

どういたしまして→
#2 anytime .
#3 you welcome .
#4 you ’re welcome .
#5 you ’re welcome up .
#6 you ’re welcome , sir .
#7 you ’re welcome . thank you .
#8 you ’re welcome . you ’re welcome .
#9 it ’s all right . you ’re welcome .

5.3 Bidirectional Decoding

IWSLT KFTT REUTERS
L2R 34.8 20.9 19.7
R2L 32.8 20.1 19.6
Target-Bidi 35.8 21.1 20.2
Predict-Dir 35.6 21.5 20.6

Table 4: Comparison of target bidirectional
method (Liu et al., 2016) and decoding direction
prediction using prefix constraints

Table 4 shows a comparison between our imple-
mentation of target-bidirectional method (Target-
Bidi) (Liu et al., 2016) and decoding direction
prediction using prefix constraints (Predict-Dir)
on IWSLT-2005, KFTT, and REUTERS datasets.
L2R and R2L are baseline NMT system with left-
to-right and right-to-left decoding, respectively.
For the evaluation of Predict-Dir, sentences with
’#R2L’ tags are reversed and both ’#L2R’ and
’#R2L’ tags are removed. Predict-Dir is compara-
ble to or better than Target-Bidi. Considering the
simplicity of the proposed method, it is a viable
option for bidirectional decoding.

5.4 Domain adaptation
Table 5 shows BLEU scores for the five datasets
for different systems in terms of domain adap-
tation techniques. In Single, for each domain
(dataset), the translation model is trained using

only each dataset in isolation. In Join, one trans-
lation model is trained using a corpus made by
simply concatenating all datasets without domain
tags. In Predict and Oracle, one translation model
is trained using a corpus made by concatenating all
datasets with domain tags as target prefix. In Pre-
dict, domain tag is automatically predicted, while
in Oracle, the domain tag of the reference is pro-
vided and used for prefix constrained decoding.

Comparing Single and Join, Small corpora such
as GVOICES and REUTERS benefit most when
additional parallel data is used, while the largest
corpus KFTT experiences no such benefit. By
adding domain tags (Predict and Oracle), all cor-
pora including the largest KFTT can benefit from
the combination of data sources. As the difference
in accuracy between Predict and Oracle is small,
we assume the domain prediction accuracy for the
proposed method is high enough for the task.

In order to understand what is happening when
domain tags are used as prefix constraints, we ran-
domly selected 100 sentences from each dataset
and calculated the hidden states for each refer-
ence. We then visualized the hidden state of the
last layer of the decoder in the first time step (be-
fore domain tag entered) and the second time step
(after domain tag entered) using t-SNE in Figure 1.

The figure shows the proximity between do-
mains. In the initial step of the decoder, some
domains such as IWSLT-2005 and TATOEBA, or
GVOICES and REUTERS are very close each
other. After domain tags are entered, all domains
are clearly separated. Specifying the domain tag
corresponds to moving the point in the figure from
one cluster to another.

5.5 Unaligned target word generation

We made two lists of unaligned target words, top
10 and top 50, based on Eq. (6). For each sentence
in the training data, unaligned target words were
identified and used to make prefix constraints if
they are in the list and unaligned in the sentence
pair. Table 6 shows translation accuracy when
COUNT and LEX are used as prefix constraints,
where the candidates of target unaligned words are
either top-10 or top-50. Baseline is the attention-
based encoder-decoder model without prefix con-
straints. In Predict, prefix constraints are predicted
from source sentence. In Oracle, prefix constraints
are specified using reference target sentence and
prefix constrained decoding is used.
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Single Join Predict Oracle
GVOICES (43k sents.) 6.31 16.9 17.0 17.1

IWSLT (20k sents.) 34.8 36.8 37.1 37.1
KFTT (440k sents.) 20.9 20.8 21.1 21.1

REUTERS (54k sents.) 19.7 24.6 25.0 25.0
TATOEBA (185k sents.) 36.0 59.4 59.5 59.7

Table 5: BLEU scores for different systems in terms of domain adaptation techniques
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Figure 1: t-SNE visualization of the hidden states of the decoder for various domains

IWSLT-2005+EXTRA
#UTW Predict Oracle

Baseline 36.5 -
COUNT 10 37.5 38.1

50 36.9 38.0
LEX 10 36.4 41.7

50 32.4 46.9

Table 6: Translation accuracy of prefix constraint
prediction and prefix-constrained decoding

As for Predict, COUNT is significantly better
than Baseline (about 1 BLEU point) when the
small list of unaligned words, top-10, is used. It
shows that translation accuracy can be improved
by predicting prefix constraints and generating tar-
get sentence at the same time 8.

The accuracies for Oracle show that translation
accuracy can be greatly improved if the user pro-
vides some information on unaligned target words.

8The average numbers of unaligned target words in train,
dev, test set of IWSLT-2005+EXTRA are 3.1, 2.5, 2.6, re-
spectively

Precision Recall
i 76 68
you 72 78
it 61 67

Table 7: Precision and recall of pronouns

If the number of unaligned words is provided,
translation accuracy can be improved by about 3
BLEU points, and if the correct list of unaligned
target words is provided, it can be improved by
about 10 points. There is still much room for im-
provement as regards the problem of unaligned
target words.

Table 7 shows precision and recall of unaligned
target pronouns when COUNT based on top-10
list is used for prefix constraint prediction and the
dataset is IWSLT-2005+EXTRA. We think the ac-
curacies of around 70% are reasonable consider-
ing that some pronouns are context dependent.

Table 8 is a real example of the outputs of LEX
and COUNT. In fact, it is very difficult to predict
the correct set of unaligned words from just the
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Input いつ で も 話し合い に 応じる 準備 は でき て いる から 、ゴー サイン を
送って下さい。

Reference #i #GO i ’m ready to start talks anytime so just say when .
Baseline you ’re always ready to talk to me , so you ’ll have to have a thorough signature .
Predict (LEX) #you #have #to #and #you #GO you ’re ready to let us have ready and sent them

to you .
Predict (COUNT) [4] you ’re always ready to talk with us . please send us a liqueur .

Table 8: A real example of the outputs of LEX and COUNT

source sentence without context. Leaving aside
the errors caused by the unknown Japanese words
ゴーサイン (go-ahead, green light, literally “go-
sign”), the major challenge here is the Japanese
zero subject. It could be ”i”, ”you”, ”he/she”, and
depends on the context. In the other words, Oracle
(LEX) is significantly better than Baseline because
this kind of context dependent information is pro-
vided from the outside.

6 Conclusion

In this paper, we showed that prefix constraints
can be used as a general framework for controlling
the target features commonly needed in neural ma-
chine translation, such as length control, bidirec-
tional decoding, domain adaptation, and unaligned
target word generation.

There are many issues that must be tackled:
For length control, translation accuracy could be
improved if we can accurately predict the length
of target sentence from source sentence. For
domain adaptation, rigorous comparison between
prefix constraints with other domain adaptation
techniques, such as side constraints (Kobus et al.,
2016), fine tuning (Luong and Manning, 2015),
and their combination (Chu et al., 2017), are re-
quired to realize its full effectiveness. For un-
aligned target word generation, applying the pro-
posed method to other domains such as news arti-
cles and other language pairs such as Chinese-to-
English is required to show its generality.
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Abstract

Neural machine translation (NMT) pro-
duces sentences that are more fluent than
those produced by statistical machine
translation (SMT). However, NMT has
a very high computational cost because
of the high dimensionality of the output
layer. Generally, NMT restricts the size of
the vocabulary, which results in infrequent
words being treated as out-of-vocabulary
(OOV) and degrades the performance of
the translation. In order to improve the
translation quality regarding words that
are OOV in the target language, we pro-
pose a preprocessing method that para-
phrases infrequent words or phrases ex-
pressed as OOV with frequent synonyms
from the target side of the training cor-
pus. In an evaluation using Japanese to
English translation, we achieved a statis-
tically significant BLEU score improve-
ment of 0.55–0.77 over baselines that in-
cluded the state-of-the-art method.

1 Introduction

Recently, neural-network-based methods have
gained considerable popularity in many natural
language processing tasks. In the field of machine
translation, neural machine translation (NMT) is
actively being researched because of the advan-
tage that it can output sentences that are more
fluent compared with statistical machine transla-
tion (SMT). However, NMT has a problem of high
computational cost because it addresses the output
generation task by solving a classification prob-
lem in vocabulary dimension. Typically, NMT has
to restrict the size of the vocabulary to reduce the
computational cost. Therefore, the target language
vocabulary includes only high-frequency words

(e.g., 30,000 high-frequency words) in train-
ing; other words are treated as out-of-vocabulary
(OOV) and substituted with a special symbol such
as “<unk>” in the output. The symbol has no
meaning, so the output has reduced quality.

As a previous work attempting to reduce the
OOV rate in NMT, Li et al. (2016), replaced OOV
words with a translation table using word similar-
ity in the training and test data. In particular, they
replaced each OOV word with an in-vocabulary
word using word similarity in a parallel training
corpus; they reduced the OOV rate in the out-
put and improved the translation quality. How-
ever, they sometimes substituted OOV words with
a similar word such as a proper noun. In addi-
tion, they deleted OOV words that aligned to null,
which can result in a loss of sentence content and
reduced translation adequacy.

In this work, we present a preprocessing method
for improving translation related to OOV words.
We paraphrase low-frequency words treated as
OOV in the target corpus with high-frequency
words while retaining the meaning.

Our main contributions are as follows.

• We propose a paraphrasing-based prepro-
cessing method for Japanese-to-English
NMT to improve translation accuracy with
regard to OOV words. Our method can be
combined with any NMT system.

• We show that our method achieved a sta-
tistically significant BLEU (Kishore et al.,
2002) score improvement of 0.58 and a ME-
TEOR (Lavie and Agarwal, 2007) score im-
provement of 0.52 over the previous method
(Li et al., 2016) and reduced the OOV rate in
output sentences by approximately 0.20.
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2 Related Work

There have been studies on improving transla-
tion accuracy by reducing the OOV rate using
pre- and post-processing for machine translation.
Luong et al. (2015) proposed a post-processing
method that translates OOV words with a cor-
responding word in the source sentence using a
translation dictionary. This method needs to align
training sentence pairs before training to learn cor-
respondences between OOV words and their trans-
lations. In the method described in this paper, we
need no word alignment, and we retain the mean-
ing of the original word by paraphrasing the target
side of the training corpus. Jean et al. (2015) pro-
posed another post-processing method that trans-
lates each OOV word with the word that has the
largest attention weight in the source sentence us-
ing a translation dictionary. Their method does not
need word alignment, but it still does not neces-
sarily consider the meaning in the target language,
unlike our paraphrasing approach. Sennrich et al.
(2016) applied byte pair encoding (BPE) to source
and target corpora to split OOV words into units of
frequent substrings to reduce the OOV rate. Their
method splits words greedily without considering
their meaning. Since we use lexical paraphrasing
in the training data, we hope to reduce the OOV
rate in the translation output while retaining the
meaning. Additionally, since ours is a prepro-
cessing method, it can be combined with a post-
processing method.

On the other hand, there are methods sim-
ilar to ours that paraphrase corpora as a pre-
processing step of machine translation to reduce
the complexity of source and/or target sentences.
Sanja and Maja (2016) paraphrased source sen-
tence vocabulary with a simple grammar as a pre-
processing step for machine translation. We at-
tempt to improve translation quality by reducing
the OOV rate in the target language using para-
phrasing without simplifying the source input sen-
tences. Li et al. (2016) substituted OOV words
in training corpora with a similar in-vocabulary
word as pre- and post-processing steps. They re-
placed OOV words with frequent words using co-
sine similarity and a language model. They ob-
tained word alignment between an OOV word and
its counterpart in training corpora. In addition,
they deleted OOV words from the training corpus
if they aligned to null. However, this leads to a loss
of sentence meaning and degrades the adequacy

Figure 1: Examples of paraphrasing. Original
word is shown in italics. Upper: paraphrase lat-
tice; lower: iterative paraphrasing of OOV word.

of the translation. They also might replace OOV
words with similar but non-synonymous words
since they used distributional similarity. For in-
stance, they replaced “surfing” with “snowboard”,
which leads to rewriting “internet surfing” as “in-
ternet snowboard”, resulting in a change of mean-
ing. We use a paraphrase score calculated from
bilingual pivoting instead of distributional simi-
larity; therefore, we are not likely to paraphrase
OOV words with inappropriate expressions. In the
aforementioned example, we paraphrase “surfing”
as “browser”, which preserves the original mean-
ing to some extent.

3 Proposed Method

In this paper, we propose a preprocessing method
that paraphrases infrequent words or phrases with
frequent ones on the target side of the training sen-
tences in order to train a better NMT model by re-
ducing the number of OOV words while keeping
their original meaning. We paraphrase infrequent
words using a paraphrase dictionary that has para-
phrase pairs annotated with a paraphrase score.
We employ three scores: (1) paraphrase score, (2)
language model (LM) score, and (3) a combina-
tion of these scores. The paraphrase score is meant
to reflect translation adequacy, and the language
model score is sensitive to fluency. We combined
the paraphrase score and the language model score
by linear interpolation1 as follows:

paraphrase score =
λ(PPDBscore) + (1− λ)(LMscore)

Figure 1 shows an example of paraphrasing
with a paraphrase lattice and the Viterbi algorithm.
Suppose “defending” is OOV. We can paraphrase
the OOV word “defending” with a frequent word,

1In a preliminary experiment, normalization of these
scores was not found to yield any improvements.

65



method BLEU METEOR OOV
baseline 25.70† 31.06 1,123
Luong et al. 25.87† 31.04 567
Sennrich et al. 25.92∗ 31.50 0
Li et al. 25.89∗ 31.10 832
proposed (multi. word + phrase) 26.47 31.62 668

Table 1: Japanese-to-English translation result of each method. † and ∗ indicate that the proposed method
significantly outperformed the other methods at p<0.01 and p<0.05, respectively, using bootstrap resam-
pling.

“guaranteeing”, or we can paraphrase the OOV
phrase “defending the rights” with another phrase,
“the protection of the rights”, which has no OOV
words. In addition to calculating the paraphrase
score, our paraphrase algorithm calculates the 2-
gram language model score in “assert guarantee-
ing the rights .”, “assert the”, and “rights .” and
chooses the highest scoring paraphrase, thus gen-
erating “they assert the protection of the rights.”.
We do not calculate the 2-gram language model
score in phrases.2

In addition, our method can paraphrase OOV
words iteratively until a paraphrase with frequent
words is reached. In the lower example in Figure
1, suppose that “pedagogues” and “quarrels” are
OOV. The latter word in the original sentence is
paraphrased with a frequent word, “discussions”,
whereas the former is paraphrased with an infre-
quent word, “educators”, in the first round. We
can then paraphrase the infrequent word “educa-
tors” again, this time with a frequent word, “teach-
ers”, in the second round. If we allow only the first
round of paraphrasing, the infrequent word “peda-
gogues” will not be paraphrased with the frequent
word “teachers” because the paraphrase dictionary
does not have this entry, and the infrequent word
“pedagogues” will not be paraphrased with the in-
frequent word “educators”. In this paper, we ex-
press one-pass paraphrasing as “single”, and iter-
ative paraphrasing as “multi.”. In addition, we use
“word” when we paraphrase words, and “word +
phrase” when paraphrasing words and phrases.

4 Experiment

4.1 Settings
In this study, we used the Japanese–English por-
tion of the Asian Scientific Paper Excerpt Cor-
pus (ASPEC) (Nakazawa et al., 2016). For train-

2Calculating language model scores of phrases does not
improve NMT.

ing, we used one million sentence pairs ranked
by alignment accuracy. We deleted sentence pairs
longer than 41 words. The final training corpus
contained 827,503 sentence pairs. We followed
the official development/test split: 1,790 sentence
pairs for development, and 1,812 sentence pairs
for testing. We used the development dataset to
select the best model and used the test dataset to
evaluate BLEU scores.

We used the Moses script as an English tok-
enizer and MeCab3 (using IPAdic) as a Japanese
tokenizer. We employed KenLM4 to build a 2-
gram language model trained with all sentences
from ASPEC. We utilized the XXXL-size PPDB
2.0 (Pavlick et al., 2015) as the English paraphrase
dictionary and PPDB:Japanese (Mizukami et al.,
2014) as the Japanese paraphrase dictionary. Nei-
ther of these dictionaries contains the ASPEC cor-
pus. We paraphrased either the target side of the
training corpus only or both the source and tar-
get sides of the training corpus to conduct a fair
comparison. We experimented with λ = 0.0, 0.25,
0.50, 0.75, and 1.0.

We used OpenNMT-py5 as the NMT system,
which is a Python implementation of OpenNMT
(Klein et al., 2017). We built a model with set-
tings as described below. We used bi-recurrent-
neural-network, batch size 64, epoch 20, embed-
ding size 500, vocabulary size of source and tar-
get 30,000, dropout rate 0.3, optimizer SGD with
learning rate 1.0, and number of RNN layers 2
with an RNN size of 500. Our baseline was
trained with these settings without any paraphras-
ing. We re-implemented previous methods de-
scribed in this paper (Luong et al., 2015; Li et al.,
2016; Sennrich et al., 2016) using the underly-
ing NMT with the abovementioned settings. We

3https://github.com/taku910/mecab
4http://kheafield.com/code/kenlm/
5https://github.com/OpenNMT/OpenNMT-py
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Figure 2: BLEU score of the proposed method
in Japanese-to-English translation using various
weightings for the paraphrase score and the lan-
guage model score.

Figure 3: Number of OOV terms in the output of
the proposed method in Japanese-to-English trans-
lation.

used BLEU (Kishore et al., 2002) and METEOR
(Lavie and Agarwal, 2007) for extrinsic evalua-
tion. We also analyzed the number of OOV words
in the translated sentences as an intrinsic evalua-
tion.

English PPDB 2.0 achieved higher quality than
PPDB 1.0 by using a supervised regression model
to estimate paraphrase scores. However, be-
cause there are no training data to build a su-
pervised regression model for PPDBs other than
in English, the quality of PPDBs in other lan-
guages may affect the quality of the proposed
method. To investigate whether PPDB quality re-
lates to translation quality, we performed English
to Japanese translation by the proposed method us-
ing PPDB:Japanese (Mizukami et al., 2014).

Figure 4: BLEU score in Japanese-to-English
translation using source and target paraphrasing.

method BLEU OOV
baseline 33.91 1,003
single (word) 33.97 915
multi. (word) 34.09 966
single (word + phrase) 33.65 938
multi. (word + phrase) 33.86 902

Table 2: English-to-Japanese translation results
with variations in the number of paraphrasings and
the unit used.

4.2 Results
Table 1 shows the experimental results compared
with those in previous work. The proposed
method is multi. word + phrase paraphrasing.
In the BLEU evaluation, our method significantly
outperformed not only the baseline and Luong et
al. (p<0.01) but also Sennrich et al. and Li et al.
(p<0.05). We improved the BLEU score by 0.77
and the METEOR score by 0.56 as well as reduc-
ing the number of OOV words in the output by
approximately 40% compared with the baseline.

Figure 2 reports the BLEU score of our method
under variations in the linear interpolation coef-
ficient and the number of paraphrasings. Figure
3 shows the number of OOV words in the out-
put. The best BLEU score was achieved by multi-
round paraphrasing and λ = 0.50, which means
that the paraphrase score is balanced by the PPDB
score and the LM score.

Table 2 shows the BLEU score of the proposed
method on English to Japanese translation. The
best model improved the BLEU score by 0.18 over
the baseline, and the number of OOV words in the
output decreased slightly.

In the last experiment, we paraphrased the
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method translation
source ロックインアンプを使用すれば ,ノイズを著しく減少できることを期待できる。
reference with the lock‐ in amplifier used , significant reduction of the noise is expected .
baseline it is expected that the noise can be reduced remarkably , if the <unk> is used .
multi. (word) it is expected that the noise can be remarkably decreased , if the amplifier is used .
multi. (phrase) it is expected that the noise can be remarkably reduced by using the lock-in amplifier .

Table 3: Translation example in Japanese-to-English translation.

infrequent frequent
word word

megahertz mhz
deflagration combustion
cone-shaped conical

revalued examined
titrated measured

teleportation transport

Table 4: Iterative paraphrasing example of
domain-specific words with frequent words.

source and target sides of the training corpora to
compare the effect of target-only paraphrasing.
Figure 4 shows that the method paraphrasing both
source and target sentences does not improve the
translation quality over the baseline.

5 Discussion

Figures 2 and 3 show that a multi-round para-
phrasing method is better than a single-round para-
phrase in terms of BLEU score and OOV rate.
In multi-round paraphrasing, however, a para-
phrased word does not necessarily retain its origi-
nal meaning in successive paraphrases. The num-
ber of OOV words is negatively correlated with the
BLEU score, demonstrating that our hypothesis is
correct.

On English-to-Japanese translation, the im-
provement is not statistically significant; however,
we believe that our system does not rely on PPDB
quality, although the degree of improvement will
depend on the quality of the PPDB.

Table 3 is an example of a translation result.
This table indicates that the baseline system out-
puts “<unk>” instead of “amplifier”. In contrast,
a paraphrasing system can output “amplifier” be-
cause a number of words corresponding to “ampli-
fier” are paraphrased into “amplifier” in the pro-
posed method. As a result, the proposed systems
can correctly output the word “amplifier”.

Table 4 is an example of iterative paraphras-
ing on special words in ASPEC. This shows that

we can paraphrase domain-specific words and that
these paraphrases can improve the translation. The
paraphrases shown in the upper half of the table
preserve meaning, whereas those in the lower half
lose a little of the original meaning.

6 Conclusion

This paper has proposed a preprocessing method
that paraphrases infrequent words with frequent
words in a target corpus during training to train
a better NMT model by reducing the OOV rate.
An evaluation using the Japanese-to-English part
of the ASPEC corpus showed a decrease in the
OOV rate in the translation result and a significant
improvement in the BLEU score over state-of-the-
art methods. We expect that our method can be
effective not only in NMT but also in other text
generation tasks using neural networks, such as
abstractive summarization, which solves the clas-
sification problem of vocabulary dimension.
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Abstract

Large-scale parallel corpora are indis-
pensable to train highly accurate ma-
chine translators. However, manually
constructed large-scale parallel corpora
are not freely available in many lan-
guage pairs. In previous studies, training
data have been expanded using a pseudo-
parallel corpus obtained using machine
translation of the monolingual corpus in
the target language. However, in low-
resource language pairs in which only
low-accuracy machine translation systems
can be used, translation quality is reduces
when a pseudo-parallel corpus is used
naively. To improve machine translation
performance with low-resource language
pairs, we propose a method to expand the
training data effectively via filtering the
pseudo-parallel corpus using a quality es-
timation based on back-translation. As a
result of experiments with three language
pairs using small, medium, and large par-
allel corpora, language pairs with fewer
training data filtered out more sentence
pairs and improved BLEU scores more
significantly.

1 Introduction

A large-scale parallel corpus is an essential re-
source for training statistical machine translation
(SMT) and neural machine translation (NMT) sys-
tems. Creating a high-quality large-scale parallel
corpus requires time, money and professionals to
translate a large amount of texts. As a result, many
of the existing large-scale parallel corpora are lim-
ited to specific languages and domains. In con-
trast, large monolingual corpora are easier to ob-
tain.

Figure 1: Creating and filtering a pseudo-parallel
corpus using back-translation.

Various approaches have been proposed to cre-
ate a pseudo-parallel corpus from a monolingual
corpus. For example, Zhang et al. (2016) pro-
posed a method to generate a pseudo-parallel cor-
pus based on a monolingual corpus of the source
language and its automatic translation. Sennrich
et al. (2016) obtained substantial improvements
by automatically translating a monolingual cor-
pus of the target language into the source lan-
guage, which they refer to as synthetic, and treat-
ing the obtained pseudo-parallel corpus as addi-
tional training data. They used monolingual data
of the target language to learn the language model
more effectively. However, they experimented on
language pairs where relatively large-scale paral-
lel corpora are available. Thus, they did not need
to fully exploit the training corpus nor care about
the quality of the pseudo-parallel corpus.

Therefore, we propose a method to create a
pseudo-parallel corpus by back-translating and fil-
tering a monolingual corpus in the target lan-
guage for low-resource language pairs. If the tar-
get sentence and its back-translation are similar,
we assume that the synthetic source sentence is
appropriate regarding its monolingual target sen-
tence and can be included into the filtered pseudo-
parallel corpus. The quality of the pseudo-parallel
corpus is especially important because low-quality
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parallel sentences will degrade NMT performance
more than SMT. Our motivation is to filter out low-
quality synthetic sentences that might be included
in such a pseudo-parallel corpus to obtain a high-
quality pseudo-parallel corpus for low-resource
language pairs. To the best of our knowledge, this
is the first attempt to (1) filter a pseudo-parallel
corpus using back-translation and (2) bootstrap
NMT.

The main contributions of our research are as
follows:
• We filter a pseudo-parallel corpus us-

ing sentence-level similarity metric, in our
case sentence-level BLEU (Lin and Och,
2004a,b), and obtain a trainable high-quality
pseudo-parallel corpus.

• We show that the proposed filtering method
is useful for low-resource language pairs, al-
though bootstrapping does not outperform
the proposed filtering method significantly.

• We will release the obtained filtered pseudo-
parallel corpora1.

In this study, we used Japanese↔Russian as
low-resource language pairs, French→Malagasy
as medium-resource language pairs and
German→English as high-resource language
pairs. We show that a previous state-of-the-art
method (Sennrich et al., 2016) is effective for
high-resource language pairs; however, in the
case of low-resource language pairs, it is more
effective to use a filtered pseudo-parallel corpus
as additional training data.

The remainder of this paper is organized as
follows: Section 2 discusses previous studies re-
lated to improving low-resource machine trans-
lation systems; Section 3 outlines the proposed
method for filtering a pseudo-parallel corpus and
bootstrapping NMT; Sections 4 and 5 evaluate the
proposed model; and Section 6 discusses the re-
sults. Conclusions and suggestions for future work
are presented in Section 7.

2 Related Work

To address the data sparsity problem, there are
many methods that use source language mono-
lingual data to improve translation quality (Ueff-
ing et al., 2007; Shwenk, 2008; Bertoldi and
Federico, 2009; Hsieh et al., 2013; Zhang et
al., 2016). Specifically, Bertoldi and Federico

1https://github.com/aizhanti/filtered-
pseudo-parallel-corpora

(2009) addressed the problem of domain adapta-
tion by training a translation model from a gener-
ated pseudo-parallel corpus created from a mono-
lingual in-domain corpus. Hsieh et al. (2013) cre-
ate a pseudo-parallel corpus from patterns learned
from source and monolingual target in-domain
corpora for cross-domain adaptation. They manu-
ally conducted filtration of “relatively more accu-
rate” translated sentences and used them to revise
the language model. Similarly, we use a pseudo-
parallel corpus created by translating a monolin-
gual corpus from the target language rather than
the source language; however we apply automatic
filtering to the obtained pseudo-parallel corpus.

Data filtering is often used in domain adap-
tation (Moore and Lewis, 2010; Axelrod et al.,
2011) and phrase-based SMT systems. Sen-
tences are extracted from large corpora to opti-
mize the language model and the translation model
(Wang et al., 2014; Yıldız et al., 2014). The work
most closely related to our work is Yıldız et al.
(2014), who build a quality estimator to obtain
high-quality parallel sentence pairs and achieve
better translation performance and reduce time-
complexity with a small high-quality corpus. This
method filters data by calculating similarity be-
tween source and target sentences. In our work,
we calculate similarity between monolingual and
synthetic target sentences.

Recently, van der Wees et al. (2017) performed
dynamic data selection during training an NMT.
To sort and filter the training data, they used lan-
guage models from the source and target sides
of in-domain and out-of-domain data to calculate
cross-entropy scores. However, we employ back-
translation to filter data considering its meaning.

He et al. (2016) present a dual learning ap-
proach. They simultaneously train two models
through a reinforcement learning process. They
use monolingual data of both source and target
languages and generate informative feedback sig-
nals to train the translation models. While the dual
learning approach is shown to alleviate the issue
of noisy data by increasing coverage, we are at-
tempting to remove the noisy data. In addition,
they assume a high-recourse language pair to cold
start the reinforcement learning process, while we
target low-resource language pairs wherein high-
quality seed NMT models are difficult to obtain.
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3 Improving Low-resource Neural
Machine Translation (NMT) with
Filtered Pseudo-parallel Corpus

In this paper, we propose a method of filtering a
pseudo-parallel corpus used as additional training
data by back-translating a monolingual corpus for
low-resource language pairs. Then, we attempt to
bootstrap an NMT model by iterating the filtering
process until convergence.

3.1 Filtering

As shown in Figure 1, the proposed method has
following steps:

1. Translate monolingual target sentences (Tar-
get sentmono) using a model trained on par-
allel corpus in target→source direction to
produce synthetic source sentences (Source
sentsynth). Here, we obtain an “Unfil-
tered” pseudo-parallel corpus as additional
data without a filtration, similar to Sennrich
et al. (2016).

2. Back-translate the synthetic source sentences
using a model trained on parallel corpus in
source→target direction to obtain a synthetic
target sentences (Target sentsynth).

3. Calculate sentence-level similarity metric
scores using the monolingual target sentences
as reference and the synthetic target sen-
tences as candidates.

4. Sort the monolingual target sentences and the
corresponding synthetic source sentences by
a descending order of sentence-level simi-
larity metric scores and filter out sentences
with low scores. The threshold is determined
by the translation quality on the development
set.

5. Use the filtered synthetic source sentences as
the source side and the monolingual target
sentences as the target side of the pseudo-
parallel corpus; this is referred to as a Filtered
pseudo-parallel corpus as additional data.

3.2 Bootstrapping

Bootstrapping involves the following steps:
1. “Bootstrap 1”: we use a pseudo-parallel cor-

pus created using the “Parallel” model as ad-
ditional data to train the seed NMT systems.

2. “Bootstrap 2”: we select the best model on
the development set from “Bootstrap 1” and
train its target→source model. Here, we use
target sentences from the pseudo-parallel cor-

Corpus Ru↔Ja Fr→Mg De→En
Parallel 10,231 106,406 4,535,522
Dev 500 1,000 3,000
Test 500 1,000 3,003
Mono target 75k↔167k 105,570 4,208,439

Table 1: Data statistics.

pus that have been filtered out in the previous
iteration to train the best model. If there is no
improvement over the previous iteration, ter-
minate the bootstrapping process and return
to the Filtered pseudo-parallel corpus and the
translation model as output. Repeat.

Even if the monolingual target sentences remain
the same, the synthetic source sentences are re-
freshed at each iteration. In other words, the trans-
lation quality of both the “Unfiltered” and “Fil-
tered” pseudo-parallel corpus will be improved
via the bootstrapping process until the termination
criterion is met.

4 Experiments Using a Filtered
Pseudo-parallel Corpus

4.1 Settings

We used the OpenNMT toolkit2 (Klein et al.,
2017) to train all translation models. For the
Russian↔Japanese and French→Malagasy exper-
iments, we used the following parameters: the
number of recurrent layers of the encoder and de-
coder was 1, BiLSTM with concatenation, max-
imum batch size was 32, and the optimization
method was Adadelta. For the German→English
experiments, OpenNMT default settings were
used. The vocabulary size in all experiments was
50,000.

We tokenized and truecased French, English,
German, and Russian sentences using Moses’
scripts. For Japanese sentences, we used MeCab
0.996 with the IPAdic dictionary3 for word seg-
mentation. We eliminated duplicated sentences
and sentences with more than 50 words for all lan-
guages. We report BLEU scores (Papineni et al.,
2002) to compare translation results. We used the
Travatar toolkit (Neubig, 2013) to calculate the
significance of differences between systems using
bootstrap resampling (p < 0.05).

2http://opennmt.net/OpenNMT/
3http://taku910.github.io/mecab
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Threshold Size Dev Test
Baselines

Parallel Ja-Ru 10,231 10.13 9.53
Parallel Ru-Ja 10,231 17.47 18.71
Unfiltered 170,991 16.86 17.05

Filtered
sent-LM ≥ 0.1 168,572 18.65 18.01
sent-LM ≥ 0.2 167,340 17.42 16.65
sent-LM ≥ 0.3 165,166 18.42 16.85
sent-LM ≥ 0.4 160,635 18.69 16.23
sent-LM ≥ 0.5 150,974 17.82 17.28
sent-LM ≥ 0.6 131,402 17.37 16.86
sent-LM ≥ 0.7 95,573 17.69 17.54
sent-LM ≥ 0.8 40,774 17.56 16.95
sent-LM ≥ 0.9 11,542 18.13 17.22
sent-LM = 1.0 10,232 18.38 16.93

(a) Bootstrap 1.

Threshold Size Dev Test
Baselines

B1 Parallel Ja-Ru 160,635 9.05 8.32
B1 Parallel Ru-Ja 160,635 18.69 16.23
B1 Unfiltered 170,991 17.03 17.75

Filtered
sent-LM ≥ 0.1 161,261 16.92 17.63
sent-LM ≥ 0.2 160,866 17.75 16.58
sent-LM ≥ 0.3 160,704 18.29 18.33
sent-LM ≥ 0.4 160,654 18.64 17.37
sent-LM ≥ 0.5 160,640 18.29 17.63

(b) Bootstrap 2.

Table 2: Russian→Japanese translation BLEU
scores. Sorting was performed using sent-LM
score.

4.2 Dataset

The parallel corpora for low-resource
Russian↔Japanese4 and for medium-resource
French→Malagasy5 experiments were down-
loaded from OPUS. For the medium-resource
French-Malagasy language pair, we used the
GlobalVoices corpus, which differs from the
Tatoeba corpus used in the previous experiments.
Note that the GlobalVoices corpus has more
available parallel data (106,406 sentence pairs
compared to 10,231).

We split the Tatoeba parallel corpus for the

4http://opus.lingfil.uu.se/Tatoeba.php
5http://opus.lingfil.uu.se/

GlobalVoices.php

Threshold Size Dev Test
Baselines

Parallel Ja-Ru 10,231 10.13 9.53
Parallel Ru-Ja 10,231 17.47 18.71
Unfiltered 170,991 16.86 17.05

Filtered
sent-BLEU ≥ 0.1 26,826 19.86⋆† 19.80⋆†
sent-BLEU ≥ 0.2 24,794 20.29⋆† 19.53⋆†
sent-BLEU ≥ 0.3 19,444 20.63⋆† 19.69⋆†
sent-BLEU ≥ 0.4 15,438 20.34⋆† 20.05⋆†
sent-BLEU ≥ 0.5 13,101 20.03⋆† 19.35†
sent-BLEU ≥ 0.6 11,904 18.89 19.52†
sent-BLEU ≥ 0.7 11,244 18.79 18.81†
sent-BLEU ≥ 0.8 10,976 18.19 19.21†
sent-BLEU ≥ 0.9 10,867 18.42 17.30
sent-BLEU = 1.0 10,865 18.40 18.45

Table 3: Russian→Japanese translation BLEU
scores. Sorting was performed using sent-BLEU
score (Bootstrap 1). There is a significant differ-
ence: ⋆: against “Parallel” baseline; †: against
“Unfiltered” baseline.

Russian↔Japanese experiments as follows: train-
ing set, 10,231 sentences; development set, 500
sentences; and test set, 500 sentences. In addition,
to perform Japanese→Russian→Japanese transla-
tion for the Russian to Japanese experiment, we
sampled an additional 167,600 Japanese mono-
lingual sentences from Tatoeba. We also sam-
pled 75,401 Russian monolingual sentences from
Tatoeba for Japanese→Russian translation to fa-
cilitate Russian→Japanese→Russian translation.

We performed experiments for the language
pair French→Malagasy language pairs using the
data from the GlobalVoices corpus. Parallel data
were split as follows: training set, 106,406 sen-
tences; development set, 1,000 sentences; and test
set, 1,000 sentences. Note that 105,570 Mala-
gasy monolingual sentences from GlobalVoices
were used to create a French→Malagasy pseudo-
parallel corpus.

For the German→English experiments, we
downloaded pre-trained German↔English mod-
els and 4,535,522 parallel sentences provided by
OpenNMT6 and used the OpenNMT settings to
preprocess all data. We downloaded 4,208,439
German→English sentences from automatically
back-translated monolingual data7 and translated
the synthetic German side back to English using

6http://opennmt.net/Models/
7http://data.statmt.org/rsennrich/

wmt16_backtranslations/de-en/
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Threshold Size Dev Test
Baselines

B1 Parallel Ja-Ru 19,444 12.13 9.78
B1 Parallel Ru-Ja 19,444 20.63† 19.69†
B1 Unfiltered 170,991 18.06 16.85

Filtered
sent-BLEU ≥ 0.1 40,567 21.03† 21.01†
sent-BLEU ≥ 0.2 37,531 21.48† 19.20†
sent-BLEU ≥ 0.3 29,533 21.06† 20.69†
sent-BLEU ≥ 0.4 24,290 21.16† 21.08†
sent-BLEU ≥ 0.5 21,742 20.58† 21.57⋆†
sent-BLEU ≥ 0.6 20,478 19.93† 20.80†
sent-BLEU ≥ 0.7 19,920 20.46† 20.48†
sent-BLEU ≥ 0.8 19,726 20.78† 20.60†
sent-BLEU ≥ 0.9 19,626 20.38† 21.54⋆†
sent-BLEU = 1.0 19,623 21.23† 21.17⋆†

Table 4: Russian→Japanese translation BLEU
scores. Sorting was performed using sent-BLEU
score (Bootstrap 2).

the pre-trained German→English model to filter
this pseudo-parallel corpus. We used newtest2013
(3,000 sentence pairs) as a development set and
newtest2014 (3,003 sentence pairs) as a test set.
Table 1 shows the data statistics.

4.3 Baselines

Sennrich et al. (2016) obtained additional training
data by automatically translating monolingual tar-
get sentences into the source language using their
“Parallel” baseline system. Our process differs
from theirs in that we construct “Parallel” base-
line machine translation systems in both directions
using an available parallel corpus to obtain a fil-
tered pseudo-parallel corpus.

Our baseline systems were as follows: 1) “Par-
allel” systems that trained on a parallel corpus
in both directions, which were used to create
a pseudo-parallel corpus; or “B{1,2} Parallel”
in case of bootstrapping 2) “Unfiltered” system,
which was trained on a concatenated parallel cor-
pus with all pseudo-parallel corpora without filtra-
tion; or “B{1,2} Unfiltered” in case of bootstrap-
ping.

4.4 Sentence-level similarity metric

We used sentence-level BLEU (sent-BLEU) as a
sentence-level similarity metric. The sent-BLEU
scores were calculated using mteval-sentence of
the mteval toolkit8. In Russian→Japanese experi-

8https://github.com/odashi/mteval

Threshold Size Dev Test
Baselines

B2 Parallel Ja-Ru 37,531 12.35 11.78
B2 Parallel Ru-Ja 37,531 21.48† 19.20†
B2 Unfiltered 170,991 18.96 17.20

Filtered
sent-BLEU ≥ 0.1 53,478 21.34† 19.10†
sent-BLEU ≥ 0.2 49,833 20.61† 19.99†
sent-BLEU ≥ 0.3 43,470 21.32† 20.59†
sent-BLEU ≥ 0.4 40,147 20.75† 20.16†
sent-BLEU ≥ 0.5 38,687 20.40† 18.65
sent-BLEU ≥ 0.6 38,043 20.03 21.02⋆†
sent-BLEU ≥ 0.7 37,758 20.17† 20.23†
sent-BLEU ≥ 0.8 37,639 20.33† 20.61†
sent-BLEU ≥ 0.9 37,600 19.75 19.80†
sent-BLEU = 1.0 37,598 20.83† 20.62†

Table 5: Russian→Japanese translation BLEU
scores. Sorting was performed using sent-BLEU
score (Bootstrap 3).

ments, we compared the sent-BLEU scores, which
require back-translation of the target monolingual
data for the proposed filtration method, with a lan-
guage model (sent-LM) that performs filtration by
scoring only synthetic source sentences. We used
the KenLM Language Model Toolkit9 to build a 5-
gram language model from 23,239,280 sentences
from the Russian side of the Russian-English UN
corpus (Ziemski et al., 2016).10. We also applied
Kneser-Ney smoothing. To extract the scores, we
normalized the language model log probability of
the sentence to be between [0, 1] as in sent-BLEU
using a feature scaling method.

Translation performance increases as the num-
ber of parallel sentences increases (Koehn, 2002).
For a pseudo-parallel corpus, however, translation
performance does not necessarily increase with
the number of sentences. To determine the ef-
fects of the quantity and quality of the pseudo-
parallel corpus in machine translation, we set
thresholds with increment steps of 0.1. Thus,
pseudo-parallel sentences included as additional
data have sentence-level similarity scores greater
or equal to some threshold (e.g., sentence-level
BLEU≥ 0.1,..., sentence-level BLEU≥ 0.9, ...).
Sentences scored and filtered by sentence-level
similarity were used to train “Filtered” models.
For example, sentences with sentence-level sim-

9https://kheafield.com/code/kenlm/
10https://conferences.unite.un.org/

UNCorpus/en/DownloadOverview
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Threshold Size Dev Test
Baselines

Parallel Ru-Ja 10,231 17.47 18.71
Parallel Ja-Ru 10,231 10.13 9.53
Unfiltered 85,632 10.40 9.01

Filtered
sent-BLEU ≥ 0.1 12,686 12.86⋆† 12.81⋆†
sent-BLEU ≥ 0.2 12,613 12.82⋆† 13.60⋆†
sent-BLEU ≥ 0.3 12,325 14.08⋆† 13.34⋆†
sent-BLEU ≥ 0.4 11,860 13.14⋆† 14.08⋆†
sent-BLEU ≥ 0.5 11,462 11.95⋆† 13.86⋆†
sent-BLEU ≥ 0.6 11,114 11.92⋆† 11.50⋆†
sent-BLEU ≥ 0.7 10,965 12.34⋆† 12.73⋆†
sent-BLEU ≥ 0.8 10,903 12.30⋆† 11.81⋆†
sent-BLEU = 1.0 10,880 11.69⋆ 11.52⋆†

Table 6: Japanese→Russian translation BLEU
scores. Sorting was performed using sent-BLEU
score.

ilarity scores (e.g., sent-BLEU) greater than or
equal to 0.1 were used to train the “sent-BLEU
≥ 0.1” model. We trained the NMT system us-
ing different thresholds and compared the perfor-
mance using development and test sets.

5 Results

5.1 Bootstrapping the NMT:
Russian→Japanese

For the data shown in Tables 2 and 3, we used
the parallel 10,231 sentence pairs (Section 4.2)
to train the first “Parallel” models in both di-
rections. Then, we used these models to create
a pseudo-parallel corpus by translating 160,760
Japanese monolingual sentences (Section 3). A
concatenation of parallel and pseudo-parallel sen-
tences was used to train the “Unfiltered” model.
The results obtained using the “Unfiltered” model
demonstrate that using all pseudo-parallel data as
additional data results in reduced BLEU scores
(16.86 BLEU compared to 17.47 BLEU). Gener-
ally, these results suggest that unfiltered data con-
tain many incorrect sentence pairs, which leads to
reduced machine translation accuracy.

Tables 2a and 3 show the “Bootstrap 1” results.
Here, the same pseudo-parallel corpus was used
as additional data with different filtration scoring
metrics. Even though the models trained using
data sorted by a language model metric outper-
formed the baselines on the development set, none
of the sent-LM models achieved better results

Threshold Size Dev Test
Baselines

Parallel Mg-Fr 106,406 13.29 12.74
Parallel Fr-Mg 106,406 16.79 15.15
Unfiltered 211,976 16.39 14.80

Filtered
sent-BLEU ≥ 0.1 152,578 17.31 16.27⋆†
sent-BLEU ≥ 0.2 135,179 17.08 15.33
sent-BLEU ≥ 0.3 121,376 17.11 15.00
sent-BLEU ≥ 0.4 114,391 16.62 15.81
sent-BLEU ≥ 0.5 110,944 16.65 14.84
sent-BLEU ≥ 0.6 109,186 16.38 14.05
sent-BLEU ≥ 0.7 108,252 16.48 15.19
sent-BLEU ≥ 0.8 107,801 16.29 14.53
sent-BLEU ≥ 0.9 107,537 16.42 15.24
sent-BLEU = 1.0 107,515 16.38 15.26

Table 7: French→Malagasy translation BLEU
scores. Sorting was performed using sent-BLEU
score.

than sent-BLEU. In contrast, using sent-BLEU in-
creased performance even when much less data
were used for training. The “sent-BLEU ≥ 0.3”
model outperformed the “Unfiltered” model by
+3.77 and +2.64 points on the development and
test sets, respectively. A sent-LM model resulted
in lower BLEU scores compared to sent-BLEU
because it assigned high scores to very short but
grammatically correct synthetic sentences. For
example, a sent-LM assigned a score of 0.94 to
the synthetic Russian sentence “да . (yes .)”,
even though its corresponding monolingual sen-
tence was “歌える 。(I can sing .)”. In contrast,
sent-BLEU assigned this pseudo-parallel sentence
a score of 0.00, because the back-translation re-
sulted in “はい 。(yes .)”. Furthermore, for a
sent-LM, the bootstrapping attempt using the best
“sent-LM ≥ 0.4” model of “Bootstrap 1” failed
according to the results shown in Table 2b. None
of the “Filtered” models could outperform the
“Bootstrap 1” and “Bootstrap 2” baseline mod-
els.

Table 4 shows the “Bootstrap 2” results. We
used the best model, i.e., “sent-BLEU≥ 0.3” from
“Bootstrap 1” (referred to as “B1 Parallel”), to
create a pseudo-parallel corpus by translating the
filtered out Japanese monolingual sentences (with
sent-BLEU < 0.3). The resulting 151,547 pseudo-
parallel sentences were added to the 37,531 “B1
Parallel” sentences to train the “B1 Unfiltered”
model. The filtered “sent-BLEU ≥ 0.2” model
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Threshold Size Dev Test
Baselines

Parallel En-De 4,535,522 19.51 18.55
Parallel De-En 4,535,522 22.33 20.58
Unfiltered 8,743,961 25.09⋆ 24.86⋆

Filtered
sent-BLEU ≥ 0.1 7,681,105 24.84⋆ 24.52⋆
sent-BLEU ≥ 0.2 7,345,367 24.87⋆ 24.13⋆
sent-BLEU ≥ 0.3 6,598,845 23.06⋆ 22.65⋆
sent-BLEU ≥ 0.4 5,808,701 24.13⋆ 22.84⋆
sent-BLEU ≥ 0.5 5,216,440 23.73⋆ 22.28⋆
sent-BLEU ≥ 0.6 7,345,367 23.50⋆ 21.85⋆
sent-BLEU ≥ 0.7 6,598,845 23.07⋆ 21.30⋆
sent-BLEU ≥ 0.8 5,808,701 22.80⋆ 20.90⋆
sent-BLEU ≥ 0.9 5,216,440 22.60⋆ 20.49
sent-BLEU = 1.0 4,585,655 22.13 20.33

Table 8: German→English translation BLEU
scores. Sorting was performed using sent-BLEU
score.

was the best model in “Bootstrap 2”. This model
achieved a 21.48 BLEU score on the develop-
ment set, thereby outperforming the “B1 Parallel”
model by +0.85 BLEU points.

The “Bootstrap 3” results are shown in Table
5. In the third iteration, no “Filtered” models ob-
tained higher scores than the “B2 Parallel” model.
However, in the Russian→Japanese experiments,
all “Filtered” models outperformed the “Unfil-
tered” models on the development and test sets
in each “Bootstrap” step for sentence-level BLEU
scoring, demonstrating a maximum improvement
of +3.77 BLEU points on the development set and
+4.72 BLEU points on the test set.

5.2 Filtering

5.2.1 Japanese→Russian

We examined the effect of the proposed filter-
ing method on Japanese to Russian translations.
The results are shown in Table 6. Here, we
used a Russian monolingual corpus to create a
Japanese→Russian parallel corpus rather than us-
ing the Japanese monolingual corpus.

The “sent-BLEU ≥ 0.3” model outperformed
the “Parallel” and “Unfiltered” models in terms
of BLEU scores on the development set by +3.95
and +3.68 points, respectively. All filtered models
were significantly better than the unfiltered model,
except for “sent-BLEU = 1.0”.

Threshold Ja-Ru Ru-Ja Fr-Mg En-De
sent-BLEU ≥ 0.1 3.26% 10.32% 43.73% 74.74%
sent-BLEU ≥ 0.2 3.16% 9.06% 27.25% 66.77%
sent-BLEU ≥ 0.3 2.78% 5.73% 14.18% 43.09%
sent-BLEU ≥ 0.4 2.16% 3.24% 7.56% 30.25%
sent-BLEU ≥ 0.5 1.63% 1.79% 4.30% 16.18%
sent-BLEU ≥ 0.6 1.17% 1.04% 2.63% 7.88%
sent-BLEU ≥ 0.7 0.97% 0.63% 1.75% 3.85%
sent-BLEU ≥ 0.8 0.89% 0.46% 1.32% 1.98%
sent-BLEU ≥ 0.9 0.89% 0.40% 1.07% 1.25%
sent-BLEU = 1.0 0.86% 0.39% 1.05% 1.19%

Table 9: The percentage of used pseudo-parallel
corpora for each language pair.

5.2.2 French→Malagasy
The results are shown in Table 7. In these experi-
ments, we used the Malagasy monolingual corpus
comprising 105,570 sentences to create a French-
Malagasy pseudo-parallel corpus using the pro-
posed filtering method. The “sent-BLEU ≥ 0.1”
model yielded better results over the baselines of
up to +0.92 BLEU points on the development set
and +1.47 BLEU points on the test set (statistically
significant).

5.2.3 German→English
Table 8 shows the BLEU scores of
German→English experiments. None of the
filtered models outperformed the “Unfiltered”
baseline on the development and test sets.

6 Discussion

The results showed that rather than using all ad-
ditional pseudo-parallel data, the proposed filter-
ing method improved translation performance in
nearly all experiments conducted for low-resource
language pairs.

The threshold results (Section 4.4) in Tables 2-
8 demonstrate that filtered models outperform the
baselines with larger margin for low-resource lan-
guage pairs than high-resource language pair and
in the most cases, overfiltering (e.g., sent-BLEU
= 1.0) leads to no or negligible improvement over
the baselines.

Sennrich et al. (2016) showed that using a
pseudo-parallel corpus as additional data greatly
improves the performance over the “Parallel”
baseline. The experiments showed that a better
“Parallel” system results in the creation of a better
pseudo-parallel corpus. This fact is also demon-
strated in Table 9, in which the percentages of
used pseudo-parallel corpora for each language
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Boot Synthetic Russian sentence Synthetic Japanese sentence sent-BLEU
Example 1 - Japanese monolingual sentence: あなたはそのニュースを聞きましたか。 (have you heard the news ? )
B1 тывиделиэтупо-английски ? 君は英語を英語を見ましたか。 0.25

(did you see this in English ? ) (have you seen English in English ? )
B2 Выполучилиэтурадио ? そのニュースを借りたのですか。 0.00

(did you get this radio ? ) (did you borrow the news ? )
B3 Выполучилиэтуновости ? そのニュースを聞きましたか。 0.77

(did you receive this news ? ) (have you heard the news ? )
Example 2 - Japanese monolingual sentence: 僕は終電車に乗り遅れた。 (I missed the last train . )

B1 яопоздалнапоезд . 私は列車に遅刻した。 0.00
(I missed the train . ) (I was late for the train . )

B2 яопоздалнапоезд . 私は列車に遅れた。 0.00
(I missed the train . ) (I was late for the train . )

B3 яопоздалнапоследнийпоезд . 私は終電車に乗り遅れた。 0.80
(I missed the last train . ) (I missed the last train . )

Example 3 - Japanese monolingual sentence: なぜ遅刻したのですか。 (why were you late . )
B1 почемутысделал ? どうしてやったの ? 0.00

(why did you do it ? ) (why did it ? )
B2 почемутыопоздал ? なぜそんな遅れたの ? 0.00

(why are you late ?) (why was such a delay? )
B3 почемутысделал ? なぜそんなことをしたのですか。 0.53

(why did you do it ? ) (why did a such thing ? )

Table 10: Examples from Russian→Japanese pseudo-parallel corpus used on every bootstrapping step.

pair are shown. The size of the usable pseudo-
parallel corpus for low-resource language pairs is
very small, which indicates that filtering out very
noisy data (e.g., approximately 96%-98% data for
Japanese→Russian) results in higher accuracy of
the NMT system trained using a filtered pseudo-
parallel corpus. The size of very noisy data for a
high-resource language pair (e.g. approximately
25% of the data for German→English) is small
and does not significantly degrade the accuracy of
the NMT system compared to low-resource cases.
In other words, the weaker the “Parallel” sys-
tem is the more effective is the proposed filtration
method.

Example 1 in the Table 10 shows the steps re-
quired to create a better Russian-Japanese pseudo-
parallel sentence. As the synthetic Russian sen-
tence from “Bootstrap 1” which was significantly
incorrect relative to the correct translation of the
Japanese monolingual sentences, eventually be-
came a good translation, we can say that the
Japanese→Russian and Russian→Japanese mod-
els used to create a pseudo-parallel corpus im-
proved with each bootstrapping step. Example
2 in Table 10 shows good translations of the
original sentence; however, due to surface mis-
matching of the synthetic and monolingual tar-
get sentences, the sentence-level BLEU scores
were 0.00. Nonetheless, with “Bootstrap 3”, the
Japanese→Russian and Russian→Japanese mod-
els produced translations that were the closest to

the original sentence. Regarding Example 3, the
sentence in “Bootstrap 2” was not used to train
the best model due to surface mismatching of tar-
get sentences despite the fact that it was correctly
translated to Russian. As a result, “Bootstrap 3”
used an incorrect translation of the original sen-
tence.

The experimental results show that bootstrap-
ping over several iterations improves the NMT
without significant difference and eventually stops
improving over the previous step. We hypothesize
that the reason for this is that the “Parallel” sys-
tem used to create a new pseudo-parallel corpus
becomes weaker in each iteration.

We used sent-BLEU to calculate the similarity
of the synthetic and monolingual target sentences.
However, word embedding-based sentence simi-
larity measures, such as those employed by Song
and Roth (2015), can be used to further improve
the corpus filtering because sentence-level BLEU
is sensitive to surface mismatch.

7 Conclusion

The models trained using the filtered pseudo-
parallel corpus as additional data showed better
translation performance than the baselines for low-
resource language pairs. We have also shown that
we can further improve translation performance by
bootstrapping, although bootstrapping has its lim-
itations. These results suggest that translation ac-
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curacy depends on both data size and quality.
Further experimental investigations are required

to estimate the limitations of the proposed fil-
tration method. We plan to investigate the
other sentence similarity metrics described in
Song and Roth (2015), such as average alignment
and maximum alignment sentence-level word2vec
scores. Sentence-level BLEU calculates the sim-
ilarity of the synthetic and monolingual target
sentences based solely on surface information,
whereas word2vec uses a distributed representa-
tion of the sentences.

To further our research we plan to improve our
filtering method by detecting good and bad syn-
thetic translations using reinforcement learning.
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Abstract

Aiming at facilitating the research on
quality estimation (QE) and automatic
post-editing (APE) of machine translation
(MT) outputs, especially for those among
Asian languages, we have created new
datasets for Japanese to English, Chinese,
and Korean translations. As the source
text, actual utterances in Japanese were ex-
tracted from the log data of our speech
translation service. MT outputs were then
given by phrase-based statistical MT sys-
tems. Finally, human evaluators were em-
ployed to grade the quality of MT out-
puts and to post-edit them. This paper
describes the characteristics of the created
datasets and reports on our benchmarking
experiments on word-level QE, sentence-
level QE, and APE conducted using the
created datasets.

1 Introduction

Technologies of machine translation (MT) have
been dramatically improved in the last decades;
however, the strict requirements for high-quality
translations in real-world applications (Hutchins
and Somers, 1992) have not yet fulfilled by MT
systems alone.1 Thus, in practice, techniques
of computer-aided translation (CAT) have been
widely used to provide satisfiable translations
for such requirements. For instance, manual
post-editing of MT outputs has become a preva-
lent translation work-flow in translation services
(ISO/TC27, 2017). Quality estimation (QE) of
MT outputs also plays a critical role in CAT to re-
duce human effort, thereby increasing productivity
(Specia et al., 2010).

1Bar-Hillel (1951) even mentioned that the fully auto-
matic high-quality translation is not only unrealistic, but also
theoretically impossible.

To facilitate and encourage the research on QE
tasks concerning several different levels of granu-
larity, i.e., word, phrase, sentence, and document
levels, and automatic post-editing (APE), WMT
workshops and conferences (henceforth, WMT)
have created datasets specialized for these tasks
(Bojar et al., 2014, 2015, 2016, 2017), mainly fo-
cusing on European languages.2 As a result, they
have successfully led to the rapid enhancement of
QE/APE technologies.

However, to the best of our knowledge, such a
resource for Asian languages have never emerged,
and QE/APE for Asian languages have been less
studied. Aiming at facilitating this line of re-
search, we have created new datasets3 consisting
of the 5-tuples shown in Figure 1. While the tu-
ples of first two elements, i.e., source text and hu-
man translation, compose ordinary parallel corpus
used to train (data-driven) MT systems, the re-
maining three are specific to this kind of QE/APE
datasets. So far, we have regarded Japanese (Ja)
as the source language, and English (En), Chinese
(Zh), and Korean (Ko) as the target languages. In
addition to cover these new language pairs, we
also aim to improve our speech translation ser-
vice4 with QE/APE technologies. To this end, we
have used actual utterances for the source texts, ac-
cumulated by the speech translation service, with
our best effort to clean and anonymize the data.

In the remainder of this paper, we first describe
the procedure of creating our QE/APE datasets for
Ja→En, Ja→Zh, and Ja→Ko translation tasks in
Section 2. Then, in Section 3, we present statistics
of the created datasets, observations, and remain-
ing issues. Section 4 describes our benchmarking

2Only the exception is Chinese-to-English in 2017 (Bojar
et al., 2017).

3NICT QE/APE Dataset, http://att-astrec.
nict.go.jp/en/product/

4VoiceTra, http://voicetra.nict.go.jp/en/
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Component Example
src: Source segment in Japanese 片道だけで買えますか。
ref : Human translation May I get it for one way?
hyp: MT output Can I buy just one way?
grade: Quality grade of MT output B (∈ {S, A, B, C, D})
pe: Manually post-edited MT output Can I just buy a one way ticket?

Figure 1: Example record in our QE/APE datasets (see Section 2.4 for the definition of grade).

experiments on word-level QE, sentence-level QE,
and APE conducted using the created datasets. Fi-
nally, Section 5 summarizes this paper.

2 Procedure of Corpus Construction

We have created our QE/APE datasets, regard-
ing Japanese as the source language. We have so
far regarded English, Chinese, and Korean as the
target languages, considering that the speakers of
these languages hold the largest proportion of vis-
itors to Japan (Japan National Tourism Organiza-
tion, 2017). Following the procedure in previous
studies (Snover et al., 2006; Potet et al., 2012) and
practices in WMT (Bojar et al., 2014, 2015, 2016),
we determined the following five-step process.

1. Collecting Japanese utterances (src)

2. Generation of MT outputs (hyp)

3. Manual translation (ref )

4. Manual grading of MT output (grade)

5. Manual post-editing of MT output (pe)

For the latter three tasks (detailed in Sections
2.3, 2.4 and 2.5, respectively), we allocated adult
native speakers of the target language who also un-
derstand Japanese.

2.1 Collecting Japanese utterances (src)

First, we collected the following two sets of ut-
terances in Japanese that have been used with our
speech translation service.

Travel-related utterances (travel): From the log
data that our speech translation service accu-
mulates, we randomly sampled 20,000 iden-
tical transcribed segments5 that were iden-
tified as Japanese by its automatic speech
recognition (ASR) module. Most segments
were spoken language and related to travel
and tourism, even though we had no restric-
tion to the input of our users.

5In this paper, we refer to each utterance as “segment,” as
one utterance may contain more than one sentence.

Utterances in hospital (hospital): We employed
the role-play dialogs of health care providers,
such as doctors and nurses, and patients,
containing 2,225 identical segments of utter-
ances. They were surely spoken language, al-
though they were manually written and more
formal than those in the travel domain.

We have been examining the installation of our
speech translation service into several practical
situations where such system helps cross-lingual
communication between humans. For this pur-
pose, we have manually created role-play dialogs
between Japanese and non-Japanese speakers. The
hospital data is one of them.

The extracted segments, especially those in the
travel domain, include ungrammatical ones, non-
understandable ones, and those containing inap-
propriate expressions with respect to social stan-
dards. We therefore asked a native Japanese
speaker to filter out such segments. As a result,
8,783 and 1,676 segments in the travel and hospi-
tal domains were retained, respectively.

Many segments do not have an explicit subject,
as Japanese is a pro-drop language; even obliga-
tory arguments can be missing. For instance, in the
src segment in Figure 1, both the subject “I” and
the direct object “ticket” are omitted. However,
we cannot recover them as our speech translation
service does not record any discourse elements of
individual utterances.

2.2 Generation of MT outputs (hyp)
The collected Japanese segments (src) were then
translated by our in-house MT systems, which
implement a phrase-based statistical MT (Koehn,
2009). The Ja→En translations were obtained in
2013, with the system trained on 736k sentence
pairs. The Ja→Zh and Ja→Ko translations were
generated later in 2016, with the systems trained
on 1.44M and 1.40M sentence pairs, respectively.

Table 1 summarizes the statistics of src and hyp.
These segments are relatively shorter than sen-
tences in written texts, such as news articles and
patent documents.
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Table 1: Statistics of the Japanese src and hyp in each target language.

Partition Unit travel (8,783 segments) hospital (1,676 segments)
Total Min Avg. Max Total Min Avg. Max

Japanese src character 105,606 2 12.0 49 33,979 5 20.3 71
English hyp word 44,604 1 5.1 28 14,844 1 8.9 29
Chinese hyp character 65,710 2 7.5 30 21,974 3 13.1 41
Korean hyp character 94,578 2 10.8 48 30,283 3 18.1 60

Table 2: Grading criterion for human evaluators.
Grade Summary Description

S Perfect Information of the source text has been completely translated. There are no grammatical errors in
the target text. Lexical choice and phrasing are natural even from a native speaker point-of-view.

A Good The information of the source text has been completely translated and there are no grammatical
errors in the target text, but lexical choice and phrasing are slightly unnatural.

B Fair There are some minor errors in the target text of less important textual information, but the mean-
ing of the source text can be easily understood.

C Acceptable Important parts of the source text are omitted or could not be translated correctly, but the meaning
of the source text can still be understood with some efforts.

D Incorrect The meaning of the source text is incomprehensible from target text.

2.3 Manual translation (ref )
Reference translations were manually given, refer-
ring only to the source segments (src). As each
src was not attributed with its specific context, we
asked the translators to imagine some context as
long as it is reasonable considering the domain.
On the contrary, we also asked to avoid adding too
much contents that cannot be specified only from
the src. For the src which has more than one inter-
pretation, only one translation is given rather than
enumerating all the possible interpretations.

2.4 Manual grading of MT output (grade)
The quality of MT output (hyp) with respect to its
source (src) was graded according to a standard
presented in Table 2, which is compatible6 with
the “Acceptability” criterion in Goto et al. (2013).
In case the evaluator cannot understand the mean-
ing of src, she/he is allowed to refer to the corre-
sponding reference translation (ref ), with an ad-
vice that it is not only the correct translation.

2.5 Manual post-editing of MT output (pe)
Human workers were asked to post-edit MT out-
puts (hyp), i.e., to produce pe, under the following
guidance.

(1) Refer only to src and hyp basically. Refer
also to ref if necessary.

(2) Make each hyp grammatical and semantically
appropriate with respect to its src, i.e., the
quality of pe must be “A” or “S” in Table 2.

6Their “AA” and “F” correspond to our “S” and “D,” re-
spectively.

(3) Perform minimal edits, as we use pe for the
reference of computing HTER (Snover et al.,
2006).

The workers were also informed that we con-
sider the following four edit operations equally.

Deletion of a word: Delete an unnecessary word:
e.g., “the an” → “the”

Insertion of a word: Insert a missing but neces-
sary word: e.g., “We will stay at hotel.” →
“We will stay at the hotel.”

Substitution of a word: Substitute a word with
another word. Change of inflection and con-
jugation is also regarded as this operation:
e.g., “Can you teach me the way to the sta-
tion?” → “Can you tell me the way to the
station?”

Shift of a word or a phrase: Change the word
order by moving a single word or a sequence
of consecutive words: e.g., “I’ll send a card
my friend.” → “I’ll send my friend a card.”7

2.6 Consistency check
Note that the last two tasks, i.e., grading and
post-editing of MT outputs, were performed com-
pletely separately. Now, discrepancies between
grade and pe were resolved in this final step.
When both grade and pe for the same pair of src
and hyp were registered, we assessed them accord-
ing to the following three criteria.

7One can edit this hyp to “I’ll send a card to my friend.”
In this case, the operation is considered as an “Insertion of a
word (to).”
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Table 3: Distribution of segments according to their grade.

Grade
travel (8,783 segments) hospital (1,676 segments)

Ja→En Ja→Zh Ja→Ko Ja→En Ja→Zh Ja→Ko
#seg % #seg % #seg % #seg % #seg % #seg %

S 1,961 22.3% 2,827 32.2% 3,466 39.5% 95 5.7% 708 42.2% 903 53.9%
A 1,462 16.6% 1,874 21.3% 2,326 26.5% 107 6.4% 514 30.7% 482 28.8%
B 1,269 14.4% 1,275 14.5% 1,360 15.5% 181 10.8% 172 10.3% 166 9.9%
C 1,067 12.1% 899 10.2% 724 8.2% 333 19.9% 107 6.4% 97 5.8%
D 3,024 34.4% 1,908 21.7% 907 10.3% 960 57.3% 175 10.4% 28 1.7%

Table 4: Proximity between translations obtained through different ways.

Domain Translations compared BLEU (↑) TER (↓)
Ja→En Ja→Zh Ja→Ko Ja→En Ja→Zh Ja→Ko

travel
(a) hyp against ref 21.52 26.18 38.85 57.95 50.81 43.43
(b) hyp against pe 51.97 69.44 81.98 35.14 19.20 12.25
(c) pe against ref 49.00 39.73 49.11 34.46 38.79 34.75

hospital
(a) hyp against ref 9.19 30.38 51.01 75.35 48.54 32.44
(b) hyp against pe 18.95 86.45 93.52 66.03 8.63 4.12
(c) pe against ref 65.15 34.29 54.16 24.69 43.78 30.00

• If the grade is either “S” or “A” but pe is not
identical to the given hyp, both grading and
post-editing are performed again.

• If the grade is either “B,” “C,” or “D” but
pe is identical to hyp, both grading and post-
editing are performed again.

• If hyp is closer to ref than to pe, i.e.,
TER(hyp, pe) > TER(hyp, ref), the number
of edits is not minimal;8 so post-editing is
performed again.9

As there could be a variety of translation op-
tions, seeking the complete minimality does not
seem feasible. Nevertheless, we introduced the
last constraint, because we need less-edited trans-
lations as pe. To compute TER scores using TER-
COM,10 we tokenized hyp, ref, and pe, using the
tool in Moses11 for English MeCab12 with mecab-
ko-dic13 for Korean. For Chinese, we regarded
each character as one token.

3 Analyses of the Created Datasets

This section describes characteristics of the cre-
ated datasets, observations, and remaining issues.

8This constraint can easily be satisfied by just copying ref
to pe, but we prohibited this.

9We asked to restart from hyp, because resuming from the
submitted pe would make the total number of edits unclear.

10http://www.cs.umd.edu/˜snover/tercom/,
version 0.7.25

11http://statmt.org/moses/, RELEASE-2.1.1
12https://github.com/taku910/mecab/, ver-

sion 0.996
13https://bitbucket.org/eunjeon/

mecab-ko-dic/, version 2.0.1-20150920

First, the results of manual grading are summa-
rized in Table 3. While MT outputs for the travel
domain were much better than the hospital domain
in the Ja→En task, the segments in the hospital
domain were better translated by the Ja→Zh and
Ja→Ko MT systems.

Table 4 shows proximity in terms of BLEU (Pa-
pineni et al., 2002) and TER (Snover et al., 2006),
between translations obtained through different
ways. (a) “hyp against ref ” presents what is mea-
sured in standard evaluation of MT outputs. The
scores in these rows reflect the distribution of MT
outputs shown in Table 3. On the other hand, (b)
“hyp against pe” gauges the amount of post-edits.
As we asked to perform only necessary edits to
assure at least grade “A,” the scores in these rows
should be good in general. Only the exception is
the hospital domain in the Ja→En task. As most
of the MT outputs were of low quality, the work-
ers tended to abandon them rather than correcting
them. Finally, (c) “pe against ref ” rows demon-
strate that these two types of translations were not
necessarily highly similar. Nevertheless, pe were
certainly better than hyp with respect to ref. Again,
pe in the hospital domain in the Ja→En task show
exceptionally good scores. We plan to make an
in-depth analysis with this respect.

The human judgment and the quantity of post-
edits (HTER) evaluate the translation quality from
different aspects. Indeed, as illustrated in Figure 2,
many hyp that got grade “B” did not have smaller
HTER score than those of grade “D.” Figure 3 ex-
emplifies some discrepancies between grade and
HTER score observed in the Ja→En dataset. The
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Figure 2: Distribution of sentence-wise HTER score with regard to each human judgment.

#1

src 多額の現金は持ってこないでください。
ref Please don’t bring a lot of cash.
hyp Please bring a lot of cash.
grade D
pe Please don’t bring a lot of cash.
HTER 0.22

#2

src 首が痛くありませんか。
ref Doesn’t your neck hurt?
hyp Do you have pain in my neck?
grade D
pe Do you have pain in your neck?
HTER 0.13

#3

src 素晴らしい景色だね
ref It’s a wonderful view, isn’t it?
hyp It’s beautiful scenery.
grade B
pe The scenery’s beautiful, isn’t it ?
HTER 0.78

Figure 3: Examples from the Ja→En dataset.

hyp in the first two examples were graded “D,”
while they were only slightly edited. The hyp in
#1 failed to appropriately convey the meaning of
negation. On the other hand, considering that the
segment #2 is given by a health care provider, the
possessor of “首 (neck)” must not be him/her (the
utterer), but the patient (the hearer). In both cases,
the error in hyp is critical, even though it can be
corrected with a small number of edits. This sug-
gests that sentence-level QE systems should be op-
timized according to appropriate criteria, depend-
ing on their application.

There were also several examples that were
graded “B” but were post-edited significantly. For
instance, the hyp in #3 could be corrected by sim-
ply replacing the full stop with a tag question, i.e.,

Table 5: Number of segments in each partition.
Partition travel hospital Merger
train 7,083 1,376 8,459
dev 850 150 1,000
test 850 150 1,000

“isn’t it?” with a HTER score of 0.56. However,
the worker also changed the syntactic structure of
the main clause, increasing the HTER score. To
avoid this kind of over-editing, the instruction in
Section 2.5 should be improved.

4 Benchmarking

Using the created datasets, we conducted bench-
marking experiments on word-level QE, sentence-
level QE, and APE.

4.1 Common Settings

First, each of the travel and hospital datasets was
randomly partitioned into training, development,
and test sets as shown in Table 5. Although we be-
lieve that our datasets are useful for examining do-
main adaptation methods, in this paper, we report
on experiments using the merger of data in the two
domains. Table 6 summarizes the statistics of each
partition in each task.14 “BAD%-WQE” indicates
the percentages of “BAD” tags for word-level QE
(see Section 4.2 for details), while “BAD%-SQE”
indicates the ratio of hyp that need post-editing,
i.e., those graded either “B,” “C,” or “D.”

14We tokenized them with our in-house tokenizer, which is
also used in our speech translation service.
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Table 6: Statistics of the training, development, and test partitions of the datasets.

Task Partition #seg Tokens Types BAD%
src hyp pe src hyp pe WQE SQE

Ja→En
train 8,459 65,855 59,377 63,970 5,739 3,772 4,475 29.0 65.2
dev 1,000 7,657 7,004 7,526 1,680 1,201 1,365 28.9 66.9
test 1,000 7,700 7,002 7,544 1,726 1,231 1,439 29.2 65.1

Ja→Zh
train 8,459 65,855 50,482 51,735 5,739 4,907 5,139 9.0 43.3
dev 1,000 7,657 5,883 5,993 1,680 1,483 1,530 9.6 42.3
test 1,000 7,700 5,915 6,042 1,726 1,516 1,562 9.9 44.9

Ja→Ko
train 8,459 65,844 65,520 66,550 5,739 5,103 5,213 7.6 31.3
dev 1,000 7,657 7,674 7,791 1,680 1,598 1,632 8.3 32.2
test 1,000 7,700 7,614 7,740 1,726 1,632 1,680 7.3 30.9

Table 7: Statistics of the DLC corpus.

Partition #seg Tokens Types
Ja En Zh Ko Ja En Zh Ko

train 1.57M 25.1M 22.3M 20.1M 24.0M 274,746 227,033 236,410 264,328
dev 14k 224k 200k 179k 215k 14,388 12,492 12,552 11,966

For the QE/APE tasks, due to the scarcity of
training data, even baseline approaches have em-
ployed external resources, such as parallel and
monolingual corpora, in addition to the task-
specific training data. However, there is no pub-
licly available parallel and monolingual data of
spoken language in the language pairs of our con-
cern. Therefore, we reluctantly employed an in-
house parallel corpus of daily life conversations
(DLC). Its statistics are shown in Table 7.

4.2 Word-level QE (WQE)

Given a pair of source text (src) and MT out-
put (hyp), the task of word-level QE is to pre-
dict a sequence of tags with the same length as
hyp, where each tag indicates how good the cor-
responding word in hyp is. While some previous
studies, such as Bach et al. (2011), addressed to
gauge the quality of each word with a real-valued
score, WMT adopted a coarse-grained binary tag,
i.e., {OK, BAD}, presumably because this form
of tags can be automatically generated as the by-
product of computing HTER score by comparing
hyp with its post-edited version (pe) (Bojar et al.,
2015). Following the recent convention in WMT,
we automatically generated a sequence of binary
tags for each pair of src and hyp using TERCOM.
As the evaluation metrics, we used F1 score of de-
tecting “OK” tags (F1-OK), that for “BAD” tags
(F1-BAD), and their product (F1-mult) as in Bo-
jar et al. (2016).

As a system for WQE, we adopted an imple-
mentation15 based on a feed-forward neural net-

15https://github.com/lemaoliu/qenn/

Table 8: Pseudo data for the WQE task.
Task Tokens BAD%
Ja→En 10,945,486 50.3
Ja→Zh 9,867,440 39.4
Ja→Ko 11,891,369 30.6

work with its default setting. Following the inves-
tigation in Liu et al. (2017), we also generated a
set of pseudo training data using the DLC corpus
as follows.

Step 1. Phrase-based statistical MT systems for
Ja→∗ translation tasks were built from the
first half of the DLC corpus using Moses.

Step 2. Japanese sentences in the remaining half
of the DLC corpus were decoded by the MT
systems.

Step 3. Tag sequences for the MT outputs were
given in the same manner as the manually
created data, except that we regarded refer-
ence translations in the second half of the
DLC corpus as post-edited MT outputs.

As presented in Table 8, we generated much
larger data than the manually created training
data in Table 6, although the pseudo training data
tended to contain more “BAD” tags than the man-
ually created data due to the independence be-
tween hyp and ref.

Our experimental results are presented in
Table 9. The results for the Ja→En and Ja→Zh
tasks are consistent to the observations in Liu et al.
(2017), i.e., pseudo training data improve F1-BAD
scores. However, introduction of such data do not
improve F1-BAD in the Ja→Ko task.
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Table 9: Results for the WQE task.

System F1-mult (↑) F1-BAD (↑) F1-OK (↑)
Ja→En Ja→Zh Ja→Ko Ja→En Ja→Zh Ja→Ko Ja→En Ja→Zh Ja→Ko

All BAD - - - 0.452 0.181 0.136 - - -
All OK - - - - - - 0.829 0.948 0.962
FNN-manual 0.345 0.205 0.295 0.469 0.229 0.313 0.736 0.896 0.942
FNN-pseudo 0.315 0.195 0.181 0.477 0.247 0.220 0.660 0.790 0.827
FNN-both 0.341 0.211 0.196 0.487 0.256 0.232 0.701 0.825 0.846

Table 10: Results for the SQE prediction task (“#f” indicates the number of features).

System #f Pearson’s r (↑) MAE (↓) RMSE (↓)
Ja→En Ja→Zh Ja→Ko Ja→En Ja→Zh Ja→Ko Ja→En Ja→Zh Ja→Ko

Avg. of train - - - - 0.306 0.198 0.158 0.347 0.238 0.205
QuEst17 17 0.427 0.125 0.239 0.255 0.185 0.159 0.325 0.242 0.201
QuEst17+SntEmb 617 0.516 0.301 0.413 0.239 0.184 0.153 0.298 0.228 0.192

4.3 Sentence-level QE (SQE)
Given a pair of source text (src) and MT output
(hyp), the task of sentence-level QE is to predict
how good the entire hyp is, with respect to src.
We conducted experiments on both of the HTER
prediction and binary classification tasks.

4.3.1 Prediction of HTER
In WMT, this task is to predict the HTER score,
directly from (src, hyp) pair (Specia et al., 2015),
or indirectly through predicting the necessary edits
in a similar manner to WQE (Kim and Lee, 2016).

We implemented a tool to extract a set of 17 fea-
tures16 of QuEst++ (Specia et al., 2015), which is
regarded as the baseline of this task. To compute
the features based on language models, we used
the corresponding part of the DLC corpus. To es-
timate the translation-related features, such as the
number of translations per word in src, we trained
a phrase-table on the DLC corpus using Moses.
Following the findings in Shah et al. (2016), we
also incorporated the distributed representations of
src and hyp. First, word embeddings with 300 di-
mensions were learned from each part of the DLC
corpus using word2vec17 with its default param-
eters. Then, the embedding for a given segment
is computed by averaging the embeddings of its
constituent words, assuming the additive composi-
tionality (Mikolov et al., 2013). During the com-
putation, unknown words were mapped to a zero
vector. Finally, values for each of 300 dimensions
were regarded as additional features.

16http://www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox_baseline_
17

17https://github.com/tmikolov/word2vec/

The extracted features were used to train sup-
port vector regression (SVR) models with a radial
basis function (RBF) kernel.18 Hyper-parameters
were optimized with respect to the development
set, through a grid search to maximize the Pear-
son’s correlation coefficient r between the pre-
dicted HTER and the gold HTER.

Table 10 justifies that sentence embeddings ob-
tained by such a naive way19 can improve the per-
formance of predicting HTER score, irrespective
of the evaluation metrics: Pearson’s correlation
coefficient r, mean average error (MAE), and root
mean squared error (RMSE).

4.3.2 Binary Classification

We assume that users of speech translation ser-
vices are usually not competent in the target lan-
guage. Thus, when we consider directly delivering
the MT outputs to such users, their quality in terms
of our grade seems more intuitive than HTER.

We evaluated how well the same feature sets in
Section 4.3.1 can predict the grade, using support
vector classifier (SVC) instead of SVR. Hyper-
parameters were optimized so that they maximize
F1-mult on the development set. The systems (fea-
ture sets) were evaluated with the same metrics as
in WQE.

As presented in Table 11, we obtained consis-
tent results that baseline systems with QuEst++
features can be improved by incorporating the dis-
tributed representations of src and hyp.

18http://chasen.org/˜taku/software/
TinySVM/

19As a more advanced alternative, one can train a neu-
ral MT system and retrieve annotations from RNN’s hidden
states as proposed in (Kim and Lee, 2016).
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Table 11: Results for the SQE classification task (“#f” indicates the number of features).

System #f F1-mult (↑) F1-BAD (↑) F1-OK (↑)
Ja→En Ja→Zh Ja→Ko Ja→En Ja→Zh Ja→Ko Ja→En Ja→Zh Ja→Ko

All BAD - - - - 0.789 0.620 0.472 - - -
All OK - - - - - - - 0.517 0.711 0.817
QuEst17 17 0.335 0.295 0.310 0.765 0.442 0.403 0.438 0.667 0.770
QuEst17+SntEmb 617 0.450 0.410 0.396 0.798 0.584 0.480 0.563 0.702 0.825

Table 12: Results for the APE task.
Method BLEU (↑) TER (↓)

Ja→En Ja→Zh Ja→Ko Ja→En Ja→Zh Ja→Ko
Raw MT output 43.74 73.14 85.52 42.21 16.98 9.87
(a) APE w/ gold data only 43.38 72.28 84.87 42.33 17.53 10.31
(b) (a) + bitext back-off 44.00 73.01 85.53 41.87 17.05 9.87
(c) (b) + pseudo training data 43.90 73.15 85.57 41.95 16.97 9.82

4.4 APE
The task of APE is to automatically post-edit MT
outputs (hyp). Although there are a number of
methods that also refer to src (Béchara et al., 2011;
Junczys-Dowmunt and Grundkiewicz, 2016), we
have so far examined only classic baseline meth-
ods based on phrase-based statistical MT.

The first system (a) was trained only on the gold
data (Simard et al., 2007a) using Moses. How-
ever, this system tended to deteriorate the transla-
tion quality in terms of BLUE and TER, presum-
ably due to the scarcity of training data. Then,
our second model (b) introduced identical pairs
of sentences in the target side of our DLC cor-
pus in order to conservatively retain grammatical
fragment within hyp. By (re-)decoding the hyp us-
ing the multiple decoding path ability of Moses,20

this model significantly improved the naive base-
line system (a), but the translation quality was not
consistently better depending on the language pair.

Finally, we introduced in the third system (c) yet
another phrase table learned from pseudo training
data as proposed by Simard et al. (2007b). Our
pseudo training data were obtained in the same
manner as those for WQE (see Section 4.2); we
coupled each of the decoded result to its corre-
sponding reference translation in the DLC corpus.
As summarized in Table 12, this model led to a
slight but consistent improvement on both metrics
in the all tasks.

20We used the “either” strategy. If a phrase pair appears
in more than one phrase table, different decoding paths are
generated and each considers only the corresponding features
for scoring.

5 Conclusion

Aiming to promote the research on quality es-
timation (QE) and automatic post-editing (APE)
of MT outputs, especially for those among Asian
languages, we have created new datasets for the
Japanese to English, Chinese, and Korean trans-
lation tasks. This paper described the process of
corpus creation and observations from the created
datasets. We also presented our benchmarking ex-
periments using the created datasets, for all of the
tasks in our concern: word-level QE, two vari-
ants of sentence-level QE, and APE. Although the
methods examined in this paper could be far from
the state-of-the-art, we confirmed that the perfor-
mance of these tasks can be improved by introduc-
ing features and pseudo training data that had been
proven useful in the literature.

Following the emergence of neural MT, we are
now working on extending the datasets with trans-
lations of such systems. We are planning to further
improve the performance on the QE/APE tasks,
and to investigate applications of the technolo-
gies, including enhancing the functionality of our
speech translation service, and filtering automati-
cally harvested parallel sentences (Sennrich et al.,
2016; Marie and Fujita, 2017).
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Abstract

In this year, we participated in four trans-
lation subtasks at WAT 2017. Our model
structure is quite simple but we used it
with well-tuned hyper-parameters, leading
to a significant improvement compared to
the previous state-of-the-art system. We
also tried to make use of the unreliable part
of the provided parallel corpus by back-
translating and making a synthetic cor-
pus. Our submitted system achieved the
new state-of-the-art performance in terms
of the BLEU score, as well as human eval-
uation.

1 Introduction

In this paper, we describe our systems submitted
to this year’s translation shared tasks at WAT 2017
(Nakazawa et al., 2017). For this year, we focused
on scientific paper (ASPEC Japanese-English,
English-Japanese) and newspaper (JIJI Corpus
Japanese-English, English-Japanese) translation
subtasks.

We use a simple Neural Machine Translation
(NMT) model with an attention mechanism (Lu-
ong et al., 2015). In addition, for ASPEC, we
made a synthetic corpus for the unreliable part
of the provided corpus, in a way similar to that
reported by Sennrich et al. (Sennrich et al.,
2016a). This technique and the well-tuned hyper-
parameters led to new state-of-the-art results in all
the subtasks in which we participated.

2 Common Settings

2.1 Model Structure

Our model is based on the encoder-decoder with
a global attention model proposed by Luong et al.
(2015), with a general scoring function and input

feeding. The original model uses a uni-directional
encoder, but we changed it to a bi-directional one
proposed by Bahdanau et al. (2015). After running
the bi-directional encoder, we simply added each
state and used it for a decoder.

We implemented this model with Chainer
toolkit (Tokui et al., 2015), and the implementa-
tion is now open for further experiments1.

2.2 Data Preprocessing

First, we tokenize the provided corpus using
KyTea (Neubig et al., 2011) for the Japanese side,
and Moses tokenizer2 for the English side. We
remove the sentences over 60 words to clean the
corpus. Then we further split it into sub-words us-
ing joint byte pair encoding (joint-BPE) (Sennrich
et al., 2016c) with applying 16,000 merge opera-
tions.

For ASPEC subtasks, though the provided train-
ing data contained over 3.0M sentences, we only
used the first 2.0M sentences, in the same way
as the previous participants (Neubig, 2014). AS-
PEC was collected by aligning parallel sentences
automatically and sorting them on the basis of
the alignment confidence score (Nakazawa et al.,
2016). This means that the latter side of the cor-
pus may contain noisy parallel sentences, which
would have a negative impact on training. We used
the latter 1.0M sentences as a monolingual corpus
and made a synthetic corpus (see section 3.1.1 for
details).

2.3 Training

Table 1 shows the settings of hyper-parameters we
used and tested. We tried several combinations

1https://github.com/nttcslab-nlp/
wat2017

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl
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Hyper-parameter Used Tested
Vocabulary size 16,000 1,000, 5,000
Embedding dimension 512 —
Hidden dimension 512 —
Attention dimension 512 —
Encoder layer 2 4, 1
Decoder layer 2 4, 1
Optimizer SGD —
Initial learning rate 1.0 0.5
Gradient clipping 5.0 6.0
Dropout rate 0.3 0.2, 0.0
Mini-batch size 128 sent 64, 256

Table 1: Hyper-parameter settings

and we found that these settings were the best.
For the vocabulary, we only included the most fre-
quent 16,000 sub-words in the training set3. Af-
ter 13 epochs, we multiplied the learning rate by
0.7 for every epoch, then continued training till 20
epochs.

2.4 Testing
2.4.1 Length Normalized Re-ranking
Naive beam searches with a large beam size may
tend to output shorter sentences, leading to a drop
in performance (Tu et al., 2017). To reduce this
negative effect, we re-ranked the candidate out-
put sentences t by using the following score func-
tion once we finished the beam search (Cromieres
et al., 2016):

t̂ = arg max
t∈t

{
p(t)
|t|

}
, (1)

where p(t) is the predicted log-probability of a
candidate output sentence t and |t| is the length
of t.

With this length normalized re-ranking, we can
use a large beam size without taking the above ex-
plained negative effect into account. Through pre-
liminary experiments, we found that a beam size
of 20 was sufficient.

2.4.2 Ensembling
It has been reported that ensembling several differ-
ent models together significantly improves perfor-

3Applying joint-BPE with 16,000 merge operations
should make the vocabulary size under 16,000 sub-words,
but for Japanese, it may contain some unknown characters
(kanji). The actual vocabulary size for each corpus was
the following: ASPEC Ja:11271, En:10942, JIJI Ja:16000,
En:15795

NMT Model

(1) Train

1.0M TRG(2) Translate

(3) Make a synthetic corpus

2.0M Parallel

1.0M SRC

1.0M Synthetic

Figure 1: Overview of making a synthetic corpus.
First, we make an NMT model with a reliable par-
allel corpus, then translate the unreliable part of
the corpus to make a synthetic parallel corpus.

mance. In an ensembling process, several models
are run at each time step and an arithmetic mean
of predicted probability is obtained, which is used
to determine the next word. In our settings, we
trained eight models independently and used them
for the ensemble.

3 Task-Specific Settings

3.1 ASPEC

3.1.1 Synthetic Corpus
As we mentioned in section 2.2, ASPEC con-
tains some unreliable sentence pairs. For SMT,
we can use these sentences as monolingual data
to train a language model. However in the cur-
rent NMT model architecture, the model cannot be
trained with monolingual data, so the previous par-
ticipants with NMT models simply ignored these
parts of the data (Neubig, 2016; Eriguchi et al.,
2016).

In a way similar to that reported by Sennrich et
al. Sennrich et al. (2016b), we tried to use the un-
reliable part of the corpus by making a synthetic
corpus. Figure 1 illustrates the overview of how
we made the synthetic corpus. First, we made an
NMT model with the reliable part of the provided
data (in our case, the first 2.0M sentences), then
translated the unreliable part of the corpus by us-
ing it to make a synthetic corpus. Finally, we made
a corpus of 3.0M sentences by concatenating this
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synthetic corpus and the reliable part of the data.
With this corpus, we continued the training of the
model for a further 10 epochs.

It should be noted that the target side of the syn-
thetic corpus should be the original sentences (not
those generated by the NMT model). This is be-
cause an NMT model includes a target side lan-
guage model and uses it to generating a natural
sentence, so it would be better to keep the target
side original to train an NMT model effectively.
Thus, the synthetic corpus used for Japanese-
English training is made with an English-Japanese
NMT model, and vice versa.

3.2 JIJI

3.2.1 Model Fine-tuning
We thought the JIJI corpus was too small to train
an NMT model, so we tried to train the model with
other large parallel corpora and then fine-tune it
with the JIJI corpus (Luong and Manning, 2015).
In our settings, we first trained the model with AS-
PEC (2.0M) and Japan Patent Office Patent Cor-
pus (JPC) (1.0M). We learned BPE codes with the
JIJI corpus and applied them to ASPEC and JPC.
We trained the model with ASPEC and JPC for 20
epochs, then continued training with the JIJI cor-
pus for a further 20 epochs.

4 Official Results

Tables 2 and 3 show the official results of our sub-
missions4. Our system achieved the best BLEU
scores and adequacy for all the subtasks in which
we participated. For pairwise crowdsourcing eval-
uations, our system also obtained the best evalua-
tions except for the ASPEC Ja-En subtask. Even
in this case, it obtained the second best evaluation.

5 Analysis

5.1 Synthetic Corpus

From Table 2, we can see that the synthetic cor-
pus has a positive impact on the performance, es-
pecially for the En-Ja subtask, and contributes to
achieving better performance. We also tried to use
the original 3.0M corpus for training, but could
not see any improvements over the model that uses
only the first 2.0M sentences.

Manually comparing the synthetic corpus and
the originally provided corpus, we found that the

4In these tables, we exclude the organizer’s submissions
for ranking.

quality of the synthetic corpus was much better
than the original one. The original corpus often in-
cludes noisy pairs where the contents are different
on each side. Table 4 shows an example sentence
of the original parallel corpus and our synthetic
corpus. The original Japanese sentence does not
contain the words for “a nonlinear least squares
method” and “the method of steepest decent”, but
the synthetic sentence contains these words and
improves the quality of the parallel corpus. Us-
ing a synthetic corpus makes it possible to allevi-
ate the noisy sentences and helps to achieve better
performance.

5.2 Model Fine-tuning
We thought that training with a larger amount of
data would enable the model to use more sen-
tences and that this would be beneficial for further
training. However, as is clear from Table 3, we
couldn’t find any improvements over fine-tuning.
We suspect that the parallel corpus used to initial-
ize the model is quite out-of-domain, so the model
couldn’t get any benefits from it.

5.3 JIJI Corpus Quality
In the JIJI corpus subtasks, we were only able to
see a small correlation between BLEU scores and
human evaluation. To find out the reason for this,
we manually looked into the JIJI corpus. In do-
ing so, we found that it was too noisy for efficient
learning. It contained a lot of parallel sentences
with different content, which can be noise for
NMT training. The JIJI corpus originally comes
from Japanese news articles that were translated
into English. During this process, translators often
add or remove the content of the article to make it
easy to understand for English readers. However,
this makes it hard to find clean one-by-one sen-
tence alignment and leads to make the parallel cor-
pus dirty. As a result, the trained model learns to
generate a sentence with a different meaning, and
it leads to a higher BLEU score but lower human
evaluations. To deal with this problem, it would
be better to consider how to train a cleaner model
from a noisy parallel corpus.

5.4 BLEU Scores and Tokenizer
After the evaluation period finished, we found that
our BLEU scores tended to be better with KyTea
tokenizer. In the English-Japanese subtasks, par-
ticipants de-tokenize system outputs and the sub-
mission system will re-tokenize them with JU-
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System BLEU Rank Pairwise Rank Adequacy Rank
En-Ja Single (3.0M) 37.15 — — — — —

Single (2.0M) 37.90 7/14 — — — —
Single (2.0M + 1.0M Synthetic) 38.87 4/14 — — — —
8 Ensemble (2.0M) 39.80 3/14 72.250 3/11 — —
8 Ensemble (2.0M + 1.0M Synthetic) 40.32 1/14 75.750 1/11 4.41 1/4

Ja-En Single (3.0M) 26.07 — — — —
Single (2.0M) 27.43 6/13 75.000 4/10 — —
Single (2.0M + 1.0M Synthetic) 27.62 4/13 — — — —
8 Ensemble (2.0M) 28.36 1/13 77.250 2/10 4.14 1/2
8 Ensemble (2.0M + 1.0M Synthetic) 28.15 2/13 — — — —

Table 2: Official results of our submitted systems for ASPEC subtasks. For the En-Ja subtask, we show
the BLEU scores with JUMAN tokenizer.

System BLEU Rank Pairwise Rank Adequacy Rank
En-Ja Single 19.13 3/4 14.500 2/3 — —

8 Ensemble 20.37 1/4 17.750 1/3 2.03 1/2
Ja-En Single 19.44 2/8 32.000 1/6 2.05 1/2

Fine-Tuning 15.77 7/8 — — — —
8 Ensemble 20.90 1/8 26.750 2/6 — —

Table 3: Official results of our submitted systems for JIJI corpus subtasks. For En-Ja subtasks, we show
the BLEU scores with JUMAN tokenizer.

MAN, KyTea or MeCab tokenizers, then calculate
the BLEU scores. In our experiments, we first pre-
tokenized sentences with KyTea tokenizer, and
then further split them into sub-words by applying
BPE. Therefore, we suspect that our systems are
likely to be optimized with KyTea, so we carried
out experiments using JUMAN as a pre-tokenizer.
Table 5 shows the BLEU scores of our systems
pre-tokenized with KyTea or JUMAN. From the
results, we found that if we used JUMAN as a pre-
tokenizer, we achieved better BLEU scores calcu-
lated with JUMAN tokenizer.

5.5 Beam Size and Length Normalized
Re-ranking

Figure 2 shows the BLEU score changes in terms
of increasing the beam size with the length nor-
malized re-ranking described in section 2.4.1 (w/
LN), and without it (w/o LN). In the case of w/
LN, the BLEU score tends to gradually get bet-
ter by increasing the beam size. In contrast, the
BLEU score dropped as we enlarge the beam size
from the highest score at the beam size of 3 in the
case of w/o LN.

The reason behind these observations is that the
BLEU score is strongly penalized if the length of

0 5 10 15 20 25
Beam size

36.0

36.5

37.0

37.5

38.0

38.5

BL
EU Length normalized

No length normalized

Figure 2: Relations between beam size and BLEU
score on ASPEC En-Ja. With length normaliza-
tion, we achieved better BLEU scores as the beam
size became larger.

the hypothesis sentence is shorter than the corre-
sponding reference sentence. This penalty is re-
ferred to as “Brevity Penalty (BP)”. Figures 3 (a)
and (b) respectively show the BP and the ”raw
BLEU score” (BLEU score while discarding the
BP term) changes in w/ LN and w/o LN in terms
of increasing the beam size. Clearly, the BP in-
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Source The search procedure utilizes a nonlinear least squares method coupled with the
method of steepest descent.

Original また，具体的な探索の手順を示した。
(We also show the specific search procedure.)

Synthetic 探索手順は最急降下法と結合した非線形最小二乗法を用いた。
(The search procedure utilizes a nonlinear least squares method coupled with the
method of steepest descent.)

Table 4: An example sentence pair in the original and synthetic corpus.

System BLEU (JUMAN) BLEU (KyTea) BLEU (MeCab)
En-Ja Single (KyTea pre-tokenized) 37.90 40.48 38.61

Single (JUMAN pre-tokenized) 38.12 40.22 38.80

Table 5: Experimental results of ASPEC En-Ja subtask with different pre-tokenziers.

creasingly penalized the raw BLEU scores as the
beam size increased in the case of w/o LN, while
for w/ LN it maintained the BP. This observation
reveals that the length normalized re-ranking (w/
LN) effectively works to keep the length of the
best hypothesis sentences even if we enlarge the
beam size. This is basically good behavior for ac-
tual use since we do not need to pay much atten-
tion to tuning the beam size.

5.6 Ensemble
Figure 4 shows the relation between the num-
ber of model ensembles and the BLEU score5.
As we increased the number of models used, the
BLEU scores improved but the impact gradually
decreased. We only ensembled eight models for
our submissions due to time and computational
cost limitations but it would be more effective to
ensemble more models.

6 Conclusion

In this paper, we described the systems we submit-
ted to WAT 2017 shared translation tasks. We tried
to make a synthetic corpus for an unreliable part of
the provided corpus, and found it effectively im-
proves the translation performance. Even though
we achieved the highest BLEU score on JIJI cor-
pus subtasks, the human evaluation of our system
was worse than we had expected. We suspect that
this is due to the noise on the JIJI corpus, so for
future work, it would be beneficial to find out how
to train the model with the noisy parallel corpus.

5In this figure, we simply ensembled the models in ran-
dom order. However, it may be more effective to fix the order
in accordance with the BLEU score on the dev set .
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Abstract
This paper describes the Neural Machine
Translation systems of Xiamen Univer-
sity for the shared translation tasks of
WAT 2017. Our systems are based on
the Encoder-Decoder framework with at-
tention. We participated in three sub-
tasks. We experimented subword segmen-
tation, synthetic training data and model
ensembling. Experiments show that all
these methods can give substantial im-
provements.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau
et al., 2015; Cho et al., 2014; Sutskever et al.,
2014) has achieved great success in recent years
and outperforms traditional statistical machine
translation (SMT) on various language pairs (Sen-
nrich et al., 2016a; Wu et al., 2016; Zhou
et al., 2016). This paper describes the NMT
systems of Xiamen University (XMU) for the
WAT 2017 evaluation (Nakazawa et al., 2017).
We participated in three translation subtasks:
JIJI Japanese↔English newswire subtask, IITB
Hindi↔English mixed domain subtasks, and
Cookpad Japanese↔English recipe subtask.

In all three subtasks, we use our reimple-
mentation of dl4mt-tutorial1 with minor changes.
We use both Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016c) and mixed word/character
segmentation (Wu et al., 2016) to achieve open-
vocabulary translation. We apply back-translation
method (Sennrich et al., 2016b) to make use of
monolingual data. We use ensemble (Sutskever
et al., 2014) of multiple models to further improve
the translation quality.

∗Corresponding author.
1https://github.com/nyu-dl/

dl4mt-tutorial

The remainder of this paper is organized as fol-
lows: Section 2 describes our NMT system, in-
cluding the training details. Section 3 describes
the processing of the data. Section 4 describes all
experimental features. Section 5 shows the results
of our experiments. Finally, we conclude in sec-
tion 6.

2 Baseline System

Our NMT system is a reimplementation of dl4mt-
tutorial model. We import some minor changes
and new features such as dropout (Srivastava et al.,
2014).

For all three subtasks, we train our models with
almost the same settings of hyper-parameters. We
use word embeddings of size 620 and hidden lay-
ers of size 1000. We use mini-batches of size 128
and adopt Adam (Kingma and Ba, 2015) (β1 = 0.9,
β2 = 0.999 and ε = 1× 10−8) as the optimizer. The
initial learning rate is set to 5 × 10−4. We gradu-
ally halve the learning rate during the training pro-
cess. As a common way to train RNN models, we
clip the norm of gradients to a predefined value
1.0 (Pascanu et al., 2013). We use dropout to avoid
over-fitting with a keep probability of 0.8. For en-
sembling, we train multiple models with different
random initialization of parameters and different
data shuffling.

In Decoding, we employ beam search strategy
with a beam size of 10. We use a modified version
of AmuNMT C++ decoder2 for parallel decoding.
We use the same ensembling method as (Sutskever
et al., 2014) with uniform weights for different
models.

2https://github.com/emjotde/amunmt
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3 Data Processing

We use all training data provided by JIJI, IITB, and
Cookpad corpora3. For JIJI and Cookpad corpora,
Moses4 tokenizer and truecaser are applied on the
English side. On the Japanese side, the full-width
ASCII variants are first converted into their half-
width form and the mecab5 segmenter is used to
segment the sentences. For IITB corpus, we di-
rectly use the tokenized data and truecase the En-
glish sentences with Moses truecaser.

For all three corpora, we remove duplications
and filter out bad sentence pairs according to the
word alignment scores obtained by fast-align
toolkit6. For IITB corpus, we also filter out sen-
tence pairs which are not in English-Hindi accord-
ing to the range of Devanagari characters’ Uni-
code, as well as a language identification toolkit
langid7.

4 Experimental Features

4.1 Subword Segmentation

To enable open-vocabulary, we apply subword-
based translation approaches. In our prelimi-
nary experiments, we found that BPE and mixed
word/character segmentation works better than
UNK replacement techniques.

In JIJI and IITB tasks, we apply BPE8 with 20K
operations to English sentences and Hindi sen-
tences separately. We use mixed word/character
model in the Japanese sides of JIJI task. We keep
20K most frequent Japanese words and split other
words into characters. Unlike (Wu et al., 2016),
we do not add any extra prefixes or suffixes to
the segmented Japanese characters. In the post-
processing step, we simply remove all spaces in
Japanese sentences.

Similarly, in Cookpad task, we also use BPE
segmentation in English side, but with 10K opera-
tions, since the vocabulary size is much smaller.
Correspondingly, mixed word/character model
with a shortlist of 10K words is applied to the
Japanese sentences.

3For Cookpad corpus, we extract parallel pairs from six
fields: step, history, ingredient, title, advice, and description.

4http://statmt.org/moses/
5https://taku910.github.io/mecab/
6https://github.com/clab/fast_align
7https://pypi.python.org/pypi/langid
8https://github.com/rsennrich/

subword-nmt

4.2 Synthetic Training Data

To utilize the monolingual data in IITB corpus,
we employ the back-translation method. We use
srilm 9 to train a 5-gram KN language model on
the monolingual data and select monolingual sen-
tences according to their perplexity. By this way,
2.5M English sentences are selected from IITB’s
monolingual data. We use one single EN-HI NMT
baseline model to translate the selected English
monolingual sentences back to Hindi. The syn-
thetic sentence pairs are used to train HI-EN NMT
models.

Similarly, we also select 2.5M Hindi monolin-
gual sentences and use one single HI-EN NMT
baseline model to translate them back to English.
The synthetic sentence pairs are used to train EN-
HI NMT models.

In preliminary experiments, we found that train-
ing or tuning on the synthetic data alone could
not significantly improve the performance of NMT
models. Therefore, we mix up the synthetic data
with a comparable amount of bilingual pairs over
sampled from IITB’s parallel data and train NMT
models on the mixture data. A similar method is
also used in (Sennrich et al., 2017).

5 Results

In this section, we report the automatic evalua-
tion results (word-level BLEU score10) and hu-
man evaluation results on test sets. We compare
our NMT systems with the best SMT systems pro-
vided by the organizer.

5.1 Results on JIJI Subtask

EN-JA JA-EN
System BLEU Human BLEU Human
HPBMT 16.22 10.25 15.67 10.25
Baseline 17.92 – – 15.77 – –
+Ensemble 20.14 11.75 17.95 20.75

Table 1: Automatic evaluation and human evalu-
ation results on JIJI subtask.

Table 1 shows the results of JIJI subtask. We
apply subword segmentation on the parallel data
and train 4 English-Japanese NMT models and 4

9http://www.speech.sri.com/projects/
srilm/

10The references and translations are tokenized by Moses
English tokenizer, Mecab Japanese word segmenter and Indic
Hindi tokenizer respectively.
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Japanese-English models. We found that both in
EN-JP and JP-EN, one single NMT model can
outperform the traditional SMT systems, such as
a hierarchical phrase-based model. Ensembles of
4 NMT models can further improve the results by
more than +2.0 BLEU scores.

5.2 Results on IITB Subtask

EN-HI HI-EN
System BLEU Human BLEU Human
PBMT 10.79 – – 10.32 – –
Baseline 13.69 – – 13.30 – –
+Synthetic 19.79 – – 20.61 – –
+Ensemble 21.39 64.50 22.44 68.25

Table 2: Automatic evaluation and human evalu-
ation results on IITB subtask.

In IITB subtask, we first train an English-Hindi
and a Hindi-English baseline NMT models on the
parallel data with subword segmentation. Then
we select monolingual sentences and synthesize
larger training data using the backward baseline
NMT models. As shown in Table 2, both in EN-
HI and HI-EN, training on synthetic data is effec-
tive to improve the BLEU score (more than +6.0).
When ensembling 4 models, we further gain more
than +1.6 BLEU scores.

5.3 Results on Cookpad Subtask

In Cookpad subtask, we hope one single NMT
model has the robustness to translate different
types of text. So we directly train NMT models
on all training data without any extra data sepa-
ration or labelling. And we use the same mod-
els for four test sets. The results are shown in
Table 3. Our single NMT baselines beat phrase-
based SMTs in almost all test sets, except for JA-
EN ingredient. When ensembling 4 models, we
further gain +1.3 to +3.1 BLEU scores in all test
sets and outperform SMTs by +2.2 to +5.8 BLEU
scores. For human evaluation results, we found
that NMT models achieve good results in title and
step sets, but not in ingredient sets. It’s reasonable
because NMT models are good at fluency, instead
of adequacy. And for title and step, human read-
ers usually focus on fluency. But for ingredient,
human readers care more about adequacy.

EN-JA JA-EN
System BLEU Human BLEU Human

all
PBMT 19.10 – – 23.87 – –
Baseline 22.47 – – 27.04 – –
+Ensemble 24.44 – – 28.83 – –

title
PBMT 16.57 – – 9.72 – –
Baseline 16.90 – – 14.25 – –
+Ensemble 18.78 23.75 15.57 10.25

step
PBMT 18.53 – – 22.84 – –
Baseline 22.01 – – 26.31 – –
+Ensemble 24.00 45.50 28.03 40.50

ingredient
PBMT 29.60 – – 44.42 – –
Baseline 30.90 – – 43.89 – –
+Ensemble 33.19 -3.75 46.98 3.50

Table 3: Automatic evaluation and human evalu-
ation results on Cookpad subtask.

6 Conclusion

We describe XMU’s neural machine translation
systems for the WAT 2017 shared translation
tasks. Our models perform quite well and proved
to be effective enough to outperform traditional
SMT systems in all tasks, even with limited train-
ing data. Experiments also show the effective-
ness of all features we used, including subword
segmentation, synthetic training data, and multi-
model ensemble.
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Abstract

In this paper, we describe the team UT-
IIS’s system and results for the WAT 2017
translation tasks. We further investigated
several tricks including a novel technique
for initializing embedding layers using
only the parallel corpus, which increased
the BLEU score by 1.28, found a practical
large batch size of 256, and gained insights
regarding hyperparameter settings. Ulti-
mately, our system obtained a better result
than the state-of-the-art system of WAT
2016. Our code is available on https:
//github.com/nem6ishi/wat17.

1 Introduction

The advent of neural networks in machine trans-
lation has contributed greatly to the translation
quality. Since proposed in (Cho et al., 2014;
Sutskever et al., 2014), the sequence-to-sequence
(SEQ2SEQ) model has been achieving the state-
of-the-art performance when combined with the
attention mechanism (Bahdanau et al., 2015).
Many studies have focused on modifying the
SEQ2SEQ network structure, including modifying
the encoder (Eriguchi et al., 2016; Gehring et al.,
2017; Li et al., 2017; Chen et al., 2017), or the de-
coder (Ishiwatari et al., 2017; Eriguchi et al., 2017;
Aharoni and Goldberg, 2017; Wu et al., 2017).

While these network structure modifications
have been found to improve the translation qual-
ity, many systems, including the best system from
WAT 2016 (Cromieres et al., 2016), still depend
on the vanilla SEQ2SEQ model, the model with
the attention mechanism. Denkowski and Neu-
big (2017) confirmed the large impact of com-
mon techniques such as training algorithms, sub-
words (Sennrich et al., 2016) and model ensem-

∗Authors contributed equally.

bles upon this vanilla SEQ2SEQ model. This sug-
gests that there may be some unexplored tricks we
may apply to the vanilla model to significantly im-
prove the translation quality.

This paper describes the system that we have
built for the ASPEC (Nakazawa et al., 2016) en-
ja translation subtask for WAT 2017 (Nakazawa
et al., 2017), which incorporates a novel trick, em-
bedding layer initialization. This trick improves
upon the vanilla SEQ2SEQ model by initializing
the word embedding layers of both the encoder
and the decoder with word embeddings that are
pretrained on the parallel corpus. Our system in-
volves generating multiple models using SEQ2SEQ

with embedding layer initialization, exhaustively
searching for a combination of models with the
highest ensemble score, and finally, conducting a
beam search on the best ensemble. We achieved a
BLEU score of 38.93 on the ASPEC en-ja trans-
lation task as the team UT-IIS, which outperforms
the state-of-the-art system of WAT 2016.

Furthermore, we have provided insight on NMT
by detailing experiments on the tricks used in our
system. This includes testing embedding layer ini-
tialization with multiple word embedding meth-
ods (§ 5.3.1), a thorough investigation of the point
where increasing the batch size ceases to be ben-
eficial (§ 5.3.2), finding the optimal learning rate
(§ 5.3.3), and investigating the relation between
the number of models used in the ensemble and
translation performance (§ 5.3.4). We believe that
these findings, particularly regarding embedding
layer initialization and practical batch size, can
serve as useful tricks for future neural machine
translation (NMT) systems.

The structure of this paper is as follows. In § 2,
we review related work, and in § 3, we present an
overview of NMT. We describe our system in § 4
and show the official evaluation result and further
investigations in § 5. We conclude our work in § 6.

99



2 Related Work

In this section, we will survey existing techniques
used in NMT systems. We first focus on pretrain-
ing, for which we have proposed a new method,
and then batch size, of which we have confirmed
the effect.

2.1 Pretraining

Training deep neural networks with a relatively
small amount of training data risks creating a
model that performs poorly. One technique used
to minimize this drawback is pretraining of the
model (Hinton et al., 2006; Bengio et al., 2007),
which initializes (part of) the parameters of the
model using parameters of another model.

Pretraining has led to promising results in NLP
tasks using SEQ2SEQ models. In languages with a
small amount of supervised data, it has been found
that NMT results can be improved by transferring
parameters from a high-resource language pair to
a low-resource one (Zoph et al., 2016). Gülçehre
et al. (2015) proposed a method using a combi-
nation of the output probabilities of a language
model trained on large monolingual corpora and
a SEQ2SEQ NMT model, which are both trained
separately. Venugopalan et al. (2016) studied dif-
ferent types of systems combined with a language
model under the video description generation task
and also introduced a method to initialize the em-
bedding layer and the RNN layer of the decoder
of the SEQ2SEQ based model with pretrained pa-
rameters of the language model. They addition-
ally proposed a method to initialize the embedding
layer of the decoder with pretrained GloVe (Pen-
nington et al., 2014) embeddings. Ramachandran
et al. (2017) initializes both the encoder and de-
coder of the SEQ2SEQ model with attention us-
ing language models trained on monolingual, un-
labeled corpus of the source and target domains,
respectively. This led to a significant improvement
over the baseline.

The aforementioned studies, however, demand
a large computational cost for pretraining a com-
plex language model on large external data. Al-
though Ramachandran et al. (2017) has provided
a comparison of a system initialized using a lan-
guage model trained only on the parallel corpus
(in addition to their proposed method) to a base-
line system without initialization, the translation
performance did not improve but rather degraded
with this setting.

Our work investigates the effect of initializing
only the embedding layer using embeddings pre-
trained at low cost from the parallel corpus. We
will later confirm that this initialization leads to a
BLEU score increase of 1.28 (§ 5.3.1).

2.2 Batch Size

Batch size is the number of data points in a mini-
batch, which is a representative portion of the
training data from which the gradient is calcu-
lated at each step in the stochastic gradient descent
(SGD) optimizer (or its variants). In general, the
batch size chosen for deep neural networks ranges
from 32 to 512. It is known that a batch size that is
too large leads to performance degradation in deep
neural networks (Keskar et al., 2017).

Recent studies in NMT have used values such
as 64 (Rush et al., 2015) or 128 (Wu et al., 2016).
While Britz et al. (2017) conducted a thorough in-
vestigation of hyperparameters in NMT, they fixed
batch size to 128. The specific effect of batch size
on NMT was studied by Morishita et al. (2017),
who found that, for batch sizes of 8 to 64, a larger
batch size has a positive impact on model perfor-
mance.

In this study, we seek to empirically clarify the
point where increasing the batch size no longer
improves NMT performance. Our work expands
upon Morishita et al. (2017) and further investi-
gates how NMT performance varies with larger
batch sizes, up to 512.

3 The Vanilla SEQ2SEQ Model

The SEQ2SEQ (or encoder-decoder) model have
been achieving the state-of-the-art in machine
translation (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014). Bah-
danau et al. (2015) further improved this model by
proposing the attention mechanism.

This neural machine translation (NMT) ap-
proach involves an RNN-based encoder that con-
verts the source sentence into vector representa-
tions which are then converted into the output sen-
tence by an RNN-based decoder.

While there are several variations in encoder
implementation, including long-short term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
gated recurrent unit (GRU) (Cho et al., 2014),
and convolutional neural network (CNN) (Gehring
et al., 2017), our system implements a two-layer
bidirectional LSTM for the encoder. A bidirec-
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Figure 1: Basic structure of our system.

tional LSTM consists of a forward LSTM and a
backward LSTM that move from left to right and
right to left respectively to update their hidden
states. The hidden states of the last layer are the
outputs of the encoder which is then fed into the
decoder.

Given the encoder output, the decoder generates
an output sequence. Following Sutskever et al.
(2014) and Bahdanau et al. (2015), we decided to
use a multi-layer LSTM decoder with an attention
mechanism. At each step, an attention mechanism
computes a weighted average of vectors in the en-
coder output, called an attention context vector. A
weight of a hidden state vector is computed using
both itself and the hidden state of the decoder at
that step. In addition to the attention context vec-
tor, the decoder also receives an embedding vec-
tor of the previous output token in order to retain
the information of tokens it has already generated.
These two vectors, an attention context vector and
an embedding vector of the previous output token,
are concatenated and given to the decoder LSTM,
which then generates tokens and updates its state.

4 System Description

Our system implemented two tricks on a vanilla
SEQ2SEQ model implemented by Google (Britz

et al., 2017)1 on Tensorflow2 (ver. 1.0). The
tricks are embedding layer initialization (§ 4.2)
and batch size expansion (§ 4.3).

In what follows, we explain our system in de-
tail. The basic structure of our system is depicted
in Figure 1. The configuration and the default pa-
rameters used in our experiments are described in
§ 5.1 and in Appendix.

4.1 Preprocessing
As for the preprocessing, we basically followed
the description of WAT 2017 Baseline Systems
Data preparation.3 We used scripts included in
Moses toolkit4 (ver. 2.2.1) (Koehn et al., 2007) for
English tokenization and truecasing, and KyTea5

(ver. 0.4.2) (Neubig et al., 2011) for Japanese seg-
mentations.

After the above basic preprocessing, we applied
SentencePiece,6 which is an unsupervised text to-
kenizer and detokenizer, to the corpus. Senten-
cePiece decides token boundaries using raw sen-
tences (a white space is treated as a character)
based on statistical models like character n-grams.
This alleviates the problem of unknown tokens in
a similar manner as using subword units. For this
model, we picked unigram which is a default set-
ting in the given implementation.

4.2 Embedding Layer Initialization
Because of the nature of the neural network model,
each layer in the NMT model can only handle
fixed-length inputs and outputs. Since our model
is an end-to-end NMT model, both the first en-
coder layer and the decoder layer which feeds
the previous output into the decoder accepts a
vocabulary-size-length one-hot vector. In this re-
gard, both layers are embedding layers which con-
vert a one-hot vector into a word embedding vec-
tor.

Usually, all the layers, including embedding
layers, are initialized randomly and trained in the
exact same way. We attempted pretraining of these
embedding layers, initializing them with word em-
beddings from an unsupervised neural language
model trained on the training datasets in the source

1https://google.github.io/seq2seq/
2https://www.tensorflow.org/
3http://lotus.kuee.kyoto-u.ac.jp/WAT/

WAT2017/baseline/dataPreparationJE.html
4http://www.statmt.org/moses/
5http://www.phontron.com/kytea/
6https://github.com/google/

sentencepiece
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and target languages. It is expected that these word
embeddings improve the translation performance
as well as speeding up convergence.

In addition to the original vocabulary, there
are three special tokens in our system, “SE-
QUENCE START,” “SEQUENCE END,” and
“UNK.” The embeddings for the first two tokens
were trained by adding them into the training
dataset before the pretraining procedure. On
the other hand, the embedding for “UNK” was
generated by averaging all the out-of-vocabulary
token embeddings.

Our proposed embedding layer initialization is
a quick and simple trick, but effective on NMT
systems (§ 5.3.1).

4.3 Using Large Batch Size
Gradient descent (GD) computes a gradient of pa-
rameters based on the entire dataset to update the
parameters at each step. While this gives the most
accurate gradient, it is computationally inefficient,
as all data points need to be evaluated.

To overcome this issue, stochastic gradient de-
scent (SGD) and its variants computes a gradient
using a small portion of the dataset, called a mini-
batch. We may consider the gradient computed in
SGD as an expectation of the gradient which is in-
accurate. However, as SGD is faster than GD, we
can execute more steps which leads to better train-
ing in the same amount of time.

The accuracy of a gradient at each step depends
on batch size, the number of samples in a mini-
batch. A larger batch size leads to a more accurate
gradient. The impact of large batch size on the
translation quality will be investigated in § 5.3.2,
in which we found that large batch size improves
the translation significantly up to 256.

4.4 Ensemble
Ensemble of models is a widely used technique
that improves the translation quality. After train-
ing several models, the decoders’ outputs are com-
bined to get the ensemble output. The effective-
ness of ensemble was investigated in Denkowski
and Neubig (2017).

For our system, we implemented a simple aver-
aging ensemble. Let N be the number of mod-
els to ensemble, X = {x1, x2, · · · , xTx} and
Y = {y1, y2, · · · , yTy} be the source and target
sequences respectively, and pn(w|X,Y:j−1) be the
probability of word w of the nth model at step j,
where Y:j−1 denotes the first j − 1 tokens in the

sequence Y . Then, the probability of word w is
determined by taking the average of all models.

p(w|X,Y:j−1) =
1
N

N∑
n=1

pn(w|X,Y:j−1)

Each model is independently trained in the
training phase and the decoders’ outputs are
combined in the prediction phase. This sim-
ple technique gave us a significant BLEU score
boost (§ 5.3.4).

4.5 Beam Search
Another technique to improve the translation qual-
ity is a beam search. The objective of translation
system is

Ŷ = arg max
Y ∈Y

p(Y |X)

where Y is the set of all possible translations and
X is the input sequence. However, Y is such a
huge set that computing p(Y |X) for all Y ∈ Y is
not realistic. A simple solution to this problem is
to decide yj to be

yj = arg max
w∈V

p(w|X,Y:j−1).

This algorithm is called a greedy search. A greedy
search algorithm is fast but may miss the best out-
put sequence if the early portion of the sequence
has a low probability.

The beam search algorithm addresses this issue
by keeping multiple possible hypotheses, which
are incomplete output sequences (Boulanger-
Lewandowski et al., 2013). At each step, the top
l hypotheses with the highest scores are kept for
the next step. When every hypothesis terminates
with an EOS token, the hypothesis with the high-
est score is chosen as the final result.

The beam search algorithm favors shorter se-
quences on average because a longer sequence
tends to have a lower probability, p(Y |X).

To overcome this problem, Wu et al. (2017) pro-
posed a length penalty which gives advantages to
longer sentences. With a length penalty, the score
of a sequence Y given a source sequence X is
computed by

score(Y |X) =
log(P (Y |X))

lp(Y )

lp(Y ) =
(5 + |Y |)α
(5 + 1)α

where α is a hyperparameter.
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Train Dev Test
en ja en ja en ja

# sentences 1,783,817 1790 1812
Ave. # tokens 31.08 33.13 31.06 34.58 30.69 34.03

Table 1: Details of corpus after preprocessing.

5 Evaluation

In this section, we report the default configuration
of our system (§ 5.1) and the official evaluation re-
sult of our system for ASPEC English to Japanese
translation subtask (§ 5.2). Furthermore, we report
several other experiments that aim to show the ef-
fects of our tricks (§ 5.3).

5.1 Setup
The following settings are used as our default con-
figuration in the experiments and the final sys-
tem, unless otherwise noted. We use a two-layer
bidirectional LSTM with dropout on input with
p = 0.8 for the encoder, and a four-layer LSTM
with the same dropout settings for the decoder.
The number of units in hidden layers and the em-
bedding dimension are set to 512. Adam (Kingma
and Ba, 2015) is used for the optimizer, with a
learning rate of 0.0001 and batch size is set to 256.

The vocabulary size after SentencePiece pre-
processing is 16,000. The number of sentences
and the average number of tokens after preprocess-
ing in a single sentence are shown in Table 1.

As the default embedding method for embed-
ding layer initializaion, we use Continuous Bag of
Words (CBOW) (Mikolov et al., 2013) with win-
dow size of 5. We use word2vec (ver. 1.0)7 with
default parameters, except for the embedding di-
mension which was changed to 512. We train
the word embeddings using only the preprocessed
training dataset, in which both languages are con-
catenated to share the source and target vocabu-
lary. All other layers were initialized randomly
using uniform distribution.

We train the model for 200,000 steps, and at ev-
ery 2000 steps during training, the current model
is saved as a “checkpoint.” When the training is
done, all the checkpoints are evaluated using a
greedy search algorithm on the development cor-
pus. Only the checkpoint with the highest BLEU
score is used for all of the following experiments
and our final translation system. If the checkpoint
with the highest BLEU score is at or near 200,000

7https://github.com/svn2github/
word2vec

ID Hyperparameters Dev Test
batch hidden learning greedy beam greedy beam
size layer rate

1 256 256 0.0001 34.22 35.65 34.40 35.54
2 256 384 0.0001 35.32 36.74 34.85 36.28
3 256 512 0.0001 35.22 36.48 34.81 36.29
4 256 512 0.0002 35.19 36.43 34.29 35.60
5 256 512 0.0005 34.40 36.08 34.19 35.57
6 256 768 0.0001 34.78 36.37 34.70 35.92
7 256 768 0.0002 34.97 36.46 34.88 36.43
8* 512 512 0.0001 34.62 36.61 34.68 36.35
9* 512 768 0.0001 34.31 36.42 34.28 35.97

10* 800 512 0.0001 30.05 33.73 29.35 33.36
Average 34.31 36.10 34.04 35.73
Best ensemble

(2, 3, 4, 5, 6, 8, 9, 10) 38.00 39.03 37.40 38.93

Table 2: List of models trained for use in ensemble
(* 200k steps unattained due to time constraints).

steps (we define this as larger than 190,000 steps),
we regard this model as not having converged, and
will be identified as such in the results.

For all evaluations, KyTea segmentation was
used to compute the BLEU score. For a prediction
with the beam search algorithm, we used beam
width of 128 except in our final system, which we
used 256. For length penalty, we choose α = 1
after parameter turning. Detailed settings are pro-
vided in the Appendix.

5.2 Official Evaluation Result
This section briefly explains how we built our fi-
nal system and its result for the ASPEC English to
Japanese translation subtask. We trained ten mod-
els with different hyperparameters which are listed
in Table 2. For these models, we evaluated ev-
ery possible ensemble combination using greedy
search on the development corpus.8 We chose
the ensemble combination with the highest BLEU
score to make prediction on the test corpus using a
beam search algorithm. Consequently, we chose
an ensemble of eight models, which achieved a
BLEU score of 38.93 and an official human eval-
uation score of 68.000.

5.3 Further Investigations
In addition to the official evaluation, we conducted
several other experiments. This section reports re-
sults and analyses of these experiments. We first
confirm the impact of the embedding layer initial-
ization, and then compare several word embed-
ding methods (§ 5.3.1). Next, we investigate the

8Due to GPU memory limitations, three combinations are
not evaluated: (2, 3, 4, 5, 6, 7, 8, 9, 10), (1, 3, 4, 5, 6, 7, 8, 9,
10), and (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).
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Figure 2: Training curve for models with different
initialization methods. Arrows indicate the steps
that achieved the best BLEU score on develop-
ment data.

effect of batch size (§ 5.3.2). We then conduct
experiments to discover the optimal learning rate
when our initialization trick is employed (§ 5.3.3).
Lastly, we examine the relation between the num-
ber of models used in the ensemble and translation
performance (§ 5.3.4).

5.3.1 Impact of Embedding Layer
Initialization

We first investigated the impact of our embedding
layer initialization. The embeddings for the ini-
tialization are trained only on the training dataset
of ASPEC using word2vec with CBOW and win-
dow size of 5. The question here is whether or not
initialization with those word embeddings which
were trained without any external data, by a task-
independent, unsupervised method, improves the
NMT model. In these experiments, the greedy
search algorithm was used in order to obtain the
training curve, as there are too many checkpoints
to be evaluated by a beam search.

Figure 2 shows the training curve of three mod-
els, one initialized using CBOW, and the rest ini-
tialized randomly, with one using a Gaussian dis-
tribution, and the other a uniform distribution. The
best score of the model with the CBOW initializa-
tion is 35.50 at step 138,000, and the best score
of the model with random initialization is 34.20
with the Gaussian distribution at step 186,000. We
observed that embedding layer initialization im-
proves both the translation performance and the
convergence time, increasing the former and de-
creasing the latter. Along with the following batch

Initialization Window Greedy Beam ∆

Random (Gaussian) - 34.20 35.57 -
Random (Uniform) - 33.71 35.02 −0.55

2 34.97 36.38 +0.81
CBOW 5 35.50 36.85 +1.28

10 35.25 36.57 +1.00
2 34.17 35.90 +0.33

Skip-gram 5 34.44 36.04 +0.47
10 34.38 36.00 +0.43
2 34.04 35.16 −0.41

SI-Skip-gram 5 34.44 35.91 +0.34
10 34.33 35.69 +0.12
2 34.50 36.01 +0.44

GloVe 5 34.58 35.86 +0.29
10 33.98 35.39 −0.18
15 34.35 36.00 +0.43

Table 3: Translation performance by embedding
methods and window size. Evaluation is done on
development dataset.

size experiment in § 5.3.2, the same experiment
was done (using the greedy search algorithm) with
batch sizes of 32, 64, 128, and 512, and this effect
was observed across all batch sizes.

The results indicate that embedding layer ini-
tialization works in our NMT model, even though
the embeddings are generated by CBOW, which is
a totally task-irrelevant method.

Since we confirmed the effectiveness of our
embedding layer initialization, we then investi-
gate the effect of different embedding methods on
translation performance. There are various meth-
ods other than CBOW to create word embeddings.
Mikolov et al. (2013) proposed Skip-gram. Pen-
nington et al. (2014) proposed another method
called GloVe. Bojanowski et al. (2017) proposed
Subword Information Skip-gram (SI-Skip-gram)
that utilizes morphological information by includ-
ing character n-grams of words in the model.

These methods train word embeddings using
windows that obtain co-occurrences of neighbor-
ing words. It is known that a smaller window size
leads to more syntactic embeddings and a larger
one leads to more semantic embeddings (Lin and
Wu, 2009; Levy and Goldberg, 2014).

The question is: which embedding method and
window size yield the best results for the trans-
lation task when used to initialize the embedding
layer? To answer this question, we trained 13
models using CBOW, Skip-gram, Subword In-
formation Skip-gram (SI-Skip-gram), and GloVe,
with window sizes of 2, 5, and 10, as well as a win-
dow size of 15 with GloVe, as this was its default
value. For implementations of CBOW and Skip-
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Figure 3: Translation performance by initializa-
tion and batch size. The values in the parentheses
indicate the step that resulted in the best BLEU
score on development data.

gram, we used word2vec (ver. 1.0). For GloVe and
SI-Skip-gram, we used GloVe (ver 1.2)9 and fast-
text (ver. 1.0),10 respectively.

The results are shown in Table 3. Most of the
embedding methods outperformed random initial-
ization by Gaussian distribution. This confirms
the effectiveness of embedding layer initialization.
Among those embedding methods, CBOW yields
the best BLEU score of 35.50 for greedy search
and 36.85 for beam search. For the window sizes,
we found that each method has a different window
size that yields the best result. Given this result,
we decided to use CBOW with window size of 5
as our default setting.

5.3.2 Impact of Large Batch Size
We used the mini-batch method to train the net-
work. While Morishita et al. (2017) investigated
the effect of large batch size up to 64, it is unclear
how an even larger batch size will impact transla-
tion performance. To evaluate this, we conducted
experiments with different batch sizes.

Figure 3 confirms our idea and shows that, up
until 256,11 a larger batch size results in a better
BLEU score, indicating that batch size has a sig-
nificant impact on translation performance. The

9https://github.com/stanfordnlp/GloVe
10https://github.com/facebookresearch/

fastText
11Initialized randomly by uniform distribution, the mod-

els achieved BLEU scores of 35.02 and 36.15 for batch sizes
256 and 512 respectively, and are seemingly still improving.
However, we think this is within fluctuation range caused by
random initialization.
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Figure 4: Training curve for different learning
rates. Arrows indicate the steps that achieved the
best BLEU score on development data.

significance of the results are surprising, given the
trick’s simplicity.

When using this trick in NMT systems, it is im-
portant to recognize the tradeoff between trans-
lation performance and the memory and time re-
quired. In terms of the required memory, we were
able to conduct the experiments up to a batch size
of 256 on a server with 12GB of GPU memory,
but a server with 24GB of GPU memory was re-
quired for experiments with a batch size of 512.
Also, when we compared the time required to
reach 200,000 steps when trained with batch sizes
of 128 and 256, which were both trained on the
same server, the larger batch size took 1.57 times
as much time. The steps needed to reach the max-
imum BLEU score on development set became
larger as the batch size increases, which indicates
slower convergence with the larger batch size.

With the above factors taken into consideration,
a batch size of 256 is a practical choice, and we
can also expect an additive effect in translation
quality by the use of CBOW initialization.

5.3.3 Impact of Learning Rate
An improperly large learning rate changes the val-
ues of each layers in a neural network drastically.
Since we hypothesize that the pretrained embed-
dings have well-adjusted values, a drastic change
in these values would spoil the effect of embed-
ding layer initialization. To confirm this hypoth-
esis, we compared four different learning rates of
[0.01, 0.001, 0.0001, 0.00001] with the same con-
figuration including initialization method.

Figure 4 shows the training curve of these four
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Figure 5: Performance of ensemble. As a beam
search is costly, a greedy search was used.

different models. A learning rate of 0.01 per-
formed abysmally, not only in terms of the worst
best score but also in terms of the unstable training
curve. The neural network could not be success-
fully trained at this learning rate. With the learn-
ing rate less than or equal to 0.001, the training
curve becomes stable and the best score marks a
reasonable value. A learning rate of 0.001 resulted
in the best score of 33.99 at step 42,000, which
is good and fast enough. As expected, a learning
rate of 0.0001 raised the best score to 35.50 at step
138,000, which is 1.51 higher than the score with a
learning rate of 0.001, but at a much later step. The
best score for learning rate of 0.00001 was 29.92
at step 198,000, but the model did not converge.

It is difficult to confirm our hypothesis that
smaller learning rate is always better for keeping
the well-adjusted values by the initialization, with
the above results. However, considering the fact
that the time spent on training is limited, we be-
lieve 0.0001 to be the most practical learning rate
among them, because it marked a score almost 1.0
higher than the second best one.

5.3.4 Ensemble Strategy
It is known that ensemble technique improves
translation (Denkowski and Neubig, 2017). The
intuition is that the larger the number of models is,
the better the translation will be. To test this hy-
pothesis, we exhaustively compared the results of
ensembles with a different number of models.

The ten models from Table 2 were used for this
experiment. We evaluated ensembles of all possi-
ble combinations. As mentioned in the footnote in
§ 5.2, three combinations are omitted because of

the memory limitation, which yielded 1,020 com-
binations in total.

The result is reported in Figure 5. We can see
the positive correlation between number of models
used in the ensemble and the performance. How-
ever, as the number of models gets bigger, the ef-
fect of adding models gets smaller; the difference
between a single model and two model ensemble
is significant, but the difference between an eight
model ensemble and a nine model ensemble is not
so evident.

6 Conclusion

We have described the translation system, experi-
ments, and the results of the team UT-IIS. As for
the result of our system on the ASPEC En-Ja task,
we were able to achieve a BLEU score of 38.93,
which is higher than the score for the state-of-the-
art system of WAT 2016. This reflects the effec-
tiveness of our word embedding layer initializa-
tion technique, when combined with model en-
semble and a beam search on the vanilla SEQ2SEQ

model. Our findings are as follows:

• Embedding layer initialization technique us-
ing only the parallel corpus improves transla-
tion quality (§ 5.3.1).

• Embedding layer initialization trick with
CBOW works the best (§ 5.3.1).

• Benefits of a larger batch size reached satu-
ration at 256, and we believe this to be the
practical setting (§ 5.3.2).

• A learning rate of 0.0001 is both good and
fast enough to be practical with the initializa-
tion trick (§ 5.3.3).

• Ensemble of many models improves transla-
tion quality significantly (§ 5.3.4).

We believe that the embedding layer initializa-
tion technique, as well as the insights gained from
our experiments, will contribute to the improve-
ment of NMT when used in combination with
other novel techniques.

We have published our code on https://
github.com/nem6ishi/wat17.
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model AttentionSeq2Seq
model params

attention.class seq2seq.decoders.attention.AttentionLayerBahdanau
attention.params

num units 512
bridge.class seq2seq.models.bridges.ZeroBridge
embedding.dim 512
encoder.class seq2seq.encoders.BidirectionalRNNEncoder
encoder.params

rnn cell
cell class LSTMCell
cell params

num units 512
dropout input keep prob 0.8
dropout output keep prob 1.0
num layers 2

decoder.class seq2seq.decoders.AttentionDecoder
decoder.params

rnn cell
cell class LSTMCell
cell params

num units 512
dropout input keep prob 0.8
dropout output keep prob 1.0
num layers 4

optimizer.name Adam
optimizer.params

epsilon 0.0000008
optimizer.learning rate 0.0001
source.max seq len 50
source.reverse false
target.max seq len 50

Table 4: Configuration of seq2seq model.

A Hyperparameters and configuration

Table 4 lists the default hyperparameters and con-
figuration for our system, which is built based
on Google’s implementation of the SEQ2SEQ

model (Britz et al., 2017).
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Abstract

Neural machine translation (NMT) can-
not handle a larger vocabulary because
the training complexity and decoding
complexity proportionally increase with
the number of target words. This prob-
lem becomes even more serious when
translating patent documents, which
contain many technical terms that are
observed infrequently. Long et al. (2017)
proposed to select phrases that contain
out-of-vocabulary words using the sta-
tistical approach of branching entropy.
The selected phrases are then replaced
with tokens during training and post-
translated by the phrase translation table
of SMT. In this paper, we apply the
method proposed by Long et al. (2017)
to the WAT 2017 Japanese-Chinese
and Japanese-English patent datasets.
Evaluation on Japanese-to-Chinese,
Chinese-to-Japanese, Japanese-to-English
and English-to-Japanese patent sentence
translation proved the effectiveness of
phrases selected with branching en-
tropy, where the NMT model of Long
et al. (2017) achieves a substantial im-
provement over a baseline NMT model
without the technique proposed by Long
et al. (2017).

1 Introduction

Neural machine translation (NMT), a new
approach to solving machine translation, has
achieved promising results (Bahdanau et al.,
2015; Cho et al., 2014; Jean et al., 2014;
Kalchbrenner and Blunsom, 2013; Luong et al.,
2015a,b; Sutskever et al., 2014). An NMT system
builds a simple large neural network that reads

the entire input source sentence and generates
an output translation. The entire neural network
is jointly trained to maximize the conditional
probability of the correct translation of a source
sentence with a bilingual corpus. Although
NMT offers many advantages over traditional
phrase-based approaches, such as a small memory
footprint and simple decoder implementation,
conventional NMT is limited when it comes to
larger vocabularies. This is because the training
complexity and decoding complexity proportion-
ally increase with the number of target words.
Words that are out of vocabulary are represented
by a single “〈unk〉” token in translations, as
illustrated in Figure 1. The problem becomes
more serious when translating patent documents,
which contain several newly introduced technical
terms.
There have been a number of related studies

that address the vocabulary limitation of NMT
systems. Jean et al. (2014) provided an efficient
approximation to the softmax function to accom-
modate a very large vocabulary in an NMT sys-
tem. Luong et al. (2015b) proposed annotating
the occurrences of the out-of-vocabulary token in
the target sentence with positional information to
track its alignments, after which they replace the
tokens with their translations using simple word
dictionary lookup or identity copy. Li et al. (2016)
proposed replacing out-of-vocabulary words with
similar in-vocabulary words based on a similarity
model learnt from monolingual data. Sennrich et
al. (2016) introduced an effective approach based
on encoding rare and out-of-vocabulary words as
sequences of subword units. Luong and Manning
(2016) provided a character-level and word-level
hybrid NMT model to achieve an open vocabu-
lary, and Costa-jussà and Fonollosa (2016) pro-
posed an NMT system that uses character-based
embeddings.
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Figure 1: Example of translation errors when translating patent sentences with technical terms using
NMT

However, these previous approaches have lim-
itations when translating patent sentences. This
is because their methods only focus on address-
ing the problem of out-of-vocabulary words even
though the words are parts of technical terms. It
is obvious that a technical term should be con-
sidered as one word that comprises components
that always have different meanings and trans-
lations when they are used alone. An exam-
ple is shown in Figure 1, where the Japanese
word “ ”(bridge) should be translated to Chi-
nese word “ ” when included in technical term
“bridge interface”; however, it is always translated
as “ ”.

To address this problem, Long et al. (2016)
proposed extracting compound nouns as techni-
cal terms and replacing them with tokens. Long
et al. (2017) proposed to select phrase pairs us-
ing the statistical approach of branching entropy;
this allows the proposed technique to be applied to
the translation task on any language pair without
needing specific language knowledge to formulate
the rules for technical term identification. In this
paper, we apply the method proposed by Long et
al. (2017) to the WAT 2017 Japanese-Chinese and
Japanese-English patent datasets. On the WAT
2017 Japanese-Chinese JPO patent dataset, the
NMT model of Long et al. (2017) achieves an
improvement of 1.4 BLEU points over a baseline
NMT model when translating Japanese sentences
into Chinese, and an improvement of 0.8 BLEU
points when translating Chinese sentences into
Japanese. On the WAT 2017 Japanese-English
JPO patent dataset, the NMT model of Long et
al. (2017) achieves an improvement of 0.8 BLEU
points over a baseline NMT model when trans-
lating Japanese sentences into English, and an
improvement of 0.7 BLEU points when trans-
lating English sentences into Japanese. More-

over, the number of translation error of under-
translations1 by PosUnk model proposed by Lu-
ong et al. (2015b) reduces to around 30% by the
NMT model of Long et al. (2017).

2 Neural Machine Translation

NMT uses a single neural network trained
jointly to maximize the translation perfor-
mance (Bahdanau et al., 2015; Cho et al., 2014;
Kalchbrenner and Blunsom, 2013; Luong et al.,
2015a; Sutskever et al., 2014). Given a source sen-
tence x = (x1, . . . , xN ) and target sentence y
= (y1, . . . , yM ), an NMTmodel uses a neural net-
work to parameterize the conditional distributions

p(yz | y<z,x)

for 1 ≤ z ≤ M . Consequently, it becomes pos-
sible to compute and maximize the log probability
of the target sentence given the source sentence as

log p(y | x) =
M∑
l=1

log p(yz|y<z,x)

In this paper, we use an NMT model
similar to that used by Bahdanau et
al. (2015), which consists of an encoder
of a bidirectional long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
and another LSTM as decoder. In the model
of Bahdanau et al. (2015), the encoder consists
of forward and backward LSTMs. The forward
LSTM reads the source sentence as it is ordered
(from x1 to xN ) and calculates a sequence of
forward hidden states, while the backward LSTM
reads the source sentence in the reverse order

1 It is known that NMT models tend to have the prob-
lem of the under-translation. Tu el al. (2016) proposed
coverage-based NMT which considers the problem of the
under-translation.
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(from xN to x1) , resulting in a sequence of back-
ward hidden states. The decoder then predicts
target words using not only a recurrent hidden
state and the previously predicted word but also a
context vector as followings:

p(yz | y<z,x) = g(yz−1, sz−1, cz)

where sz−1 is an LSTM hidden state of decoder,
and cz is a context vector computed from both
of the forward hidden states and backward hidden
states, for 1 ≤ z ≤ M .

3 Phrase Pair Selection using Branching
Entropy

Branching entropy has been applied to
the procedure of text segmentation (e.g.,
(Jin and Tanaka-Ishii, 2006)) and key phrases
extraction (e.g., (Chen et al., 2010)). In this work,
we use the left/right branching entropy to detect
the boundaries of phrases, and thus select phrase
pairs automatically.

3.1 Branching Entropy
The left branching entropy and right branching en-
tropy of a phrase w are respectively defined as

Hl(w) = −
∑

v∈V w
l

pl(v) log2 pl(v)

Hr(w) = −
∑

v∈V w
r

pr(v) log2 pr(v)

where w is the phrase of interest (e.g.,
“ / ” in the Japanese sen-
tence shown in Figure 1, which means “bridge
interface”), V w

l is a set of words that are adjacent
to the left of w (e.g., “ ” in Figure 1, which is
a Japanese particle) and Vw

r is a set of words
that are adjacent to the right of w (e.g., “388” in
Figure 1). The probabilities pl(v) and pr(v) are
respectively computed as

pl(v) =
fv,w
fw

pr(v) =
fw,v

fw
(1)

where fw is the frequency count of phrase w,
and fv,w and fw,v are the frequency counts of
sequence “v,w” and sequence “w,v” respectively.
According to the definition of branching entropy,
when a phrasew is a technical term that is always
used as a compound word, both its left branch-
ing entropy Hl(w) and right branching entropy
Hr(w) have high values because many different

words, such as particles and numbers, can be adja-
cent to the phrase. However, the left/right branch-
ing entropy of substrings ofw have low values be-
cause words contained inw are always adjacent to
each other.

3.2 Selecting Phrase Pairs

Given a parallel sentence pair 〈Ss, St〉, all n-grams
phrases of source sentence Ss and target sentence
St are extracted and aligned using phrase transla-
tion table and word alignment of SMT according
to the approaches described in Long et al. (2016).
Next, phrase translation pair 〈ts, tt〉 obtained from
〈Ss, St〉 that satisfies all the following conditions
is selected as a phrase pair and is extracted:

(1) Either ts or tt contains at least one out-of-
vocabulary word.

(2) Neither ts nor tt contains predetermined stop
words.

(3) Entropies Hl(ts), Hl(tt), Hr(ts) and Hr(tt)
are larger than a lower bound, while the
left/right branching entropy of the substrings
of ts and tt are lower than or equal to the
lower bound.

Here, the maximum length of a phrase as well
as the lower bound of the branching entropy are
tuned with the validation set.2 All the selected
source-target phrase pairs are then used in the next
section as phrase pairs.

4 NMT with a Large Phrase Vocabulary

In this work, the NMT model is trained on a bilin-
gual corpus in which phrase pairs are replaced
with tokens. The NMT system is then used as a de-
coder to translate the source sentences and replace
the tokens with phrases translated using SMT.

2 Throughout the evaluations on patent translation of both
language pairs of Japanese-Chinese and Japanese-English,
the maximum length of the extracted phrases is tuned as 7.
The lower bounds of the branching entropy are tuned as 5 for
patent translation of the language pair of Japanese-Chinese,
and 8 for patent translation of the language pair of Japanese-
English. We also tune the number of stop words using the
validation set, and use the 200 most-frequent Japanese mor-
phemes and Chinese words as stop words for the language
pair of Japanese-Chinese, use the 100 most-frequent Japanese
morphemes and English words as stop words for the language
pair of Japanese-English.
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Figure 2: NMT training after replacing phrase pairs with token pairs 〈Ts
i , T t

i 〉 (i = 1, 2, . . .)

4.1 NMT Training after Replacing Phrase
Pairs with Tokens

Figure 2 illustrates the procedure for training the
model with parallel patent sentence pairs in which
phrase pairs are replaced with phrase token pairs
〈T s

1 , T t
1〉, 〈T s

2 , T t
2〉, and so on.

In the step 1 of Figure 2, source-target phrase
pairs that contain at least one out-of-vocabulary
word are selected from the training set using
the branching entropy approach described in Sec-
tion 3.2. As shown in the step 2 of Fig-
ure 2, in each of the parallel patent sentence
pairs, occurrences of phrase pairs 〈ts1, tt1〉, 〈ts2, tt2〉,
. . ., 〈tsk, ttk〉 are then replaced with token pairs
〈T s

1 , T t
1〉, 〈T s

2 , T t
2〉, . . ., 〈T s

k , T t
k〉. Phrase pairs

〈ts1, tt1〉, 〈ts2, tt2〉, . . ., 〈tsk, ttk〉 are numbered in the
order of occurrence of the source phrases ts1 (i =
1, 2, . . . , k) in each source sentence Ss. Here note
that in all the parallel sentence pairs 〈Ss, St〉, the
tokens pairs 〈Ts

1 , T t
1〉, 〈T s

2 , T t
2〉, . . . that are iden-

tical throughout all the parallel sentence pairs are
used in this procedure. Therefore, for example, in
all the source patent sentences Ss, the phrase ts1
which appears earlier than other phrases in Ss is
replaced with Ts

1 . We then train the NMT model
on a bilingual corpus, in which the phrase pairs are
replaced by token pairs 〈Ts

i , T t
i 〉 (i = 1, 2, . . .),

and obtain an NMT model in which the phrases
are represented as tokens.

4.2 NMT Decoding and SMT Phrase
Translation

Figure 3 illustrates the procedure for produc-
ing target translations by decoding the input
source sentence using the NMT model of Long et
al. (2017).
In the step 1 of Figure 3, when given an in-

put source sentence, we first generate its transla-

Table 1: Statistics of datasets
training validation test
set set set

ja↔ ch 998,054 2,000 2,000
ja↔ en 999,636 2,000 2,000

tion by decoding of SMT translation model. Next,
as shown in the step 2 of Figure 3, we automati-
cally extract the phrase pairs by branching entropy
according to the procedure of Section 3.2, where
the input sentence and its SMT translation are
considered as a pair of parallel sentence. Phrase
pairs that contains at least one out-of-vocabulary
word are extracted and are replaced with phrase
token pairs 〈Ts

i , T t
i 〉 (i = 1, 2, . . .). Consequently,

we have an input sentence in which the tokens
“T s

i ” (i = 1, 2, . . .) represent the positions of the
phrases and a list of SMT phrase translations of
extracted Japanese phrases. Next, as shown in the
step 3 of Figure 3, the source Japanese sentence
with tokens is translated using the NMT model
trained according to the procedure described in
Section 4.1. Finally, in the step 4, we replace
the tokens “T t

i ” (i = 1, 2, . . .) of the target sen-
tence translation with the phrase translations of the
SMT.

5 Evaluation

5.1 DataSets
We evaluated the effectiveness of the NMT model
of Long et al. (2017) on the WAT 2017 Japanese-
Chinese and Japanese-English JPO dataset.3 Out
of the training set of the WAT 2017 Japanese-
Chinese JPO dataset, we used 998,954 patent sen-
tence pairs, whose Japanese sentences contain

3 http://lotus.kuee.kyoto-u.ac.jp/WAT/
patent/index.html
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Figure 3: NMT decoding with tokens “Ts
i ” (i = 1, 2, . . .) and the SMT phrase translation

fewer than 100 morphemes, Chinese sentences
contain fewer than 100 words. Out of the train-
ing set of the WAT 2017 Japanese-English JPO
dataset, we used 999,636 sentence pairs whose
Japanese sentences contain fewer than 100 mor-
phemes and English sentences contain fewer than
100 words. In both cases, we used all of the sen-
tence pairs contained in the development sets of
the WAT 2017 JPO datasets as development sets,
and we used all of the sentence pairs contained in
the test sets of the WAT 2017 JPO datasets as test
sets. Table 1 show the statistics of the dataset.

According to the procedure of Section 3.2,
from the Japanese-Chinese sentence pairs of the
training set, we collected 102,630 occurrences of
Japanese-Chinese phrase pairs, which are 69,387
types of phrase pairs with 52,786 unique types
of Japanese phrases and 67,456 unique types of
Chinese phrases. Within the total 2,000 Japanese
patent sentences in the Japanese-Chinese test set,
266 occurrences of Japanese phrases were ex-
tracted, which correspond to 247 types. With
the total 2,000 Chinese patent sentences in the
Japanese-Chinese test set, 417 occurrences of Chi-
nese phrases were extracted, which correspond to
382 types.

From the Japanese-English sentence pairs of the
training set, we collected 38,457 occurrences of
Japanese-English phrase pairs, which are 35,544
types of phrase pairs with unique 34,569 types
of Japanese phrases and 35,087 unique types of
English phrases. Within the total 2,000 Japanese
patent sentences in the Japanese-English test set,
249 occurrences of Japanese phrases were ex-
tracted, which correspond to 221 types. With
the total 2,000 English patent sentences in the

Japanese-English test set, 246 occurrences of En-
glish phrases were extracted, which correspond to
230 types.

5.2 Training Details
For the training of the SMT model, including the
word alignment and the phrase translation table,
we used Moses (Koehn et al., 2007), a toolkit for
phrase-based SMT models. We trained the SMT
model on the training set and tuned it with the val-
idation set.
For the training of the NMT model, our train-

ing procedure and hyperparameter choices were
similar to those of Bahdanau et al. (2015). The
encoder consists of forward and backward deep
LSTM neural networks each consisting of three
layers, with 512 cells in each layer. The decoder
is a three-layer deep LSTM with 512 cells in each
layer. Both the source vocabulary and the target
vocabulary are limited to the 40K most-frequently
used morphemes / words in the training set. The
size of the word embedding was set to 512. We
ensured that all sentences in a minibatch were
roughly the same length. Further training details
are given below: (1) We set the size of a minibatch
to 128. (2) All of the LSTM’s parameter were
initialized with a uniform distribution ranging be-
tween -0.06 and 0.06. (3) We used the stochas-
tic gradient descent, beginning at a fixed learning
rate of 1. We trained our model for a total of 10
epochs, and we began to halve the learning rate
every epoch after the first seven epochs. (4) Simi-
lar to Sutskever et al.(2014), we rescaled the nor-
malized gradient to ensure that its norm does not
exceed 5. We trained the NMT model on the train-
ing set. The training time was around two days
when using the described parameters on a 1-GPU
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Table 2: Automatic evaluation results (BLEU)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline SMT (Koehn et al., 2007) 30.0 36.2 28.0 29.4
Baseline NMT 34.2 40.8 43.1 41.8
NMT with PosUnk model (Luong et al., 2015b) 34.5 41.0 43.5 42.0
NMT with phrase translation by SMT 35.6 41.6 43.9 42.5(Long et al., 2017)

Table 3: Human evaluation results of pairwise evaluation
System ja→ ch ch→ ja ja→ en en→ ja
NMT with PosUnk model (Luong et al., 2015b) 13 12.5 9.5 14.5
NMT with phrase translation by SMT 23.5 22.5 15.5 19(Long et al., 2017)

machine.
We compute the branching entropy using the

frequency statistics from the training set.

5.3 Evaluation Results

In this work, we calculated automatic evaluation
scores for the translation results using a popular
metrics called BLEU (Papineni et al., 2002). As
shown in Table 2, we report the evaluation scores,
using the translations by Moses (Koehn et al.,
2007) as the baseline SMT and the scores using
the translations produced by the baseline NMT
system without the approach proposed by Long
et al. (2017) as the baseline NMT. As shown in
Table 2, the BLEU score obtained by the NMT
model of Long et al. (2017) is clearly higher than
those of the baselines. Here, as described in Sec-
tion 3, the lower bounds of branching entropy
for phrase pair selection are tuned as 5 through-
out the evaluation of language pair of Japanese-
Chinese, and tuned as 8 throughout the evalua-
tion of language pair of Japanese-English, respec-
tively. On the WAT 2017 Japanese-Chinese JPO
patent dataset, when compared with the baseline
SMT, the performance gains of the NMT model
of Long et al. (2017) are approximately 5.6 BLEU
points when translating Japanese into Chinese and
5.4 BLEUwhen translating Chinese into Japanese.
On the WAT 2017 Japanese-English JPO patent
dataset, when compared with the baseline SMT,
the performance gains of the NMT model of Long
et al. (2017) are approximately 15.9 BLEU points
when translating Japanese into English and 13.1
BLEU when translating English into Japanese.

When compared with the result of the baseline
NMT, the NMT model of Long et al. (2017)
achieved performance gains of 1.4 BLEU points
on the task of translating Japanese into Chinese
and 0.8 BLEU points on the task of translating
Chinese into Japanese. When compared with the
result of the baseline NMT, the NMT model of
Long et al. (2017) achieved performance gains
of 0.8 BLEU points on the task of translating
Japanese into English and 1.4 BLEU points on the
task of translating English into Japanese.

Furthermore, we quantitatively compared our
study with the work of Luong et al. (2015b). Ta-
ble 2 compares the NMT model with the Po-
sUnk model, which is the best model proposed by
Luong et al. (2015b) The NMT model of Long
et al. (2017) achieves performance gains of 0.9
BLEU points when translating Japanese into Chi-
nese, and performance gains of 0.6 BLEU points
when translating Chinese into Japanese. The
NMT model of Long et al. (2017) achieves per-
formance gains of 0.4 BLEU points when translat-
ing Japanese into English, and performance gains
of 0.5 BLEU points when translating English into
Japanese

In this study, we also conducted two types
of human evaluations according to the work of
Nakazawa et al. (2015): pairwise evaluation and
JPO adequacy evaluation. In the pairwise eval-
uation, we compared each translation produced
by the baseline NMT with that produced by the
NMT model of Long et al. (2017) as well as
the NMT model with PosUnk model, and judged
which translation is better or whether they have
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Table 4: Human evaluation results of JPO adequacy evaluation
System ja→ ch ch→ ja ja→ en en→ ja
Baseline SMT (Koehn et al., 2007) 3.1 3.2 2.9 3.0
Baseline NMT 3.6 3.6 3.7 3.7
NMT with PosUnk model (Luong et al., 2015b) 3.8 3.9 3.9 3.9
NMT with phrase translation by SMT 4.1 4.1 4.2 4.1(Long et al., 2017)

Table 5: Evaluation results from WAT 2017
Evaluation System ja→ ch ch→ ja ja→ en en→ ja
Automatic Baseline (PBSMT) 32.1 38.5 30.8 34.3
evaluation NMT with phrase translation by SMT 33.2 40.5 37.3 41.1(BLEU) (Long et al., 2017)
Pairwise NMT with phrase translation by SMT 21.8 40.1 51.5 49.5evaluation (Long et al., 2017)
JPO adequacy NMT with phrase translation by SMT 4.1 3.9 4.2 4.3evaluation (Long et al., 2017)

comparable quality. In contrast to the study con-
ducted by Nakazawa et al. (2015), we randomly
selected 200 sentence pairs from the test set for hu-
man evaluation, and both human evaluations were
conducted using only one judgement. Table 3 and
Table 4 show the results of the human evalua-
tion for the baseline SMT, baseline NMT, NMT
model with PosUnk model, and the NMT model
of Long et al. (2017). We observe that the NMT
model of Long et al. (2017) achieves the best per-
formance for both the pairwise and JPO adequacy
evaluations when we replace the tokens with SMT
phrase translations after decoding the source sen-
tence with the tokens.
Moreover, Table 5 shows the results of

automatic evaluation, pairwise evaluation
and JPO adequacy evaluation from the WAT
2017 (Nakazawa et al., 2017).4 We observe that
the NMT model of Long et al. (2017) achieves
a substantial improvement over the WAT 2017
baseline.
For the test sets, we also counted the num-

bers of the untranslated words of input sentences.
As shown in Table 6, the number of untranslated
words by the baseline NMT reduced to around
65% by the NMT model of Long et al. (2017).
This is mainly because part of untranslated source
words are out-of-vocabulary, and thus are untrans-

4 http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/

lated by the baseline NMT. The NMT model of
Long et al. (2017) extracts those out-of-vocabulary
words as a part of phrases and replaces those
phrases with tokens before the decoding of NMT.
Those phrases are then translated by SMT and in-
serted in the output translation, which ensures that
those out-of-vocabulary words are translated.

Figure 4 compares an example of correct trans-
lation produced by the NMT model of Long et
al. (2017) with one produced by the baseline NMT.
In this example, the translation is a translation er-
ror because the Japanese word “ (quench-
ing)” is an out-of-vocabulary word and is erro-
neously translated into the “〈unk〉” token. The
NMT model of Long et al. (2017) correctly trans-
lated the Japanese sentence into Chinese, where
the out-of-vocabulary word “ ” is correctly
selected by the approach of branching entropy as
a part of the Japanese phrase “ (quench-
ing agent)”. The selected Japanese phrase is then
translated by the phrase translation table of SMT.
Figure 5 shows another example of correct trans-
lation produced by the NMT model of Long et
al. (2017) with one produced by the baseline NMT.
As shown in Figure 5, the translation produced
by baseline NMT is a translation error because
the out-of-vocabulary English words “eukaryotic”
and “promoters” are untranslated words and their
translations are not contained in the output trans-
lation of the baseline NMT. The NMT model of
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Table 6: Numbers of untranslated morphemes / words of input sentences
System ja→ ch ch→ ja ja→ en en→ ja
NMT with PosUnk model (Luong et al., 2015b) 1,112 846 1,031 794
NMT with phrase translation by SMT 736 581 655 571(Long et al., 2017)

Figure 4: An example of correct translations produced by the NMT model of Long et al. (2017) when
addressing the problem of out-of-vocabulary words (Japanese-to-Chinese)

Figure 5: An example of correct translations produced by the NMT model of Long et al. (2017) when
addressing the problem of under-translation (English-to-Japanese)

Long et al. (2017) correctly translated those En-
glish words into Japanese because those English
words “eukaryotic” and “promoters” are selected
as an English phrase “Eukaryotic promoters” with
branching entropy and then are translated by SMT.

6 Conclusion

Long et al. (2017) proposed selecting phrases that
contain out-of-vocabulary words using the branch-
ing entropy. These selected phrases are then re-
placed with tokens and post-translated using an
SMT phrase translation. In this paper, we ap-
ply the method proposed by Long et al. (2017)
to the WAT 2017 Japanese-Chinese and Japanese-
English patent datasets. We observed that the
NMTmodel of Long et al. (2017) performed much
better than the baseline NMT system in all of
the language pairs: Japanese-to-Chinese/Chinese-

to-Japanese and Japanese-to-English/English-to-
Japanese. One of our important future tasks is
to compare the translation performance of the
NMT model of Long et al. (2017) with that based
on subword units (e.g. (Sennrich et al., 2016)).
Another future work is to integrate the rerank-
ing framework for minimizing untranslated con-
tent (Goto and Tanaka, 2017) into the NMTmodel
of Long et al. (2017), which is expected to further
reduce the number of untranslated words. This fu-
ture work is roughly based on the observation re-
ported in Kimura et al. (2017), where the NMT
model of Long et al. (2017) is not only effective
in reducing the untranslated content without any
specific framework of minimizing the untranslated
content, but also successfully reduced the esti-
mated volumes of the untranslated content, which
was proposed by Goto and Tanaka (2017).
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Abstract 

System architecture, experimental settings 
and experimental results of the EHR team 
for the WAT2017 tasks are described. We 
participate in three tasks: JPCen-ja, JPCzh-
ja and JPCko-ja. Although the basic archi-
tecture of our system is NMT, reranking 
technique is conducted using SMT results. 
One of the major drawback of NMT is un-
der-translation and over-translation. On the 
other hand, SMT infrequently makes such 
translations. So, using reranking of n-best 
NMT outputs by the SMT output, discard-
ing such translations can be expected. We 
can improve BLEU score from 46.03 to 
47.08 by this technique in JPCzh-ja task. 

1 Introduction 

Rapidly progressing of NMT techniques make 
paradigm change in machine translation not only 
for the research purpose but for the practical field. 
Although the NMT provides high quality and flu-
ent translations, it has several drawbacks. One of 
them is under- and over-translation which is infre-
quent in a SMT output. 

We propose a reranking method for n-best 
NMT outputs using a SMT output. We compare 
n-best NMT outputs with a SMT output by the 
measure of IMPACT (Echizen-ya and Araki, 
2007) which is one of the automatic evaluation 
measure of machine translation results. The NMT 
output which has the highest IMPACT score re-
ferring to SMT output is selected as the system 
output. 
In the following sections, we describe system ar-
chitecture and experimental settings in section 2, 
experimental results and discussions in section 3 
and conclusion in section 4. 

2 System architecture and experimental 
settings 

2.1 Overall system architecture 

Our system architecture is shown in Figure 1. An 
input source sentence is fed to the NMT part and 
also to the SMT part. NMT part outputs n-best 
translations (“NMT translation 1” to “NMT trans-
lation n”) and SMT part outputs another transla-
tion (“SMT translation”). Reranking part com-
pares NMT translations with SMT translation and 
reranks them. The best reranked “NMT transla-
tion i” is outputted.  

2.2 NMT part 

We use OpenNMT (Minh-Thang Luong et al., 
2015) in NMT part.  

Segmentation of English sentences is sub word 
based. The English segmenter segments each non-
alphabetical characters (characters except for A to 
Z and a to z) as separate words. Segmentation of 
Chinese sentences and Korean sentences are both 
word based and character based. Word segmenta-
tion policy for these languages are described in the 
previous paper (Ehara, 2016). Japanese segmen-
tation is word based, sub word based and charac-
ter based. For JPCzh-ja task and JPCko-ja task, 
word based and character based Japanese seg-
menters are used. The word based Japanese seg-
menters are described in the previous paper 
(Ehara, 2016). For JPCen-ja task, we use sub word 
based Japanese segmenter which segments each 
special characters (characters except for Hiragana, 
Kanji, Katakana and Roman characters) as sepa-
rate words, in addition to Juman’s word segmen-
tation (Kurohashi et al., 1994). 

Option settings for OpenNMT are as follows: 
Source sequence length (-src_seq_len): 100 (word 
based), 120 (sub word based), 250 (character 
based); Target sequence length (-tgt_seq_len): 

＠
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100 (word based), 120 (sub word based), 250 
(character based); Encoder type (-encoder_type): 
brnn (bidirectional recurrent NN); Replace un-
known word (-replace_unk): yes; Unknown word 
dictionary (-phrase_table): yes (see 2.3); Beam 
size (-beam_size): 50; N-best size (-n_best): 50. 
 

 
Figure 1: System architecture 

 

2.3 SMT part 

Our SMT system is phrase-based SMT by Moses 
v.3 (Koehn et al., 2003) with default option set-
tings.  For JPCen-ja task and JPCzh-ja task, pre-
ordering is applied. The preordering system is 
same as described in the previous papers (Ehara, 
2015; Ehara, 2016).  

We use unknown dictionary for NMT part. It is 
made from the phrase-table of Moses. For every 
source word, we select the target phrase which has 
the highest translation probability for the source 
word. And the unknown word dictionary is con-
structed as the source word and target phrase pairs. 

2.4 Reranking part 

For reranking of n-best outputs of NMT part, we 
use automatic evaluation measure IMPACT 

(Echizen-ya and Araki, 2007). For the preliminary 
study, we compared BLEU, RIBES and IMPACT 
with human evaluation score JPO adequacy by the 
WAT2016’s evaluation results (Nakazawa et al., 
2016). As the results, we found IMPACT was the 
best correlated score with JPO adequacy. Then we 
use IMPACT as the reranking measure. Rerank-
ing part calculates IMPACT score for NMT’s n-
best translations with SMT translation as the ref-
erence. And the best translation which has the 
highest IMPACT score is outputted as the system 
output. 

3 Experimental results and discussions 

The official evaluation results of our submissions 
are shown in Table 1 (Nakazawa et al., 2017). In 
the Table 1, “Original system” means the NMT 
without reranking and “SMT” means SMT part of 
our system. 

For JPCen-ja task, reranking decreases BLEU, 
RIBES and AMFM scores and also HUMAN 
score. Although the overall evaluation result 
doesn’t show the effectiveness of the reranking, 
several improvements are observed. Examples are 
listed in Table 2. Original translation of the exam-
ple 1 has under-translation. Only the first two 
words (The oldest) and the punctuation mark (.) 
are translated in the original translation. Original 
translations of example 2 has also under-transla-
tion.  None of words “( ACT , READ , PRE ) , 
GBSTB , GBSTT , FXb 2 , PUMP , FXB , FXT , 
SWL , and RFX” is translated. On the other hand, 
reranking system does not make such under-trans-
lations. Original translation of example 3 has 
over-translation. “ 異なる (differ)” occurs two 
times. But the reranked translation has no over-
translation. 
 

 

 
Table 1: Official evaluation results (Japanese segmenter is Juman) 

Input sentence

ＳＭＴＮＭＴ

ＮＭＴ translation 1

ＳＭＴ translationReranking

ＮＭＴ translation i

ＮＭＴ translation 2

ＮＭＴ translation n

Task Data ID System Segment. BLEU RIBES AMFM HUMAN JPO adeq.
1406 Reranking Subword 44.44 0.8610 0.7471 58.250 ----
1407 Original Subword 44.63 0.8667 0.7478 60.000 4.63
---- SMT Word 36.20 0.8128 0.7237 ---- ----
1408 Reranking Word 47.08 0.8591 0.7564 68.250 ----
1415 Original Word 46.03 0.8586 0.7559 ---- ----
1414 Reranking Character 46.52 0.8596 0.7614 69.750 4.31
1409 Original Character 45.27 0.8544 0.7571 ---- ----
---- SMT Word 40.79 0.8270 0.7384 ---- ----
1416 Reranking Word 71.52 0.9445 0.8661 6.250 ----
1418 Original Word 70.23 0.9432 0.8623 ---- ----
1417 Reranking Character 71.36 0.9461 0.8711 11.250 4.81
1419 Original Character 69.42 0.9364 0.8605 ---- ----
---- SMT Word 71.08 0.9440 0.8645 ---- ----

JPCen-ja

JPCzh-ja

JPCko-ja
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Table 2: JPCen-ja task’s examples having effectiveness of reranking (recover of under-translation: 

example 1 and 2; recover of over-translation: example 3) 
 

For JPCen-ja task, comparing our submission 
of data ID 1407 (EHR) and another submission 
(OTHER), BLEU score of the EHR is 44.63 and 
it is less than the OTHER’s score (50.27). On the 
other hand, HUMAN score of the EHR is 60.00 
and it is greater than the OTHER’s score (56.25). 
There are 20 data that the BLEU1 score of EHR is 
less than the OTHER’s score but the HUMAN 
score of EHR is greater than the OTHER’s score2.  

We examine these data and find that several 
data have the differences between the source ex-
pression and the reference expression. Table 3 

                                                      
1 Sentence level BLEU is calculated by mteval-v13a.pl in 
the Moses package. 
2 For the BLEU score, “less” means “less or equal -10” and 
“greater” means “greater or equal 10”. If the difference of 
BLEU is between -10 to 10, it is considered “tie”. 
3 We distinguish between “additive translation” and “over-
translation”. The former means the translation including 

shows examples of source, reference, EHR output 
and OTHER output. Example 1 has the voice 
change (the source is passive and the reference is 
active). Example 2 has the topic change (the topic 
of the source is “valve” and the topic of the refer-
ence is “経路 (passage)”. Example 3 has the addi-
tive translation3 (the source “GELD” corresponds 

the reference “有機 EL ディスプレー（ ＯＥＬ

Ｄ ， ｏｒｇａｎｉｃｅｌｅｃｔｒｏ − ｌｕｍｉ

ｎｅｓｃｅｎｔｄｉｓｐｌａｙ ）”). Example 4 
has the subtractive translation4  (the source has 

complemental information and the latter means the transla-
tion including needless information.  
4 We distinguish between “subtractive translation” and “un-
der-translation”. The former means the translation omitting 
complemental information and the latter means the transla-
tion omitting needful information. 

source
The oldest is the capacitive divider bridge , one arm of which consists of a
reference capacitance and the other of the capacitance to be measured .

reference
最も 古い もの は 容量 分圧 器 ブリッジ であり 、 その １ つ の アーム は 基
準 静 電 容量 から 成り 、 その他 の 静 電 容量 が 測定 さ れる 。

reranking
最も 古い もの は 容量 分圧 ブリッジ であり 、 その １ つ の アーム は 、 測
定 さ れる べき 基準 キャパシタンス と 他の キャパシタンス と から 成る 。

original 最も 古い 。

SMT
最も古いものは、容量性ディバイダブリッジ、基準キャパシタンスと測定されるべ
きキャパシタンスの他の１つを構成するアームである。

source
FIG . 5 shows a portion of waveforms of a simulation result of the circuit in
FIG . 4 , and commands ( ACT , READ , PRE ) , GBSTB , GBSTT , FXb 2 ,
PUMP , FXB , FXT , SWL , and RFX are shown as signals .

reference

図 ５ に は 、 図 ４ の 回路 の シミュレーション 結果 の 波形 が 一部 示さ れ
て おり 、 信号 と して 、 コマンド （ ＡＣＴ 、 ＲＥＡＤ 、 ＰＲＥ ） 、 ＧＢＳＴＢ 、
ＧＢＳＴＴ 、 ＦＸｂ ２ 、 ＰＵＭＰ 、 ＦＸＢ 、 ＦＸＴ 、 ＳＷＬ 、 ＲＦＸ が 示さ れて い
る 。

reranking
図 ５ は 、 図 ４ の 回路 の シミュレーション 結果 の 一部 を 示す もの であり
、 コマンド （ ＡＣＴ 、 ＲＥＡＤ 、 ＰＲＥ ） 、 ＧＢＳＴＢ 、 ＧＢＳＴＴ 、 ＦＸｂ ２ 、 Ｐ
ＵＭＰ 、 ＦＸＢ 、 ＳＷＬ 、 ＲＦＸ を 信号 と して 示す 。

original
図 ４ の 回路 の シミュレーション 結果 の 一部 と 、 図 ４ の 回路 の シミュ
レーション 結果 の 一部 を 示す 図 である 。

SMT
図５は、図４の回路のシミュレーション結果の波形の一部を示す、及びコマンド
（ＡＣＴ、ＲＥＡＤ、ＰＲＥ）、ＧＢＳＴＢ、ＧＢＳＴＴ、ＦＸｂ ２、ＰＵＭＰ、ＦＸＢ、ＦＸＴ ＲＦ
Ｘ ＳＷＬとは、信号として示されている。

source
However, specifications sometimes differ from one image forming apparatus
to another.

reference しかし、画像形成装置ごとにスペックが異なる場合がある。
reranking しかし、ある仕様は、時々、１つの画像形成装置とは異なる。
original しかし、時々、１つの画像形成装置とは異なる仕様が異なる。
SMT しかし、仕様は、装置を形成する１つの画像から別の画像へ時には異なる。
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“given within this range” and the reference has no 
such expression).  

Comparing JPO adequacy score of EHR and 
OTHER, the EHR’s score 4.63 is less than the 
OTHER’s score 4.75. Although HUMAN and 
JPO adequacy are both human evaluation, they 

have a contradiction. One possible reason is that 
the evaluators of HUMAN score do not look at the 
reference translations but the evaluators of JPO 
adequacy score can look at the reference transla-
tions. 
 

 

 
Table 3: Different expressions between sources and references  

(example 1: voice change; example 2: topic change; example 3: additive translation; 
example 4: subtractive translation) 

 
For JPCzh-ja and JPCko-ja tasks, reranking in-

creases BLEU, RIBES and AMFM scores. How-
ever, we don’t have a HUMAN scores comparing 
the reranking and the original for these tasks. Ex-
amples having the effectiveness of the reranking 
for these tasks are shown in Table 4 and Table 5. 

Example 1 and 2 of Table 4 have under-translation 
in original translation. Example 3 of Table 4 has 
over-translation in original translation. Example 1 
and 2 of Table 5 have under-translation in original 
translation. 
 

 
 

source
In FIG. 6 , the same symbols are used to the same elements as
the elements shown in FIGS. 1-5

reference
図 ６ に おいて 、 図 １ 〜 図 ５ に 示す 要素 と 同じ 要素 に は
同じ 符号 を 付して ある 。

EHR
図 ６ で は 、 同じ 記号 が 、 図 １ 〜 ５ に 示さ れる 要素 と 同じ
要素 に 使用 さ れる 。

OTHER
図 ６ に おいて 、 図 １ 〜 図 ５ と 同じ 要素 に は 同じ 符号 を 付
して いる 。

source
A sixth on-off valve 202 is disposed on the fourth bypass passage
204 .

reference
第 ４ バイパス 経路 ２０４ に は 第 ６ 開閉 弁 ２０２ が 設け られて
いる 。

EHR
第 ６ の オン オフ 弁 ２０２ は 、 第 ４ バイパス 通路 ２０４ 上 に
配置 さ れる 。

OTHER
第 ４ の バイパス 通路 ２０４ に は 、 第 ６ の 開閉 弁 ２０２ が 配
置 さ れて いる 。

source The display device 4 is, for example, an LCD and an GELD.

reference
表示 装置 ４ は 、 例えば 、 液晶 ディスプレイ （ ＬＣＤ ， ｌｉｑｕｉｄｃｒｙ
ｓｔａｌｄｉｓｐｌａｙ ） や 有機 ＥＬ ディスプレイ （ ＯＥＬＤ ， ｏｒｇａｎｉｃｅｌｅｃｔｒ
ｏ − ｌｕｍｉｎｅｓｃｅｎｔｄｉｓｐｌａｙ ） 等 である 。

EHR 表示 装置 ４ は 、 例えば ＬＣＤ および ＧＥＬＤ である 。

OTHER
表示 装置 ４ は 、 例えば ＬＣＤ や ＯＥＬＤ （ ＯＥＬＤ ， ｏｒｇａｎｉｃｅｌｅ
ｃｔｒｏ − ｌｕｍｉｎｅｓｃｅｎｔｄｉｓｐｌａｙ ） 等 である 。

source
In this case, the proportion of the additive given within this range
corresponds to 3% or lower.

reference この 場合 の 添加 剤 の 添加 量 は ３ ％ 以下 である 。

EHR
この 場合 、 この 範囲 内 に 与え られる 添加 剤 の 割合 は 、 ３
％ 以下 に 相当 する 。

OTHER この 場合 、 添加 剤 の 割合 は 、 ３ ％ 以下 である 。
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Table 4: JPCzh-ja task’s examples having effectiveness of reranking (recover of under-translation: 

example 1 and 2; recover of over-translation: example 3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

source
图 3 ( A ) 是 对 进行 2 次 通过 间隙 的 处理 的 高分子 组合物 的 制造 装
置 从 上面 透视 装置 内部 时 的 概略 透视图 ， 图 3 ( B ) 是 图 3 ( A ) 的
装置 的 P - Q 截面 上 的 概略 截面 图 。

reference

図 ３ （ Ａ ） は 、 間隙 通過 処理 を ２ 回 行う 高 分子 組成 物 の 製造 装置
に ついて 上 面 から 装置 内部 を 透視 した とき の 概略 透視 図 であり 、
図 ３ （ Ｂ ） は 、 図 ３ （ Ａ ） の 装置 の Ｐ − Ｑ 断面 に おける 概略 断面
図 である 。

reranking

図 ３ （ Ａ ） は 、 ギャップ を ２ 回 行う 処理 を 行う 高 分子 組成 物 の 製造
装置 を 上 面 透視 装置 内部 から 見た 場合 の 概略 透視 図 であり 、 図
３ （ Ｂ ） は 、 図 ３ （ Ａ ） の 装置 の Ｐ − Ｑ 断面 に おける 概略 断面 図
である 。

original
図 ３ （ Ａ ） は 、 図 ３ （ Ａ ） の 装置 の Ｐ − Ｑ 断面 上 の 概略 的な 断面
図 である 。

SMT
図３（Ａ）については、２次ギャップの処理によって高分子組成物の製造装置を
上面から装置内部透視時の概略斜視図であり、図３（Ｂ）は、図３（Ａ）の装置の
Ｐ−Ｑ断面における概略断面図である。

source
此外 ， 根据 元素 的话 ， 一 个 元素 有 可能 形成 不同 化合价 的 氧化物
。

reference
また 、 元素 に よって は 、 １ つ の 元素 が 異なる 価 数 の 酸化 物 を 形
成 する こと が 可能である 。

reranking
また 、 元素 に よって は 、 １ つ の 元素 が 異なる 種類 の 酸化 物 を 形成
する こと が できる 。

original また 、 元素 に よって は 、 異なる 元素 を 形成 する こと が できる 。
SMT また、元素とによれば、異なる原子価元素の酸化物を形成することができる。
source 实施例 14
reference 【 実施 例 １４ 】
reranking 実施 例 １４ ：
original （ 実施 例 １４ ） 　 実施 例 １４ に ついて 説明 する 。
SMT 実施例１４

3

1

2

123



 
 
 

   

 
Table 5: JPCko-ja task’s examples having effectiveness of reranking (recover of under-translation: 

example 1 and 2) 
 
For JPCzh-ja and JPCko-ja tasks, the word 

based translations have higher BLEU, RIBES and 
AMFM compared with the character based trans-
lations. However, HUMAN score of the word 
based translations are lower than the score of the 
character based translations. 

For JPCzh-ja task, there are 7 data that the 
BLEU score of the word based translation is 
greater than the character based translation’s 
score but the HUMAN score of the word based 
translation is less than the character based transla-
tion’s score. Examples of such translations are 
listed in Table 6. Example 1 has an under-transla-
tion in the word based translation (“滴度”). Ex-
ample 2 also has an under-translation in the word 

based translation (“実行される(进行的)”). Ex-
ample 3 has miss translations both in the character 
based translation and the word based translation. 
In the character based translation, “取付面図” is 

used instead of “実装面図(安装面图)”. And in 

the word based translation, “分波器モジュール” 
is used instead of “デュプレクサモジュール(双

工器模块)”. However, the latter miss translation 
is more significant than the former. Example 4 has 
another different translations. Character based 

translation uses “が良い(好)”, and word based 
translation uses “に優れる”. 

For JPCko-ja task, there are 3 data that the 
BLEU score of the word based translation is 
greater than the character based translation’s 
score and the HUMAN score of the word based 
translation is less than the character based transla-
tion’s score. Examples of such translations are 
listed in Table 7. Example 1 has a different trans-

lation. Literal translation of “연 결 ” is “連結” and 

non-literal translation is “ 接続 ”. Example 2 
shows the effectiveness of the unknown word 
translation in the character based translation. The 
expression 
“디 펜 타 에 리 트 리 톨 펜 타 아 크 릴 레 이 트 와  

디 펜 타 에 리 트 리 톨 ” does not be translated in 
the word based translation. Example 3 has differ-
ent translations. Character based translation uses 
“ブレーキ(브 레 이 크 )”, and word based transla-
tion uses “ブレーク”. 

 
 
 
 
 
 

source
이어서 , 용매 로서 DINP ( 디 이소노 닐 프탈 레이트 ) 183 질 량부 를 첨가
하 였 다 .

reference
次いで 、 溶媒 と して ＤＩＮＰ （ ジイソノニルフタレート ） １８３ 質量 部 を 添加
した 。

reranking
次いで 、 溶媒 と して ＤＩＮＰ （ ジメチルホルムアミド ） １８３ 質量 部 を 添加
した 。

original 次に 、 溶媒 と して ＤＩＮＰ （、） １８３ 質量 部 を 添加 した 。

SMT
次いで、溶媒としてＤＩＮＰ（記述이소노アニールフタレート）１８３質量部を添加し
た。

source
저장 장치 ( 70 ) 는 다음 을 포함 할 수 있 다 ( 도 15 및 도 16 ) : - 하나 혹
은 그 이상 의 전기 배터리 ( 81 ) ; 또는 - 하이브리드 배터리 ( 82 ) 및 , 상
기 하이브리드 배터리 ( 82 ) 와 유효 하 게 연결 된 내연 기관 ( 83 ) .

reference
貯蔵 装置 ７０ は 下記 を 備える こと が できる （ 図 １５ と １６ ）：　－　 １ 台
または ２ 台 以上 の 電気 バッテリ ８１ ； または 、　－　 ハイブリッド バッテリ
８２ と 、 前記 ハイブリッド バッテリ ８２ に 接続 さ れて いる 内燃機 関 ８３ 。

reranking
記憶 装置 ７０ は 、 以下 を 含む こと が できる （ 図 １５ 及び 図 １６ ）： １ つ
または それ 以上 の 電気 バッテリー ８１ 、 又は ハイブリッド バッテリー ８２ 、
及び 、 ハイブリッド バッテリ ８２ と 有効に 連結 さ れた 内燃機 関 ８３ 。

original 記憶 装置 ７０ は 、 以下 を 含む こと が できる （ 図 １５ および 図 １６ ） 。

SMT
記憶装置７０は以下を含むことができる（図１５及び図１６：−１つあるいはそれ以
上の電気バッテリ８１；又は−ハイブリッドバッテリ８２及び、上記ハイブリッドバッ
テリ８２と有効に連結された内燃機関（８３）。
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Table 6: JPCzh-ja task’s examples having BLEU and HUMAN scores contradiction 
(under-translation in word based: example 1 and 2; different translation: example 3 and 4) 
 

 
Table 7: JPCko-ja task’s examples having BLEU and HUMAN scores contradiction 

(different translation: example 1 and 3; un-translation in word based: example 2) 

source 这进一步提示高估了CAZ028单价散装液滴度。

reference
このことは、CAZ028一価バルクの力価が高く見積もられていることをさら
に示唆する。

char. based これはさらに、ＣＡＺ０２８単価の分散液の滴度を高めることを示唆する。
word based これにより、ＣＡＺ０２８の一価ばら積みをさらに示唆する。

source
图9示出了电台110为释放额外的无线资源所进行的处理过程900的设
计。

reference
図9は、余分な無線リソースを放棄するために局110によって実行される方
法900の設計を示す。

char. based
図９は、局１１０が、追加の無線リソースを解放するために行われる処理プ
ロセス９００の設計を示す。

word based
図９は、追加の無線リソースを解放するために局１１０が処理プロセス９００
の設計を示す。

source
图4(A)是双工器模块的简要等效电路图，图4(B)是双工器模块的安装面
图。

reference
図４（Ａ）はデュプレクサモジュールの概略の等価回路図であり、図４（Ｂ）
はデュプレクサモジュールの実装面図である。

char. based
図４（Ａ）は、デュプレクサモジュールの概略等価回路図であり、図４（Ｂ）
は、デュプレクサモジュールの取付面図である。

word based
図４（Ａ）はデュプレクサモジュールの概略的な等価回路図であり、図４
（Ｂ）は分波器モジュールの実装面図である。

source
另一方面，如果大于4.2倍，则虽然耐水解性好，但基材层(B)的凝聚强度
降低，因此不理想。

reference
他方、４．２倍を超えると耐加水分解性は良いが基材層（Ｂ）の凝集強度が
低くなり好ましくない。

char. based
一方、４．２倍を超えると、耐加水分解性が良いが、基材層（Ｂ）の凝集強
度が低下するため好ましくない。

word based
一方、４．２倍を超えると耐加水分解性に優れるが、基材層（Ｂ）の凝集強
度が低下するため好ましくない。

1
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3
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source
이러한 경우, 수신기는 S707단계로 진행하여 2차 장치가 연결되었
는지 판단한다.

reference
この場合、受信機は、Ｓ７０７段階において、２次装置が接続している
か否か判断する。

char. based
このような場合、受信機は、Ｓ７０７段階に進行して二次装置が連結さ
れたか否かを判断する。

word based
このような場合、受信機は、Ｓ７０７段階に進行して二次装置が接続さ
れたか否かを判断する。

source
[B] 중합성 화합물은, 디펜타에리트리톨펜타아크릴레이트와 디펜
타에리트리톨헥사아크릴레이트의 혼합물인 것이 바람직하다.

reference
［Ｂ］重合性化合物は、ジペンタエリスリトールペンタアクリレートとジペ
ンタエリスリトールヘキサアクリレートとの混合物であることが好まし
い。

char. based
［Ｂ］重合性化合物は、ディペンタエリトリトールペンタアクリレートとディ
ペンターにリトリトールヘキサアクリレートの混合物であることが好まし
い。

word based
［Ｂ］重合性化合物は、펜타에리트리톨と펜타에리트리톨ヘキサレー
トの混合物であることが好ましい。

source
이렇게 하면 브레이크한 부분에서 머더 기판을 단위 기판으로 분
단할 수 있다.

reference
こうすればブレイクした部分でマザー基板を単位基板に分断することが
できる。

char. based
こうすればブレーキした部分でマザー基板を単位基板に分断すること
ができる。

word based
こうすればブレイクした部分でマザー基板を単位基板に分断することが
できる。
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4 Conclusion  

System descriptions, experimental settings and 
experimental results of the EHR team are de-
scribed. We participate in the 3 tasks and submit-
ted 10 systems’ outputs. We can observe our re-
ranking technique is effective to remove under-
translation and over-translation which are in NMT 
outputs sometimes. 
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Abstract

In this paper, we describe the NICT-2 neu-
ral machine translation system evaluated
at WAT2017. This system uses multi-
ple models as an ensemble and combines
models with opposite decoding directions
by reranking (called bi-directional rerank-
ing).

In our experimental results on small data
sets, the translation quality improved
when the number of models was increased
to 32 in total and did not saturate. In the
experiments on large data sets, improve-
ments of 1.59–3.32 BLEU points were
achieved when six-model ensembles were
combined by the bi-directional reranking.

1 Introduction

This paper presents the NICT-2 machine trans-
lation system evaluated at WAT2017 (Nakazawa
et al., 2017). This system is a basic encoder-
decoder with an attention mechanism (Sutskever
et al., 2014; Bahdanau et al., 2015). This method-
ology is known to achieve high translation qual-
ity, even when using a single model. It is also
known that better quality can be achieved by uti-
lizing multiple models. In this paper, we use as
many models as possible and attempt to improve
the translation quality.

There are two major approaches that use mul-
tiple models: ensemble (Hansen and Salamon,
1990) and reranking (e.g., (Och et al., 2004)). The
ensemble approach independently encodes and de-
codes input sentences by multiple models and av-
erages the word distributions output from the de-
coder (c.f., Sec. 2.1). The reranking approach first
creates an n-best list of translations using a model
A, rescores it using another model B, and selects
the highest scoring translation (c.f., Sec. 2.2).

Pros Cons
Ensemble

• All hypotheses in the
search space are candi-
dates for translation.

• Models that have dif-
ferent output layers in
the decoders cannot be
incorporated (from the
viewpoints of vocabu-
lary and decoding direc-
tion).

• It is possible to speed
up the computations by
parallel processing.

• All models should be
loaded on graphics pro-
cessing units (GPUs) at
the same time.

Reranking
• Arbitrary models
can be combined if the
language pairs are the
same.

• The system cannot se-
lect candidates that are
not in the n-best list.

• The models for the
generation and rescoring
of the n-best candidates
have to be loaded sepa-
rately on GPUs.

• The n-best generation
and rescoring processes
are sequential.

Table 1: Pros and Cons of Ensemble and Rerank-
ing

Both methods have pros and cons, as shown in
Table 1. The aim of this paper is to use as many
models as possible, based on these characteristics.

In this paper, we first obtain the following infor-
mation on small data sets and then apply the en-
semble and reranking methods on large data sets.

• How many models contribute to the transla-
tion quality?

• If both methods use the same number of mod-
els, which method is better? In this paper, we
only evaluate the translation quality and ig-
nore the translation speed.

The rest of this paper is organized as follows.
Sec. 2 describes in detail the ensemble and
reranking methods and their combination used at
WAT2017. Sec. 3 evaluates characteristics of the
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ensemble and reranking methods using small data
sets (the JIJI Corpus and the MED Corpus, which
was developed in-house). In Sec. 4, we evaluate
the NICT-2 system using ASPEC (Asian Scientific
Paper Excepts Corpus; (Nakazawa et al., 2016b))
data sets, and the paper is concluded in Sec. 5.

Note that we only evaluate Japanese-English
(Ja-En) and Japanese-Chinese (Ja-Zh) pairs. Thus,
additional investigation of whether the conclu-
sions are valid for other language pairs is neces-
sary. However, we believe that the results in this
paper are valuable as a case study.

2 Ensemble and Reranking

2.1 Ensemble
The ensemble approach is a method for neural net-
works that trains multiple models using the same
data sets and applies them to test data while av-
eraging the outputs (Hansen and Salamon, 1990).
In the case of neural machine translation, an input
sentence is encoded and decoded using multiple
models. Then, the word distributions output from
the decoder (i.e., vectors of the target vocabulary
size) are averaged. A beam search is applied to
this averaged distribution. Note that each model
is independently trained in the same way as the
training of a single model.

If we represent the output word selection for a
single model by Eq. (1), the selection for an en-
semble is represented by Eq. (2). In this case, we
use the geometric mean.

ŷt = argmax log Pr(yt|yt−1
1 ,x; M) (1)

ŷt = argmax
1
J

J∑
j=1

log Pr(yt|yt−1
1 ,x; Mj) (2)

where yt denotes the tth output word, yt−1
1 denotes

the history of the output words from the begin-
ning of the sentence to the (t − 1)th position, x
denotes the input word sequence, M denotes the
model (Mj denotes the jth model), and J denotes
the number of ensemble models.

The ensemble approach has some restrictions.
Firstly, it has to use identical target vocabularies
for all models because it averages the output vec-
tors. Secondly, the decoding direction (from the
beginning to the end of a sentence or from the end
to the beginning) has to be consistent over all mod-
els because the beam search is applied after aver-
aging. In this paper, we call the directions from
the beginning to the end and from the end to the

Input Sentence �N-best ListTranslation 1 (score=���)Translation 2(score=���):Translation N (score=���) Rescoringscore=���score=���:score=���argmax
�̂ = argmax

�

��� + ���

2Output Sentence ��Model ARight-to-LeftDecoding Model BLeft-to-RightDecoding
Figure 1: Structure of Bi-directional Reranking

beginning the left-to-right and right-to-left direc-
tions, respectively.

2.2 Reranking

The reranking method for machine translation
(Och et al., 2004) comprises two steps. Firstly, an
input sentence is translated using a model A, and
an n-best list is generated. Then, the translations
in the n-best list are rescored using another model
B. Finally, the translation that has the highest score
is selected/output (Figure 1). The models A and B
are independently trained as single models.

The final translations are influenced by the
rescoring method. In this paper, we use the arith-
metic mean of the log-likelihoods of the models A
and B.

The reranking method has the advantage that ar-
bitrary models can be used if the target languages
are the same. In addition, the reranking method
consumes less memory than the ensemble method
because only one model is used at each step in the
reranking method, even though it uses two mod-
els in total. However, it has the disadvantage that
the translation quality cannot be improved if good
translation hypotheses are not included in the n-
best list.

2.3 Combination of Ensemble and Reranking

The pros and cons of the ensemble and rerank-
ing methods are shown in Table 1. To combine
both methodologies while retaining as many ad-
vantages as possible, we employ reranking as the
general methodology. The ensemble method is
used for the n-best list generation and rescoring
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Corpus Language Pair #Sentences #Sub-word Types Remarks
ASPEC Ja↔ En Train: 2,977,320 Ja: 49,656 Scientific paper excerpts

Dev.: 1,790 En: 49,776 Sentences in which the number of sub-words is
equal to or less than 80Test.: 1,812

Ja↔ Zh Train: 656,635 Ja: 49,654 Scientific paper excerpts
Dev.: 2,090 Zh: 49,385 Sentences in which the number of sub-words is

equal to or less than 80Test.: 2,107
JIJI Ja→ En Train: 199,905 Ja: 35,009 Newswire

Dev.: 2,000 En: 33,934 Sentences in which the number of sub-words is
equal to or less than 80DevTest.: 2,000

Test.: 2,000
MED Ja→ En Train: 238,214 Ja: 20,327 Pseudo-dialogues at hospitals

Dev.: 1,000 En: 21,043 Sentences in which the number of sub-words is
equal to or less than 80Test.: 1,000

Table 2: Corpus Statistics

to combine multiple models. We can combine
many models using this architecture because the
reranking method can combine twice the number
of models without consuming extra memory.

We use an identical vocabulary set among all
models so that the ensemble method can be ap-
plied. In addition, the models used here have the
same structure for simplicity. The only difference
is that each model is learned using a different ran-
dom seed.

For the generation and rescoring of the n-best
translations in the reranking, we use models with
opposite decoding directions, which are impossi-
ble to combine with the ensemble method. In this
paper, we call this bi-directional reranking. More
precisely, the n-best list is generated by right-to-
left decoding (i.e., from the end to the beginning
of a sentence). Then, the hypotheses in the list are
rescored by left-to-right decoding (i.e., from the
beginning to the end of the sentence). Finally, the
translation likelihoods for both directions are av-
eraged, and the hypothesis with the highest likeli-
hood is output.

The bi-directional reranking approach real-
izes Liu et al. (2016)’s method, which uses bi-
directional decoding, by reranking. In the bi-
directional reranking approach, the target word se-
quence is inverted during training and translation.
Therefore, small changes are required in the train-
ing and translation programs.

3 Experiments Using Small Data Sets

We perform Japanese-English translation experi-
ments using small data (with approximately 200k
sentences) to clarify characteristics of the ensem-
ble and the bi-directional reranking approaches.

3.1 Experimental Settings

Corpora: Table 2 shows the list of corpora that
were used here. We used two corpora as small data
sets. The first is the JIJI Corpus, which consists
of newswires. Japanese and English articles were
automatically aligned sentence by sentence. Note
that the translations are sometimes not literal be-
cause the original articles were not translated sen-
tence by sentence.

The second is the corpus of pseudo-dialogues
at hospitals (MED Corpus). This corpus is a col-
lection of conversations between patients and hos-
pital staffs, which were created by writers (devel-
oped in-house). The pseudo-dialogues were first
written in Japanese and then translated into En-
glish.

The byte-pair encoding (Sennrich et al., 2016)
rules were acquired from a training set of each cor-
pus, and they were applied to the training, devel-
opment, and test sets. The number of sub-word
types is 34–35k in the JIJI Corpus and 20–21k in
the MED Corpus. We used sentences with 80 or
fewer sub-words for training.

Preprocessing, Postprocessing: Table 3 shows
a summary of our system. As shown in the table,
we used the same preprocessing and postprocess-
ing steps as the WAT baseline systems (Nakazawa
et al., 2016a).

Translation System: We used OpenNMT
(Klein et al., 2017)1 as the base translation
system. The encoder comprises a two-layer
bi-directional LSTM (long short-term memory),
in which the number of units is 500 each. The
decoder comprises a two-layer LSTM (1000

1http://opennmt.net/
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Japanese English Chinese
Preprocessing Character Normalization NFKC Normalization of Unicode

Tokenizer MeCab (Kudo
et al., 2004)

Moses Toolkit Stanford Segmenter (CTB)

TrueCaser – Moses Toolkit –
Byte Pair Encoding In-house Encoder

Training and
Translation

System OpenNMT (modified for right-to-left decoding and the ensemble method)
Encoder Word embedding: 500 units, two-layer Bi-LSTM (500 + 500 units)
Decoder Word embedding: 500 units, two-layer LSTM (1,000 units)
Attention Global Attention

Training Mini Batch Size:64, SGD Optimization (10+6 epochs), Dropout:0.3
Translation Beam Width:5 (c.f., Sec. 3.2)

Postprocessing DeTrueCaser – Moses Toolkit –
DeTokenizer WAT Official’s Moses Toolkit WAT Official’s

Table 3: Summary of the NICT-2 NMT System

units). Global Attention (Luong et al., 2015) was
utilized.

We used the stochastic gradient descent (SGD)
method for the optimization. The learning rate
was 1.0 for the first ten epochs, and then annealing
was performed for six epochs while decreasing the
learning rate by half.

To implement the methods described in Section
2.3, we modified OpenNMT as follows.

• We enabled the ensemble in the translator.
• We enabled right-to-left decoding in the

trainer and translator.

The n-best size for the reranking was deter-
mined by the experiment in Section 3.2.

Evaluation: Of the WAT official evaluation
metrics, we employ BLEU (Papineni et al., 2002)
for the evaluation. WAT official scores are
changed by word segmenters. In this paper, we
use JUMAN (Kurohashi et al., 1994) for Japanese,
Moses tokenizer (Koehn et al., 2007) for En-
glish, and Stanford Word Segmenter (Chinese
Penn Treebank Model) (Chang et al., 2008) for
Chinese evaluation.

3.2 Optimal Size of N-best List

To output n-best translations using the beam
search, beam width is better to set equal or more
than n. In our experiments, we set the beam width
equal to the size of the n-best list.

Figure 2 shows the BLEU scores of various n-
best sizes on the DevTest set of the JIJI Corpus.
It contains the scores obtained by left-to-right and
right-to-left decoding and bi-directional reranking.
A single model is used here, i.e., an ensemble is
not used in this experiment.

15.015.516.016.517.017.518.0
0 5 10 15 20BLEU Score N-best Size (=Beam Width)left-to-rightright-to-leftbi-directional reranking

Figure 2: BLEU Scores According to N-best Size

In all methods, the BLEU scores changed ac-
cording to the size of the n-best list. For left-to-
right and right-to-left decoding, the BLEU scores
were highest when the n-best size was 4, and the
scores decreased when the n-best size increased
above 4. After the bi-directional reranking, the
BLEU score was the highest when the n-best size
was 5, and slowly decreased when the size in-
creased above 5.

In general, large n-best size is expected in
reranking to include good hypotheses. However,
in our NMT system, the peak score was achieved
with a small n-best size when a single model was
used, and similarly, a small n-best size was the
best in the reranking. This is because decreasing
the accuracy of the single model had greater influ-
ence than improving the coverage of n-best sizes.
Based on the above observation, we use 5 as the
n-best size hereafter.
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16.416.616.817.017.217.417.617.818.018.218.4 0 2 4 6 8 10 12 14 16BLEU Score # of Ensemble Modelsleft-to-rightright-to-leftbi-directional reranking
(a) Number of Ensemble Models vs. BLEU

Scores

16.416.616.817.017.217.417.617.818.018.218.4 0 2 4 6 8 10 12 14 16BLEU Score Total # of Modelsleft-to-rightright-to-leftbi-directional reranking
(b) Number of Total Models vs. BLEU Scores

Figure 3: Results of Multiple Model Combination on the JIJI Corpus
In the bi-directional reranking, the total number of models in (b) is equal to twice the number of ensemble
models in (a).

20.020.521.021.522.022.523.023.524.0 0 2 4 6 8 10 12 14 16BLEU Score # of Ensemble Modelsleft-to-rightright-to-leftbi-directional reranking
(a) Number of Ensemble Models vs. BLEU

Scores

20.020.521.021.522.022.523.023.524.0 0 2 4 6 8 10 12 14 16BLEU Score Total # of Modelsleft-to-rightright-to-leftbi-directional reranking
(b) Number of Total Models vs. BLEU Scores

Figure 4: Results of Multiple Model Combination on the MED Corpus
In the bi-directional reranking, the total number of models in (b) is equal to twice the number of ensemble
models in (a).

3.3 Effects of Multiple Models

Figures 3 and 4 show the results of the left-to-right
and right-to-left decodings, which use the simple
ensemble, and the bi-directional reranking on the
JIJI and MED corpora, respectively. Note that the
number of models used in the reranking is dou-
ble of that used by the ensemble model. There-
fore, we show two graphs: (a) a graph based on
the number of ensemble models and (b) a graph
based on the total number of models. We increased
the number of models incrementally, i.e., models
are added one at a time. Therefore, the settings for

many models must be compatible with the settings
of fewer models.

We firstly focus on the number of models and
the translation quality. The BLEU scores tend to
increase with the number of models for the all
methods in the graphs. However, the rates of in-
crease become slower as the number of models in-
creases. On the JIJI Corpus, the BLEU scores are
still increasing slightly with the 16-model ensem-
ble. On the MED Corpus, the BLEU scores almost
saturate with two- to six-model ensembles but do
not saturate in the bi-directional reranking.

Zhou et al. (2002) indicated that the ensemble
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is more effective when models are selected, rather
than using all models. However, in our experi-
ment, degradation of the translation quality was
not observed when all the models were used. The
BLEU score improved by 1.67 points in the bi-
directional reranking with 16 ensembles (32 mod-
els in total) on the JIJI Corpus compared with a
single model in the left-to-right decoding. On the
MED Corpus, the BLEU score improved by 2.58
points.

Secondly, we focus on the left-to-right and
right-to-left decodings of the ensemble. On MED
Corpus, the BLEU scores of the right-to-left de-
coding are higher than those of the left-to-right de-
coding. In contrast, the BLEU scores of the both
decoding directions are almost the same on JIJI
Corpus. We expected that the results would de-
pend on the data sets and language pairs. How-
ever, these results show that the translation quality
changed according to the decoding direction.

Thirdly, focusing on the graphs in (a), the scores
of the reranking almost always surpass those of
the simple ensembles (left-to-right and right-to-
left decodings). From these results, we make the
following observations.

• The model combination using the reranking
favorably affects the translation quality.

• Bi-directional reranking can improve the
translation quality from different aspects than
the ensemble.

Since we combined models with opposite de-
coding directions, effects similar to those of bi-
directional decoding (Liu et al., 2016) were real-
ized.

The graphs in (b) show that the total number of
models is double the number of ensemble mod-
els in the reranking. As shown in the graphs, the
BLEU scores of the reranking almost always sur-
pass those of the ensembles. In our experiments,
bi-directional reranking was more effective than
the ensembles if the number of models was the
same.

4 Experiments Using Large Data Sets

In this section, we show the results of Ja-En, En-
Ja, Ja-Zh, and Zh-Ja translation of the ASPEC
task.

4.1 Experimental Settings
Corpora: The corpora used here are the ASPEC
data sets listed in Table 2. From these training sets,
we acquired the byte-pair encoding rules, which
generate approximately 50k sub-word types per
language, and used sentences in which the num-
ber of sub-words is equal to or less than 80.

Translation System: The other settings such as
the translation system, preprocessing, and post-
processing are the same as those in Section 3. Ta-
ble 3 shows a summary of the settings.

4.2 Results
The results of the Ja-En and En-Ja translations are
shown in Table 4, and those of the Ja-Zh and Zh-Ja
translations are shown in Table 5.

We tested up to six ensembles due to resource
limitations; however, the results have the same
tendency as those of the small data sets. Namely,
the BLEU scores increased with the number of
models in both the cases, ensembles and rerank-
ing. The best BLEU scores were obtained in the
bi-directional reranking with six-model ensembles
in all language pairs, except En-Ja.

The improvements from the left-to-right sin-
gle model to the bi-directional reranking with six-
model ensemble were +1.97, +3.32, +1.59, and
+2.58 points in the Ja-En, En-Ja, Ja-Zh, and Zh-
Ja translations, respectively.

5 Conclusion

In this paper, we presented the NICT-2 neural ma-
chine translation system evaluated at WAT2017.
The main characteristics of this system are that
multiple models are used by the ensemble, and
moreover, double models are used by the bi-
directional reranking.

In the experiments on small data sets, we in-
creased the number of models in the ensemble to
16. However, the translation quality did not sat-
urate and can be further improved on some data
sets.

We confirmed that the decoding direction in-
fluences the translation quality. In addition,
the reranking can combine models with different
properties from the ensemble. Using this feature,
we combined models with opposite decoding di-
rections in the reranking. By incorporating the en-
semble and bi-directional reranking, we achieved
higher translation quality than with the ensem-
ble alone. In our experiments using ASPEC data
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Ja-En En-Ja
# of Ensemble Ensemble Reranking Ensemble Ensemble Reranking

Ensemble Models (left-to-right) (right-to-left) (left-to-right) (right-to-left)
1 24.79 24.72 25.34 36.85 38.20 39.10
2 25.60 25.40 25.89 38.37 38.69 39.41
3 26.17 25.62 26.08 38.95 39.23 39.87
4 25.89 25.77 26.26 38.97 39.37 40.03
5 25.94 26.06 26.37 39.19 39.55 40.23
6 26.21 26.29 26.76 39.13 39.26 40.17

Table 4: WAT2017 Official Scores (Ja-En Pair of ASPEC).
Note: The Japanese scores are based on the JUMAN segmenter.

Ja-Zh Zh-Ja
# of Ensemble Ensemble Reranking Ensemble Ensemble Reranking

Ensemble Models (left-to-right) (right-to-left) (left-to-right) (right-to-left)
1 33.64 33.60 34.10 44.26 44.13 45.10
2 34.67 34.22 34.77 45.59 45.52 46.20
3 34.75 34.64 34.98 45.88 45.93 46.53
4 34.75 34.64 34.98 46.13 46.10 46.55
5 35.02 34.81 35.18 46.27 46.36 46.69
6 35.27 34.95 35.23 46.55 46.31 46.84

Table 5: WAT2017 Official Scores (Ja-Zh Pair of ASPEC).
Note: The Japanese and Chinese scores are based on the JUMAN and Stanford (CTB Model)

segmenters, respectively.

sets, the BLEU scores improved from 1.59 to 3.32
points compared with the single model.

Both the ensemble and reranking can further
improve the translation quality if the quality of a
single model can be improved. Therefore, we will
tackle the improvement of single models. At the
time, we should evaluate the qualities of single and
multiple models separately.

Currently, the ensemble approach might not be
practical due to restrictions on the number and
memory of GPUs. However, we assume that ad-
vances in hardware will decrease these restric-
tions.
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Abstract

This paper describes the details about the
NAIST-NICT machine translation system
for WAT2017 English-Japanese Scientific
Paper Translation Task. The system con-
sists of a language-independent tokenizer
and an attentional encoder-decoder style
neural machine translation model. Ac-
cording to the official results, our sys-
tem achieves higher translation accuracy
than any systems submitted previous cam-
paigns despite simple model architecture.

1 Introduction

Neural machine translation (NMT) methods be-
came one of the main-stream techniques in
current machine translation studies. Previous
WAT campaign showed that NMT methods can
achieve higher translation accuracy in spite of
simple model configurations (Nakazawa et al.,
2016a). In this year, we chose the NMT ar-
chitecture as our translation systems submitted
for WAT2017 English-Japanese Scientific Paper
Translation Task (Nakazawa et al., 2017). The
main translation model is constructed by an
encoder-decoder model (Sutskever et al., 2014)
enforced by an attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015). This paper
describes the details of our system, including
whole model architecture, training criteria, decod-
ing strategy, and data preparation. Results show
that our system achieves higher translation accu-
racy than any systems submitted in previous WAT
campaigns.

2 Architecture of the System

2.1 Model formulation
Our translation model is built by an atten-
tional encoder-decoder network implemented in

NMTKit 1. Overall model structure is based on the
combination of Bahdanau et al. (2014) and Luong
et al. (2015). This translation model represents
a conditional probability Pr(e|f), where e :=
[e1, e2, · · · , eE ] and f := [f1, f2, · · · , fF ] are se-
quences of target/source words, and E, F are
the numbers of the target/source words. Encoder-
decoder style NMT models behaves a sequential
word generators, which yields target words one-
by-one along the time step. Formally, the whole
translation model is separated into the product of
token-wise conditional probabilities:

Pr(e|f) =
E∏
t=1

Pr(et|e<t,f), (1)

where e<t := [e1, · · · , et] is the history of gener-
ated target words. In each time step t, the condi-
tion 〈e<t,f〉 is represented as a condition vector
ηt and each conditional probability in Equation (1)
is calculated by the softmax function as follows:

Pr(et|e<t,f) := Pr(et|ηt) (2)

:= softmax(Weηt + be).(3)

where We and be are the parameters to be trained:
weight matrix and bias vector respectively. We
calculate the condition vector ηt using three sub-
models: encoder, decoder and attention described
in the following sections.

2.1.1 Encoder
The encoder converts given source sequence f to
a set of vectors R := [r1, r2, · · · , rF ]. Each vec-
tor at the position i is calculated as follows:

ri := concat(−→r i,←−r i), (4)
−→r i := RNN(emb(fi),−→r i−1) (5)
←−r i := RNN(emb(fi),←−r i+1), (6)

1https://github.com/odashi/nmtkit
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where concat(· · ·) represents the concatenation of
given vectors, emb(w) represents the lookup of
embedding vectors corresponding to the token w,
and RNN(·, ·) represents an independent recurrent
unit. We use the long short-term memory units
(Gers et al., 2000) with input/forget/output gates
to all recurrent units. We also introduce the n-
stacked encoder to represent richer source infor-
mation as follows:

ri := concat(−→r (n)
i ,←−r (n)

i ), (7)
−→r (n)
i := RNN(−→r (n−1)

i ,−→r (n)
i−1), (8)

←−r (n)
i := RNN(←−r (n−1)

i ,←−r (n)
i+1), (9)

−→r (0)
i := emb(fi), (10)

←−r (0)
i := emb(fi). (11)

We set all initial recurrent states −→r (n)
0 and←−r (n)

F+1

to 0.

2.1.2 Decoder and attention
The decoder calculates the condition vector ηt as
follows:

ηt := tanh(Wηconcat(ct,ht) + bη), (12)

where Wη and bη are the parameters. ht is
the current decoder’s state calculated by a uni-
directional recurrent unit:

ht := RNN(concat(emb(et−1),ηt−1),ht−1)),
(13)

and we extend this formulation to the n-stacked
version with the notation h(n)

t by the similar mod-
ification to that of the encoder. In this calculation,
we also introduce the previous condition vector
ηt−1 as an additional input of the recurrent unit.
This is called as the input feeding (Luong et al.,
2015), allows to propagate previous decision of
the decoder with keeping differentiability of the
network. ct is the context vector calculated from
R using an attention mechanism:

ct := Rat, (14)

where R is a matrix created by substituting all
vectors ri to the i-th columns. at represents the
weight of each vector ri at the time t, which is
calculated by an arbitrary score function α:

at := softmax(α(R,ht)). (15)

We follow the multi-layer perceptron based score
function proposed by Bahdanau et al. (2014):

αi(R,ht) := v>α tanh(Wαconcat(ri,ht)), (16)

where αi represents the i-th element of α, vα and
Wα are the parameters.

For the initial values h(n)
0 , we use the dense

bridge connection from the encoder units as fol-
lows:

h
(n)
0 := tanh(s(n)

h,0), (17)

s
(n)
h,0 := U(n)s

(n)−→r ,F + V(n)s
(n)←−r ,1 + b(n)

h0 ,

(18)

where U(n), V(n) and b(n)
h0 are the parameters, and

s
(n)
x,t denotes the internal states of the LSTMs cor-

responding to the outputs x(n)
t .

2.1.3 Hyper-parameters
The translation model described in previous sec-
tions has several hyper-parameters: number of
units in source/target embeddings emb(·), RNN
states −→r , ←−r and h, the hidden layer in the atten-
tion network, and the condition vector η. We con-
strained all these numbers same to prevent increas-
ing combination of hyper-parameters. In addition,
each recurrent unit also has the depth of stack as an
additional hyper-parameter. We also constrained
these numbers same due to the Equations (17) and
(18). Eventually, we varied the number of units
from 256 to 1024 and depth of the recurrent stack
from 1 to 4 to construct models that have a differ-
ent power of model expressiveness and finally se-
lected 512 as the former and 2 as the latter hyper-
parameter respectively.

2.2 Model Training
To find an optimal parameters in the model de-
scribed in the previous sections, we minimize the
cross-entropy loss function:

L(θ) := −
∑
m

∑
t

logPm,t(θ), (19)

Pm,t(θ) := Pr(et = e
(m)
t |e<t = e

(m)
<t ,f = f (m); θ),

(20)
where f (m) and e(m) represents the m-th parallel
corpora, and θ represents the set of all parameters
in a translation model.

To achieve this optimization problem, we use
the Adam optimizer (Kingma and Ba, 2014) for
all training settings.

Hyper-parameters Since Adam has several
hyper-parameters that may directly affect conver-
gence speed and model quality, we tried to train
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our models with various combination of hyper-
parameters, and finally chose as follows: α =
0.0001 (default/10), β1 = 0.9 (default), β2 =
0.999 (default), and ε = 10−8 (default).

2.3 Tokenization

Tokenization is one of the worrisome problems
of machine translation systems. Since there are
no linguistically unified criteria about separating
words from original sentences, we often have to
choose tokenization methods carefully according
to selected languages. In contrast, we use the Sen-
tencePiece tokenizer2 instead of some language-
dependent tokenization methods. This tokenizer
basically requires only an untokenized training
corpora to acquire actual tokenization strategies
and frees us from selecting actual tokenizers. In
our system, all raw sentences are tokenized using
the SentencePiece tokenizer trained by the corpus
used to train translation models, and resulting to-
kens generated by the translation models are de-
tokenized by simply removing boundary markers
in the concatenated strings. Through the whole
process of our translation systems, we never use
any other pre/post-processing methods.

Hyper-parameters SentencePiece requires the
vocabulary size V as the hyper-parameter. We
tried to use V = 4096, 8192, 16384, 32768, and
finally chose V = 16384 for each language.

2.4 Decoding

In decoding actual target sentences, we performed
greedy n-best beam search method with the word
penalty heuristic, which simply multiplies the con-
stant exp(WP ) to all word probabilities in each
time. The word penalty introduces an exponential
distribution as a prior knowledge about the length
of the target sentence. If we set the penalty fac-
tor WP > 0, then the system penalizes shorter
sentences, and tends to generate longer sentences.
Note that if the beam width is 1, there is no effect
from word penalty, because the translation system
can generate only 1-best results.

Hyper-parameters In our decoding strategy,
We have 2 hyper-parameters: beam width BW
and word penalty factor WP . We varied BW
from 1 to 128, and WP from 0 to 1.5, and finally
chose BW = 16 and WP = 0.75.

2https://github.com/google/sentencepiece

Table 1: Official evaluation results of our systems.
System BLEU Place (All / Single)

One-best 36.47 11 / 6
Adjusted 38.25 8 / 3
(last-year) 36.19 — / —

System RIBES Place (All / Single)
One-best 0.821989 13 / 6
Adjusted 0.834492 5 / 2
(last-year) 0.819836 — / —

System AM-FM Place (All / Single)
One-best 0.763310 5 / 4
Adjusted 0.770480 1 / 1
(last-year) 0.758740 — / —

System Human Place (All / Single)
One-best 63.500 8 / 3
Adjusted 70.000 4 / 1
(last-year) — — / —

2.5 Model Ensembling

Although the model ensembling techniques im-
prove the translation accuracy, they also impose a
great deal of computation back-ends (e.g., if a sin-
gle model requires a full resource of one GPU, the
N -ensemble system basically occupies N GPUs
while executing it) and this behavior is typically
not fit to the most situations of real production sys-
tems. Because of this issue, we did not introduce
any model ensembling techniques while decoding
test inputs.

3 Results

We trained all translation systems varied by
model/training/tokenization hyper-parameters de-
scribed in previous sections, and performed a grid
search to find an optimal set of hyper-parameters
for this task. For the training data, we used top
2M sentences in ASPEC corpus (Nakazawa et al.,
2016b) provided by the organizer. We chose the
optimal model that achieves the best BLEU (Pa-
pineni et al., 2002) score over the dev corpus.
For the optimal model, we also performed a grid
search about decoding-time hyper-parameters. All
the optimal hyper-parameters described in pre-
vious sections are found as the results of these
searches.

We submitted two results generated from the
same optimal model: one-best results, i.e., the re-
sults with fixing BW = 1, and adjusted results,
i.e., the results with optimal BW and WP de-
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Table 2: JPO adequacy results.

System Ensemble
Scores

1 2 3 4 5
(this-year) 8 models 0.25 1.75 8.25 36.50 53.25
Adjusted Single 0.25 1.75 17.50 37.75 42.75
(last-year) 3 models 2.00 2.75 19.25 43.50 32.50

scribed in Section 2.4.
Table 1 shows the official evaluation scores of

our systems, including BLEU, RIBES (Isozaki
et al., 2010), AM-FM (Banchs and Li, 2011), and
the human evaluation. The rows labeled last-year
shows the best system in all previous WAT cam-
paigns. We can see that our one-best system al-
ready achieves higher translation accuracy in all
automatic evaluation metrics than last-year sys-
tems. In addition, adjusted system achieves fur-
ther better scores than one-best, which means ap-
plying better decoding strategy can improve trans-
lation accuracy even using the same model.

Table 1 also shows the place of our systems in
this year. Because official results do not separate
scores of single (no-ensemble) models and ensem-
ble models, we also calculated the place of our
systems out of only single models for fair compar-
ison. In AM-FM and human evaluation, we can
see that our adjusted model marks the 1st place of
this year’s campaign.

Table 2 shows the results of the JPO pairwise
adequacy evaluation provided by the organizer.
We also showed the this-year system, the 1st place
system (by NTT team) of the same task in this
year’s campaign, as well as the Adjusted and the
last-year systems. By comparing with Adjusted
and last-year, we can see that our system clearly
increases the number of the highest (5) score and
reduces all other (1 to 4) scores. In particular, our
system reduces the number of lower-range (1 or 2)
scores by the same level of the this-year system
although we did not use model ensembling. How-
ever, there is still room for improvement about
higher-range (3 to 5) scores.

4 Conclusion

This paper described the details of the NAIST-
NICT neural machine translation systems submit-
ted to WAT2017 English-Japanese Scientific Pa-
per Translation Task. Although the model struc-
ture is not new, our model achieved higher transla-
tion accuracy compared with past systems in this

language pair. In addition, we also tried to use
SentencePiece, an unsupervised tokenizer to avoid
complicated tokenization problems, and also con-
firmed that the resulting translation systems can
perform with no accuracy reduction.

Acknowledgement

Part of this work was supported by JSPS
KAKENHI Grant Numbers JP17H06101 and
JP16H05873.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Rafael E. Banchs and Haizhou Li. 2011. Am-fm: A
semantic framework for translation quality assess-
ment. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 153–158, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
LSTM. Neural computation, 12(10):2451–2471.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language
pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 944–952. Association for Computational
Linguistics.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

138



Toshiaki Nakazawa, Chenchen Ding, Hideya MINO,
Isao Goto, Graham Neubig, and Sadao Kurohashi.
2016a. Overview of the 3rd workshop on asian
translation. In Proceedings of the 3rd Workshop on
Asian Translation (WAT2016), pages 1–46, Osaka,
Japan. The COLING 2016 Organizing Committee.

Toshiaki Nakazawa, Shohei Higashiyama, Chenchen
Ding, Hideya Mino, Isao Goto, Graham Neubig,
Hideto Kazawa, Yusuke Oda, Jun Harashima, and
Sadao Kurohashi. 2017. Overview of the 4th Work-
shop on Asian Translation. In Proceedings of the 4th
Workshop on Asian Translation (WAT2017), Taipei,
Taiwan.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016b. Aspec:
Asian scientific paper excerpt corpus. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC 2016),
pages 2204–2208, Portoro, Slovenia. European Lan-
guage Resources Association (ELRA).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

139



Proceedings of the 4th Workshop on Asian Translation, pages 140–145,
Taipei, Taiwan, November 27, 2017. c©2017 AFNLP

 

Comparison of SMT and NMT trained with large Patent Corpora: 
Japio at WAT2017 

 
Satoshi Kinoshita    Tadaaki Oshio    Tomoharu Mitsuhashi 

 
Japan Patent Information Organization 

{satoshi_kinoshita, t_oshio, t_mitsuhashi}    japio.or.jp 
 
 
 

Abstract 

Japan Patent Information Organization 
(Japio) participates in patent subtasks 
(JPC-EJ/JE/CJ/KJ) with phrase-based 
statistical machine translation (SMT) 
and neural machine translation (NMT) 
systems which are trained with its own 
patent corpora in addition to the sub-
task corpora provided by organizers of 
WAT2017.  In EJ and CJ subtasks, 
SMT and NMT systems whose sizes 
of training corpora are about 50 mil-
lion and 10 million sentence pairs re-
spectively achieved comparable scores 
for automatic evaluations, but NMT 
systems were superior to SMT systems 
for both official and in-house human 
evaluations. 

1 Introduction 

Japan Patent Information Organization (Japio) 
provides a patent information service named 
GPG/FX 1 , which enables users to do cross-
lingual information retrieval (CLIR) on patent 
documents by translating English and Chinese 
patents into Japanese and storing the translations 
in a full-text search engine. 

For this purpose, we use a phrase-based statisti-
cal machine translation (SMT) system for Chi-
nese-to-Japanese translation, and are preparing to 
change an English-to-Japanese translation system 
from a rule-based machine translation (RBMT) 
system to an SMT system.  To improve translation 
quality, we have been building technical term dic-
tionaries and parallel corpora, and the current cor-
pora sizes are 300 million sentence pairs for Eng-
lish-Japanese (EJ) and 100 million for Chinese-
                                                      
1 http://www.japio.or.jp/service/service05.html 

Japanese (CJ). We have also built a Korean-
Japanese (KJ) corpus which contains about 13 
million sentence pairs for adding Korean-to-
Japanese translation to enable searching Korean 
patents as well. 

Our current concern is neural machine transla-
tion (NMT), which has been used practically in 
the field of patent translation since last year 
(WIPO, 2016).  The new approach has been re-
ported to produce better translations than SMT by 
training with a smaller corpus than SMT.  Our 
translation results in the 4th Workshop on Asian 
Translation (WAT2017) (Nakazawa et al., 2017) 
show the same conclusion. 

2 Systems 

2.1 Base Systems 

We used three MT tools to produce translations 
for the workshop; two are SMTs and the rest is an 
NMT. The SMT tools are a phrase-based SMT 
toolkit licensed by NICT (Utiyama and Sumita, 
2014), and Moses (Koehn et al., 2007).  The for-
mer is used for EJ and CJ translation because it 
includes a pre-ordering module, which changes 
word order of English and Chinese source sen-
tences into a head-final manner to improve trans-
lation into Japanese. The latter is used for KJ 
translation where pre-ordering is not necessary 
because of linguistic similarities between Korean 
and Japanese.  We used morphological analyzers 
mecab-ko2 and juman version 7.0 (Kurohashi et 
al., 1994) for tokenizing Korean and Japanese re-
spectively.  

A toolkit we used for NMT is OpenNMT 3 , 
whose default setting provides an attention-based 
NMT model which consists of a 2-layer LSTM 
with 500 hidden units. 
                                                      
2 https://bitbucket.org/eunjeon/mecab-ko/  
3 http://opennmt.net/  
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Two major difference between its default and our 
experimental settings are: 1) a deep bidirectional 
recurrent neural network (DBRNN) is used in-
stead of a standard recurrent neural network 
(RNN). 2) The value 100,000 is used as a vocabu-
lary size if a size of training corpus is equal or 
more than 3 million sentence pairs whereas 
50,000, a default value, is used for a smaller train-
ing corpus than that. For tokenizing corpus texts, 
Moses tokenizer, juman and kytea4  are used to 
tokenize English, Japanese and Chinese, respec-
tively. 

2.2 Treatment of Out of Vocabulary 

One of major problems to use an NMT system for 
translating patent documents, which include a 
large number of technical terms, is a limited num-
ber of vocabulary size.  To solve the problem, var-
ious approaches have been proposed, such as us-
ing a model based on not words but characters or 
subwords, and a method to replace technical terms 
in a training corpus and source sentences with 
technical term tokens (Sennrich et al., 2015; Long 
et al., 2016). 

We propose a method to extract out of vocabu-
lary (OOV) words by the attention mechanism of 
OpenNMT and translate them with another NMT 
which has a character-based model.  For EJ/JE/CJ 
NMT systems, such character-based models are 
trained by using a size of 1 million technical terms 
extracted from our technical term dictionaries. 
Japanese and Chinese words of the extracted dic-
tionary entries are tokenized on a character basis 
while English words are divided by byte pair en-
coding. In translation, OpenNMT can output 
source tokens for unknown words instead of 
<unk> symbols by using attention weights5. They 
are translated by the above-mentioned character-
based NMT systems and replaced with their trans-
lations. 

2.3 Pre- and Post-processing 

We include the following pre- and post-editing 
functions depending on translation systems and 
directions: 
- Recovering lowercased out-of-vocabularies 

(OOVs) to their original spellings (EJ-SMT) 
-    Balancing unbalanced parentheses (KJ)  
                                                      
4 http://www.phontron.com/kytea/  
5 To distinguish unknown words in target tokens, we modi-
fied source codes of OpenNMT to add a tag to them. The 
latest version of OpenNMT has a similar function. 

-   Splitting long sentences into shorter ones (CJ-
NMT)  

3 Corpora and Training of SMT 

Our patent parallel corpora, hereafter Japio corpora, 
are built automatically from pairs of patent specifi-
cations called “patent families,” which typically 
consist of an original document in one language and 
its translations in other languages.  Sentence align-
ment is performed by 2 alignment tools: one is a 
tool licensed by NICT (Utiyama and Isahara, 2007), 
and the other is E_align6. 

In patent subtask of WAT2016, we achieved the 
highest BLEU score 58.66 in JPC-CJ with an 
SMT system trained with about 49 million sen-
tence pairs.  However, we found that about 55% 
of sentences in the test sets were involved in the 
training corpus7. Although we built our corpora 
independently from those of Japan Patent Office 
corpora (JPC), methodological similarity to use 
patent-family documents may have led the situa-
tion. In order to make our submission to WAT 
more meaningful, we determined that we would 
publish its automatic evaluation result, but sub-
mitted another translation which was produced by 
an SMT which was trained by using a corpus of 4 
million sentence pairs with no sentence in the test 
set.  This year, we trained an SMT with a corpus 
of the 49 million sentence pairs where test set sen-
tences are removed from the original corpus by 
using publication numbers embedded as data IDs 
in the JPC corpora.  To train NMTs, we used the 
JPC-CJ corpus as a baseline, and added up to 9 
million sentence pairs extracted from the above 
corpus. 

Corpus for EJ translation was prepared as in the 
case for CJ.  A corpus that we used for training an 
SMT for our service contained 24% of test set 
sentences.  Therefore, we published the result, but 
did not request human evaluation.  What we asked 
for human evaluation was a result which was 
translated by an SMT that was trained with a cor-
pus without sentences in the test set. Similarly, to 
train NMTs, we used the JPC-EJ corpus as a base-
line, and added up to 11 million sentence pairs 
from the corpus prepared for the above SMT. 

In the case of KJ patent subtask, we used 8 mil-
lion sentences pairs from our corpus in addition to 

                                                      
6 http://www.gsk.or.jp/catalog/gsk2017-a/  
7 JPC training sets contain 1.1%, 2.3% and 1.0% of sentenc-
es of EJ, CJ and KJ test sets respectively. 
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JPC-KJ corpus. By using 9 million sentence cor-
pus, we trained two types of SMTs: one trained 
with a corpus that is tokenized on a character-
basis, while the other with a corpus that is to-
kenized by mecab-ko. 

4 System Combination 

It was reported that an NMT system achieved bet-
ter translation by ensembling multiple models 
(Sennrich et al., 2016).  Because OpenNMT, 
which we use for our NMT systems, does not 
provide the function, we combined translations 
from multiple NMT systems as follows, in addi-
tion to using character-based NMTs to resolve 
OOVs. 
(1) Combinations of NMTs that are trained for 
technical domains 

For JPC-EJ, we trained 4 NMTs by using cor-
pora whose data are selected based on its do-
main label, namely C, E, M and P, which are 
also given to test set sentences.  They are used 
in addition to JPC-EJ corpus.  In translating 
test set sentences, an appropriate NMT is used 
according to the domain. 

(2) Usage of scores by OpenNMT 
For JPC-JE and CJ, we could not complete 
training which was needed to make 4 domain 
models as we did for JPC-EJ by the submis-
sion deadline.  Instead, we used scores which 
are given to each translation by OpenNMT, 
and selected a translation with the highest 
score. 
In JPC-KJ, we chose a translation by a charac-

ter-based SMT when a translation by a word-
based SMT contains an OOV with at least one 
Hangul character. 

BLEU RIBES AMFM pairwise JPO adq.

1-1 1330* SMT (PBSMT with preordering) 1 Yes 38.59 0.839141 0.733020 － －

1-2 1445 SMT (PBSMT with preordering) 100** No 55.55 0.875667 0.802260 － －

1-3 1462 SMT (PBSMT with preordering) 50 No 51.79 0.864038 0.781150 41.000 －

1-4 1451 NMT 1 Yes 44.69 0.864568 0.746720 － －

1-5 1453 NMT 5 Yes 48.39 0.880215 0.767720 － －

1-6 1454 NMT (Combination of 4 NMTs) 12 Yes 50.27 0.886403 0.776790 56.250 4.75

2-1 1455 NMT 1 Yes 44.07 0.863385 0.699930 － －

2-2 1578 NMT 5 Yes 48.08 0.873093 0.715560 67.000 －

2-3 1574 NMT (Combination of 3 NMTs) 11 Yes 49.00 0.878298 0.724710 68.500 4.79

3-1 1329* SMT (PBSMT with preordering) 1 Yes 39.29 0.820339 0.733300 － －

3-2 1161* SMT (PBSMT with preordering) 49** No 58.66 0.868027 0.808090 － －

3-3 1447 SMT (PBSMT with preordering) 49 No 50.52 0.847793 0.774660 60.500 －

3-4 1458 NMT 1 Yes 45.07 0.859883 0.754970 － －

3-5 1482 NMT 5 Yes 49.51 0.872625 0.777460 － －

3-6 1484 NMT (Combination of 3 NMTs) 10 Yes 50.06 0.875398 0.779420 80.250 4.46

4-1 1331* SMT (Character-based PBSMT) 1 Yes 69.10 0.940367 0.859790 － －

4-2 1448 SMT (Word-based PBSMT) 9 Yes 73.00 0.946880 0.872510 48.750 4.84

4-3 1449 SMT (Character-based PBSMT) 9 Yes 71.97 0.944435 0.868170 － －

4-4 1450 SMT (Combination of 2 SMTs) 9 Yes 73.00 0.946985 0.873200 48.500 －

* Submissions with '*' of their DataID are those submitted  for WAT2016

** Traing data whose size are given '**' include some sentences of test set.

JPC-KJ

Automatic Human
Subtask # DataID System

Corpus
Size

(million)

Use
official
corpus

JPC-EJ

JPC-JE

JPC-CJ

 
Table 1: Official Evaluation Results 

 

BLEU RIBES AMFM pairwise JPO adq.

1407 Team-A NMT No 44.63 0.866722 0.747770 60.000 4.63

1406 Team-A NMT No 44.44 0.860998 0.747050 58.250 －

1454 Japio NMT Yes 50.27 0.886403 0.776790 56.250 4.75

1470 Team-B NMT No 38.91 0.845815 0.734010 49.500 4.40

1339 Team-C NMT Yes 50.60 0.879382 0.770480 48.500 －

1462 Japio SMT Yes 51.79 0.864038 0.781150 41.000 －

Human
DataID Team Method

Other
Resources

Automatic

 
Table 2: Official Human Evaluation Results for JPC-EJ subtask 
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5 Results 

Table 1 shows official evaluation results for our 
submissions8.  In JPC-EJ and CJ, translations by 
SMTs trained with about 50 million sentence pairs 
are given comparable scores for automatic evalua-
tion with those by NMTs trained with about 10 
million sentence pairs.  Human pairwise evalua-
tion, however, gives much higher scores to trans-
lations by NMTs than those by SMTs. 

Table 2 shows evaluation results for high-
ranked submissions of JPC-EJ this year9.  What is 
the most interesting for us is that a translation by 
an SMT which is given the highest scores for 
BLEU and AMFM is given a lower human evalu-
ation score than those by NMTs trained with only 
1 million sentence pairs. Furthermore, comparing 
results between NMT systems, a result whose Da-
taID is 1339 and is given the highest BLEU score 
and a result whose DataID is 1454 and is given 
the highest RIBES and AMFM scores are given 
lower pairwise evaluation scores than those of 
Team-A, which are apparently given lower BLEU 
                                                      
8 Scores of BLEU, RIBES and AMFM for JPC-EJ/CJ/KJ 
are those calculated with tokens segmented by juman. 
9 A translation result whose DataID is 1339 was not evalu-
ated last year because it was submitted after the deadline for 
human evaluation. 

and AMFM scores than the formers. These results 
support previous findings that there is no correla-
tion between automatic and human evaluations. 

6 Discussion 

To recognize a difference of translation quality be-
tween SMT and NMT systems, we conducted two 
kinds of human evaluations independently from 
the official evaluation: one is pairwise evaluation, 
and the other is an error analysis.  We used the 
same sentences used for JPO adequacy evaluation 
in WAT2017, and one evaluator conducted both 
evaluations. Table 3 shows translations used for 
the in-house evaluation. 

6.1 Pairwise Evaluation 

We conducted pairwise evaluation based on ade-
quacy.  When evaluating a translation, which 
translation is better is determined based on how 
much of the meaning of a source sentence is ex-
pressed in its translation.  Taking JPO adequacy 
into account, insertion and deletion of conjunc-
tions which are considered not to convey im-
portant information are ignored if translations are 
grammatical.  Fluency is also ignored.  

Table 4 shows the result.  In both EJ and CJ, 
NMTs are evaluated to produce more better trans-
lations than SMTs.  The tendency is remarkable in 

Subtask DataID System Corpus size 
(million) 

BLEU 

JPC-EJ 1462 SMT (PBSMT with preordering) 50 51.79 
 1454 NMT (Combination of 4 NMTs) 12 50.27 

JPC-CJ 1447 SMT (PBSMT with preordering) 49 50.52 
 1484 NMT (Combination of 3 NMTs)  10 50.06 

Table 3: Translations for in-house evaluations 
 
EJ CJ

SMT is better 24 32

NMT is better 32 68

comparable 144 100  

Table 4: Result of pairwise evaluations 

SMT NMT SMT NMT

Insertion 10 2 8 4

Deletion 21 6 14 21

Mistranslation 26 31 29 54

Others 19 6 75 13

Total 76 45 126 92

Error Type
EJ CJ

 

Table 5: Errors of SMT and NMT for JPC-EJ/CJ 
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CJ, which is consistent with the official evaluation 
result shown in Table 1. 

6.2 Error Analysis 

In the error analysis, translation errors are catego-
rized into the following 4 categories: 

- Insertion 
- Deletion 
- Mistranslation 
- Others (such as grammatical errors) 
Note that insertions and deletions which are ig-

nored in the pairwise evaluation are counted in 
this analysis.  

Table 5 shows the result. On the whole, number 
of errors of the SMT translations is larger than 
that of NMT in both EJ and CJ.  This is consistent 
with the results of official and in-house pairwise 
evaluations. 

Number of mistranslations of NMT translations 
is however larger than that of SMT in both EJ and 
CJ.  The reason we think is that technical terms of 
low frequencies are not properly translated by the 
following two reasons: 

- A corpus that was used for training NMTs is 
much smaller than that for SMTs. 

- In training NMTs, a vocabulary is limited by 
a pre-defined vocabulary size or vocabulary 
set, and words out of the involved vocabulary 
cannot be translated. 

A character-based NMT which is used to re-
solve the OOV problem does not work as we ex-
pected.  In addition, deletion errors of NMT are 
smaller than SMT in EJ, but are larger in CJ.  

What is the most characteristic in the error 
analysis is that about 60% of errors of CJ SMT are 
categorized as "Others."  This might be caused by 
low precision of preordering due to the difficulty 
of Chinese syntactic analysis. 

7 Conclusion 

In this paper, we described systems and corpora of 
Team Japio for submitting translations to 
WAT2017.   To show potential of SMT and NMT 
in patent translation, we participated in patent sub-
tasks (JPC-EJ/JE/CJ/KJ) with systems which are 
trained with its own patent corpora in addition to 
the corpora provided by organizers of WAT2017.  
The result shows that SMT and NMT systems 
whose sizes of training corpora are about 50 mil-
lion and 10 million sentence pairs respectively 
achieved comparable scores for automatic evalua-
tions in EJ and CJ subtasks.  NMT systems were, 

however, superior to SMT systems for both offi-
cial and in-house human evaluations. 
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Abstract

We describe here our approaches and re-
sults on the WAT 2017 shared translation
tasks. Motivated by the good results we
obtained with Neural Machine Translation
in the previous shared task, we continued
to explore this approach this year, with
incremental improvements in models and
training methods. We focused on the AS-
PEC dataset and could improve the state-
of-the-art results for Chinese-to-Japanese
and Japanese-to-Chinese translations.

1 Introduction

This paper describes our experiments for the WAT
2017 shared translation task. For more details
refer to the overview paper (Nakazawa et al.,
2017). This translation task contains several sub-
tasks, but we focused on the ASPEC dataset, for
the Japanese-English and Japanese-Chinese lan-
guage pairs. Following up on our findings during
WAT 2016 (Nakazawa et al., 2016) that our Neural
Machine Translation system yielded significantly
better results than our Example-Based Machine
Translation system, we only experimented with
NMT this year.

Our improvements are actually quite incremen-
tal, with only small changes in the model archi-
tectures, model sizes, training and decoding ap-
proaches. Together, these small changes, however,
allow us to improve over our past year’s results by
several BLEU points, leading to the best official
results for the Japanese-Chinese pair. In terms of
pairwise human evaluation scores we have the best
official results for all language directions except
for English to Japanese. Our JPO adequacy scores

are also within 1% of the best score for these lan-
guage directions.

2 The Kyoto-NMT system

Following its success in the past few years, Neu-
ral Machine Translation has become the new ma-
jor approach to Machine Translation. In particu-
lar, the sequence-to-sequence with attention mech-
anism model, first proposed in (Bahdanau et al.,
2015) was proven to be very powerful and has be-
come the de facto baseline for NMT.

Our Kyoto-NMT system largely relies on an
implementation of this model, with small modi-
fications. Kyoto-NMT is implemented using the
Chainer1 toolkit (Tokui et al., 2015). We make this
implementation available under a GPL license.2

2.1 Overview of NMT

We describe here, briefly, our implementation
based on the (Bahdanau et al., 2015) model. As
shown in Figure 1, an input sentence is first con-
verted into a sequence of vector through an em-
bedding layer; these vectors are then fed to two
LSTM layers (one going forward, the other going
backward) to give a new sequence of vectors that
encode the input sentence. On the decoding part of
the model, a target-side sentence is generated with
what is conceptually a recurrent neural network
language model: an LSTM is sequentially fed the
embedding of the previously generated word, and
its output is sent through a deep softmax layer to
produce the probability of the next word. This de-
coding LSTM is also fed a context vector, which is

1http://chainer.org/
2https://github.com/fabiencro/knmt . See also

(Cromieres, 2016)
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a weighted sum of the vectors encoding the input
sentence, provided by the attention mechanism.

As is a common practice, we stack several lay-
ers of LSTMs for both the encoder and the de-
coder. When using deeper stacks of LSTMs, we
can optionally add residual connections (He et al.,
2016) to make the training easier. Furthermore, we
also added layer normalization (He et al., 2016)
to the LSTMs, which is supposed to also help
training as well as regularization. However, we
did not actually notice improvements when using
layer normalization.

2.2 Direct connection from previous word to
attention model

There is an interesting flaw in the original archi-
tecture of the model (as well as in the model de-
scribed in (Bahdanau et al., 2015)). This is briefly
mentioned3 in (Goto and Tanaka, 2017), but we
will expand on the details a bit more here.

The attention mechanism computes the current
context using only the previous decoder state as
input. But the previous decoder state has been
itself computed before the previously generated
target word was selected. Therefore, when com-
puting the current context, the attention mecha-
nism is totally unaware of the previously generated
word. Intuitively, this seems wrong: the attention
should certainly depend on the previously gener-
ated word.

Therefore, we add another input to the attention
model: the previous word embedding. To be pre-
cise, re-using the notations from (Bahdanau et al.,
2015)), the original attention is computed with this
equation:

eij = vT
a tanh(Wa · si−1 + Ua · hj) (1)

where eij is the unnormalized attention coeffi-
cient on source word j when decoding target word
at step i, si−1 is the decoder state at step i−1, and
hj is the encoding of source word j. The matrices
Wa and Ua, and the vector va are the parameters
of the alignment model. We replace this equation
with:

eij = vT
a tanh(Wa·si−1+Ua·hj+Xa·Ey−1) (2)

3The author had previously mentioned this to us in private
communications.

where Ey−1 is the embedding of the previously
generated target word. This increases the number
of parameters by Eo ·Ho (ie. the size of the matrix
Xa), where Eo is the size of target embedings, and
Ho is the size of the decoder state.

This change appeared to be remarkably effi-
cient, giving a +1 to +2 BLEU improvement at the
cost of about 1% increase in the size of the model.

2.3 Feed-Forward model

Aside from this implementation relying on
LSTMs, we also implemented a model without re-
current unit but with self-attention layers, based
on the model proposed in (Vaswani et al., 2017a).
This model obtained state-of-the-art results on
some European languages. And the code released
by the author of the original paper was used as
one of the organizer’s baseline of WAT2017. This
baseline ended up being unbeaten (in term of
BLEU) by participants for the English-to-Japanese
direction4, but was inferior to other participant’s
submissions (including ours) in the other direc-
tions.

Our experiences with our own implementation
of a feed-forward self-attention model led to re-
sults slightly inferior to the ones we obtained using
a more classic LSTM-based architecture. Which is
why all results presented in this paper are related
to the LSTM-based model. Such feed-forward
models probably have high potentials for the fu-
ture, as they are more computationally efficient
and do obtain state-of-the-art results on certain
language directions. But, currently, we do not find
that they should be necessarily preferred to recur-
rent architectures.

3 Models hyperparameters and
pre-processing

We describe here the general settings we used for
the hyperparameters of our models, as well as the
pre-processing we applied to the data.

3.1 Preprocessing

As a first preprocessing step, English sentences
were tokenized and lowercased. Both Japanese
sentences and Chinese sentences were automat-
ically segmented, respectively with JUMAN5

(Kurohashi, 1994) and SKP (Shen et al., 2016).

4but see section 4.2.1 for our attempt at system combina-
tion

5http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
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Figure 1: The structure of a NMT system with attention, as described in (Bahdanau et al., 2015) (but with
LSTMs instead of GRUs). The notation “<1000>” means a vector of size 1000. The vector sizes shown
here are the ones suggested in the original paper. We use this general architecture for our model, but the
single LSTMs are replaced by stacks of LSTMs. We also add a connection from the target embedding to
the attention model, as suggested by (Goto and Tanaka, 2017), which was not in the original model (see
section 2.2)

We used subword segmentation for all target
languages, so as to reduce the target vocabulary
size. This makes the translation process more ef-
ficient memory-wise and computation-wise, while
mostly avoiding the need for unknown-word re-
placement tricks such as in (Luong et al., 2015).
The subword segmentation was done using the
BPE algorithm (Sennrich et al., 2015) 6.

For the Japanese-Chinese language pair, we
learned a joint segmentation (as suggested in (Sen-
nrich et al., 2015)). We used a character equiv-
alence map (Chu et al., 2013) to maximize the
number of common characters between Japanese
and Chinese when learning the joint segmentation.
The joint segmentation was aimed at producing a
vocabulary size of about 40,000 words for both the
source and target vocabulary.

For the Japanese-English language pair, we did
not use a joint segmentation. We created a BPE
model of about 40,000 words for the target lan-
guage, and about 100,000 words for the source
vocabulary. Indeed, a large source vocabulary has
less impact on performance than a large target vo-
cabulary, and we expected the larger amount of

6using the BPE segmentation code at
https://github.com/rsennrich/subword-nmt

data available for this language pair would let us
correctly train a larger amount of embeddings.

3.2 Model hyper-parameters
For all experiments, we have used the following
basic settings:

• Source and target-side embeddings of size
1024

• Source and target-side hidden states of size
1024

• Attention mechanism hidden states of size
1024

• Deep softmax output with a 2-maxout layer
of size 512

We used LSTMs (Hochreiter and Schmidhuber,
1997) as the recurrent units for both the encoder
and the decoder. We empirically found them to
give better results than GRUs (Chung et al., 2014)
in the previous shared task.

We considered stacks of 2 and 3 layers of
LSTMs. Some preliminary experiments had con-
vinced us that 4 layers or more did not lead to sig-
nificant improvements, at least in the case of the
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Japanese-Chinese dataset. Adding residual con-
nections proved to be helpful in accelerating train-
ing in the case of a 3-layers encoder-decoder7.
They are not necessary when we stack only 2 lay-
ers of LSTMs.

We also experimented with inter-layer dropout
regularization (Srivastava et al., 2014), as first sug-
gested by (Zaremba et al., 2014).

3.3 Training Settings

Our training settings were mostly the same as
those reported for WAT2016. We used ADAM
(Kingma and Ba, 2014) as the training algorithm.

We also tried to do some annealing after the
ADAM training. That is, we first ran ADAM un-
til the dev loss stabilized. Then we switched to
a simple stochastic gradient descent with a small
learning rate ranging from 0.1 to 0.01. This pro-
cess did lead to an significant further decrease of
dev loss and increase of greedy dev BLEU. How-
ever, somehow surprisingly, this did not lead to
a BLEU improvement when translating with the
beam-search algorithm.

We used a dropout rate of 20% for the inter-
layer dropout. We used L2 regularization through
a weight decay factor of 1e-6. We also used an
early stopping scheme: every 200 training itera-
tions, we computed the perplexity of the devel-
opment part of the ASPEC data. We also com-
puted a BLEU score by translating this develop-
ment data with a “greedy search.”8 We kept track
of the parameters that gave the best development
BLEU and the best development perplexity so far.

We used dynamically-sized minibatches. Mini-
batches were created by grouping training sen-
tences of similar size until a threshold on the total
number of words was met. The threshold was cho-
sen so as to fill the memory of the GPU and could
differ depending on the dataset and the model
trained. This threshold was usually between 4000
and 8000 words per minibatch. We found these
dynamically-sized minibatches to allow for faster
training than the fixed-size minibatches we had
used previously. We also discarded training sen-
tences longer than 90 words.

7In our participation to WAT2016, we had reported having
disappointing results with 3-layers encoder-decoders. We can
now confirm that better results can be obtained either by a
much longer training or by adding residual connections.

8i.e., we did not use the beam search procedure described
in section 3.4, but simply translated with the most likely word
at each step. Using a beam search is to slow when we need to
do frequent BLEU evaluations.

As we had described in (Cromières et al., 2016),
we added some additional noise to the target em-
beddings in the hope to make the decoder rely
more on the source context than on the previously
generated word when generating the next word.

3.4 Beam Search

In general, greedy decoding (that lets the decoder
always select the next word with highest proba-
bility given the previously generated words) gives
sub-optimal translation results. It is therefore
common to use a beam-search approach to decod-
ing, keeping a beam of translation hypotheses in-
stead of just the greediest one.

Implementations of such a beam-search decod-
ing can vary. We detail here the way our decoding
work, which differs in some ways with, for exam-
ple, the one originally provided by the LISA lab
of Université de Montréal.9. It is an algorithm we
had already used for the WAT2016 shared task and
found to give good results. This time, we option-
ally added some more complex scoring and prun-
ing inspired from the beam-search algorithm in
(Wu et al., 2016).

We detail our basic beam search procedure in
Algorithm 1. Given an input sentence i of length
Li, we first estimate the maximum length of the
translation Lmt. Lmt is estimated by Lmt = r ·Li,
where r is a language dependent ratio. We em-
pirically found the following values to work well
: r = 1.2 for Japanese-to-English, r = 2 for
English-to-Japanese, and r = 1.5 for Japanese-
to-Chinese and Chinese-to-Japanese. At the end,
we found it beneficial to rank the generated trans-
lations by their log-probability divided by their
length.

Instead of our simple pruning and normalized
scores, we also considered pruning and scoring
functions such as the ones proposed in (Wu et al.,
2016). In particular, the equation 14 of this paper
describes a more complex parameterized scoring
function that takes into account both the length of
the translation and the coverage of the attention.
We did not take the time to select the three hyper-
parameters of this scoring function and just used
the default ones given in the paper. As a result we
could only observe benefits from this more com-
plex scoring function for the Japanese-to-English
direction (improving the results by only about 0.2
BLEU). For the three other directions, our basic

9https://github.com/lisa-groundhog/
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algorithm gavw slightly better results. It could be
that the better results could be obtained by tuning
each hyperparameter to each dataset and language
direction.

3.5 Averaging and Ensembling

It is well known that using an ensemble of several
independently trained models can boost NMT per-
formances by several BLEU points. We did this
in the same way as was described in (Cromières
et al., 2016).

On top of ensembling independently trained
models, we had found it useful to also make an
ensemble with the parameters of the same model
corresponding respectively to the best loss, best
dev BLEU and last obtained during the training
process (a practice which we will call here self-
ensemble). Following (Junczys-Dowmunt et al.,
2016), we tried to compute averaged parameters
instead of ensembling models. We found this to
work surprisingly well. We observed only non-
significant BLEU drops (by about 0.1 BLEU). But
with the benefit that the averaged model has the
same time and space complexity as a single model,
while an ensemble of N models has N times the
time and space complexity of a single model. We
therefore switched to this averaging approach in-
stead of the self-ensemble approach10.

4 Results

4.1 Details for each submission

In general, all experiments were run following
the methodology and hyperparameters described
in section 3. We detail here the specific settings
for each submissions.

Ja → En Submission 1 and 2 correspond to an
ensemble of 4 models, two of them having 2 lay-
ers for encoders and decoders, and two of them
having 3 layers. In submission 2, we decode using
the scoring function from (Wu et al., 2016) (see
section 3.4), while submission 1 uses our normal
scoring function.

En → Ja Submission 1 corresponds to an en-
semble of 4 models, two of them having 2 layers
for encoders and decoders, and two of them having
3 layers.

10Of course, this is only expected to work when averaging
parameters from the same training run. Ensembling remains
the only option to combine independently trained models.

Ja → Zh Submission 2 corresponds to an en-
semble of 5 models, three of them having 2 layers
for encoders and decoders, and two of them having
3 layers. Submission 1 adds 2 additional models to
the ensemble, having 3 layers on the encoder and
2 on the decoder.

Zh → Ja Submission 1 corresponds to an en-
semble of 5 models, three of them having 2 lay-
ers for encoders and decoders, and two of them
having 3 layers. Submission 2 does things a bit
differently. It is an ensemble of 6 models using a
keyword replacement method similar to (Li et al.,
2016).

4.2 Official Evaluation Results

Table 1 shows the official automatic and human
evaluation results of the ASPEC subtasks that we
participated in. “Rank” shows the ranking of our
submissions among all the submissions for each
subtask.

From the point of view of human pairwise eval-
uation, our system achieved the best translation
quality for all the subtasks except for En→ Ja.

From the point of view of automatic BLEU
evaluation, we obtained the best results for the
two directions of the Japanese-Chinese dataset,
but not for the Japanese-English dataset. In the
case of JPO Adequacy scores we rank 2nd for the
three language directions for which we had ranked
first in term of pairwise evaluation. But because
the difference in adequacy score with respect to
the first system is by less than 1%, it might not
be statistcially significant. For Japanese to Chi-
nese we noticed that we had a higher percentage
of translations which were rated as perfect com-
pared to the other systems.In general the number
of translations with the lowest scores (with a rating
of 1) are much lower when compared to last years
results which is a clear indication of progress.

It is interesting to note that these results reveal
a certain discrepancy between BLEU and human
evaluation. In particular, for Japanese-to-English,
although our submission was significantly below
some other submissions in term of BLEU, it ended
up being given a higher score by human evalua-
tion.

It somehow confirms that BLEU is not always
a clear indicator of translation quality, maybe es-
pecially for a language like Japanese that has free
word order. Moreover, there are questions on the
reliability of BLEU when the BLEU scores are
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Algorithm 1 Beam Search
1: Input: decoder dec conditionalized on input sentence i, beam width B
2: Lmt← r · |i| ▷ Lmt: Maximum translation length, r: Language-dependent length ratio
3: finished← [] ▷ list of finished translations (log-prob, translation)
4: beam← array of Lmt item lists ▷ an item: (log-probability, decoder state, partial translation)
5: beam[0]← [(0, sti, ”)] ▷ sti: initial decoder state
6: for n← 1 to Lmt do
7: for (lp, st, t) ∈ beam[n− 1] do
8: prob, st′← dec(st, t[−1]) ▷ dec return the probability of next words, and the next state
9: for w, pw ∈ topB(prob) do ▷ topB return the B words with highest probability

10: if w = EOS then
11: add (lp + log(pw), t) to finished
12: else
13: add (lp + log(pw), st′, t + w) to beam[n]
14: end if
15: end for
16: end for
17: prune beam[n]
18: end for
19: Sort (lp, t) ∈ finished according to lp/|t|
20: return t s.t. lp/|t| is maximum

Subtask Ja→ En En→ Ja Ja→ Zh Zh→ Ja
Submission 1 2 1 1 2 1 2

BLEU 27.55 27.66 38.72 35.31 35.67 48.34 48.43
Rank(BLEU) 7/10 4/10 6/11 2/6 1/6 2/5 1/5

Adequacy (JPO) 4.10 - 4.26 3.95 - 4.30 -
Rank(Adequacy) 2/10* - 4/11 2/6* - 2/5* -

RIBES 0.7614 0.7654 0.8324 0.8501 0.8494 0.8842 0.8834
AM-FM 0.5855 0.5911 0.7542 0.7854 0.7794 0.7998 0.7995

Human (Pairwise) 77.75 74.50 69.75 72.50 71.50 82.75 79.50
Rank(Human) 1/10 5/10 5/11 1/6 2/6 1/5 2/5

Table 1: Official automatic and human evaluation results of our NMT systems for the ASPEC subtasks.
The scores in bold are the best compared to the scores of the other systems. For JPO adequacy, rank
marked by a * indicates the score was within 1% of the best and therefore the difference might not be
statistically significant.

very high. This hints that it might not be a good
idea to use training procedures that directly op-
timize BLEU, something that was already men-
tioned in (Wu et al., 2016).

We also performed additional experiments for
En → Ja after the official submission deadline
which we describe in the following subsection.

4.2.1 System Combination

Considering that English-to-Japanese was the one
direction where we were behind other submis-
sions, we tried to see if we could at least get an
improvement by system combination. This expe-
rience was done after the shared task results were
published and is not part of the official results of

WAT2017’s shared task.
Tensor2Tensor’s Transformer11 (Vaswani et al.,

2017b) achieved the best performance in term of
BLEU (organizer’s result; also the state-of-the-art)
for En→ Ja and we decided to combine it with our
system using MEMT (Heafield and Lavie, 2010).
MEMT relies on computing a lattice with vari-
ous features12 by aligning the translations at the
sentence level and then using a n-gram language
model for generating and ranking a n-best list. We
used MEMT with the default settings which re-
quires the following:

11https://github.com/tensorflow/tensor2tensor
12These features include paraphrases, synonyms using

wordnets and common subwords using a stemmer
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System Google’s
Transformer KNMT

MEMT
(System

Combination)
BLEU 40.79 38.74 41.53
RIBES 0.8448 0.8318 0.8410

AM-FM 0.7686 0.7565 0.7710

Table 2: Automatic evaluation results of system combination for English to Japanese. These results
represent the SOTA in terms of BLEU and AM-FM.

• Dev set translations for both systems.

• Test set translations for both systems.

• Dev set reference sentences.

• N-gram Language Model using KenLM (We
used a 6 gram model) (Heafield, 2011).

Table 2 shows the results for system combi-
nation for En → Ja. Although the Transformer
model is about 2 BLEU points better than ours
system combination still manages to give an incre-
ment of 0.74 BLEU which is statistically signifi-
cant (p < 0.01).This indicates that the two models
give results that are complementary. In the future
we will explore methods to determine the best set-
tings for system combination in order to further
improve the translation quality.

5 Conclusion

We have detailed our methods and experimen-
tal process for our participation to the WAT2017
translation shared task. We could improve the
state-of-the-art for the Japanese-Chinese dataset in
term of both BLEU and pairwise human evalua-
tion. We also obtained the best pairwise human
evaluation score for Japanese-to-English transla-
tion. However, our improvements over our last
year’s participation were incremental and evolu-
tionary rather than revolutionary. Small improve-
ments across the models, training process and de-
coding process added up to bring a +2 to +4 BLEU
improvements in the results.

In the future, we intend to do experiments with
more recent evolutions of the translation models,
in particular those that use more linguistic infor-
mation.
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Abstract

The paper presents this year’s CUNI sub-
missions to the WAT 2017 Translation
Task focusing on the Japanese-English
translation, namely Scientific papers sub-
task, Patents subtask and Newswire sub-
task. We compare two neural network
architectures, the standard sequence-to-
sequence with attention (Seq2Seq) (Bah-
danau et al., 2014) and an architecture us-
ing convolutional sentence encoder (FB-
Conv2Seq) described by Gehring et al.
(2017), both implemented in the NMT
framework Neural Monkey1 that we cur-
rently participate in developing. We also
compare various types of preprocessing of
the source Japanese sentences and their
impact on the overall results. Furthermore,
we include the results of our experiments
with out-of-domain data obtained by com-
bining the corpora provided for each sub-
task.

1 Introduction

With neural machine translation (NMT) currently
becoming the leading paradigm in the field of
machine translation, many novel NMT architec-
tures with state-of-the-art results are being pro-
posed. In the past, there were reports on large
scale evaluation (Britz et al., 2017), however, the
experiments were performed on a limited number
of language pairs from related language families
(English→German, English→French) or focused
on a subset of possible NMT architectures, leav-
ing room for further exploration.

One of the downsides of NMT is the limited al-
lowable size of both input and output vocabular-
ies. Various solutions for dealing with potential

1http://ufal.mff.cuni.cz/neuralmonkey

out-of-vocabulary (OOV) tokens were proposed
either by using a back-off dictionary look-up (Lu-
ong et al., 2015), character-level translation of un-
known words (Luong and Manning, 2016) or re-
cently quite popular translation via subword units
generated by byte pair encoding (Sennrich et al.,
2016c). However, in the case of Japanese which
has no clear definition of a word unit, there has
been less research on how a particular preprocess-
ing can influence the overall NMT performance.

In this system description paper we compare
two sequence-to-sequence architectures, one us-
ing a recurrent encoder and one using a convolu-
tional encoder. We also report results of our exper-
iments with preprocessing of Japanese. Further-
more, we report how including additional out-of-
domain training data influence the performance of
NMT.

2 Dataset Preparation

In this section we describe the methods we used
for preprocessing both Japanese and English.

Due to Japanese being an unsegmented lan-
guage with no clear definition of word boundaries,
proper text segmentation is essential. We used
MeCab2 (Kudo et al., 2004) with the UniDic3 dic-
tionary to perform the tokenization.

For English, we used morphological analyser
MorphoDiTa4 (Straková et al., 2014) to tokenize
English training sentences. Based on the gener-
ated lemmas, we also performed truecasing of the
target side of the training data.

To reduce the vocabulary size, we use byte
pair encoding (BPE; Sennrich et al., 2016c) which
breaks all words into subword units. The vo-
cabulary is initialized with all alphabet characters

2http://taku910.github.io/mecab/
3https://osdn.net/projects/unidic/
4https://github.com/ufal/morphodita/
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present in the training data and larger units are
added on the basis of corpus statistics. Frequent
words make it to the vocabulary, less frequent
words are (deterministically) broken into smaller
units from the vocabulary. We generated separate
BPE merges for each dataset, both source and tar-
get side.

Because the BPE algorithm, when generat-
ing the vocabulary, performs its own (subword)
segmentation, we decided to compare a system
trained on the tokenized Japanese (which was then
further segmented by BPE) with a system that
was segmented only via BPE. Additionally, we
also performed a comparison with a system with
Japanese text transcribed in Latin alphabet. The
romanization was done by generating Hiragana
transcription of each token using MeCab and then
transcribing these tokens to Romaji using jaconv.5

The resulting text was then also further segmented
by BPE. The results are discussed in Section 4.1

3 Architecture Description

We use Neural Monkey6 (Helcl and Libovický,
2017), an open-source NMT and general
sequence-to-sequence learning toolkit built using
the TensorFlow (Abadi et al., 2015) machine
learning library.

Neural Monkey is flexible in model configura-
tion supporting the combination of different en-
coder and decoder architectures as well as solving
various tasks and metrics.

We perform most of the experiments on the
8GB GPU NVIDIA GeForce GTX 1080. For the
preprocessing of data and final inference, we use
our cluster of CPUs.

The main hyperparameters of the neural net-
work are set as follows. We use the batch size of
60. As the optimization algorithm we use Adam
(Kingma and Ba, 2014) with initial learning rate
of 0.0001. We used only the non-ensembled left-
to-right run (i.e. no right-to-left rescoring as done
by Sennrich et al. 2016a) with beam size of 20,
taking just the single-best output.

We limit the vocabulary size to 30,000 subword
units. The vocabulary is constructed separately for
the source and target side of the corpus.

We compare two different architectures. We de-
scribe both of them in more details as well as the

5https://github.com/ikegami-yukino/
jaconv

6http://ufal.mff.cuni.cz/neuralmonkey

hyperparameters used during the training in the
following sections.

3.1 Sequence to Sequence

Our main architecture is the standard encoder-
decoder architecture with attention as proposed by
Bahdanau et al. (2014).

The encoder is a bidirectional recurrent neu-
ral network (BiRNN) using Gated Recurrent Units
(GRU; Cho et al., 2014). In each step, it takes an
embedded token from the input sequence and its
previous output and outputs a representation of the
token. The encoder works in both directions; the
resulting vector representations at corresponding
positions are concatenated. Additionally, the final
outputs of both the forward and backward run are
concatenated and used as the initial state of the de-
coder.7

The decoder is a standard RNN with the con-
ditional GRU (Calixto et al., 2017) recurrent unit.
At each decoding step, it takes its previous hid-
den state and the embedding of the token produced
in the previous step as the input and produces the
output vector. This vector is used to compute the
attention distribution vector over the encoder out-
puts. The RNN output and the attention distribu-
tion vector are then used as the input of a linear
layer to produce the distribution over the target
vocabulary. During training, the previously gener-
ated token is replaced by the token present in the
reference translation. The architecture overview is
in Figure 1.

We have used the following setup of network
hyperparameters. The encoder uses embeddings
of size 500 and the hidden state of bidirectional
GRU network of size 600 in both directions.
Dropout (Srivastava et al., 2014) is turned off and
the maximum length of the source sentence is set
to 50 tokens. The size of the decoder hidden state
is 600 and the output embedding is 500. In this
case, dropout is also turned off. The maximum
output length is 50 tokens. In this paper, we will
refer to this architecture as Seq2Seq.

3.2 Convolutional Encoder

The second architecture is a hybrid system using
convolutional encoder and recurrent decoder.

We use the convolutional encoder defined by
Gehring et al. (2017). First, the input sequence

7The concatenated final states are transformed to match
the size of the decoder hidden state.
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Figure 1: Simplified illustration of the standard RNN encoder-decoder architecture. Labels describing
parts of the network are in italics. <bos> and <eos> are special tokens marking the beginning and end
of the sentence.

of tokens x = (x1, ..., xn) is assigned a sequence
of embeddings w = (w1, ..., wn) where wi ∈ Rf

is produced by embedding matrix D ∈ R|V |×f .
When compared to the RNN encoder, the convolu-
tional encoder does not explicitly model positions
of the tokens in the input sequence. Therefore, we
include this information using positional embed-
dings. We model the information about the posi-
tion in the input sequence via p = (p1, ..., pn)8

where pi ∈ Rf . The resulting input sequence em-
bedding is computed as e = (w1+p1, ..., wn+pn).

The encoder is a convolutional network stack-
ing several convolution blocks over each other.
Each block contains a one dimensional convolu-
tion followed by a nonlinearity. The convolu-
tion with kernel size k and stride 1 with SAME
padding is applied on the input sequence using d
input channels and 2 × d output channels. This
output is then fed to the Gated Linear Unit (GLU;
Dauphin et al., 2016) which substitutes a nonlin-
earity between the convolution blocks. Addition-
ally, residual connections are added to the pro-
duced output. At the final layer, we get the en-
coded sequence y = (y1, ..., yn) where yi ∈ Rd.

We use same decoder as in the previous sec-
tion. The initial decoder state s ∈ Rd is created by
picking element-wise maximum across the length

8Another option is to use the sine and cosine functions of
different frequencies (Vaswani et al., 2017) instead of train-
able positional embeddings.

of the encoder output sequence y. We tried other
methods for creating the initial decoder state and
this one produced the best results. Figure 2 shows
the overview of the encoder architecture.

In the experiments we use encoder with the em-
bedding size of 500 and maximum length of 50
tokens per sentence. The encoder uses 600 input
features in each of its 6 convolutional layers with
the kernel size of 5. Dropout is turned off. For the
rest of this paper we will refer to this architecture
as FBConv2Seq.

4 Experiments

In this section we describe all experiments we con-
ducted for the WAT 2017 Translation Task. We
report results over the development set.

4.1 Japanese Tokenization

We experimented with various tokenization meth-
ods of the Japanese source side. In Table 1 we
compare untokenized, tokenized and romanized
Japanese side. This experiment was evaluated over
the top 1 million training examples in the ASPEC
dataset.

4.2 Architecture Comparison

In Table 2 we compare the architectures we de-
scribed in Section 3. We ran experiments on 4
different datasets. The JPO, JIJI, ASPEC with 1
million best sentences were used with tokenized
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Figure 2: Illustration of the encoder used in the
FBConv2Seq architecture. The attention over the
Encoder Outputs is computed in a similar fashion
as in Seq2Seq architecture and is omitted for sim-
plicity.

Tokenization BLEU
Untokenized 24.69
Tokenized 26.56
Romanized 25.46

Table 1: Comparison of various tokenization
methods measured on the ASPEC dataset.

Japanese. The dataset ASPEC 3M was not tok-
enized by MeCab.

After examination of the Table 2, we can see
that in most cases the Seq2Seq model (Bahdanau
et al., 2014) outperforms the FBConv2Seq archi-
tecture. On the other hand, the FBConv2Seq
model performed better on the untokenized cor-
pus. This might suggest that the model has an ad-
vantage in processing inputs which are not prop-
erly segmented thanks to the convolutional nature
of the encoder. This could be valuable for lan-
guages that cannot be segmented.

4.3 ASPEC Size of Data

The ASPEC dataset consists of 3 millions of En-
glish to Japanese sentence pairs ordered with a de-
creasing accuracy of the translation. It is a well
known fact about neural networks that the more

Corpora Seq2Seq FBConv2Seq
JPO 35.40 BLEU 33.87 BLEU
JIJI 16.40 BLEU 13.72 BLEU
ASPEC 1M 26.56 BLEU 22.29 BLEU
ASPEC 3M untok. 18.14 BLEU 19.16 BLEU

Table 2: Comparison of two examined architec-
tures.

Corpora In-domain Combined corpora
JPO (1M) 34.95 BLEU 33.62 BLEU
JIJI (0.2M) 16.40 BLEU 14.19 BLEU
ASPEC (2M) 23.19 BLEU 23.46 BLEU

Table 3: Comparison of in-domain data only and
combined corpora.

data is available, the better performance they can
get. In this experiment we try to compare the in-
fluence of the size of dataset and the quality of the
training pairs. We decided to experiment with sub-
corpora containing 1, 1.5, 2, 2.5 and 3 million best
sentence pairs. We refer to them as ASPEC 1M,
ASPEC 1.5M, ASPEC 2M, ASPEC 2.5M, ASPEC
3M respectively.

For simplicity, the experiment was performed
with untokenized Japanese side and we used the
Seq2Seq architecture. All corpora are shuffled in
order to overcome the ordering by the quality of
translation.

The results presented in Figure 3 show a clear
picture that the overall quality of the training data
is more important than the total amount of the
data.

4.4 Corpus Combination

In the previous section, we experimented with the
quality of the training corpora. In this experiment
we show whether more data can help in various
domains or if it is also a burden as shown in the
previous section comparing quality of the data.

We combined tokenized corpora for JPO (1 mil-
lion sentences), JIJI (200 thousand sentences) and
2 million of the best sentences from ASPEC. The
resulting corpus was shuffled.

The results in Table 3 suggest that the domain is
important for both the JPO and JIJI datasets. Inter-
estingly, it improved the score of the ASPEC 2M.

There is also another explanation which is more
plausible with respect to the experiments in the
previous section. The training data in JPO and JIJI
have better quality than the data in ASPEC 2M,
which leads to the worse performance on those
datasets and on the other hand cleaner data helps
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Figure 3: Learning curves over different sizes of ASPEC data.

Corpora Results
JPO 35.35 BLEU
JIJI 16.40 BLEU
ASPEC 25.56 BLEU

Table 4: Performance of the final models on the
development data.

ASPEC to increase the performance.
More research on this topic is needed to answer

which of the explanations is more plausible. In
future work, we want to experiment with com-
bined corpora of JPO, JIJI and only 1 million of
the cleanest sentences from ASPEC.

4.5 Official Results
Based on the previous experiments we decided to
use the tokenized and shuffled in-domain training
data for each of the tasks. For the Translation Task
submission, we chose the Seq2Seq architecture,
because it had a better overall performance. For
the ASPEC dataset, we decided to train only on
the 1 million cleanest training data. The results of
the evaluation done on the corresponding develop-
ment datasets are in Table 4.

The results of Translation Task are available on
the WAT 2017 website.9 Our system performed
mostly on average. It was beaten by more sophis-
ticated architectures using more recent state-of-the
art techniques.

5 Summary

In this system description paper, we presented ini-
tial results of our research in Japanese-English
NMT. We compared two different architectures
implemented on NMT framework, Neural Mon-
key, however, as the official results of the WAT

9http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

2017 Training Task suggest, future improvements
needs to be done to catch-up with the current state
of the art.

We performed experiments with different in-
put language tokenization combined with the byte-
pair-encoding subword segmentation method. In
the future, we plan to explore other tokenization
options (e.g. splitting to bunsetsu) together with
using a shared vocabulary for both the source and
target languages. We are curious, whether the
latter will bring an improvement when combined
with romanization of Japanese.

Lastly, we made several experiments with
dataset combination suggesting that including ad-
ditional out-of-domain data is generally harmful
for the NMT system. As the next step we plan
to investigate options for creating additional syn-
thetic data and their impact on the overall perfor-
mance as suggested by Sennrich et al. (2016b).
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Abstract

In this paper, we describe our neural ma-
chine translation (NMT) system, which
is based on the attention-based NMT
(Luong et al., 2015) and uses long short-
term memories (LSTM) as RNN. We im-
plemented beam search and ensemble de-
coding in the NMT system. The system
was tested on the 4th Workshop on Asian
Translation (WAT 2017) (Nakazawa et al.,
2017) shared tasks. In our experiments,
we participated in the scientific paper
subtasks and attempted Japanese-English,
English-Japanese, and Japanese-Chinese
translation tasks. The experimental re-
sults showed that implementation of beam
search and ensemble decoding can effec-
tively improve the translation quality.

1 Introduction

Recently, neural machine translation (NMT) has
gained popularity in the field of machine trans-
lation. The conventional encoder-decoder NMT
(Sutskever et al., 2014; Cho et al., 2014) uses two
recurrent neural networks (RNN); one is an en-
coder, which encodes a source sequence into
a fixed-length vector; the other is a decoder,
which decodes this vector into a target se-
quence. Attention-based NMT (Bahdanau et al.,
2015; Luong et al., 2015) can predict output words
by using the weights of each hidden state of the en-
coder as the context vector, thereby improving the
adequacy of the translation.

Despite the success of attention-based models,
several open questions remain in NMT. In gen-
eral, a unique output word is predicted at each time
step. Therefore, if a wrong word is predicted, sub-
sequent words will not be correctly output. To
enable better predictions, best practices such as

beam search and ensemble decoding are recom-
mended to improve the robustness of the predic-
tions. Beam search keeps better hypotheses dur-
ing decoding, while ensemble decoding reduces
the variance of output during decoding.

In this paper, we describe the NMT system that
was tested on the shared tasks at 4th Workshop on
Asian Translation (WAT 2017) (Nakazawa et al.,
2017). We implemented beam search and ensem-
ble decoding in our NMT system. We applied
our NMT system to Japanese-English, English-
Japanese, and Japanese-Chinese scientific paper
translation subtasks. The experimental results
show that beam search and ensemble decoding
improve the translation accuracy by 3.55 points
in Japanese-English translation and 3.28 points
in English-Japanese translation in terms of BLEU
(Papineni et al., 2002) scores.

2 Neural Machine Translation

Herein, we describe the architecture of our NMT
system as shown in Figure 1. The designed
system is based on the attention-based NMT
(Luong et al., 2015) and uses long short-term
memories (LSTM) as RNN. Our NMT system
comprises mainly two components:

• Encoder : one-layer bi-directional LSTM

• Decoder : one-layer uni-directional LSTM

2.1 Encoder

The source sentence is converted into a sequence
of one-hot word vectors (X = [x1, · · · , x|X|])
where |X| is the length of source sentence.

At each time step i, the source word embedding
vector es

i is computed by the following equation.

es
i = tanh(Wxxi) (1)
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Figure 1: The architecture of our NMT system.

where Wx ∈ Rq×vs is a weight matrix. q is the
dimension of the word embeddings and vs is the
size of source vocabulary.

The hidden state h̄i of the encoder is computed
as given by the following equation.

h̄i =
−→
hi +

←−
hi. (2)

Here, the forward state
−→
hi and the backward state←−

hi are computed by

−→
hi = LSTM(es

i ,
−−→
hi−1) (3)

and ←−
hi = LSTM(es

i ,
←−−
hi+1). (4)

Note that the computation of hidden state h̄i of the
encoder can be regarded as an addition instead of
a concatenation.

2.2 Decoder
As with the source sentence, the target sentence is
converted into a sequence of one-hot word vectors
(Y = [y1, · · · , y|Y |]) where |Y | is the length of
target sentence.

At each time step j, the hidden state hj of the
decoder is represented as

hj = LSTM([et
j−1 : h̃j−1], hj−1) (5)

where et
j−1 is the target word embedding vector,

h̃j−1 is the attentional hidden state, and hj−1 is
the hidden state at the previous time step.

The target word embedding vector et
j is com-

puted by
et

j = tanh(Wyyj) (6)

where Wy ∈ Rq×vt is a weight matrix. vt is
the target vocabulary size. The attentional hidden
state h̃j is represented as

h̃j = tanh(Wa[hj : cj ] + ba) (7)

where Wa ∈ Rr×2r is a weight matrix and ba ∈
Rr is a bias vector. r is the number of hidden units.

The context vector cj is a weighted sum of each
hidden state h̄i of the encoder. It is represented as

cj =
|X|∑
i=1

αijh̄i. (8)

Its weight αij is a normalized probability distri-
bution, which is computed using a dot product of
hidden states, as follows:

αij =
exp(h̄T

i hj)∑|X|
k=1 exp(h̄T

k hj)
. (9)

The conditional probability of the output word
ŷj is computed by

p(ŷj |Y<j , X) = softmax(Wph̄j + bp) (10)

where Wp ∈ Rvt×r is a weight matrix and bp ∈
Rvt is a bias vector.

Incidentally, the rare words that did not fit in
the vocabulary are replaced with unknown tokens
“<unk>”. When the unknown word is predicted,
our NMT system does not process it and outputs
this unknown token as it is.
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Japenese-English Japanese-Chinese
train 1,456,278 672,315
dev 1,790 2,741
test 1,812 2,300

Table 1: Numbers of parallel sentences.

2.3 Training

The objective function is defined by

L(θ) =
1
D

D∑
d=1

|Y |∑
j=1

log p(y(d)
j |Y (d)

<j , X(d), θ)

(11)

where D is the number of data and θ are the
model parameters. On training, this objective
function is maximized. The model parameters of
word embedding are initialized using Word2Vec
(Mikolov et al., 2013). The other model parame-
ters are randomly initialized.

2.4 Testing

In general, a unique output word is predicted at
each time step. Then the next output word is pre-
dicted on the premise that this unique output word
is correct. Therefore, if a wrong word is once pre-
dicted, then it is difficult to correctly output subse-
quent words. To make better predictions, we im-
plemented beam search and ensemble decoder.

2.4.1 Beam Search
In general, the word that has the highest probabil-
ity is output. In beam search, we keep hypotheses
of beam size n at each time step. At the subse-
quent time step, for each hypothesis, we compute
n hypotheses; then, we keep n hypotheses in total
n2 hypotheses. Adopting this approach reduces
the risk of generating wrong sentences.

2.4.2 Ensemble Decoding
In ensemble decoding, the conditional probabil-
ity of the output word ŷj is the average of each
model’s score. It is computed by

p(ŷj |Y<j , X) =
1
M

M∑
m=1

p(m)(ŷj |Y<j , X)

(12)
where M is the number of models. Adopting this
approach reduces the risk of predicting a wrong
word at each time step.

3 Experiments

We experimented our NMT system on Japanese-
English, English-Japanese, and Japanese-Chinese
scientific paper translation subtasks.

3.1 Datasets

We used the Japanese-English and Japanese-
Chinese parallel corpora in Asian Scientific Pa-
per Excerpt Corpus (ASPEC) (Nakazawa et al.,
2014). As regards the Japanese-English parallel
corpus, Japanese sentences were segmented by the
morphological analyzer MeCab1 (version 0.996,
IPADIC) and English sentences were tokenized
by tokenizer.perl of Moses2. On the other hand,
as regards the Japanese-Chinese parallel corpus,
Japanese and Chinese sentences were tokenized
by SentencePiece3. The vocabulary size of the to-
kenizer was set to 50,000.

As regards the training data in Japanese-English
parallel corpus, we used only the first 1.5 million
sentences sorted by sentence-alignment similarity;
sentences with more than 60 words were excluded.
On the other hand, as regards the training data in
Japanese-Chinese parallel corpus, we used all the
sentences. Table 1 shows the numbers of the sen-
tences in each parallel corpus.

3.2 Japanese-English and English-Japanese
translation tasks

Settings In these tasks, we conducted the exper-
iment using the following configuration:

• Number of hidden units: 1,024

• Word embedding dimensionality: 512

• Source vocabulary size: 100,000

• Target vocabulary size: 30,000

• Minibatch size: 128

• Optimizer: Adagrad

• Initial learning rate: 0.01

• Dropout rate: {0.1, 0.2, 0.3, 0.4, 0.5}

• Beam size: {1, 2, 5, 10, 20}
1https://github.com/taku910/mecab
2http://www.statmt.org/moses/
3https://github.com/google/sentencepiece
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Japanese-English
Model BLEU RIBES AMFM HUMAN

Previous system (Yamagishi et al., 2016) 18.45 0.711542 0.546880 -
beam 1 21.00 0.725284 0.585710 +56.750
beam 2 22.21 0.733571 0.591740 -
beam 5 22.85 0.737631 0.595180 -
beam 10 22.99 0.739629 0.595030 -
beam 20 23.03 0.741175 0.595260 +61.000
5 ensemble + beam 1 22.78 0.738325 0.587630 -
5 ensemble + beam 2 24.02 0.743581 0.596840 -
5 ensemble + beam 5 24.46 0.744955 0.597760 -
5 ensemble + beam 10 24.55 0.744928 0.596360 -

Table 2: Japanese-English translation results.

English-Japanese
Model BLEU RIBES AMFM HUMAN

beam 1 33.72 0.811057 0.740620 +50.750
beam 2 34.54 0.817303 0.744730 -
beam 5 35.10 0.820389 0.744370 -
beam 10 35.30 0.821341 0.744660 -
beam 20 35.32 0.821563 0.744890 +56.500
5 ensemble + beam 1 35.63 0.825683 0.751660 -
5 ensemble + beam 2 36.35 0.829732 0.750950 -
5 ensemble + beam 5 36.90 0.831559 0.750360 -
5 ensemble + beam 10 37.00 0.832569 0.749410 -

Table 3: English-Japanese translation results.

We trained five models with different dropout
rates for each task. Then, we selected the best
model based on the development set for a single
model. The best dropout rate of 0.2 was achieved
in a preliminary experiment. We applied various
beam sizes during testing. In addition, we ensem-
bled five trained models.

Results Tables 2 and 3 show the translation ac-
curacy in BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010), AMFM (Banchs and Li,
2011) and HUMAN evaluation scores. In the
“Model” column, “beam n” indicates the model
with the beam size of n, “n ensemble” indi-
cates the model ensembled by n trained models
on testing. “Previous system” in Table 2 indi-
cates our previous NMT system for WAT 2016
(Yamagishi et al., 2016). This system is based on
the attention-based NMT (Bahdanau et al., 2015)
and did not implement dropout, beam search, and
ensemble decoding.

The results show that beam search and en-
semble decoding improve the translation accu-
racy by 3.55 points in Japanese-English translation
and 3.28 points in English-Japanese translation in
BLEU scores. As regards Japanese-English trans-
lation, our NMT system improved the translation
accuracy by 6.10 points compared with our previ-
ous NMT system. From a BLEU score standpoint,
with increasing beam size, the translation accuracy
is enhanced. However, it does not always improve
translation accuracy in other metrics.

Table 4 shows examples of outputs of Japanese-
English translations. In Example 1, the output is
significantly poor when the beam size is 1. How-
ever, by increasing the beam size, the output is im-
proves significantly. In Example 2, increasing the
beam size does not improve the output; however,
by ensemble decoding, the output is improved.
The experimental results indicate that beam search
and ensemble decoding can effectively improve
the translation quality.
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Example 1
Source 単純桁橋より接合金具を始め多種部材を組合せるため ,工法が

複雑である。
beam1 since a joint metal metal metal metal metal metal metal metal metal metal

metal metal metal metal metal metal metal metal metal metal metal metal
metal metal metal metal metal metal metal metal metal metal metal metal
metal metal metal metal metal metal metal metal metal metal metal metal
metal metal metal metal metal metal metal metal metal metal metal

beam20 the method is complicated in order to combine a joint metal metal fitting to a
simple girder bridge and a lot of member .

5ensemble + beam10 the method is complicated in order to combine various kinds of members from
simple girder bridges to combine various kinds of members .

Reference the construction was more complicated than simple girder bridge because of
combinating various members including connecters .

Example 2
Source 小型甲殻類では ,アミ類のアカイソアミ ,ワレカラ類の

ニッポンワレカラとツガルワレカラは茨城県で初めて確認された。
beam1 <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,

<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> and <unk> , <unk> and <unk> ,

beam20 <unk> , <unk> and <unk> of <unk> , <unk> , <unk> , <unk> , <unk>
, <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
<unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> and <unk>
, respectively , in Ibaraki Prefecture , for the first time .

5ensemble + beam10 in small crustaceans , <unk> and <unk> of <unk> and <unk> were con-
firmed for the first time in Ibaraki Prefecture .

Reference among the small-type Crustacea , Paracanthomysis hispida of Mysidae , and
Caprella japonica and C. tsugarensis of Caprellidae were confirmed for the
first time in Ibaraki Prefecture .

Table 4: Examples of outputs of Japanese-English translation.

3.3 Japanese-Chinese translation task
Settings In this task, we conducted the experi-
ment using the following configuration:

• Number of hidden units: 1,024

• Word embedding dimensionality: 1,024

• Source vocabulary size: 30,000

• Target vocabulary size: 30,000

• Minibatch size: 64

• Optimizer: Adagrad

• Initial learning rate: 0.01

• Dropout rate: 0.1

• Beam size: 1

Japanese-Chinese
BLEU RIBES AMFM HUMAN
22.92 0.798681 0.700030 +4.250

Table 5: Japanese-Chinese translation result.

Results Table 5 shows the translation accuracy
in terms of BLEU, RIBES, AMFM, and HUMAN
evaluation scores. The experimental result indi-
cates that the translation quality is significantly
poor compared with the other NMT systems in
this task at WAT 2017. As regards this task, be-
cause this research is in its infancy, so we could
not apply the proper settings. Therefore, we will
attempt to pre- or post-process a corpus properly,
tune the hyper parameters, and improve the trans-
lation quality.
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4 Conclusion

In this paper, we described our NMT system,
which is based on the attention-based NMT and
uses long short-term memories as RNN. We
evaluated our NMT system on Japanese-English,
English-Japanese, and Japanese-Chinese scientific
paper translation subtasks at WAT 2017. The ex-
perimental results show that the implementation
of beam search and ensemble decoding can effec-
tively improve the translation quality.

In our future work, we will attempt to use the
byte pair encoding (BPE) (Sennrich et al., 2016)
and compare it with SentencePiece that was ex-
plored in this work. In addition, we plan to im-
plement the adversarial NMT (Wu et al., 2017;
Yang et al., 2017), which is based on generative
adversarial networks (GAN). GAN consist of two
networks; one is a discriminator, which distin-
guishes whether the input data is real or not; the
other is a generator, which generates the data that
the discriminator cannot distinguish. This ap-
proach attempts to generate high quality transla-
tions that are comparable to human translations.
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Abstract

In this paper, we empirically compare
the two encoder-decoder neural machine
translation architectures: convolutional se-
quence to sequence model (ConvS2S) and
recurrent sequence to sequence model
(RNNS2S) for English-Hindi language
pair as part of IIT Bombay’s submission
to WAT2017 shared task. We report the
results for both English-Hindi and Hindi-
English direction of language pair.

1 Introduction

Neural Machine Translation (NMT) systems are
currently being widely investigated in the research
community due to the benefits of distributed rep-
resentation and continuous space modeling in gen-
erating more fluent outputs. In this paper, we
report the results of our experiments with NMT
for English-Hindi language pair for the shared
task in the 4th Workshop on Asian Translation
(Nakazawa et al., 2017). Hindi is the most widely
spoken language in the Indian subcontinent, while
English is a major link language in India as well
across the world. Hence, English-Hindi is an im-
portant language pair for machine translation.

In this work, we focus on comparing two vari-
ants of the encoder decoder architectures. Section
2 describes our systems. Section 3 describes the
experimental setup. Section 4 describes the results
and observations of our experiments. Section 5
concludes the report.

2 System Description

We trained Neural Machine Transaltion systems
using the encoder-decoder architecture with at-
tention (Bahdanau et al., 2014) for English-Hindi
as well Hindi-English translation. We com-
pared convolutional neural network (ConvS2S)

(Gehring et al., 2017) and recurrent neural net-
work (RNNS2S) (Bahdanau et al., 2014) based se-
quence to sequence learning architectures. While
RNN based architectures have proved to be suc-
cessful and produce state-of-the-art results for ma-
chine translation, they take a long time to train.
The temporal dependencies between the elements
in the sequence due to the RNN state vector re-
quires sequential processing. On the other hand,
different parts of the sequence can be processed
in parallel using a ConvS2S. Hence, it is appeal-
ing to explore ConvS2S as the basis of an archi-
tecture to speed up training and decoding. Re-
cent work (Gehring et al., 2017) has shown that
a purely CNN based encoder-decoder network is
competitive with a RNN based network.

2.1 Recurrent sequence to sequence model
(RNNS2S)

Recurrent sequence to sequence model (Bahdanau
et al., 2014) is currently the most popular method
for neural machine translation. It is been shown to
be useful for other sequence to sequence tasks like
image captioning (Vinyals et al., 2015), language
modeling, question answering (Wang and Nyberg,
2015) etc. The typical architecture encodes the
sequence of source word embeddings to generate
annotations for the source words. The encoder is
typically a bi-directional RNN layer of LSTM or
GRU units. The final state of the encoder is used to
initialize the decoder. The decoder is also an RNN
which generates one output token at a time. Each
output token is predicted based on the decoder
state, previous output word and the context vector.
The context vector encodes source information re-
quired for predicting the words, and is generated
using an attention mechanism on the source word
annotations. Please refer to Bahdanau et al. (2014)
for an detailed description of the method.
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2.2 Convolutional sequence to sequence
model (ConvS2S)

In convolutional sequence to sequence model
(Gehring et al., 2017), the input sequence is en-
coded into distributional vector space using a
CNN and decoded back to output sequence again
using CNN instead of RNN (Sutskever et al.,
2014). Each input element embedding is com-
bined with its positional embedding (signifies the
position of the input element). Positional embed-
dings help the network to realize what part of input
it is dealing with, currently.

Encoder-Decoder. Both the encoder and
decoder are CNN blocks along with a multi-
step attention mechanism with multiple ’hops’
(Sukhbaatar et al., 2015). Each block consists of
one dimensional convolutions followed by a Gated
Linear Unit (GLU) non-linearity (Dauphin et al.,
2016). GLU is a gating function over the out-
puts of the convolutions. The multi-step attention
mechanism suggests that the attention mechanism
is applied to every layer in the decoder. The atten-
tion of the first layer gives contextual information
which is then given as an input to the next layer
that considers this information while calculating
the attention weights of the current layer.

Set # Sentences # Tokens
En Hi

Train 1,492,827 20,666,365 22,164,816
Test 2,507 49,394 57,037
Development 520 10,656 10,174

Table 1: Statistics of data sets

Method BLEU RIBES AMFM HUMAN
RNNS2S 11.55 0.6829 0.5570 21
ConvS2S 13.76 0.6975 - -

Table 2: Hindi to English Translation

Method BLEU RIBES AMFM HUMAN
RNNS2S 12.23 0.6886 0.6248 28.75
ConvS2S 11.73 0.6903 - -

Table 3: English to Hindi Translation

3 Experimental Setup

3.1 Data

The data for WAT2017 shared task for English-
Hindi language is a mix domain data collected

Encoder Decoder BLEU
En-Hi Hi-En

4 3 7.84 8.67
9 5 11.43 13.05
13 7 11.73 13.76

Table 4: Different number of encoder and decoder
layers in ConvS2S in terms of BLEU.

from different sources at CFILT1lab. The data pro-
vided was in tokenized format using moses tok-
enizer for English side and Indic NLP library2for
Hindi side of the parallel data. The training data
was further cleaned for a sentence length of 100
words. Table-1 shows data statistics used for the
experiments.

3.2 Training

The RNNS2S model was trained using Nematus3

framework. To handle rare words, subword4 tech-
nique was used through byte pair encoding(BPE)
Shibata et al. (1999) with 16000 BPE operations.
Since there is no similarity between English and
Hindi language vocabulary, both the languages
were trained separately for BPE. The encoder and
decoder hidden layer size was kept at 512 and
word embedding size as 256. The model was
trained with a batch size of 40 sentences and
maximum sentence length of 100 using AdaDelta
(Zeiler, 2012) optimizer with a learning rate of
0.0001 and no dropout setting. The output param-
eters were saved after every 10000 iterations. The
decoding was done using a beam size of 12 and en-
semble of last 3 models and the best model taken
together.

The ConvS2S model was trained using
Fairseq5, an open source library developed by
Facebook for neural machine translation using
CNN or RNN networks. For handling the rare
words, the source side and target side corpora
were segmented using byte pair encoding (BPE)
(Shibata et al., 1999). The baseline model with 4
encoder layers and 3 decoder layers was trained
using nag optimizer (Gehring et al., 2017) with
a learning rate of 0.25 with 0.2 as its dropout
value and gradient clipping was also applied.

1http://www.cfilt.iitb.ac.in/
2http://anoopkunchukuttan.github.io/indic nlp library/
3https://github.com/EdinburghNLP/nematus
4https://github.com/rsennrich/subword-nmt
5https://github.com/facebookresearch/fairseq
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Team BLEU RIBES AM-FM Pairwise Adequacy
2016 Best 18.72 71.68 67.07 57.25 3.36
XMUNLP 21.39 74.97 68.88 64.5 3.86

IITB-MTG (RNNS2S) 12.23 68.86 62.48 28.75 2.68
IITB-MTG (ConvS2S) 11.73 69.03 - - -

Table 5: English to Hindi Translation Systems at WAT2017

Team BLEU RIBES AM-FM Pairwise Adequacy
XMUNLP 22.44 75.09 62.95 68.25 3.51

IITB-MTG (RNNS2S) 11.55 68.29 55.7 21 2.29
IITB-MTG (ConvS2S) 13.76 69.75 - - -

Table 6: Hindi to English Translation Systems at WAT2017

The inferencing was done using beam search
with a beam size of 10 for both Hindi-English
and English-Hindi translation task. The model
was also trained with more number of layers
in the encoder and the decoder. The resulting
BLEU scores for different number of encoder and
decoder layers are shown in Table 4. The best
results were obtained when the number of encoder
layers were set to 13 and decoder layers to 7, with
learning rate of 0.1 and no dropout regularization.
The resulting BLEU scores with this setting for
Hindi-English and English-Hindi are shown in
Table 2 and Table 3 respectively.

4 Results and Observation

The Table 2 and the Table 3 shows the differ-
ent evaluation metrics such as Bilingual Evalua-
tion Understudy (BLEU) (Papineni et al., 2002),
Rank-based Intuitive Bilingual Evaluation Score
(RIBES) (Group et al., 2013), Adequacy-Fluency
Metrics (AMFM) (Banchs et al., 2015) (N/A
for ConvS2S model) and human evaluation score
(HUMAN) (N/A for ConvS2S model) for Hindi-
English and English-Hindi translation pairs.

In Hindi to English translation, the ConvS2S
model outperforms the RNNS2S model in terms
of BLEU score and the RIBES score. On the other
hand, in English to Hindi translation, the RNNS2S
model performs better than the ConvS2S model in
terms of BLEU score and the RIBES score is at
par with the ConvS2S model.

The JPO Adequacy and pairwise evaluation
of our RNNS2S output was compared against
WAT2016 best system. Table 5 and table 6 show
the evaluation results of all other systems in com-
parison to our submission. The results clearly in-

dicate the scope of fine tuning our system param-
eters. Due to time constraint, the ConvS2S out-
put could not be submitted for manual evaluation.
But the increasing trend of BLEU Scores have mo-
tivated us to continue our experimentation for a
deeper analysis.

Further experimentation is required to see if the
ConvS2S can perform better on English-Hindi as
well. One way to test this is by increasing the
number of encoder and/or decoder layers even
further. This is because, in the Table 4 we can
clearly observe that the BLEU scores increases
when number of encoder and decoder layers are
increased. More experiments are required with
RNNS2S architecture as well.

5 Conclusion

In our system submission, we compared two se-
quence to sequence architectures: RNN based and
CNN based for the English-Hindi language pairs.
The BLEU scores of CNN architecture improves
by further tunning the parameters.

In future, we would like to investigate the
threshold of hyperparameters for RNNS2S and
ConvS2S architectures for this language pair keep-
ing processing time in consideration.
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