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Abstract 

Previous models of turn-taking have mostly 

been trained for specific turn-taking decisions, 

such as discriminating between turn shifts and 

turn retention in pauses. In this paper, we pre-

sent a predictive, continuous model of turn-

taking using Long Short-Term Memory 

(LSTM) Recurrent Neural Networks (RNN). 

The model is trained on human-human dia-

logue data to predict upcoming speech activity 

in a future time window. We show how this 

general model can be applied to two different 

tasks that it was not specifically trained for. 

First, to predict whether a turn-shift will occur 

or not in pauses, where the model achieves a 

better performance than human observers, and 

better than results achieved with more tradi-

tional models. Second, to make a prediction at 

speech onset whether the utterance will be a 

short backchannel or a longer utterance. Final-

ly, we show how the hidden layer in the net-

work can be used as a feature vector for turn-

taking decisions in a human-robot interaction 

scenario.  

1 Introduction 

One of the most fundamental aspects of dialogue 

is the organization of speaking between the par-

ticipants. Since it is difficult to speak and listen 

at the same time, the interlocutors need to take 

turns speaking, and this turn-taking has to be co-

ordinated somehow. This poses a challenge for 

spoken dialogue systems, where the system 

needs to coordinate its speaking with the user to 

avoid interruptions and (inappropriate) gaps and 

overlaps.  

For a full account of turn-taking, there are 

many different aspects that need to be modelled. 

For example, the system should be able to detect 

whether the user is likely to continue speaking 

after a brief silence, or whether the system 

should respond (Meena et al., 2014; Ferrer et al., 

2002). Another related issue is to detect places 

where it is appropriate to give brief feedback (so-

called backchannels) while the user is speaking 

(Morency et al., 2008). If the user starts speak-

ing, it is also important to estimate whether the 

user is most likely initiating a longer utterance, 

or a shorter listener response (Neiberg and 

Truong, 2011; Selfridge et al., 2013). When the 

system is speaking, it is important to assess 

whether the user will interpret pauses in the sys-

tem’s speech as turn-yielding (an opportunity to 

take the turn) or not, depending on how the sys-

tem’s utterance is synthesized (Hjalmarsson, 

2011). So far, these different problems have 

mostly been addressed as separate issues, using 

different models.  

In this paper, we present a general, continuous 

model of turn-taking, trained on dialogue data. 

The model is general, in that we do not train it 

for specific turn-taking decisions, but instead 

train it to forecast the probability that the speak-

ers will continue speaking over a future time 

window. The model is continuous, in that it does 

this at every time step, and not at certain events 

(such as when someone stopped speaking). We 

argue that this predictive model is potentially 

useful for a number of different types of predic-

tions and decisions that are relevant for spoken 

dialogue systems.  

A similar approach was taken by Ward et al. 

(2010). However, their experiments only yielded 

modest improvements over the baseline. An ex-

planation for this might be that turn-taking is a 

highly context-dependent phenomenon, and that 

representation of dialogue context is a challeng-

ing task, typically involving a lot of heuristics 

and feature engineering. To address this problem, 

and make as few assumptions as possible, we 

train the model using Long Short-Term Memory 

(LSTM) Recurrent Neural Networks (RNN), 

where the context-modelling is left to the net-

220



work, and we feed it with fairly basic features 

representing cues known to be relevant for turn-

taking. 

The paper is organized as follows. We start 

with a review of related work on the problem of 

turn-taking in dialogue, and give a brief over-

view of RNNs. We then describe the proposed 

model in more detail, how it was applied in this 

study, and how features were extracted. Using 

the HCRC Map Task Corpus (Anderson et al., 

1991), we then present two experiments on turn-

taking predictions, both at pauses and at speech 

onset.  Finally we investigate how the model can 

be applied to make predictions on human-

computer dialogue data.  

2 Background 

2.1 Turn-taking in Spoken Dialogue 

Traditionally, spoken dialogue systems have 

rested on a very simplistic model of turn-taking, 

where a certain amount of silence (e.g., 700ms) 

is used as an indicator that the user has stopped 

speaking, and that the turn is yielded to the sys-

tem. One obvious problem with this model is that 

turn-shifts often are supposed to be much more 

rapid than this, with very short gaps, and that 

pauses within a turn often might be longer. Thus, 

the system will sometimes appear to give slug-

gish responses, and sometimes interrupt the user. 

Several studies have shown that humans coordi-

nate their turn-taking using much more sophisti-

cated cues. For example, an incomplete syntactic 

clause or a filled pause (such as “uhm”) typically 

indicates that the speaker is not yielding the turn 

(Clark and Fox Tree, 2002), and turn-taking is 

related to information density in the words spo-

ken (Dethlefs et al., 2016). Prosodically, a rising 

or falling pitch at the end of a segment tend to be 

turn-yielding, whereas a flat pitch is turn-holding 

(Edlund and Heldner, 2005). The intensity of the 

voice tends be lower when yielding the turn, and 

the duration of the last phoneme tends to be 

shorter. Gaze has also been found to be an im-

portant cue – speakers tend to not look at the ad-

dressee during an utterance, but then shift the 

gaze towards the addressee when yielding the 

turn (Kendon, 1967). Studies have also shown 

that the more turn-yielding cues are presented 

together, the more likely it is that the other 

speaker will take the turn (Gravano and 

Hirschberg, 2011; Koiso et al., 1998; Duncan 

and Niederehe, 1974). 

Several models have been presented for taking 

these different cues into account and to predict 

turn-taking events. A common approach is to 

segment the speech into so-called Inter-Pausal 

Units (IPU), which is a stretch of audio from one 

speaker without any silence exceeding a certain 

amount (such as 200ms). Given the end of an 

IPU, the model has to predict whether the speak-

er is making a pause and “holding” the turn, or 

whether the speaker is yielding the turn. Various 

feature sets and machine learning algorithms 

have been proposed, and tested on both human-

human and human-machine dialogue data 

(Meena et al., 2014; Schlangen, 2006; Neiberg 

and Gustafson, 2011; Johansson and Skantze, 

2015; Ferrer et al., 2002; Kawahara et al., 2012).  

These kinds of models assume that turn-taking 

only occurs when a speaker has stopped speak-

ing. However, in studies of human-human dia-

logue it is clear that overlaps are fairly frequent 

(Heldner and Edlund, 2010). A common phe-

nomenon, that often leads to overlapping speech, 

is backchannels – short utterances (such as 

“mhm” or “yeah”), which the listener provides to 

show continued attention (Yngve, 1970). Models 

have been proposed to continuously detect where 

in the speech these are suitable (Morency et al., 

2008). Given that a listener starts to speak, the 

current speaker must also detect whether the lis-

tener is simply providing a backchannel (so that 

the speaker may continue), or is intending to 

claim the floor to produce a longer response 

(Neiberg and Truong, 2011).  

Another limitation of IPU-based models of 

turn-taking is that they are purely reactive. Sev-

eral studies have shown that humans are able to 

predict upcoming turn-taking events (Tice and 

Henetz, 2011), and that this prediction facilitates 

rapid and accurate turn-taking (Ruiter et al., 

2006). To implement this behaviour in spoken 

dialogue systems, it is important that they can 

process speech incrementally (Skantze and 

Schlangen, 2009), and not wait until the user is 

done speaking. The model proposed in this paper 

is based on an incremental and predictive notion 

of turn-taking, where the model continuously 

monitor the speech from the two interlocutors 

and makes predictions about future turn-taking 

events. 

2.2 Modelling Context with Recurrent Neu-

ral Networks 

Most attempts at creating computational models 

of turn-taking have only considered a brief win-

dow before the turn-taking decision is being 

made. Also, any dynamic events (such as a raise 

in pitch) in this window need to be transformed 
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into a single feature vector using heuristics and 

careful feature engineering. This is an obvious 

drawback, since turn-taking is likely to be de-

pendent on various contextual properties, such as 

previous speaking activity. To address this prob-

lem, we propose to use Recurrent Neural Net-

works (RNNs), which are especially designed to 

learn representations of context from low-level 

features. Whereas a typical feedforward neural 

network only transforms a single feature vector 

into an output vector (possibly through a number 

of hidden layers), RNNs are neural networks 

with loops that allow information to persist from 

one step in time to the next, as illustrated in Fig-

ure 1. During training and backpropagation, the 

updates are fed back in time, in order to adjust 

the weights at previous time steps, and thereby 

potentially learn long-term dependencies. 

 

Figure 1. The principle behind RNNs with an un-

rolled view to the right. The neural network, A, looks 

at the input it at time t and outputs a value ot. The loop 

allows the network to remember the state at time t-1.  

A limitation of traditional RNNs is their ina-

bility to learn dependencies over longer time se-

quences. The reason for this is that the update 

gradients become too small over longer distanc-

es. This can be especially problematic for the 

continuous model proposed here, since important 

events may occur many frames before the turn-

taking prediction is being made.  To address this 

problem, it is common to use an extension called 

Long Short-Term Memory (LSTM), which have 

a cell state and a gating mechanism that allow 

information to pass longer paths in the network 

history, thereby avoiding the vanishing gradient 

problem (Hochreiter and Schmidhuber, 1997).  

LSTM has been successfully applied to a number 

of tasks related to speech and language pro-

cessing, such as voice activity detection (Eyben 

et al., 2014), speech recognition (Graves et al., 

2013), and spoken language understanding (Liu 

and Lane, 2016). To our knowledge, this is the 

first attempt at using LSTM RNNs for a continu-

ous model of turn-taking. 

3 Model and Data 

3.1 The Model 

The general principles for the model are illustrat-

ed in Figure 2. An RNN is trained to make con-

tinuous predictions about the speech activity for 

one of the speakers (speaker S0) for an upcoming 

fixed time window, based on previous events in 

both speaker channels. The speech signals for the 

two speakers (S0 and S1) are segmented into 

equally sized frames (or time steps). For each 

frame, features from both speakers are extracted 

and fed into an RNN with one LSTM layer. For 

each frame, the RNN outputs an N-dimensional 

vector with predictions of the probability that S0 

will speak or not for the next N frames. For the 

experiments in this paper, we use a frame size of 

50ms (20 frames per second), and a prediction 

window of 3 seconds (60 frames).  

 

Figure 2. How the model makes predictions and is 

trained, with an unrolled view of the RNN. For each 

frame (50ms), the network predicts the probability of 

speaker S0 speaking over the next N frames (with one 

output node per frame).  

To train the model, we use human-human dia-

logue data, with the voice activity of speaker S0 

for the next N frames as target labels. Although 

these labels are binary, the output nodes will be 

trained to provide a probabilistic score (between 

0 and 1). To allow the model to train to make 

predictions for both speakers, the same network 

is trained on each dialogue twice, with each 

speaker serving as both speaker S0 and S1.  

When applying the model, two network in-

stances are used, one in which speaker A serves 

as S0 (to get predictions for speaker A), and one 

where speaker B serves as S0 (to get predictions 

it
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for speaker B), with the speaker features 

switched between the two networks. Some ex-

amples of what the predictions can look like are 

shown in the Appendix1. Note that although we 

will here assume two speakers, the model is not 

limited to dyadic interaction. In principle, it 

could be applied to dialogues with any number of 

speakers, where each speaker is modelled with 

its own network at application time.  

The model should also be applicable for mak-

ing decisions in dialogue systems. By feeding the 

two networks (as described above) in real time 

with both the user’s speech and the system’s own 

speech, the user’s network will make predictions 

of how likely it is that the user will speak in the 

near future. But the system’s network will also 

predict how likely it is that the system should be 

speaking in the future time window, given the 

assumption that a human-like behaviour is de-

sired. The output of the two models could then 

be combined to make decisions of whether the 

system should speak or not. In the simplest case, 

the two predictions can be compared, and if the 

system’s network has a stronger prediction than 

the user’s network, it would constitute a good 

place to take the turn. Since the model is proba-

bilistic, a more sophisticated decision theoretic 

approach could take the probabilities of the pre-

dictions, together with a utility, into account. For 

example, it could still be desirable for the system 

to take the turn even if it is an unlikely place to 

do so, given that the system has something im-

portant to say. Since the probabilities are updated 

continuously, even during silences, the model 

could naturally generate variable gap lengths in 

the system’s response.  

Another potential application of the model 

would be for the generation of system responses. 

Given different prosodic and syntactic realisa-

tions of a response, the model could predict 

whether the user is likely to take the turn, for 

example in pauses. To select a response which 

signals the intended turn-taking cues, the system 

could feed different candidate responses into the 

networks and predict how the user would react to 

them. Yet another application would be to en-

hance Voice Activity Detection (VAD) with the 

probability that the user will be speaking, given 

the dialogue context. 

In this paper, we will mainly evaluate the 

model on its predictive power when observing 

human-human interaction. However, we will also 

                                                 
1 A video of live predictions can be seen at 

https://www.youtube.com/watch?v=wE2pPZQGR6U 

investigate whether it could be used for turn-

taking decisions in a spoken dialogue system, 

according to the simple method outlined above. 

3.2 Data 

To train and evaluate the model, we have used 

the HCRC Map Task corpus (Anderson et al., 

1991). This corpus consists of 128 dialogues, 

where one speaker (the information giver) is ex-

plaining a route on a map to another speaker (the 

follower), using landmarks on the map. The gen-

der of the speakers is balanced, in some dialogue 

with mixed gender and in other dialogues with 

same gender. In half of the sessions, the speakers 

knew each other, in the other half they didn’t. 

Another variable was whether they could see 

each other (face-to-face) or not.  

For our experiments, the data set was split into 

one training set with 96 dialogues, and one test 

set with 32 dialogues. Care was taken to balance 

the variables described above across training set 

and test set. The average dialogue length was 6.7 

minutes, giving 10.7 hours of training data and 

3.6 hours of test data. Since the frame rate was 

20 frames per second and the model was trained 

for both speakers, the RNN was trained on about 

1 540 800 frames.  

3.3 Feature extraction 

Features were chosen based on the findings in 

related literature. For each frame (spanning 

50ms), we produce a feature vector as input for 

the network. We only use momentary features 

(e.g., the current pitch level), and do not encode 

delta (such as a rising pitch) or context (e.g., for 

how long someone has been speaking), with the 

assumption that these derivations in the time-

domain will be learned by the RNN.  

Voice activity: A binary feature representing 

the current voice activity (speech/no speech) of 

the two speakers. The voice activity was extract-

ed from the manual annotation of the corpus. 

These features are also used for the target labels 

during training (the projection of voice activity 

for the next 3 seconds), as can be seen in Figure 

2. 

Pitch: The pitch was automatically extracted 

using the Snack toolkit (Sjölander and Beskow, 

2000), transformed into semitones, and then z-

normalized for the individual speaker. Both the 

relative and absolute values were used as indi-

vidual features. In addition, a binary feature indi-

cating whether the current frame was voiced or 

not was included.  
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Power: The power (intensity) in dB, was au-

tomatically extracted using Snack, and then z-

normalized for the individual speaker. 

Spectral stability: Since final lengthening is 

known to be an indicator for turn-taking, a meas-

ure of spectral stability was derived. First, the 

Snack FFT analysis was used to get the power 

spectrum divided into N bands (up to 4 kHz), at 

each time step. Then the following equation was 

used to calculate the stability St at time t:  

𝑆𝑡 = ∑𝑝𝑛,𝑡

𝑁

𝑛=0

−∑𝑎𝑏𝑠(𝑝𝑛,𝑡 − 𝑝𝑛,𝑡−1)

𝑁

𝑛=0

 

where pn,t is the power in band n at time t. As is 

evident from the equation, St will be high when 

the total power in the spectrum is high, but when 

the power profile of the spectrum is stable, and 

should therefore be an indication of phonetic 

lengthening. Just like with the other prosodic 

features, this stability score was z-normalized for 

the individual speaker. 

Part-of-Speech (POS): Previous studies have 

found the final POS tags to be indicative of turn-

taking (Gravano and Hirschberg, 2011; Koiso et 

al., 1998). The corpus was already manually an-

notated with 59 different POS tags.  A one-hot 

representation (with 59 features per speaker) was 

used. These features were all set to 0 as default, 

but 100ms after a word ended, the corresponding 

POS feature was set to 1 for one frame. This was 

done to simulate what could ideally be achieved 

in a real dialogue system, given that the spoken 

word would be available from an incremental 

speech recognizer immediately after it is spoken. 

Although this is a somewhat idealistic assump-

tion, it serves an indication of the upper limit 

performance.  

Since the POS features are the most challeng-

ing to extract in a live system, and the value of 

prosodic and syntactic features for turn-taking 

prediction has been debated (Ruiter et al., 2006; 

Edlund and Heldner, 2005), we are interested in 

evaluating two sets of features. The first set 

(Full) comprises all features listed above. The 

second set (Prosody), uses all features except 

POS, i.e., features that can be extracted directly 

from the speech signal without any speech 

recognition. In total, 12 features were used for 

the Prosody model (6 for each speaker), and 130 

features for the Full model (65 for each speaker).  

4 Experiments 

4.1 Training the Model 

To train and evaluate the model, we used the 

Deeplearning4j framework (Deeplearning4j, 

2017). The training data was partitioned into 

mini-batches of 32 examples, with a sequence 

length of 60 seconds. Since these sequences are 

too computationally demanding to fully train, the 

Truncated Back-propagation Through Time 

(BPTT) procedure was applied, with a length of 

10 seconds. The learning rate was set to 0.01. To 

avoid overfitting, an l2 regularization of 0.001 

was used. The weights were updated using 

RMSProp, which is often used for LSTM. A 

sigmoid activation function was used for the out-

put layer, and a tanh function for the hidden lay-

er. The network was optimised using a mean-

squared error loss function.  

For the Full model, we used 40 hidden nodes 

in the LSTM layer, and for the Prosody model 

we used 10 hidden nodes, reflecting the different 

number of input nodes. Both models were trained 

for 100 epochs. This took about 2 days for the 

Full model on an Intel core i7 laptop. 

Some examples of the predictions the model 

makes on the test set are shown in the Appendix.  

To evaluate the performance of the model, we 

measured the Mean Absolute Error across all 60 

output nodes, at all time steps, when applying the 

model to the test set. The average performance of 

different sets of output nodes (covering different 

future windows) for the Full model, are shown in 

Figure 3.  

 

Figure 3. Prediction performance of the Full model 

on the test set, for different time windows (prefixes of 

output vectors) and depending on the number of 

epochs trained. 

As can be seen, the performance varied a lot 

depending on the time window – predictions 

within the first second are much more accurate 
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than predictions further into the future. It also 

looks like the network seems to learn and stabi-

lize the performance fairly early on. However, it 

is important to stress that this is a crude overall 

performance over all time steps. As we will see 

in the next section, it might hide improvements 

for more specific predictions.  

4.2 Predictions at Pauses 

One of the most common turn-taking decisions 

that has been modelled in related work is to pre-

dict whether a speaker will continue speaking 

when a brief pause is detected (HOLD), or wheth-

er the turn will shift to the other speaker (SHIFT). 

This is important to model in spoken dialogue 

systems, in order to know when the system 

should take the turn, but it could also be applied 

to predict whether the user is likely to take the 

turn or not after the system has made a pause.  

To investigate whether the trained model 

could be used for such predictions in the test set 

(without being specifically trained for this deci-

sion), we identified all places where 10 frames 

(500ms) of silence had just passed since the last 

speaker was speaking (we will investigate differ-

ent pause lengths further down). This amounted 

to 2876 instances in the test set. Of these, we 

selected instances where one (and only one) of 

the speakers continued within 1 second (2079 in 

total). We then averaged the predictions of the 

first second for the two networks associated with 

each speaker. The network with the highest aver-

age score was selected as the predicted next 

speaker. This binary classification task (SHIFT vs. 

HOLD) gives us an F-score with which we can 

compare the performance of different network 

configurations. Since the two classes are fairly 

well balanced (881 vs. 1198), a majority-class 

baseline (always HOLD) only yields an F-score of 

0.421.  

Figure 4 shows the performance for the Proso-

dy and the Full models, depending on the total 

number of epochs trained. As can be seen, the 

performance of this specific decision is fairly 

unstable across epochs – probably because the 

model is not specifically trained towards this de-

cision – and thus it might be hard to know which 

epoch model to choose. However, we found that 

the performance on the test set and the training 

set were highly correlated across epochs (r = 

0.98). Thus, if the model that performs best on 

the training set is chosen, it will most likely be 

optimal for the test set. As the figure shows, the 

performance of the Prosody model quickly stabi-

lizes and reaches an F-score of 0.724 at epoch 30 

(and then degrades somewhat), whereas the Full 

model continues to learn, reaching an F-score of 

0.762 at epoch 100.  

In the experiments above, we have studied the 

prediction performance after a pause of 500ms. 

However, turn-shifts might of course be much 

more rapid than this, and a dialogue system 

should be able to assess whether it should take 

the turn immediately when a pause is detected, or 

possibly wait a longer time if it is uncertain. Pre-

vious approaches have done this by training spe-

cific models at different pause lengths, which are 

then applied after each other as the pause pro-

gresses (Ferrer et al., 2002). Since our model is 

continuous, it can be directly applied at each 

time step during a pause. To assess the perfor-

mance of the model after very brief pauses, we 

also evaluated the model after just 50ms (1 

frame) or 250ms (5 frames) of silence. The re-

sults are shown in Table 1.  

Table 1: Prediction performance of turn-shifts at 

pauses for the Full model, depending on pause length. 

 50ms 250ms 500ms 

Instances 4933 3405 2079 

% HOLD 62.3% 59.8% 57.6% 

Precision SHIFT 0.752 0.726 0.711 

Recall SHIFT 0.583 0.703 0.738 

Precision HOLD 0.778 0.805 0.802 

Recall HOLD 0.884 0.822 0.780 

F-score 0.763 0.774 0.762 

Baseline F-score 

(always HOLD) 

0.479 0.448 0.421 

 

Interestingly, as the precision/recall numbers 

show, the model seems to be biased towards 

making HOLD predictions early on in the pause. 

This is arguably a good trade-off, since it means 

that the model would be inclined to wait a little 

 

Figure 4. Prediction performance (F-score) of turn-

shifts at pauses for the two models when applied to 

the test set, depending on the number of epochs 

trained. 
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bit longer to make another decision, instead of 

interrupting the user. In any case, the F-score is 

very similar regardless of pause length, which 

shows that a relatively good prediction perfor-

mance can be achieved already after very brief 

pauses, potentially allowing dialog systems to 

give responses with barely any gap. 

It is not obvious what to compare the perfor-

mance with. Since a lot of turn-taking behaviour 

is optional, and we are evaluating the model 

based on what the humans actually did, we could 

never expect these predictions to be 100% cor-

rect. One comparison is Neiberg and Gustafson 

(2011), who also used the HCRC Map Task data 

to predict turn SHIFT vs. HOLD, with a model 

specifically trained for this. Using Gaussian Mix-

ture Modelling with prosodic features derived 

right before the pause, their best performance 

was an average recall of 0.578–0.614, depending 

on which part of the corpus they were targeting. 

However, since their data preparations and defi-

nitions were not exactly the same as ours, we 

also trained a set of more traditional models on 

our data set, using Naive Bayes, Support Vector 

Machines and Logistic Regression, to classify 

each 500ms pause as either HOLD or SHIFT. Since 

these are not sequential models, we cannot use 

the features directly in the same way as was used 

for the RNN. Instead, we used feature engineer-

ing similar to Meena et al. (2014), including syn-

tactic features (last POS unigram and bigram), 

prosodic features (pitch slope, mean pitch, mean 

intensity, and mean spectral stability in the final 

300ms voiced region), and context (length of last 

IPU and last turn). The models were trained on 

the training set and evaluated on the test set. The 

best result on the full feature set was obtained 

using Naive Bayes, which yielded an F-score of 

0.677. When using only prosodic features, Lo-

gistic Regression yielded the best F-score of 

0.590, which similar to Neiberg and Gustafson 

(2011). These performances are clearly below 

the performance of our model, even though we 

did not train it specifically for this decision. 

Another possible comparison is how well a 

human would perform the task. To test this, we 

used the Crowdflower platform, where human 

subjects were paid to judge which speaker would 

continue after a brief silence, given 10 seconds 

of interaction ending just after a pause of 500ms 

(i.e., the same task ask the RNN was given). To 

simplify the task, we selected a random subset of 

the corpus where there was a man and a woman 

talking (207 instances), and asked the annotator 

“do you think the man or the woman will speak 

next?” As a quality control question, we also 

asked whether it was the man or the woman that 

was the last speaker, and excluded annotators 

who gave an incorrect answer. Three different 

annotators judged each instance. Using the ma-

jority vote, the humans reached an F-score of 

0.709, which is below the performance of our 

best models. A summary of the different compar-

isons made here with our model is shown in Ta-

ble 2. 

Table 2: Summary of F-score comparisons for pre-

dicting turn-shifts at 500ms pauses. 

Majority-class baseline 0.421 

Human performance 0.709 

Logistic Regression, Prosody only 0.590 

RNN, Prosody only 0.724 

Naive Bayes, All features 0.677 

RNN, All features 0.762 

4.3 Predictions at Speech Onset 

Next, we wanted to see if the same model can be 

applied to a different task: to predict utterance 

length at the onset of speech. As discussed in 2.1, 

this prediction would be useful for a dialogue 

system, in order to determine whether it should 

stop speaking or not, given that the user has just 

started to speak. If the user is just giving a brief 

response (i.e., a backchannel), the system typi-

cally does not have to stop speaking. However, if 

the user is initiating a longer response, the sys-

tem might decide to stop speaking and allow the 

user to “barge-in” (cf. Selfridge et al., 2013) . 

 

Figure 5. Definitions of SHORT and LONG utterances. 

We therefore wanted to test if our model can, 

already at the speech onset, predict whether the 

utterance will be very brief or longer. To test 

this, we identified instances in the data where a 

speaker had just initiated a LONG or a SHORT ut-

terance (i.e., something like a backchannel). The 

definitions of these categories are illustrated in 

Figure 5. To fall in any of these categories, at 

least 1.5s of silence by one participant has to be 

followed by an onset of 500ms of speech. If this 

SHORT

LONG

> 1.5s silence

0.5s 
speech

Point of prediction (speech onset)

> 2.5s speech

> 5s silence< 0.5s speech
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onset was followed by a maximum of 500ms of 

more speech, and then no speech (by the same 

speaker) for 5s, it was categorized as a SHORT 

utterance. If it was followed by at least 2.5s of 

speech, it was categorized as a LONG utterance. 

With these definitions, the test set contained 196 

SHORT utterances and 179 LONG utterances. At 

each onset, the prediction score over the 60 out-

put nodes in the model were averaged. Figure 6 

shows the number of instances in the test set that 

received different prediction scores (rounded to 

deciles) by the Full model, depending on whether 

it was in fact a SHORT or LONG utterance. As is 

evident, the model manages to make a fairly 

good separation between short and long utteranc-

es. Using the best prediction score separation 

threshold derived from the training set (0.404), 

the F-score for classifying SHORT vs. LONG utter-

ances in the test set was 0.786.  

 

Figure 6. Number of instances with different predic-

tion scores in the test set, using the Full model, at the 

onset of short and long utterances. 

As a minimum comparison, a majority class 

baseline yields an F-score of 0.359. Another 

comparison is (Neiberg and Truong, 2011), who 

trained a model specifically for this decision and 

achieved a somewhat lower performance. How-

ever, they used a different dataset and it is there-

fore not directly comparable. Just like for the 

previous task above (4.2), we therefore also 

trained more traditional models for comparison. 

We used features that were deemed to be rele-

vant for the task, including the preceding POS 

unigrams and bigrams for the two speakers, the 

mean power of the speech onset, whether it was 

voiced, whether it was overlapping with the other 

speaker, and time since last speech for both 

speakers. The best F-score of 0.684 was achieved 

using a Naive Bayes classifier. Again, our gener-

ic model achieves a better performance than tra-

ditional non-sequential models that were trained 

specifically for the task.  

4.4 Application to Spoken Dialogue Sys-

tems 

One important question is whether the models 

trained on human-human data could also be used 

to predict turn-taking in human-computer dia-

logue. Or, rather, could they be used to predict a 

desired behaviour for the system, given the dia-

logue history between the human and the com-

puter up to some point in time, as discussed in 

3.1 above? This is of course challenging, partly 

because human-human interaction and human-

computer interaction typically look very differ-

ent, but also because human-human turn-taking 

behaviour might not necessarily be a role model 

for how we want systems to behave. To test this, 

we used data from a previous study on human-

robot interaction (Johansson et al., 2016). In that 

setting, the user was asked to tell the robot about 

a past visit to a foreign country, while the robot 

listened actively by giving backchannels and ask-

ing various follow-up questions to elicit more 

elaborate descriptions. The corpus consists of 30 

dialogues with 15 different subjects. Each end of 

an IPU was manually annotated as either HOLD, 

OPTIONAL or TAKE. To make the task clearer, we 

excluded the OPTIONAL instances, and tested 

whether the model could distinguish between 

HOLD (213 instances) and TAKE (303 instances). 

For this data, we used the Prosody model (at 

epoch 30), since we did not have any POS fea-

tures. We first applied the model directly accord-

ing to the simple approach outlined in 3.1 above, 

i.e., we fed the user’s and the system’s speech 

into two networks and then compared the predic-

tions for the user and the system at the end of 

each IPU. If the system’s prediction was stronger 

than the user’s, a TAKE was selected, otherwise a 

HOLD. However, this only yielded an F-score of 

0.582, which is a very modest improvement over 

the majority class baseline of 0.434.  

As discussed above, there are a number of rea-

sons why it is hard for the model to make direct 

predictions towards the labels in this dataset. A 

training set more similar to the testing set is most 

likely needed. However, it is still possible that 

the network might model phenomena relevant to 

turn-taking in the dialogue, and be useful for fea-

ture extraction. To test this, we partitioned the 

human-robot interaction data into a training and 

testing set, and applied a Logistic Regression 

model trained on the manual annotations 

(TAKE/HOLD). As input features, we used the 

hidden nodes in the RNN network, at the time of 

the prediction. In a 10-fold cross validation, this 
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yielded an F-score 0.751. Thus, it seems like the 

network had learned to transform the feature 

space, and the logistic regression only has to 

make a final linear separation in this new feature 

space. This would also mean that it should be 

possible to train with relatively few training ex-

amples. Indeed, when training on only 20% of 

the data (and evaluating on the other 80%), this 

approach still yields a relatively high average F-

score of 0.72. This is promising, since it means 

that the model could at least be used for feature 

extraction to make turn-taking decisions in spo-

ken dialogue systems, with only a small amount 

of manually labelled training data.  

5 Conclusions and Discussion 

In this paper, we have presented a first step to-

wards a general model of turn-taking in spoken 

dialogue. Unlike most previous models, the pro-

posed model is not trained towards specific turn-

taking decisions, but instead makes continuous 

predictions of future speech activity. To evaluate 

the model, we have applied it to two different 

turn-taking decisions for which it was not specif-

ically trained. First, to detect the next speaker at 

pauses, where the model achieves a better per-

formance than more traditional attempts on the 

same dataset, and better than human perfor-

mance. Second, to project the length of an utter-

ance at speech onset, where the model also yields 

a better performance than traditional models. 

Finally, we have tested the model on human-

robot dialogue data. Most likely due to the large 

differences in training and testing conditions, the 

model was not directly applicable for making 

turn-taking decisions in this setting. However, it 

could at least be used for feature extraction to 

train a separate model on a small set of manually 

labelled data.  

So far, we have relied on manually labelled 

POS features (for the Full model). For future 

studies, we would like to see how well the model 

would cope with automatic online POS tagging 

of ASR results. Although we have worked with 

manually annotated speech segments, these could 

also be extracted with a VAD. All other features 

were automatically extracted.  

As noted earlier, the model should be applica-

ble to multi-party interaction. Another obvious 

extension is to use multi-modal features, such as 

gaze and gestures, which have shown to be im-

portant for turn-taking (Kawahara et al., 2012; 

Johansson and Skantze, 2015).  

So far, we have only tested the model on bina-

ry decisions, in order to make the results as clear 

and comparable as possible. However, this clear-

ly only hints at some of the potential applications 

of the model (which can be grasped by looking at 

the examples in the Appendix). For example, 

since the model is continuous and predictive, it 

should be possible to use it for preparing a dia-

logue system to make responses before the user’s 

utterance is completed. Since the model is prob-

abilistic, it should be possible to use it in a deci-

sion-theoretic framework, as discussed in 3.1 

above. However, to make the model directly ap-

plicable to spoken dialogue systems, it should 

probably be trained on a more diverse set of in-

teractions, more similar to the actual dialogue 

system application.  
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Appendix – Examples of model predictions 

These are some examples of the output of the model, when applied to unseen test data. The blue verti-

cal bar shows the point of prediction (i.e., no predictions are shown before this point), and the curves 

show the predictions for the future 3 seconds window. One speaker is represented with black (the in-

formation giver) and the other with red (the information follower).  

 

Example 1: Prediction in a pause. The model predicts that the red speaker will give a (short) response, but also 

that the black speaker will continue later on.  

 

Example 2: Prediction in a pause. The model predicts that the black speaker will continue, and that the red 

speaker will not respond. 

 

Example 3: Prediction at speech onset. On the left, the red speaker has just started a longer utterance (but is 

eventually interrupted by the black speaker). On the right, the speaker has only started a brief response (a back-

channel). This is reflected by a stronger prediction for the red speaker in the left picture compared to the right 

picture.  

 

Example 4: Prediction at speech onset, similar to Example 3. However, notice that it is the information giver 

that gives the backchannel here, and that it is still correctly distinguished from the longer utterance on the right. 
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