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Abstract

Conversational agents offer users a natural-
language interface to accomplish tasks, en-
tertain themselves, or access information.
Informational dialogue is particularly chal-
lenging in that the agent has to hold a con-
versation on an open topic, and to achieve
a reasonable coverage it generally needs to
digest and present unstructured information
from textual sources. Making responses
based on such sources sound natural and
fit appropriately into the conversation con-
text is a topic of ongoing research, one of
the key issues of which is preventing the
agent’s responses from sounding repetitive.
Targeting this issue, we propose a new task,
known as redundancy localization, which
aims to pinpoint semantic overlap between
text passages. To help address it systemati-
cally, we formalize the task, prepare a pub-
lic dataset with fine-grained redundancy la-
bels, and propose a model utilizing a weak
training signal defined over the results of a
passage-retrieval system on web texts. The
proposed model demonstrates superior per-
formance compared to a state-of-the-art en-
tailment model and yields encouraging re-
sults when applied to a real-world dialogue.

1 Introduction

Recent years have seen a growing interest in re-
search on conversational agents. Several strands
of dialogue systems have emerged which differ in
underlying goals and methods. Some systems fo-
cus on data-driven learning of models which can
autonomously hold conversations with humans or
one another, potentially even on open domains
(Vinyals and Le, 2015; Sordoni et al., 2015; Li

*Work performed during an internship at Google.
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User: What is Malaria?

Agent: A disease caused by a plasmodium parasite, transmit-
ted by the bite of infected mosquitoes.

User: Is it a virus?

Agent: Malaria is a parasitic infection spread by Anopheles
mosquitoes. The Plasmodium parasite that causes
Malaria is neither a virus nor a bacterium — it is a
single-celled parasite that multiplies in red blood cells
of humans as well as in the mosquito intestine.

Figure 1: Informational-dialogue example between
a human and a conversational agent. The second
agent utterance is partially redundant (the under-
lined text).

et al., 2016). Other works deal with task-oriented
dialogues, which offer natural-language interfaces
to real-world services like restaurant booking (Bor-
des and Weston, 2016; Dhingra et al., 2016; Crook
et al., 2016). We focus in this paper on a third di-
alogue setting where the goal is to have a natural
conversation with a user, during which the user’s in-
formation needs are satisfied in an iterative manner.
Such a setting is common in question-answering
experiences implemented in personal digital assis-
tants (Sarikaya et al., 2016).

We call this setting informational dialogues.
They start with the user posing a fact-seeking ques-
tion, e.g., to learn about current events or to explore
unknown terms and concepts. Consider the exam-
ple dialogue in Fig. 1, which is initiated by the
user requesting a definition of a specific disease
and which also features a subsequent question on
the same topic. Many approaches have been pro-
posed which can produce suitable replies to such
questions. Examples include techniques which find
pertinent passages or short text chunks in collec-
tions of documents (Hermann et al., 2015; Miller
et al., 2016; Trischler et al., 2016) or find rele-
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vant entries in structured knowledge bases (Bordes
et al., 2014, 2015; Yin et al., 2016a,b). Genera-
tion techniques can then be employed to generate
well-formed natural-language utterances from the
candidate replies (Wen et al., 2015, 2016a,b; Zhou
et al., 2016; DusSek and Jurcicek, 2016). In the di-
alogue in Fig. 1, both agent replies are coherent
wrt. the questions. However, they sound strange
when occurring together in a single dialogue con-
text because information is partially reiterated (see
the underlined part in the second agent reply). It
is this very problem that we focus on in this work,
i.e., the localization of redundancy in conversation.
Information on the location of non-novel portions
of a passage could either be fed back to the re-
trieval model, so that only text passages with new
information would be selected, or alternatively this
localized redundancy might be used as input to a
summarization model (Rush et al., 2015).

The specific contributions of this work are as
follows:

e We propose a new task, motivated by practical
issues that dialogue applications face (Sec. 3).

e We release a new dataset with manual annota-
tions for this task, which allows to evaluate and
compare competing approaches (Sec. 4).

e Due to the insufficient amount of annotated data
for training purposes, we report on a weak super-
vision signal over a large collection of passages
with partially redundant content (Sec. 5).

e We augment a recently introduced entailment
model (Parikh et al., 2016) with means for rep-
resenting local similarities in passages in a uni-
directional way (Sec. 6) and find that this exten-
sion outperforms the original model (Sec. 8).

e Furthermore, we briefly discuss an experiment
on real-world dialogue data (Sec. 9), which gives
insights on the application-relevance of the pro-
posed task and model.

2 Related Work

A lot of work has been presented on reasoning with
short texts for tasks on similarity and entailment.
Knowledge-rich approaches define lexical and syn-
tactic inference rules over phrase pairs and employ
decision algorithms that rely on matches of these
rules in input texts (Magnini et al., 2014). Other
approaches generate structured representations of

the input to enable sophisticated alignment of the
texts with now available rich lexical, syntactic, and
semantic information (Liang et al., 2016). The use
of kernel methods for similarity tasks has also been
reported (Filice et al., 2015). In contrast to these
approaches, neither do we use external knowledge
nor do we build explicit syntactic representations
of input texts.

Sentence fusion (Barzilay and McKeown, 2005;
Filippova and Strube, 2008) is a technique that is
related to the overall problem setting of this paper.
This technique is used in the context of abstractive
multi-document summarization, where a particular
challenge is to identify shared content in a cluster
of sentences and to subsequently produce a single
sentence that covers all information fragments. In
our work, we focus on a similar but different prob-
lem formulation, in which we fix one text fragment
and want to find reiterations of its content in other
texts. Furthermore, we focus on identifying and
localizing redundancy and leave the generation of
low-redundancy text mostly as future work.

Neural approaches are common for bi-sequence
classification problems (Laha and Raykar, 2016).
Yin and Schiitze (2015), He et al. (2015), and He
and Lin (2016) use convolutional networks to rep-
resent input texts on multiple granularity levels and
model the interactions of these. We also aim to find
fine-granular interactions in texts, but in addition
to their models, we aim to make these interactions
explicit rather than latent intermediate results. An-
other line of research has proposed recurrent net-
works for modeling phrases/sentences, including
various forms of neural attention (Bowman et al.,
2015; Rocktischel et al., 2015; Zhao et al., 2016).
These approaches come with high computational
cost during training and inference, in contrast we
rely on cheaper feed-forward connections.

3 Problem Definition

We focus in this work on the problem of redun-
dancy localization in a passage with respect to
another text, i.e., we aim to understand when a
sub-passage is redundant with what is mentioned
in the context.! Consider the following example
with a context passage c and a follow-up passage p
with sub-sequences sp—s3, which need to be ranked
according to the extent to which their semantics are
covered by c. In this case, one may expect the

"Note that the problem definition is not limited to the
dialogue scenario used as motivation in the introduction.

116



order to be (s1,s2,83,8p):

c: The Allianz Arena is a football stadium in Munich,
Bavaria, Germany, with a seating capacity of more than
70,000.

So : Bayern to increase stadium capacity.

s1 : Bayern Munich have revealed plans to increase the ca-
pacity of Allianz Arena to 75,000,

so @ which would make it the second largest stadium in Ger-
many.

ss : The Allianz Arena is currently the third largest stadium
in Germany.

More formally, let p be a sequence of n tokens.
LetS = {sk};”:_ol be a set of m sub-sequences of
p such that for integers sg, S1, ..., Sy, With sg =
0 <51 < ... < 8n_1 < Sn = n, each sub-
sequence s € S is ranging from tokens si to
(sk+1 — 1), inclusive. Given a context sequence c,
the task of redundancy localization is to produce
a ranking function rank(s;) € {1,...,m} that
induces an ordering of the subsequences s, € S of
p which corresponds to the degree of information
in s, that is semantically covered by c. Here, a low
rank corresponds to a high semantic overlap of a
subsequence with c, where segments are allowed
to have equal ranks.

We formulate this task as a ranking problem
instead of a more expressive yet also more complex
regression setting in order to pose less restrictions
on the collection of data for training and evaluation.
The design decision to rank sub-sequences rather
than individual tokens is intended to keep manual
annotation feasible and cost-effective.

Relation to Other Tasks The problem we pose
here is related to bi-sequence problems like seman-
tic textual similarity (STS) (Agirre et al., 2016a)
and recognizing textual entailment (RTE) (Bow-
man et al., 2015). In contrast to these tasks, we are
not interested in determining the overall relation
between sequences, but aim to generate more fine-
grained sub-passage-level information. The task
of interpretable semantic textual similarity (Agirre
et al., 2016b) requires systems to provide human-
understandable explanations for STS ratings of sen-
tence pairs. Chunks from both sentences need to
be paired and for each such pairing, similarity and
relation type need to be assessed. While this type
of annotation is richer than what we propose, it is
also harder to produce, likely requiring specially-
trained raters, and would likely be impossible to
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predict accurately using a surrogate supervision
signal like we rely on. Besides, it does not scale
well beyond single sentences, since the number of
ratings per sequence pair grows proportionally to
the multiple of their lengths, while the model we
present can handle longer, multi-sentence passages.
The setting proposed in the next section is more re-
stricted, but easier to learn and directly applicable
in downstream applications.

4 A Testbed for Redundancy
Localization

The evaluation dataset (EVAL) is constructed
from pairs of potentially redundant passages
from Wikipedia, which were segmented into sub-
passages and presented to human raters for man-
ual redundancy assessment. The collection of pas-
sages was guided by a need for text pairs with
various degrees of semantic overlap; we employed
a passage-retrieval system for the purpose of text
selection. Passage retrieval (Khalid and Verberne,
2008; Aktolga et al., 2011; Xu et al., 2011) is a
common intermediate step in information-retrieval
and question-answering settings, the goal of which
is to return a passage containing the answer to a
given query. Most systems generate a list of candi-
date passages, rank them by relevance and return
the top one.

We picked a random set of 1200 fact-seeking
questions and retrieved corresponding passages
from Wikipedia. The questions were then dis-
carded, as they are not relevant to our task. We se-
lected the top-scoring passage as the context ¢ and
paired it with a low-scoring one from further down
the result list (p). p was then heuristically split
into chunks s, corresponding to verb-governed
phrases. The example shown in the last section is
an instance of such a pair (c, p).

We asked three raters per item to select for
each segment s; of p one out of three labels:
NOTREDUNDANT, PARTIALLYREDUNDANT, and
FULLYREDUNDANT, depending on the degree of
which the content of a sub-passage is covered
by the context c. The annotators fully/partially
agreed” on 64%/96% of examples, their annota-
tion has an intra-class correlation of .55. We ag-
gregated the rating by mapping the categorical la-
bels to a numeric scale (0, 1, 2) and averaging the
scores. We used 200 examples as a development

Full: 3/3 annotators agreed on a label. Partial: At least
2/3 annotators agreed on a label.



Brewer’s yeast is named so because it comes from the same fungus that’s used to ferment and make beer -
Saccharomyces cerevisiae.
P Because brewer’s yeast is a rich source of chromium, scientists think it may help treat high blood sugar.

Outdoor volleyball, played on grass, will use the standard net heights of 7 feet, 4 1/8 inches for women, with men
and co-ed teams using the height of 7 feet, 11 5/8 inches.

P The first volleyball net was borrowed from a tennis court and was set at 6 feet 6 inches high.

c The world’s tallest artificial structure is the 829.8 m tall Burj Khalifa in Dubai, United Arab Emirates.

Table 1: Three weakly-labeled examples (Sec. 5). Underlining used to indicate overlapping/distinct

information between items.

DEV TEST
Label 4 % # %
REDUNDANT 95 15.83 495 16.50
PARTIALLYREDUNDANT 81 13.50 541 18.03
NOTREDUNDANT 424 70.67 1964 65.47

Table 2: Distribution of sub-passage labels in
EvAL.

dataset for the experiments in this paper (DEV),
and the remaining 1000 items as a test dataset
(TEST). Tab. 2 reports the label distribution in
both parts of the dataset. We make the dataset
publicly available at https://github.com/
kraseb/redundancy-localization.

5 Training with a Proxy Signal

While the annotation required for our task is
comparatively simple and can be performed by
raters without special training, a workable fully-
supervised model would require a very consider-
able amount of data and is likely to prove costly.’
Suppose, however, we were supplied with a large
number of short texts with varying degrees of simi-
larity and relatedness to one another and we had a
means of assessing at the coarse level of text pairs
whether or not they were similar. Our hypothesis
is that given appropriate model capacity and struc-
ture, a model trained to predict the passage-level
similarity would learn to compare smaller units of
text to make an appropriate high-level decision.
We derive a proxy signal from passage-level
retrieval scores which allows to bootstrap the
redundancy-localization model described in Sec. 6.

3 Among other things, to accurately identify redundancy
the model needs to have at least some notion of paraphrasing.
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The model is presented with passage triples, where
two passages are very closely related and the third
one is on the same general topic, but less similar to
the other two and hence likely contains less redun-
dancy. The model is then trained to rank the more
closely related passage pairs above the less closely
related ones.

We retrieve lists of relevant passages from the
web using the same passage-retrieval system that
we utilized to collect data for manual annotation.
Through manual inspection of a small subset of
candidate passage lists, we identified a range of
passage scores, where candidate passages are topi-
cally close to the top-scoring one, but sufficiently
different in factual content. To ensure that the top-
scoring passage and the lower-scoring one are on
the same topic, we further require that they be ex-
tracted from the same webpage.

From each of the queries’ passage lists we ex-
tract three passages, the top-scoring passage c,
the second-highest ranking passage p*, and a
lower-scoring passage p~ from the score corridor
described above. The stream of passage triples
(c,p™,p~) generated in this way allows to train a
model with a margin-based ranking objective. This
objective enforces that the similarity score of the
two high-scoring passages ¢, p™ is greater than
the similarity of the low-scoring passage p~— and
the top-scoring one, plus a margin; see Sec. 6.3.
This pushes a model to find what differentiates two
given text sequences, so that it can assign a higher
similarity to the near-paraphrases.

Tab. 1 shows three example passage triples con-
structed with this signal. Here, underlining is a
means of visualizing the overlapping/disjoint con-
tent between triple elements. Note that we do not
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Figure 2: Overview of the model architecture.

make this information available to a model during
training. In the interest of brevity, we selected short,
single-sentence passages for this example.

6 Model Design

This section first gives a brief overview of the pro-
posed model, before going into details of its ar-
chitecture and use during training and inference
time.

Architecture Overview Existing models for bi-
sequence tasks (Bahdanau et al., 2014; Rush et al.,
2015; He and Lin, 2016) often learn to align texts
as an intermediate step, i.e., reasoning is done with
pairs of short text units, which allows to build a
task-specific output for whole sequences on top of
local decisions. A particular example for RTE is the
three-layer model of Parikh et al. (2016). The first
layer produces a bi-directional alignment between
input sentences, which is utilized in the second
component to perform local comparisons, which
in turn are fed to the top layer to make the final
entailment decision. We follow the same pattern in
the design of our model.

We implement a multi-component neural-
network that takes two passages as input. It first
(a) learns a uni-directional alignment between the
passages, which is utilized to produce a customized
representation of the context passage, specific to
each token of the potentially redundant passage.
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Next, (b) token-level redundancy scores are pro-
duced via local comparison operations. During
training, (c) an additional layer aggregates the lo-
cal scores and produces a passage-level similarity
score on top of which a ranking objective is ap-
plied. At inference time, (d) the local scores from
(b) serve as the basis for the ranking of the sub-
passage elements as described in Sec. 3. Fig. 2
outlines steps (a) — (d).

6.1 Step (a): Alignment

Input to the model are two sequences of n tokens
each, p = (po,...,pn—1) and c = (cg, ..., Cn-1),
with shorter sequences being padded to this length.
The goal of this step is to generate foreach p; € pa
fixed-length representation c?hgned of ¢, which cap-
tures the meaning aspects of c specifically relevant
for p;.

The tokens p;, ¢; are represented via word em-
beddings of size d,,, which are updated during
model training and are stored in a matrix W,, €
R&*IVI with V being the vocabulary. For ease
of notation, we use p, p;, C, ¢; to refer to both the
original tokens and their embedding representation.

We create a soft alignment of c to the tokens
of p via the decomposed attention mechanism de-
scribed by Parikh et al. (2016). At its core is the
application of the attention function f1 to each to-
ken of the input sequences, which is implemented
as a feed-forward neural network with Ay layers of



dg rectified linear units (Glorot et al., 2011, ReLu)
each. Using this function, unnormalized attention
weights are produced:

Qi = ﬂ(pi) . fl(Cj), (1)

then normalized per token in p via

o = exp (o) / Z exp (). (2)

k

The customized (aligned) representation of c is
then calculated as

n—1

aligned !

c; = E Q¢ 3
j=0

6.2 Step (b): Learning Local Redundancy

Each token p; from p is compared to the corre-
. . aligned

sponding representation c; of the context se-

quence via a single-layer feed-forward network {2

with a ReLu:

sim (pi ) = £2 ([pis ™))
b (p,) = [sim i 0. )

with [] being the concatenation operator and
Isim(p, c) € R™. This local similarity score mea-
sures for each token the degree with which its mean-
ing is covered by c.

6.3 Step (c): Learning to Aggregate Local
Redundancy Scores

As described in Sec. 5, supervised training with
local redundancy labels is costly, which is why we
add another layer on top which learns to calculate a
coarse passage-level similarity score csim(p,c)
from the local redundancy information. Given
a passage triple (c,p™,p~) (Sec. 5), two such
coarse scores are calculated and used to determine
a loss which allows to train steps (a—c) of the net-
work in Fig. 2 in a weakly supervised way.

The passage-level score is computed by another
feed-forward network 3 with hgz layers of dg3 Re-
Lus, followed by another hidden layer with a logis-
tic activation function that projects to a scalar value
in (0,1):

csim (p, c) := {3 (Isim (p, c)) . (6)

Then, for a given passage triple (¢,pt,p™), the
loss is defined as:

L = maz{0,0.5 — csim(p™,c) + csim(p~,c)} (7)

This ranking criterion is similar to what has been
used by Collobert et al. (2011) and Bordes et al.
(2013). It is intended to push the model to assign a
higher coarse similarity score to the more similar
sequences from the triple, and in doing so, ideally
forces the model to learn to detect local redundan-
cies.

6.4 Step (d): Generation of Sub-sequence
Redundancy Scores

During inference time, the goal of this model is
to rank a set of given sub-sequences S of p with
respect to their redundancy with c; note that during
inference time the model is presented with pairs
of passages in contrast to the triples it sees in the
training phase.

We calculate a redundancy score for a subse-
quence si € S as follows:

sk+171
1

ssim(sg, c) 1= T >
=Sk

(Isim(py,c)), (8)

where sj, is the subsequence running from posi-
tions si to sy4+1 — 1 (see Sec. 3). A ranking of the
subsequences is then given by:

rank(sy) = [s; | ssim(s;,c) > ssim(sg,c)} (9)

In other words, sub-passages are ranked by compar-
ing the mean of their local redundancy scores. In
the evaluation of Sec. 8, we refer to the model that
uses this way of ranking sub-passages as UA (short
for uni-directional alignment). We compare this
against a number of other variants of processing
internal activations of the model to extract informa-
tion about local redundancy, see Sec. 8.

6.5 Baseline Ranking Method

The bi-directional alignment model (BA) of Parikh
et al. (2016) can be trained in a similar fashion as
our proposed model, i.e., with triples of passages
and the loss from Eq. (7). Although it has not been
developed with the localization of redundancy in
mind, its native problem formulation (RTE) is struc-
turally related to the problem at hand by requiring
models to assess to what degree the semantic con-
tent of one passage is embedded in a second one.
We believe BA constitutes a strong baseline be-
cause it has been shown to achieve state-of-the-art
performance on RTE and because it has the means
to decompose coarse inference decisions on two
text sequences into local comparison operations,
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du 100 7 0.01
dn 200 |V 10k
dr3 100 pn 0.21
ht1 1 pe 0.46
i3 1 pgs 0.05

batch size 256  epochs ~ 200

Table 3: Hyperparameter settings for UA.

a key requisite to successfully utilize the training
signal from Sec. 5.

However, in contrast to our model, the results of
comparing the aligned sequences c?hgned with indi-
vidual tokens from p are not directly interpretable
as redundancy scores, also the architecture is de-
signed for a bi-directional alignment of the input
sequences. In order to produce lsim values for the
tokens of p, we use the alignment matrices as a
basis for a max-based aggregation, i.e., we take
the row-wise maximum value and use this as the
localized redundancy value for the corresponding
token. Sub-sequence similarity is then determined
either via Eq. (8) or alternatively via summation.

7 Experimental Setting, Model Training

We implemented both UA and BA in the Tensor-
Flow framework (Abadi et al., 2015) and trained
them with the signal from Sec. 5. As input to the
passage-retrieval system we used a set of 1.5 mil-
lion queries, resulting in the same amount of pas-
sage triples; 80% were used for training, 10% were
used as a separate validation set for hyperparame-
ter optimization, and the final 10% were held out
and served as the basis for the smaller dataset with
manually annotated labels (EVAL, Sec. 4)%.

The hyperparameters of UA (hg1, dpy, hes, dg3)
and BA (like our model, plus a few additional ones)
were optimized separately. We also experimented
with Dropout (Srivastava et al., 2014) for the feed-
forward networks in step (a—c) (ps1, pr2, Pr3), With
different initial learning rates () for Adagrad
(Duchi et al., 2011), with different batch sizes, and
with different vocabulary sizes (]V]). The final set-
tings for UA used in the reported experiments are
shown in Tab. 3. Word embeddings were initial-
ized with pre-trained embeddings (Mikolov et al.,
2013), the other model parameters were randomly
initialized; out-of-vocabulary words were hashed

“We only annotated a subset of the passages in this part of
the data.
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Dataset Model p Model p
UA 5298 BA’ .1384
/
DEV UAs .4169 BAy .2232
UA’ .3862 BA” .2817
UAL 4071 BAY .2923
TEST UA 5544 BAY .2688

Table 4: Comparison of alternative strategies for
step (d) (Sec. 6.4) on DEV and results of optimal
strategies on TEST.

into 100 buckets. The models were trained for 1
million steps.

8 Evaluation on EVAL

We first compare the performance of different vari-
ants of generating the redundancy scores for sub-
passage ranking, for both UA and BA, on DEV.
We then pick the respective best-performing model
variant and compare the systems on TEST. The
model variants we test are the following:

e UA: The uni-directional alignment model de-
scribed in Sec. 6.

UAy: Summation instead of averaging in
Eq. (8), which gives higher weight to long sub-
sequences with redundancy.

UA’: Calculation of Isim in analogous fashion
as BA (see below).

UAS;: Combination of two variants above.

BA'/BA”: Models with bi-directional alignment
of input texts. lsim values for tokens of p are
produced by using the first/second one of the two
alignment matrices as a basis for the max-based
aggregation of the normalized attention weights
described in Sec. 6.5.

BAY, / BAY.: Like above, but sub-sequence sim-
ilarity is determined via summation rather than
calculating the mean in Eq. (8).

We measure performance by calculating the Spear-
man correlation of the raw passage scores with the
gold redundancy for all segments in the respective
partition of the dataset. The top of Tab. 4 reports
results of the different model variants. For UA,
making direct use of the local redundancy scores
calculated in step (b) of the model yields slightly
better results than post-processing the alignments
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Figure 3: Plot of predictions of UA on TEST
against annotated redundancy.

from step (a) of the model. The best overall re-
sults for UA are achieved when this is combined
with the strategy that represents sub-sequence re-
dundancy as the arithmetic mean of the contained
tokens’ local scores, meaning sub-sequence length
needs to be taken into account.

For the baseline BA, exploiting the reverse align-
ment matrix and summing over the alignment
scores without correction for sub-sequence length
gives the best results. The bottom of the table re-
ports the results of applying both models with the
respective best strategy on the test partition of the
dataset. The proposed uni-directional model clearly
outperforms the bi-directional baseline. This in-
dicates that the direct modeling of uni-directional
redundancy during both training and inference time
allows a model to better learn to compare a sub-
sequence to another full passage, in comparison
to the case where both passages are analyzed in a
fine-granular way.

Fig. 3 depicts a scatter plot of the segments in
TEST, with the x-axis corresponding to the gold
redundancy scores (Sec. 4) and the y-axis showing
the redundancy assessment by UA. While actually
redundant segments tend to be handled correctly
by the model, a certain amount of non-redundant
segments get assigned a relatively high absolute
redundancy value, which is not problematic as long
as the actually redundant segments of the same pas-
sage are rated even higher. The next section elabo-
rates on an experiment that looks into the quality
of this internal ranking of segments for given pas-
sages, and how this ranking could potentially be
utilized in an application.

9 Redundancy Localization for Passage
Compression

This section briefly discusses an experiment in a
dialogue setting, in which redundancy information
is used for the compression of passages. Consider
again the example from Fig. 1, where a conversa-
tional agent engages a human user in an informa-
tional dialogue whose quality suffers from repeti-
tion of information on the agent side. In this ex-
periment, we asked human raters to assess whether
the removal of redundancy improves the dialogue
flow. Note, however, that given the small scale of
the experiment, results are only indicative and not
conclusive.

We selected 50 passage pairs from the held-out
portion of the training data where the second pas-
sage consisted of at least three sentences. We then
fed the passages to UA and removed the sentence
from the second passage which had the largest se-
mantic overlap with the context (the first passage).
We asked three human raters, (a) whether the two
original passages are coherent at all (as the follow-
ing questions assume this), (b) whether the com-
pressed passage sounds more or less natural (due to
the dropped redundant sentence), and (c) whether
the modified passage is equally informative as the
original passage.

For comparison, we implemented a baseline
which always dropped the first sentence of a pas-
sage, as well as one that removed the sentence with
the highest term overlap. For the following ex-
ample, dropping the underlined sentence from the
passage would result in a more natural and equally
informative text:

c: The 1966 FIFA World Cup was won by the England na-
tional football team.

P : The day England won the World Cup. Long-suffering
fans of the England football team can always look back
with nostalgia on one year: 1966. This was the year
Bobby Moore’s team defeated West Germany 4-2 in
the World Cup final on 30 July, after a nail-biting and
controversial match.

Among the 50 uncompressed passage pairs, only
one third was rated as being coherent (question
a; independent of the model). For these pairs,
UA tended to produce more natural compressions
(question b) compared to the baselines. This might
be explained by the term-overlap baseline’s restric-
tion to only look at the level of individual words,
which results in erroneously removing sentences
that are essential for discourse coherence but do not
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repeat facts. Similarly, always dropping the first
sentence can leave a passage with dangling back-
ward references, e.g., in the case of anaphors. In
terms of the informativeness dimension (question
c), all approaches resulted in slightly less informa-
tive compressed passages, which is expected. How-
ever, UA’s score on this metric is slightly worse
than the one of the baselines.

10 Contributions and Outlook

In this paper, we described the problem of localiz-
ing redundancy in pairs of passages. We proposed
a model based on a uni-directional alignment from
one passage to the context passage, which can be
efficiently trained using a novel weak supervision
signal defined over the output of common passage-
retrieval systems. We applied this signal in a one-
off process to train our model and a reasonable
baseline; from a held-out part of the retrieved pas-
sages we created a publicly available dataset which
allows to compare and evaluate models on this task
and enables other researchers to reproduce the eval-
uation setting of this work. The conducted eval-
uation showed that the proposed uni-directional
alignment model is indeed capable of finding the
redundant sub-segments in texts.

In future work, we would like to represent and
model more facets of the naturalness and coherence
of dialogues. For instance in dialogue settings, a
certain amount of redundancy between the utter-
ances of participants may actually tie the dialogue
turns together, i.e., may be beneficial in terms of
discourse coherence and naturalness. Incorporating
this consideration into the structure of a model can
potentially improve the results of passage compres-
sion techniques in settings similar to Sec. 9.
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