Demonstration of interactive teaching for end-to-end dialog control with
hybrid code networks

Jason D. Williams
Microsoft Research

jason.williams@microsoft.com

Abstract

This is a demonstration of interactive
teaching for practical end-to-end dialog
systems driven by a recurrent neural net-
work. In this approach, a developer
teaches the network by interacting with the
system and providing on-the-spot correc-
tions. Once a system is deployed, a devel-
oper can also correct mistakes in logged
dialogs. This demonstration shows both of
these teaching methods applied to dialog
systems in three domains: pizza ordering,
restaurant information, and weather fore-
casts.

1 Introduction

Whereas traditional dialog systems consist of a
pipeline of components such as intent detection,
state tracking, and action selection, an end-to-end
dialog system is driven by a machine learning
model which takes observable dialog history as in-
put, and directly outputs a distribution over dialog
actions. The benefit of this approach is that in-
termediate quantities such as intent or dialog state
do not need to be labeled — rather, learning can be
done directly on example dialogs.

In practice, purely end-to-end methods can re-
quire large amounts of data to learn seemingly
simple behaviors, such as sorting database results.
This is problematic because when building a new
dialog system, typically no in-domain dialog data
exists, so data efficiency is crucial. Moreover,
machine-learned models alone cannot guarantee
practical constraints are followed — for example a
bank would require that a user must be logged in
before they are allowed to transfer funds. For these
reasons, in past work we introduced Hybrid Code
Networks (HCN) (Williams et al., 2017). HCNs
make end-to-end learning of task-oriented dialog

82

Lars Liden
Microsoft

lars.liden@microsoft.edu

systems practical by combining a recurrent neu-
ral network (RNN) with domain-specific software
provided by the developer; domain-specific action
templates; and a conventional entity extraction
module for identifying entity mentions in text. Ex-
periments on a public corpus show that HCNs can
substantially reduce the number of training dialogs
required compared to purely end-to-end learning
methods, and also outperform purely rule-based
systems.

This demonstration shows a practical imple-
mentation of HCNs, as a web service for building
task-oriented dialog systems. Once the developer
has provided their domain-specific software, they
can add training dialogs in several ways. First, the
developer can simply upload dialogs to the train-
ing set. Second, the developer can interactively
teach the HCN, and make on-the-spot corrections.
Finally, as the HCN interacts with end-users, the
developer can inspect logged dialogs, make cor-
rections if needed, and add the dialogs to the train-
ing set.

2 Dialog learning platform

The practical operation of the HCN is shown in
Figure 1, where the left-hand block in white shows
an end-user messaging client, the center block in
blue shows a web service implemented by the sys-
tem developer that hosts domain-specific logic,
and the right-hand block in green is the HCN web
service. A software development kit (SDK) facili-
tates using the HCN web service.

When interacting with end users, the process
begins when the end user provides input text, such
as “What’s the 5 day forecast for Seattle?”, shown
as item 1 in Figure 1. This text can be typed or
output by a standard speech recognizer. This text
is passed to the developer’s web service, which in
turn calls the HCN service to perform entity ex-

Proceedings of the SIGDIAL 2017 Conference, pages 82-85,
Saarbriicken, Germany, 15-17 August 2017. (©2017 Association for Computational Linguistics

8eCOATATLTE T 11:11 AM 85% W . q
{ Messages WeatherBot Contact Wea.ther pot SDK Hybrld code network service
o service
, text > Entity
What'’s the 5 day extraction
forecast for Seattle? o <« (CRF)
entity
callback
=
o action action Action @
< selection Logged
66° 65° 71° 74° 68° - (RNN) dialogs
result action text
ult_ ¥ contex
callback
) 9 action action
Anything else? < —
Send L Domain-specific code provided by Domain-independent

weather bot developer

service provided by platform

Figure 1: Development platform for interactive dialog learning. Entity extraction is done with Condi-
tional Random Fields (CRFs). See text for full details.

traction (item 2). The HCN service then returns
entity mentions detected in text, such as “loca-
tion=Seattle” (3). Domain-specific code on the de-
veloper’s service then resolves entity mentions to
a canonical form, such as a latitude/longitude pair,
and to store entities for use in later turns in the di-
alog (4). The developer’s code then calls the HCN
service again, optionally passing in context which
can include which entities have been recognized
so far in the dialog, as well as an action mask that
limits which action templates are available at the
current step (5).

The HCN service returns a distribution over
all un-masked action templates, and the developer
code executes the highest-ranked action (6). If this
action template is an API call — such as displaying
rich content to the user, executing a transaction in
a database, or raising a robot’s arm — that API is
invoked (7), and the HCN service is called again
to choose the next action. If the API call returns
context features, those can be passed to the HCN
service (8). If the action template is text, the de-
veloper’s code can substitute in entity values such
as a weather forecast, and the text is rendered to
the end user (9). The cycle then repeats.

Dialogs conducted with users are logged by the
HCN service, and can later be reviewed and cor-
rected by the system developer through a web user
interface (10). Also, the cycle can be augmented
to support interactive teaching. These aspects are
described in the next section.

83

3 Illustrative interactions

When creating a new dialog system, typically no
in-domain data exists. To address this, the dialog
learning platform supports interactive teaching. In
interactive teaching, the developer alternates be-
tween the role of the end user, and the role of the
teacher. The operational loop shown in Figure 1 is
modified so that results of entity extraction and ac-
tion selection can be corrected before continuing.

Figure 4 shows an example of interactive teach-
ing for pizza ordering. The developer — playing
the part of the user — enters “medium pizza with
olives”. The current entity extraction model finds
entity mentions for the $pizza and $size entities,
but not the “olive” $topping. So, the developer
corrects this by adding a corrected entity label, and
this corrected label is used going forward. The in-
terface then displays the contents of the developer-
defined state, and provides a list of actions, each
with their score under the current RNN model. In
this example, all but one of the actions are shown
as “disqualified”, meaning that the action mask
prohibits them. For example, the action “Would
you like a Small, Medium, or Large $crust pizza

” is masked because the pizza size is already
known. The developer enters the index of the ac-
tion to take (““1”’) and the dialog continues. At this
point, the developer could have alternatively en-
tered a new action — for example, by typing “So
you want $toppings, is that right?”. As each cor-
rection is made, the CRF and RNN models are re-

° WeatherBot Dialearn Demo

Skype Conversation Call View Tools Help

% WeatherBot Dialearn Demo

(] 1line
How can | help you?
what's the weather
Which day?
today
Which city?
seattle

In Seattle, Washington on Thursday it will be Chance
of Rain with a high of 53 and a low of 42.

search for sushi restaurants

In Seattle, Washington on Thursday it will be Chance
of Rain with a high of 53 and a low of 42.

Type a message here @ 9

Figure 2: Example interaction with an end user.
Note the system mistake after the user enters
“search for sushi restaurants”.

trained.

Once a rudimentary model is in place, end-
users can start using the system. An example dia-
log with an end-user is shown in Figure 2, which
shows an error at the last system turn. Figure 3
shows how this dialog appears to the developer,
and how a correction can be made. Each system
utterance is shown in a drop-down box. If the
developer identifies a turn where the system out-
put the wrong action, the developer can select the
correct action from the drop-down. When an ac-
tion which differs from the action in the log is se-
lected, the remainder of the dialog is discarded,
since it is no longer known how the user would
have responded. If none of the actions is appro-
priate, the developer can choose “new action...”,
and enter a new action into a provided text box.
When the dialog has been corrected, the devel-
oper clicks on “submit”, which saves the labeled
dialog to the training set, re-trains the model, and
re-deploys the new model. In the example in Fig-
ure 3, the user’s fourth input was “search for sushi

84

I Review logged dialog % +

< O

dislogservice

Dialog Ser

Applications > Weather demo app > logs

How can I help you?

Drop-down menus with
existing actions, plus “new
action...” choice

what's the weather

Whichday? <] — |

today

Which city? ~

seattle

search for sushi restaurants
new action... v

lSorry, I can't help with that

New action
entry textbox

‘ Submit

Figure 3: Example of off-line dialog correction,
showing the dialog collected in Figure 2. After the
user says “search for sushi restaurants”, the devel-
oper changed the action “$forecast” to “new ac-
tion...” and typed in “Sorry, I can’t help with that”.

restaurants”, and the system had answered with a
weather forecast. The developer changed this re-
sponse to ‘“new action...” and typed in the new
action “Sorry, I can’t help with that”.

In the demonstration, we have three working di-
alog systems available, for pizza ordering, restau-
rant information, and weather forecasts. The
demonstration shows applying the two interactive
methods described above to each of these three do-
mains.

References

Jason D Williams, Kavosh Asadi, and Geoffrey Zweig.
2017. Hybrid code networks: practical and efficient
end-to-end dialog control with supervised and rein-
forcement learning. In Proc ACL, Vancouver.

Teach mode started

At any

Provide your first input for this teach dialog.

: : User input
Entity detection /

under current
model |\

[$pizza: pizza] Score: 0.876
[$size: medium] Score; 0.592

Teach Step: Detected Entities
Click Correct if entities are valid or indicate
entities in input string

Correct Help

/ Entity label
[size medium] [pizza pizza] with [toppings olives]

Teach Step: Select Action Memory Developer-
Select Action by number or enter a new one [size : medium] [pizza : pizza] [toppings : —— def| ned dialog
olives]
state

Add APl

Defined actions
and scores

(1) Would you like Regular or Deep Dish[, $name]? (TEXT) Score: 1.000
() Can | interest you in some food[, $namel? (TEXT) DISQUALIFIED

()} Your $size, $crust pizza with $toppings is on its way[, $namel (TEXT)
DISQUALIFIED

() What toppings would you like on your Scrust pizzal, $namel? (TEXT)
DISQUALIFIED . .
() Would you like a Small, Medium or Large $crust pizza with $toppings[, Action SeIeCtlon
$name]? (TEXT) DISQUALIFIED

System output \

Trained Response:

Would you like Regular or Deep Dish?

Type next user input for this Dialog or

Dialog Complete

Figure 4: Example of interactive dialog teaching. The developer’s input is in blue boxes on the right
side, and the system’s responses are in grey and white boxes on the left side. The developer alternates
between playing the role of an end user, and providing corrective input.

85

