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Abstract

Neural task-oriented dialogue systems of-
ten struggle to smoothly interface with a
knowledge base. In this work, we seek to
address this problem by proposing a new
neural dialogue agent that is able to effec-
tively sustain grounded, multi-domain dis-
course through a novel key-value retrieval
mechanism. The model is end-to-end dif-
ferentiable and does not need to explicitly
model dialogue state or belief trackers. We
also release a new dataset of 3,031 dia-
logues that are grounded through underly-
ing knowledge bases and span three dis-
tinct tasks in the in-car personal assistant
space: calendar scheduling, weather infor-
mation retrieval, and point-of-interest nav-
igation. Our architecture is simultaneously
trained on data from all domains and sig-
nificantly outperforms a competitive rule-
based system and other existing neural di-
alogue architectures on the provided do-
mains according to both automatic and hu-
man evaluation metrics.

1 Introduction

With the success of new speech-based human-
computer interfaces, there is a great need for ef-
fective task-oriented dialogue agents that can han-
dle everyday tasks such as scheduling events and
booking hotels. Current commercial dialogue
agents are often brittle pattern-matching systems
which are unable to maintain the kind of flexible
conversations that people desire. Neural dialogue
agents present one of the most promising avenues
for leveraging dialogue corpora to build statisti-
cal models directly from data by using powerful
distributed representations (Bordes and Weston,
2016; Wen et al., 2016b; Dhingra et al., 2016).

Event Time Date Party Agenda
opt. appt. 10am Thursday sister -

dinner 8pm the 13th Ana -
opt. appt. 7pm the 20th Jeff -
opt. appt. 4pm the 13th Alex -

... ... ... ... ...

DRIVER: I need to find out the time and parties
attending my optometrist appointment.

CAR: I have 3 appointments scheduled, with Alex,
your sister, and Jeff. Which are you
referring to?

DRIVER: I want to know about the one that Alex is
joining me at

CAR: That optometrist appointment is at 4 pm.
DRIVER: Thanks
CAR: no problem

Figure 1: Sample dialogue from our dataset. Note
some columns and rows from the knowledge base
are not included due to space constraints. A dash
indicates a missing value.

While this work has been somewhat successful,
these task-oriented neural dialogue models suffer
from a number of problems: 1) They struggle to
effectively reason over and incorporate knowledge
base information while still preserving their end-
to-end trainability and 2) They often require ex-
plicitly modelling user dialogues with belief track-
ers and dialogue state information, which neces-
sitates additional data annotation and also breaks
differentiability.

To address some of the modelling issues in
previous neural dialogue agents, we introduce a
new architecture called the Key-Value Retrieval
Network. This model augments existing recur-
rent network architectures with an attention-based
key-value retrieval mechanism over the entries
of a knowledge base, which is inspired by re-
cent work on key-value memory networks (Miller
et al., 2016). By doing so, it is able to learn how to
extract useful information from a knowledge base
directly from data in an end-to-end fashion, with-
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out the need for explicit training of belief or in-
tent trackers as is done in traditional task-oriented
dialogue systems. The architecture has no depen-
dence on the specifics of the data domain, learn-
ing how to appropriately incorporate world knowl-
edge into its dialogue utterances via attention over
the key-value entries of the underlying knowledge
base.

In addition, we introduce and make publicly
available a new corpus of 3,031 dialogues span-
ning three different domain types in the in-
car personal assistant space: calendar schedul-
ing, weather information retrieval, and point-of-
interest navigation. The dialogues are grounded
through knowledge bases. This makes them ideal
for building dialogue architectures that seamlessly
reason over world knowledge. The multi-domain
nature of the dialogues in the corpus also makes
this dataset an apt test bed for generalizability of
modelling architectures.1

The main contributions of our work are there-
fore two-fold: 1) We introduce the Key-Value Re-
trieval Network, a highly performant neural task-
oriented dialogue agent that is able to smoothly in-
corporate information from underlying knowledge
bases through a novel key-value retrieval mech-
anism. Unlike other dialogue agents which only
rely on prior dialogue history for generation (Kan-
nan et al., 2016; Eric and Manning, 2017), our ar-
chitecture is able to access and use database-style
information, while still retaining the text genera-
tion advantages of recent neural models. By do-
ing so, our model outperforms a competitive rule-
based system and other baseline neural models on
a number of automatic metrics as well as human
evaluation. 2) We release a new publicly-available
dialogue corpus across three distinct domains in
the in-car personal assistant space that we hope
will help further work on task-oriented dialogue
agents.

2 Key-Value Retrieval Networks

While recent neural dialogue models have explic-
itly modelled dialogue state through belief and
user intent trackers (Wen et al., 2016b; Dhingra
et al., 2016; Henderson et al., 2014b), we choose
instead to rely on learned neural representations
for implicit modelling of dialogue state, forming

1The data is available for download at
https://nlp.stanford.edu/blog/a-new-multi-turn-multi-
domain-task-oriented-dialogue-dataset/

a truly end-to-end trainable system. Our model
starts with an encoder-decoder sequence architec-
ture and is further augmented with an attention-
based retrieval mechanism that effectively reasons
over a key-value representation of the underlying
knowledge base. We describe each component of
our model in the subsequent sections.

2.1 Encoder

Given a dialogue between a user (u) and a sys-
tem (s), we represent the dialogue utterances as
{(u1, s1), (u2, s2), . . . , (uk, sk)} where k denotes
the number of turns in the dialogue. At the
ith turn of the dialogue, we encode the aggre-
gated dialogue context composed of the tokens of
(u1, s1, . . . , si−1, ui). Letting x1, . . . , xm denote
these tokens, we first embed these tokens using a
trained embedding function φemb that maps each
token to a fixed-dimensional vector. These map-
pings are fed into the encoder to produce context-
sensitive hidden representations h1, . . . , hm, by
repeatedly applying the recurrence:

hi = LSTM(φemb(xi), hi−1) (1)

where the recurrence uses a long-short-term mem-
ory unit, as described by (Hochreiter and Schmid-
huber, 1997).

2.2 Decoder

The vanilla sequence-to-sequence decoder pre-
dicts the tokens of the ith system response si by
first computing decoder hidden states via the re-
current unit. We denote h̃1, . . . , h̃n as the hidden
states of the decoder and y1, . . . , yn as the output
tokens. We extend this decoder with an attention-
based model (Bahdanau et al., 2015; Luong et al.,
2015a), where, at every time step t of the decod-
ing, an attention score at

i is computed for each
hidden state hi of the encoder, using the attention
mechanism of (Vinyals et al., 2015). Formally this
attention can be described by the following equa-
tions:

ut
i = wT tanh(W2 tanh(W1[hi, h̃t]))) (2)

at
i = Softmax(ut

i) (3)

h̃′t =
m∑

i=1

at
ihi (4)

ot = U [h̃t, h̃
′
t] (5)

yt = Softmax(ot) (6)
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where U , W1, W2, and w are trainable parameters
of the model and ot represents the logits over the
tokens of the output vocabulary V . In (2) above,
the attention logit on hi is computed via a two-
layer MLP function with a tanh nonlinearity at
the intermediate layers. During training, the next
token yt is predicted so as to maximize the log-
likelihood of the correct output sequence given the
input sequence.

2.3 Key-Value Knowledge Base Retrieval

Recently, some neural task-oriented dialogue
agents that query underlying knowledge bases
(KBs) and extract relevant entities either do the
following: 1) create and execute well-formatted
API calls to the KB, operations which require in-
termediate supervision in the form of training slot
trackers and which break differentiability (Wen
et al., 2016b), or 2) softly attend to the KB and
combine this probability distribution with belief
trackers as state input for a reinforcement learn-
ing policy (Dhingra et al., 2016). We choose to
build off the latter approach as it fits nicely into
the end-to-end trainable framework of sequence-
to-sequence modelling, though we are in a super-
vised learning setting and we do away with ex-
plicit representations of belief trackers or dialogue
state.

For storing the KB of a given dialogue, we
take inspiration from the work of (Miller et al.,
2016) which found that a key-value structured
memory allowed for efficient machine reading of
documents. We store every entry of our KB us-
ing a (subject, relation, object) representation. In
our representation a KB entry from the dialogue
in Figure 1 such as (event=dinner, time=8pm,
date=the 13th, party=Ana, agenda=“-”) would be
normalized into four separate triples of the form
(dinner, time, 8pm). Every KB has at most 230
normalized triples. This formalism is similar to
a neo-Davidsonian or RDF-style representation of
events.

Recent literature has shown that incorporat-
ing a copying mechanism into neural architec-
tures improves performance on various sequence-
to-sequence tasks (Jia and Liang, 2016; Gu et al.,
2016; Ling et al., 2016; Gulcehre et al., 2016; Eric
and Manning, 2017). We build off this intuition
in the following way: at every timestep of decod-
ing, we take the decoder hidden state and compute
an attention score with the key of each normalized

KB entry. For our purposes, the key of an entry
corresponds to the sum of the word embeddings
of the subject (meeting) and relation (time). The
attention logits then become the logits of the value
for that KB entry. For our KB attentions, we re-
place the embedding of the value with a canonical-
ized token representation. For example, the value
5pm is replaced with the canonicalized represen-
tation meeting time. At runtime, if we decode this
canonicalized representation token, we convert it
into the actual value of the KB entry (5pm in our
running example) through a KB lookup. Note that
this means we are expanding our original output
vocabulary to |V | + n where n is the number of
separate canonical key representation KB entries.

In particular, let kj denote the word embedding
of the key of our j th normalized KB entry. We can
now formalize the decoding for our KB attention-
based retrieval. Assume that we have m distinct
triples in our KB and that we are in the tth timestep
of decoding:

ut
j = rT tanh(W ′2 tanh(W ′1[kj , h̃t]))) (7)

ot = U [h̃t, h̃
′
t] + v̄t (8)

yt = Softmax(ot) (9)

where r, W ′1, and W ′2 are trainable parameters.
In (8) above, v̄t is a sparse vector with length
|V | + n. Within v̄t, the entry for the value em-
bedding vj corresponding to the key kj is equal
to the logit score ut

j on kj . Hence, the m en-
tries of v̄t corresponding to the values in the KB
are non-zero, whereas the remaining entries cor-
responding to the original vocabulary tokens are
0. This sparse vector contains our aggregated KB
logit scores which we combine with the original
logits to get a modified ot. We then select the
argmax token as input to the next timestep. This
description seeks to capture the intuition that in
response to the query What time is my meeting,
we want the model to put a high attention weight
on the key representation for the (meeting, time,
5pm) KB triple, which should then lead the model
to favor outputting the value token at the given
timestep. We provide a visualization of the Key-
Value Retrieval Network in Figure 2.

3 A Multi-Turn, Multi-Domain Dialogue
Dataset

In an effort to further work in multi-domain
dialogue agents, we built a corpus of multi-turn
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Figure 2: Key-value retrieval network. For each time-step of decoding, the cell state is used to compute
an attention over the encoder states and a separate attention over the key of each entry in the KB. The
attentions over the encoder are used to generate a context vector which is combined with the cell state to
get a distribution over the normal vocabulary. The attentions over the keys of the KB become the logits
for their associated values and are separate entries in a now augmented vocabulary that we argmax over.

dialogues in three distinct domains: calendar
scheduling, weather information retrieval, and
point-of-interest navigation. While these domains
are different, they are all relevant to the overar-
ching theme of tasks that users would expect of a
sophisticated in-car personal assistant.

3.1 Data Collection

The data for the multi-turn dialogues was collected
using a Wizard-of-Oz scheme inspired by that of
(Wen et al., 2016b). In our scheme, users had two
potential modes they could play: Driver and Car
Assistant. In the Driver mode, users were pre-
sented with a task that listed certain information
they were trying to extract from the Car Assistant
as well as the dialogue history exchanged between
Driver and Car Assistant up to that point. An ex-
ample task presented could be: You want to find
what the temperature is like in San Mateo over
the next two days. The Driver was then only re-
sponsible for contributing a single line of dialogue
that appropriately continued the discourse given
the prior dialogue history and the task definition.

Tasks were randomly specified by selecting val-
ues (5pm, Saturday, San Francisco, etc.) for three
to five slots (time, date, location, etc.), de-

pending on the domain type. Values specified for
the slots were chosen according to a uniform dis-
tribution from a per-domain candidate set.

In the Car Assistant mode, users were presented
with the dialogue history exchanged up to that
point in the running dialogue and a private knowl-
edge base known only to the Car Assistant with
information that could be useful for satisfying the
Driver query. Examples of knowledge bases could
include a calendar of event information, a collec-
tion of weekly forecasts for nearby cities, or a col-
lection of nearby points-of-interest with relevant
information. The Car Assistant was then respon-
sible for using this private information to provide
a single utterance that progressed the user-directed
dialogues. The Car Assistant was also asked to fill
in dialogue state information for mentioned slots
and values in the dialogue history up to that point.

Each private knowledge base had six to seven
distinct rows and five to seven attribute types. The
private knowledge bases used were generated by
uniformly selecting a value for a given attribute
type, where each attribute type had a variable
number of candidate values. Some knowledge
bases intentionally lacked attributes to encourage
diversity in discourse.

During data collection, some of the dialogues
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Calendar Scheduling Weather Information Retrieval POI Navigation

Slot Types event, time, date,
party, room, agenda

location, weekly time,
temperature, weather attribute

POI name, traffic info,
POI category, address, distance

# Distinct Slot Values 79 65 140

Table 1: Slots types and number distinct slot values for different domains. POI denotes point-of-interest.

Training Dialogues 2,425
Validation Dialogues 302
Test Dialogues 304
Calendar Scheduling Dialogues 1034
Navigation Dialogues 1000
Weather Dialogues 997
Avg. # of Utterances Per Dialogue 5.25
Avg. # of Tokens Per Utterance 9
Vocabulary Size 1,601
# of Distinct Entities 284
# of Entity (or Slot) Types 15

Table 2: Statistics of Dataset.

in the calendar scheduling domain did not ex-
plicitly require the use of a KB. For example, in
a task such as Set a meeting reminder at 3pm,
we hoped to encourage dialogues that required
the Car Assistant to execute a task while asking
for Driver clarification on underspecified informa-
tion. Roughly half of the scheduling dialogues fell
into this category.

While specifying the attribute types and val-
ues in each task presented to the Driver allowed
us to ground the subject of each dialogue with
our desired entities, it would occasionally result
in more mechanical discourse exchanges. To en-
courage more naturalistic, unbiased utterances, we
had users record themselves saying commands in
response to underspecified visual depictions of an
action a car assistant could perform. These com-
mands were transcribed and then inserted as the
first exchange in a given dialogue on behalf of
the Driver. Roughly ∼1,500 of the dialogues
employed this transcribed audio command first-
utterance technique.

241 unique workers from Amazon Mechanical
Turk were anonymously recruited to use the
interface we built over a period of about six days.
Data statistics are provided in Table 1 and slot
types and values are provided in Table 2. A
screenshot of the user-facing interfaces for the
data collection, as well as a visual used to prompt
user recorded commands, are provided in the
supplementary material.

4 Related Work

Task-oriented agents for spoken dialogue systems
have been the subject of extensive research ef-
fort. One line of work by (Young et al., 2013)
has tackled the problem using partially observ-
able Markov decision processes and reinforcement
learning with carefully designed action spaces,
though the number of distinct action states makes
this approach often brittle and computationally in-
tractable.

The recent successes of neural architectures on
a number of traditional natural language process-
ing subtasks (Bahdanau et al., 2015; Sutskever
et al., 2014; Vinyals et al., 2015) have moti-
vated investigation into dialogue agents that can
effectively make use of distributed neural repre-
sentations for dialogue state management, belief
tracking, and response generation. Recent work
by (Wen et al., 2016b) has built systems with
modularly-connected representation, belief state,
and generation components. These models learn
to explicitly represent user intent through interme-
diate supervision, which breaks end-to-end train-
ability. Other work by (Bordes and Weston, 2016;
Liu and Perez, 2016) stores dialogue context in a
memory module and repeatedly queries and rea-
sons about this context to select an adequate sys-
tem response from a set of all candidate responses.

Another line of recent work has developed task-
oriented models which are amenable to both su-
pervised learning and reinforcement learning and
are able to incorporate domain-specific knowledge
via explicitly-provided features and model-output
restrictions (Williams et al., 2017). Our model
contrasts with these works in that training is done
in a strictly supervised fashion via a per utterance
token generative process, and the model does not
need dialogue state trackers, relying instead on
latent neural embeddings for accurate system re-
sponse generation.

Research in task-oriented dialogue often strug-
gles with a lack of standard, publicly available
datasets. Several classical corpora have consisted
of moderately-sized collections of dialogues re-
lated to travel-booking (Hemphill et al., 1990;
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Bennett and Rudnicky, 2002). Another well-
known corpus is derived from a series of com-
petitions on the task of dialogue-state tracking
(Williams et al., 2013). While the competitions
were designed to test systems for state tracking,
recent work has chosen to repurpose this data by
only using the transcripts of dialogues without
state annotation for developing systems (Bordes
and Weston, 2016; Williams et al., 2017). More re-
cently, Maluuba has released a dataset of hotel and
travel-booking dialogues collected in a Wizard-of-
Oz Scheme with elaborate semantic frames an-
notated (Asri et al., 2017). This dataset aims to
encourage research in non-linear decision-making
processes that are present in task-oriented dia-
logues.

5 Experiments

In this section we first introduce the details of the
experiments and then present results from both au-
tomatic and human evaluation.

5.1 Details

For our experiments, we divided the dialogues
into train/validation/test sets using a 0.8/0.1/0.1
data split and ensured that each domain type was
equally represented in each of the splits.

To reduce lexical variability, in a pre-processing
step, we map the variant surface expression of
entities to a canonical form using named entity
recognition and linking. For example, the surface
form 20 Main Street is mapped to Pizza My Heart
address. During inference, our model outputs the
canonical forms of the entities, and so we realize
their surface forms by running the system output
through an inverse lexicon. The inverse lexicon
converts the entities back to their surface forms by
sampling from a multinomial distribution with pa-
rameters of the distribution equal to the frequency
count of a given surface form for an entity as ob-
served in the training and validation data. Note
that for the purposes of computing our evaluation
metrics, we operate on the canonicalized forms,
so that any non-deterministic variability in surface
form realization does not affect the computed met-
rics.

5.2 Hyperparameters

We trained using a cross-entropy loss and
the Adam optimizer (Kingma and Ba, 2015)
with learning rates sampled from the interval

[10−4, 10−3]. We applied dropout (Hinton et al.,
2012) as a regularizer to the input and output of the
LSTM. We also added an l2 regularization penalty
on the weights of the model. We identified hyper-
parameters by random search, evaluating on the
held-out validation subset of the data. Dropout
keep rates were sampled from [0.8, 0.9] and the
l2 coefficient was sampled from [3 · 10−6, 10−5].
We used word embeddings, hidden layer, and cell
sizes with size 200. We applied gradient clipping
with a clip-value of 10 to avoid gradient explo-
sions during training. The attention, output param-
eters, word embeddings, and LSTM weights were
randomly initialized from a uniform unit-scaled
distribution in the style of (Sussillo and Abbott,
2015). We also added a bias of 1 to the LSTM cell
forget gate in the style of (Pham et al., 2014).

5.3 Baseline Models

We provide several baseline models for comparing
performance of the Key-Value Retrieval Network:

• Rule-Based Model: This model is a tra-
ditional rule-based system with modular di-
alogue state trackers, KB query, and natu-
ral language generation components. It first
does an extensive domain-dependent key-
word search in the user utterances to detect
intent. The user utterances are also provided
to a lexicon to extract any entities mentioned.
Collectively, this information forms the dia-
logue state up to a given point in the dialogue.
This dialogue state is used to query the KB as
appropriate, and the returned KB values are
used to fill in predefined template system re-
sponses.

• Copy-Augmented Sequence-to-Sequence
Network: This model is derived from the
work of (Eric and Manning, 2017). It aug-
ments a sequence-to-sequence architecture
with encoder attention, with an additional
attention-based hard-copy mechanism over
the KB entities mentioned in the encoder
context. This model does not explicitly
incorporate information from the underlying
KB and instead relies solely on dialogue
history for system response generation.
Unlike the best performing model of (Eric
and Manning, 2017), we do not enhance
the inputs to the encoder with additional
entity type features, as we found that the
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Model BLEU Ent. F1 Scheduling Ent. F1 Weather Ent. F1 Navigation Ent. F1

Rule-Based 6.6 43.8 61.3 39.5 40.4
Copy Net 11.0 37.0 28.1 50.1 28.4
Attn. Seq2Seq 10.2 30.0 30.0 42.4 17.9
KV Retrieval Net (no enc. attn.) 10.8 40.9 59.5 35.6 36.6
KV Retrieval Net 13.2 48.0 62.9 47.0 41.3
Human Performance 13.5 60.7 64.3 61.6 55.2

Table 3: Evaluation on our test data. Bold values indicate best model performance. We provide both
an aggregated F1 score as well as domain-specific F1 scores. Attn. Seq2Seq refers to a sequence-to-
sequence model with encoder attention. KV Retrieval Net (no enc. attn.) refers to our new model with
no encoder attention context vector computed during decoding.

model performed worse on our data with this
added mechanism. We choose this model for
comparison as it is also end-to-end trainable
and implicitly models dialogue state through
learned neural representations, putting it in
the same class of dialogue models as our
key-value retrieval net. This model has also
been shown to be a competitive task-oriented
dialogue baseline that can accurately inter-
pret user input and act on this input through
latent distributed representation. We refer to
this model as Copy Net in the results tables.

5.4 Automatic Evaluation

5.4.1 Metrics
Though prior work has shown that automatic eval-
uation metrics often correlate poorly with human
assessments of dialogue agents (Liu et al., 2016),
we report a number of automatic metrics in Table
3. These metrics are provided for coarse-grained
evaluation of dialogue response quality:

• BLEU: We use the BLEU metric, commonly
employed in evaluating machine translation
systems (Papineni et al., 2002), which has
also been used in past literature for evaluat-
ing dialogue systems both of the chatbot and
task-oriented variety (Ritter et al., 2011; Li
et al., 2016; Wen et al., 2016b). While work
by (Liu et al., 2016) has demonstrated that n-
gram based evaluation metrics such as BLEU
and METEOR do not correlate well with hu-
man performance on non-task-oriented dia-
logue datasets, recently (Sharma et al., 2017)
have shown that these metrics can show com-
paratively stronger correlation with human
assessment on task-oriented datasets. We,
therefore, calculate average BLEU score over
all responses generated by the system, and
primarily report these scores to gauge our

model’s ability to accurately generate the lan-
guage patterns seen in our data.

• Entity F1: Each human Turker’s Car Assis-
tant response in the test data defines a gold
set of entities. To compute an entity F1,
we micro-average over the entire set of sys-
tem dialogue responses and use the entities
in their canonicalized forms. This metric
evaluates the model’s ability to generate rele-
vant entities from the underlying knowledge
base and to capture the semantics of the user-
initiated dialogue flow. Given that our test
set contains dialogues from all three domains,
we compute a per-domain entity F1 as well
as an aggregated dataset entity F1. We note
that other work on task-oriented dialogue by
(Wen et al., 2016b; Henderson et al., 2014a)
have reported the slot-tracking accuracy of
their systems, which is a similar but perhaps
more informative and fine-grained notion of
a system’s ability to capture user semantics.
Because our model does not have provisions
for slot-tracking by design, we are unable to
report such a metric and hence report our en-
tity F1.

5.4.2 Results
We see that of our baseline models, Copy Net
has the lowest aggregate entity F1 performance.
Though it has the highest model entity F1 for the
weather domain dialogues, it performs very poorly
in the other domains, indicating its inability to
generalize well to multiple dialogue domains and
to accurately integrate relevant entities into its re-
sponses. Copy Net does, however, have the sec-
ond highest BLEU score, which is not surprising
given that the model is a powerful extension to
the sequence-to-sequence modelling class, which
is known to have very robust language modelling
capabilities.
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Our rule-based model has the lowest BLEU
score, which is a consequence of the fact that the
naturalness of the system output is very limited by
the number of diverse and distinct response tem-
plates we manually provided. This is a common
issue with heuristic dialogue agents and one that
could be partially alleviated through a larger col-
lection of lexically rich response templates. How-
ever, the rule-based system has a very competitive
aggregate entity F1. This is because it was de-
signed to accurately parse the semantics of user
utterances and query the underlying KB of the di-
alogue, through manually-provided heuristics.

As precursors to our key-value retrieval net, we
first report results of a model that does not com-
pute an attention over the KB (referred to as Attn.
Seq2Seq) and show that without computing atten-
tion over the KB, the model performs poorly in
entity F1 as its output is agnostic to the world state
represented in the KB. Note that this model is ef-
fectively a sequence-to-sequence model with en-
coder attention. If we include an attention over
the KB but do not compute an encoder attention
(referred to as KV Retrieval Net no enc. attn.),
the entity F1 increases drastically, showing that
the model is able to incorporate relevant entities
from the KB. Finally, we combine these two at-
tention mechanisms to get our final key-value re-
trieval net. Our proposed key-value retrieval net
has the highest modelling performance in BLEU,
aggregate entity F1, and entity F1 for the schedul-
ing and navigation domains. It outperforms the
rule-based aggregate entity F1 by 4.2% and out-
performs the Copy Net BLEU score by 2.2 points
as well as its entity F1 by 11%. These salient
gains are noteworthy because our model is able to
achieve them by learning its latent representationts
directly from data, without the need for heuristics
or manual labelling.

We also report human performance on the pro-
vided metrics. These scores were computed by
taking the dialogues of the test set and having a
second distinct batch of Amazon Mechanical Turk
workers provide system responses given prior di-
alogue context. This, in effect, functions as an
interannotator agreement score and sets a human
upper bound on model performance. We see that
there is a sizable gap between human performance
on entity F1 and that of our key-value retrieval net
(∼ 12.7%), though our model is on par with hu-
man performance in BLEU score.

5.5 Human Evaluation

We randomly generated 120 distinct scenarios
across the three dialogue domains, where a sce-
nario is defined by an underlying KB as well as a
user goal for the dialogue (e.g. find the nearest gas
station, avoiding heavy traffic). We then paired
Amazon Mechanical Turkers with one of our sys-
tems in a real-time chat environment, where each
Turker played the role of the Driver. We evaluated
the rule-based model, Copy Net, and key-value
retrieval network on each of the 120 scenarios.
We also paired a Turker with another Turker for
each of the scenarios, in order to get evaluations
of human performance. At the end of the chat,
the Turker was asked to judge the quality of their
partner according to fluency, cooperativeness, and
humanlikeness on a scale from 1 to 5. The aver-
age scores per pairing are reported in Table 4. In
a separate experiment, we also had Turkers evalu-
ate the outputs of the systems on 80 randomly se-
lected dialogues from the test split of our dataset.
Those outputs were evaluated according to cor-
rectness, appropriateness, and humanlikeness of
the responses, and the scores are reported in Ta-
ble 5.

We see that on real-time dialogues the key-value
retrieval network outperforms the baseline mod-
els on all of the metrics, with especially sizeable
performance gains over the Copy Net which is
the only other recurrent neural model evaluated.
We also see that human performance on this as-
sessment sets the upper bound on scores, as ex-
pected. The results on human evaluation of test
outputs show that the rule-based model provides
the most correct system responses, the KV net-
work provides the most appropriate responses, and
the Copy Net gives the most humanlike responses
by small margins. We should note, however, that
the second regime for human evaluation is more
unrealistic because it involves providing a dia-
logue context that is directly sampled from our
dataset, whereas the first regime of real-time di-
alogues measures the models’ abilities to adapt to
new and noisier user input. This suggests that the
first set of results are more meaningful and repre-
sentative for assessing overall model efficacy.

Examples of dialogues conducted between our
model and Turkers are included in Figure 3.
Particularly noteworthy is our model’s ability to
seamlessly integrate world information from the
underlying KBs in the respective dialogues, while
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Model Fluency Cooperative Humanlike
Rule-based 3.20 3.39 2.87
Copy Net 2.33 2.42 2.02
KV Ret. Net 3.36 3.43 3.09
Human 3.98 3.95 4.04

Table 4: Human evaluation results on realtime di-
alogues.

still producing very naturalistic utterances. The
model is able to do this effectively across multi-
ple domains.

POI Category Traffic Info ...
Civic Center parking garage car collision ...

Valero gas station road block ...
Webster Garage parking garage car collision ...

Trader Joes grocery store heavy ...
Mandarin Rts. chinese rest. moderate ...

... ... ... ...

DRIVER: I am looking for a gas station near me with
the shortest route from me.

CAR: the closest gas station is valero but, but there
is a road block nearby.

DRIVER: What is the next nearest gas station?
CAR: valero is the only gas station that i can find
DRIVER: Thanks
CAR: here to serve.

Event Time Date Party Agenda
swimming act. 3pm the 11th sister -

dinner 7pm the 3rd mother -
football 2pm the 20th mother -
lab appt. 10am the 17th Jeff -

... ... ... ... ...

DRIVER: car when is gonna be my next swimming
activity?

CAR: your next swimming activity is on the 11th
at 3pm.

DRIVER: who is gonna attend with me?
CAR: your swimming activity is on the 11th, one at

3pm with sister
DRIVER: thank you!
CAR: you are welcome

Figure 3: Sample dialogues from our human eval-
uation, conducted between a Turker and the KV
Retrieval Net. In the dialogue, our model re-
sponses are italicized. Additional dialogues are
included in the supplementary material.

6 Conclusion and Future Work

In this work, we have presented a novel neural
task-oriented dialogue model that is able to sus-
tain grounded discourse across a variety of do-
mains by retrieving world knowledge represented
in knowledge bases. It smoothly incorporates

Model Correct Appropriate Humanlike
Rule-based 3.96 3.57 3.28
Copy Net 3.52 3.63 3.56
KV Ret. Net 3.70 3.64 3.50

Table 5: Human evaluation of system outputs on
test set.

this world knowledge into natural-sounding sys-
tem responses in an end-to-end trainable fash-
ion, without the need to explicitly model dialogue
state. Our model outperforms competitive heuris-
tic and neural baselines on both automatic and
human evaluation metrics. In addition, we have
introduced a publicly available dialogue dataset
across three domains in the in-car personal assis-
tant space that we hope will help the data scarcity
issue present in task-oriented dialogue research.

Future work will address closing the margin be-
tween the Key-Value Retrieval Network and hu-
man performance on the various metrics. This will
include developing new methods for robust han-
dling of joint KB attributes as well as usage of the
KB that requires more pragmatic understanding of
the world via notions such as temporal reasoning.
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Wang, and Andrew Senior. 2016. Latent pre-
dictor networks for code generation. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 599–609.
http://www.aclweb.org/anthology/P16-1057.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How not to evaluate your dialogue system: An em-
pirical study of unsupervised evaluation metrics for
dialogue response generation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2122–2132.
https://aclweb.org/anthology/D16-1230.

Fei Liu and Julien Perez. 2016. Gated end-
to-end memory networks. arXiv preprint
arXiv:1610.04211 .

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015a. Effective approaches to attention-
based neural machine translation. Empirical Meth-
ods in Natural Language Processing pages 1412–
1421.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for di-
rectly reading documents. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 1400–1409.
https://aclweb.org/anthology/D16-1147.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. 2002. Bleu: a method

46



for automatic evaluation of machine transla-
tion. In Proceedings of 40th Annual Meeting
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA, pages 311–318.
https://doi.org/10.3115/1073083.1073135.

Vu Pham, Theodore Bluche, Christopher Kermorvant,
and Jerome Louradour. 2014. Dropout improves re-
current neural networks for handwriting recognition.
arXiv preprint arXiv:1312.4569v2 .

Alan Ritter, Colin Cherry, and William B. Dolan. 2011.
Data-driven response generation in social media.
Empirical Methods in Natural Language Processing
pages 583–593.

Sikhar Sharma, Layla El Asri, Hannes Schulz, and
Jeremie Zumer. 2017. Relevance of unsuper-
vised metrics in task-oriented dialogue for evalu-
ating natural language generation. arXiv preprint
arXiv:1706.09799 .

David Sussillo and L.F. Abbott. 2015. Random walk
initialization for training very deep feed forward net-
works. arXiv preprint arXiv:1412.6558 .

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Sys-
tems 27, Curran Associates, Inc., pages 3104–
3112. http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.pdf.

Oriol Vinyals, Ł ukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, Curran Associates, Inc., pages 2773–
2781. http://papers.nips.cc/paper/5635-grammar-
as-a-foreign-language.pdf.

Tsung-Hsien Wen, David Vandyke, Milica Gasic,
Nikola Mrksic, Lina. M. Rojas-Barahona, Pei-Hao
Su, Stefan Ultes, and Steve Young. 2016b. A
network-based end-to-end trainable task-oriented di-
alogue system. arXiv preprint arXiv:1604.04562 .

Jason D. Williams, Kavosh Asadi, and Geoffrey
Zweig. 2017. Hybrid code networks: practical
and efficient end-to-end dialog control with super-
vised and reinforcement learning. arXiv preprint
arXiv:1702.03274 .

Jason D. Williams, Antoine Raux, Deepak Ramachad-
ran, and Alan Black. 2013. The dialog state tracking
challenge. In Proceedings of the SIGDIAL. Metz,
France.

Steve Young, Milica Gasic, Blaise Thomson, and Ja-
son D. Williams. 2013. POMDP-based statistical
spoken dialog systems: a review. Proceedings of the
IEEE 28(1):114–133.

47



POI Category Address Traffic Info Distance
Dish Parking parking garage 550 Alester Ave no traffic 3 miles
Cafe Venetia coffee or tea place 329 El Camino Real road block nearby 4 miles

Mandarin Roots chinese restaurant 271 Springer St car collision nearby 3 miles
Dominos pizza restaurant 776 Arastradero Rd moderate traffic 6 miles

Travelers Lodge rest stop 333 Arbol Dr moderate traffic 4 miles

DRIVER: What is the nearest parking garage within 4 miles
that has no traffic.

CAR: the nearest is dish parking at 550 alester ave, 3 miles away
DRIVER: Does it have any traffic?
CAR: there is no traffic on the route to dish parking
DRIVER: Thanks
CAR: you’re welcome!

Event Time Date Party Agenda Location
dinner 5pm the 4th brother - -

meeting 1pm the 18th vice president discuss company picnic room 100
conference 11am the 1st HR go over budget room 50

meeting 4pm the 9th HR onboard new members room 100
lab appt. 6pm the 14th Jon - -
dinner 6pm the 1st Jon - -

DRIVER: When is my dinner going to be and who will be attending
CAR: your next dinner is on the 1st at 6 pm with your jon
DRIVER: Great, thanks.
CAR: you’re welcome!

POI Category Address Traffic Info Distance
Dominos pizza restaurant 776 Arastradero Rd moderate traffic 7 miles

Stanford Express Care hospital 214 El Camino Real car collision nearby 1 miles
Travelers Lodge rest stop 333 Arbol Dr no traffic 4 miles

Coupa coffee or tea place 394 Van Ness Ave moderate traffic 7 miles
The Clement Hotel rest stop 657 Ames Ave road block nearby 6 miles
5672 barringer st. certain address 5672 barringer st. car collision nearby 4 miles

DRIVER: Hi, I’d like to find a coffee place near me
CAR: we’re 7 miles away from coupa but there is a moderate traffic
DRIVER: What’s the address?
CAR: the address is 394 van ness ave, i sent it on your screen
DRIVER: Great. Can you find me the fastest route there?
CAR: the fastest route is for coupa.
DRIVER: Ok, so coupa is the closest place and you have the fastest route there
CAR: the fastest route has moderate traffic and there is a moderate traffic on the route

do you want to go there?
DRIVER: yes
CAR: i sent the info on your screen, drive carefully!
DRIVER: Thanks
CAR: you’re welcome, have a great day.

monday tuesday wednesday thursday friday ...
los angeles hail, 60-70f foggy, 30-40f cloudy, 20-30f stormy 30-40f drizzle, 30-50f ...
durham rain, 80-90f cloudy, 50-70f misty, 40-60f dry, 80-100f rain, 50-70f ...
boston overcast, 30-50f misty, 40-60f foggy, 40-50f foggy, 40-50f clear skies 20-30f ...
seattle warm, 60-70f foggy, 30-40f cloudy, 20-30f stormy, 30-40f drizzle, 30-50f ...
fresno clear skies, 40-60f drizzle, 70-80f humid, 70-90f stormy, 60-70f cloudy, 90-100f ...
san francisco foggy, 40-60f hot, 90-100f humid, 50-70f rain, 80-100f misty, 20-40f ...
alhambra dew, 30-40f dry, 30-50f dry, 50-60f humid, 80-90f snow, 60-80f ...

DRIVER: how is the weather
CAR: what city would you like the weather for?
DRIVER: is it foggy in seattle?
CAR: it will not be foggy in seattle today
DRIVER: thanks
CAR: you’re welcome!

Figure 4: Sample dialogues from our model. Note in the weather dialogue, the current day is italicized.
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Figure 5: An image provided to users to elicit unbiased audio commands for prompting more naturalistic
dialogues

Figure 6: Driver mode in the wizard-of-oz collection scheme

Figure 7: Car Assistant mode in the wizard-of-oz collection scheme
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