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Abstract

With the advent of word embeddings, lex-
icons are no longer fully utilized for sen-
timent analysis although they still provide
important features in the traditional setting.
This paper introduces a novel approach to
sentiment analysis that integrates lexicon
embeddings and an attention mechanism
into Convolutional Neural Networks. Our
approach performs separate convolutions
for word and lexicon embeddings and pro-
vides a global view of the document using
attention. Our models are experimented
on both the SemEval’16 Task 4 dataset
and the Stanford Sentiment Treebank and
show comparative or better results against
the existing state-of-the-art systems. Our
analysis shows that lexicon embeddings al-
low building high-performing models with
much smaller word embeddings, and the
attention mechanism effectively dims out
noisy words for sentiment analysis.

1 Introduction

Sentiment analysis is a task of identifying senti-
ment polarities expressed in documents, typically
positive, neutral, or negative. Although the task of
sentiment analysis has been well-explored (Mullen
and Collier, 2004; Pang and Lee, 2005; Wilson
et al., 2005), it is still very challenging due to the
complexity of extracting human emotion from raw
text. The recent advance of deep learning has defi-
nitely elevated the performance of this task (Socher
et al., 2013; Kim, 2014; Yin and Schiitze, 2015)
although there is much more room to improve.

In the traditional setting where statistical models
are based on sparse features, lexicons consisting
of words and their sentiment scores are shown to
be highly effective for sentiment analysis because
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they provide features that may not be captured from
training data (Hu and Liu, 2004; Kim and Hovy,
2004; Ding et al., 2008; Taboada et al., 2011). How-
ever, since the appearance of word embeddings, the
use of lexicons is getting faded away because word
embeddings are believed to capture the sentiment
aspects of those words. This brought us two impor-
tant questions:

e Can lexicons be still useful for sentiment anal-
ysis when coupled with word embeddings?

o If yes, what is the most effective way of incor-
porating lexicons with word embeddings?

To answer these questions, we first construct lexi-
con embeddings that are specifically designed for
sentiment analysis and integrate them into the exist-
ing Convolutional Neural Network (CNN) model
similar to Kim (2014). Three ways of lexicon in-
tegration to the CNN model are proposed, which
show distinctive characteristics for different gen-
res (Section 3.2). We then incorporate an efficient
attention mechanism to our CNN models, which
provides a global view of the document by em-
phasizing (or de-emphasizing) important words
and lexicons (Section 3.3). Our models using lexi-
con embeddings are evaluated on two well-known
datasets, the SemEval’16 dataset and the Stanford
Sentiment Treebank, and show state-of-the-art re-
sults on both datasets (Section 4). To the best of
our knowledge, this is the first time that lexicon
embeddings are introduced for sentiment analysis.

2 Related Work

The first attempt of sentiment analysis on text was
initiated by Pang et al. (2002) who pioneered this
field by using bag-of-word features. This work
mostly hinged on feature engineering; since then,
many kinds of feature learning methods had been
introduced to increase the performance (Pang and
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Lee, 2008; Liu, 2012; Gimpel et al., 2011; Feld-
man, 2013; Mohammad et al., 2013b). Aside from
pure machine learning approaches, lexicon based
approaches had been another trend, which relied
on the manual or algorithmic creation of word sen-
timent scores (Hu and Liu, 2004; Kim and Hovy,
2004; Ding et al., 2008; Taboada et al., 2011).

Since the emergence of the Convolutional Neu-
ral Networks (CNN; Collobert et al. (2011)), con-
ventional methods have become gradually obso-
lete because of the outstanding performance from
the CNN variants. CNN based models are distin-
guished from earlier methods because they do not
rely on laborious feature engineering. The first
success of CNN in sentiment analysis was trig-
gered by document classification research (Kim,
2014), where CNN showed state-of-the-art results
in numerous document classification datasets. This
success has engendered an upsurge in deep neural
network research for sentiment analysis. Various
modified models have been proposed in the litera-
ture. One of the famous deep learning methods that
models a document is the generalized phrase pro-
posed by Yin and Schiitze (2014), which represents
a sentence using element-wise addition, multiplica-
tion, or recursive auto-encoder.

Endeavors to capture n-gram information bore
fruits with CNN, max pooling, and softmax (Col-
lobert et al., 2011; Kim, 2014), which is regarded as
the standard methods of the document classification
problem these days. Kalchbrenner et al. (2014a)
extended this standard CNN model with dynamic
k-max pooling, which served as an input layer to
another stacked convolution layer. Multichannel
CNN methods (Kim, 2014; Yin and Schiitze, 2015)
are another branch of CNN, where assorted embed-
dings are considered together when convolving the
input. Unlike Kim (2014)’s model that relies on a
single type of embedding with different mutability
characteristics of the weights of embedding layer,
Yin and Schiitze (2015) incorporates diverse sort
of embedding types using multichannel CNN.

Two notable pioneers in using lexicon for senti-
ment analysis are Mohammad et al. (2013a); Kalch-
brenner et al. (2014b) generated scores with other
manually generated sentiment lexicon scores to
achieved the state-of-the-art result in SemEval-
2013 Twitter sentiment analysis task. In general
domain, Hu and Liu (2004) generated a user review
lexicon that showed promising result in capturing
sentiment in customer product reviews.
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Attention based methods have been successful in
many application domains, such as image classifi-
cation (Stollenga et al., 2014), image caption gen-
eration (Xu et al., 2015), machine translation (Cho
et al., 2014; Bahdanau et al., 2014; Luong et al.,
2015), and question answering (Shih et al., 2016;
Chen et al., 2015; Yang et al., 2016). However,
in the field of sentiment analysis, the attention is
applied to only aspect-based sentiment classifica-
tion (Yanase et al., 2016). To the best knowledge
of ours, there is no attention-based model for a
general sentiment analysis task.

3 Approach

The models proposed here are based on a convo-
lutional architecture and use naive concatenation
(Section 3.2.1), multichannel (Section 3.2.2), sep-
arate convolution (Section 3.2.3), and embedding
attention (Section 3.3) for the integration of lexicon
embeddings to CNN.

3.1 Baseline

Our baseline approach is a one-layer CNN model
using pre-trained word embeddings, which is a
reimplementation of the CNN model introduced by
Kim (2014). Let s € R™*? be a matrix represent-
ing the input document, where n is the number of
words, d is the dimension of the word embeddings,
and each row corresponds to the word embedding,
w; € R? where w; indicates the i’th word in the
document. This document matrix s is fed into the
convolutional layer and convolved by the weights
c € R4 where [ is the length of the filter.

The convolutional layer can take m-number of
filters of the length /. Each convolution produces a
vector v, € R*" 1 where elements in v, convey
the [-gram features across the document. The max
pooling layer selects the most salient features from
each of the m vectors produced by the filters. As a
result, the output of this max pooling layer is a vec-
tor vy, € R™—l+)xm  The gelected features are
passed onto the softmax layer, which is optimized
for the score of each sentiment class label.

3.2 Lexicon Integration

Lexicon embeddings are derived by taking scores
from multiple sources of lexicon datasets. Each
lexicon dataset consists of key-value pairs, where
the key is a word and the value is a list of sentiment
scores for that word (e.g., probabilities of the word
in positive, neutral, and negative contexts). These



scores range between —1 and 1, where —1 and 1
being the most negative and positive, respectively.
However, some lexicons contain non-probabilistic
scores (e.g., frequency counts of the word in senti-
mental contexts), which are normalized to [—1, 1].

(a) Naive concatenation (Section 3.2.1). The lexicon
embeddings (on the right) are concatenated to the word
embeddings (on the left).

(b) Multichannel (Section 3.2.2). The lexicon embed-
dings are added to the second channel whereas the word
embeddings are added to the first channel.

(c) Separate convolution (Section 3.2.3). The lexicon
embeddings are processed by a separate convolution (on
the right) from the word embeddings (on the left).

Figure 1: Lexicon integration to the CNN model.

For each word w € W, where W is the union of
all words in the lexicon datasets, a lexicon embed-
ding is constructed by concatenating all the scores
among the datasets with respect to w. If w does
not appear in certain datasets, 0 values are assigned
in place. The resulting embedding is in the form
of a vector v € R®, where e is the total number of
scores across all lexicon datasets. The following
subsections propose three methods for lexicon inte-
gration to the baseline CNN model (Section 3.1),
which depict different characteristics depending on
the peculiarities of each domain.

3.2.1 Naive Concatenation

The simplest way of blending a lexicon embedding
into its corresponding word embedding is to append
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it to the end of the word embedding (Figure 1(a)).
In a formal notation, the document matrix becomes
s € R"*(d+€) The subsequent process is the same
as the baseline approach.

3.2.2 Multichannel

Inspired by Yin and Schiitze (2015) who integrated
several kinds of word embeddings using multichan-
nel CNN, lexicon embeddings in this approach are
represented in another channel along with the word
embedding channel where both channels are con-
volved together (Figure 1(b)). Since the dimension
of lexicon embeddings is considerably smaller than
that of word embeddings (i.e., d > e), zeros are
padded to the lexicon embeddings so their dimen-
sions match (i.e., d = e). The identical shape of
these two channels allows multichannel convolu-
tion to the input document.

3.2.3 Separate Convolution

Another way of adding lexicon embeddings to the
CNN model is to process a separate convolution for
them (Figure 1(c)). In this case, two individual con-
volutions are applied to word embeddings and lexi-
con embeddings. The max pooled output features
from each convolution are then merged together to
form an input vector to the softmax layer. Formally,
let [, I be the filter lengths for word embeddings
and lexicon embeddings, respectively. Let m,, and
m,, be the numbers of filters for word embeddings
and lexicon embeddings, respectively. The result-
ing penultimate layer includes max pooled features
from word embeddings and lexicon embeddings of
size [(n — Iy + 1) X my| + [(n — Iz + 1) X my].

3.3 Embedding Attention

Section 3.2 describes how lexicon embeddings can
be incorporated into the CNN model in Section 3.1.
Each CNN model uses several filters with different
lengths; given the filter length [, the convolution
considers [-gram features. However, these [-gram
features account only for local views, not the global
view of the document, which is necessary for sev-
eral transitional cases such as negation in sentiment
analysis (Socher et al., 2012). To ameliorate this
issue, we introduce the embedding attention vector
(EAV), which transforms the document matrix in
each embedding space into a vector. For example,
the EAV in the word embedding space is calculated
as a weighted sum of each column in the document
matrix s € R™*9, which yields a vector v € R
For each document, two EAV's can be derived, one



from the document matrix consisting of word em-
beddings and the other from the one consisting of
lexicon embeddings. All embeddings in the doc-
ument matrix are used to create the EAV through
multiple convolutions and max pooling as follows:

1. Apply m-number of convolutions with the fil-
ter length 1 to the document matrix s € R™*¢,
For lexicon embeddings, the document matrix
has a dimension of R™*¢,

2. Aggregate all convolution outputs to form an
attention matrix s, € R"™*™ where n is the
number of words in the document, and m is
the number of filters whose length is 1.

3. Execute max pooling for each row of the atten-
tion matrix s,, which generates the attention
vector v, € R™ (Figure 2(a)).

4. Transpose the document matrix s such that
sT € R¥™™ and multiply it with the attention
vector v, € R", which generates the embed-
ding attention vector v, € R? (Figure 2(b)).

Attention
Vector
(MaxPool)

Attention Matrix
(Filter Lenth=1)

Document
Matrix

(a) Given a document matrix, the attention matrix is first
created by performing multiple convolutions. The atten-
tion vector is then created by performing max pooling on
each row of the attention matrix.

™~
~ ™~
Document Attention Embedding
Matrix Vector Attention
(Transposed) Vector

(b) The embedding attention vector is created by multiplying
the transposed document matrix to the attention vector.

Figure 2: Construction of the embedding attention
vector from a document matrix.

The resulting EAVs are appended to the penulti-
mate layer to serve as additional information for
the softmax layer. For our experiments, EAVs are

generated from both word and lexicon embedding
spaces for all of the three lexicon integration meth-
ods in Section 3.2.

4 Experiments

4.1 Corpora
4.1.1 SemkEval-2016 Task 4

All models are evaluated on the micro-blog dataset
distributed by the SemEval’16 Task 4a (Nakov
et al., 2016). The dataset is gleaned from tweets
with annotation of three sentiment classes: posi-
tive, neutral, and negative. The available dataset
contains only tweet IDs and their sentiment polari-
ties; the actual tweet texts are not included in this
dataset due to the copyright restrictions. Although
the download script provided by SemEval’16 gives
a way of accessing the actual texts on the web, a
portion of tweets is no longer accessible. To com-
pensate this loss, the dataset also includes tweet
instances from the SemEval’ 13 task.

|+ | o | - | An
TRN || 6,480 | 6,577 | 2,328 || 15,385
DEV || 786 | 548 | 254 | 1588
ST || 7,059 | 10,342 | 3,231 || 20,632

Table 1: Statistics of the SemEval’ 16 Task 4 dataset.
+/0/-: positive/neutral/negative, TRN/DEV/TST:
training, development, evaluation sets.

The classification results are evaluated by averag-
ing the Fl-scores of positive and negative senti-
ments as suggested by the SemEval’16 Task 4a.

4.1.2 Stanford Sentiment Treebank

Another dataset consisting of movie reviews from
Rotten Tomatoes is used for evaluating the robust-
ness of our models across different genres. This
dataset, called the Stanford Sentiment Treebank,
was originally collected by Pang and Lee (2005)
and later extended by Socher et al. (2013). The
sentiment annotation in this dataset is categorized
into five classes: very positive, positive, neutral,
negative, and very negative. Following the previ-
ous work (Kim, 2014), the results are evaluated by
the conventional classification accuracy.

[+ | + | 0 | - | - | Al
TRN || 1288 | 2322 | 1624 | 2218 | 1092 || 8,544
DEV || 165 | 279 | 229 | 289 | 139 || 1,101
TST || 399 | 510 | 389 | 633 | 279 || 2210

Table 2: Statistics of the Stanford Sentiment Tree-
bank dataset. ++/4/0/-/—: very positive/positive/
neutral/negative/very negative.
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4.2 Embedding Construction
4.2.1 Word Embeddings

To best capture the word semantics in each genre,
different corpora are used to train word embed-
dings for the SemEval’16 (S16) and the Stanford
Sentiment Treebank (SST) datasets. For S16, word
embeddings are trained on tweets collected by the
Archive Team,' consisting of 3.67M word types.
For SST, word embeddings are trained on the Ama-
zon Review dataset,? containing 2.67M word types.

All documents are pre-tokenized by the open-
source toolkit, NLP4J.? The word embeddings are
trained by the original implementation of word2vec
from Google using skip-gram and negative sam-
pling.* No explicit hyper-parameter tuning is per-
formed. For each genre, four sets of embeddings
with different dimensions (50, 100, 200, 400) are
trained to observe the impact of the embedding size
on each approach.

4.2.2 Lexicon Embeddings

Six types of sentiment lexicons are used to build
lexicon embeddings. All lexicons include senti-
ment scores; some lexicons contain information
about the frequency of positive and negative senti-
ment polarity associated with each word:

e National Research Council Canada (NRC)
Hashtag Affirmative and Negated Context
Sentiment Lexicon (Kiritchenko et al., 2014).

e NRC Hashtag Sentiment Lexicon
(Mohammad et al., 2013a).

e NRC Sentiment140 Lexicon
(Kiritchenko et al., 2014).

e Sentiment140 Lexicon
(Mohammad et al., 2013a).

o MaxDiff Twitter Sentiment Lexicon
(Kiritchenko et al., 2014).

e Bing Liu Opinion Lexicon
(Hu and Liu, 2004).

When creating lexicon embeddings, the narrow cov-
erage of vocabulary in lexicons often raises missing
scores. If a given word is missing in a specific lexi-
con, neutral scores of O are substituted.

archive.org/details/twitterstream
snap.stanford.edu/data/web-Amazon.html
github.com/emorynlp/nlp4j
code.google.com/p/word2vec

E N N
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Table 3 shows the word type coverage of our word
and lexicon embeddings for each dataset. The lex-
icon embeddings show relatively poor coverage;
nevertheless, our experiments show that these lex-
icon embeddings help sentiment classification in
various ways (Section 4.3).

Word Emb Lexicon Emb
S16 [ SST S16 [ SST
TRN || 70.12 | 97.66 || 11.53 | 9.20
DEV || 81.90 | 98.91 3.29 3.32
TST || 68.57 | 98.58 || 12.40 | 4.98

Table 3: The percentage of word types covered by
our word and lexicon embeddings for each dataset.

4.3 Evaluation

Seven models are evaluated to show the effective-
ness of lexicon embeddings to sentiment analysis:
baseline (Section 3.1), naive concatenation (NC;
Section 3.2.1), multichannel (MC; Section 3.2.2),
separate convolution (SC; Section 3.2.3), and the
three integration approaches with embedding atten-
tion (x-EAV; Section 3.3). The comparisons of our
proposed models to the previous state-of-the-art
approaches are outlined in Table 4. For all experi-
ments, the fixed random seed of 1 is used to avoid
performance boost from different randomness (see
Section 4.4.1 for more discussions). The following
configuration are used for all models:

e Filter size = (2, 3, 4, 5) for both word and
lexicon embeddings.

e Number of filters = (64 and 9) for word and
lexicon embeddings, respectively.

e Number of filters = (50 and 20) for construct-
ing embedding attention vectors in word and
lexicon embedding spaces, respectively.

It is worth mentioning that the performance of our
baseline models improved quite a bit when the train-
ing corpora for word embeddings and sentiment
analysis were tokenized coherently. Unlike sev-
eral other work, we used the identical tokenization
tool, NLP4J, to preprocess all corpora, which gave
considerable boost in performance. Comparing the
baseline to SC, lexicon embeddings significantly
improved accuracy for S16, about 2%, surpassing
the previous state-of-the-art result achieved by De-
riu et al. (2016). However, SC did not show much
improvement for SST where the baseline was al-
ready performing well.



Model

|| S16 (Avg F1 Score) | SST (Accuracy)

Baseline 61.6 47.5
NC 63.4 46.8
MC 61.8 47.0
SC 63.6 47.5
NC-EAV 63.4 48.8
MC-EAV 62.1 47.3
SC-EAV 63.8 48.8
Deriu et al. (2016) 63.3 -
Rouvier and Favre (2016) 63.0 -
Kim (2014) - 48.0
Kalchbrenner et al. (2014b) - 48.5
Le and Mikolov (2014) - 48.7
Yin and Schiitze (2015)* - 49.6

Table 4: Evaluation set results (random seed is fixed to 1) of the proposed models in comparison to
the state-of-the-art approaches. Deriu et al. (2016): the first place for the SemEval’ 16 task 4a using
an ensemble of two CNN models. Rouvier and Favre (2016): the second place for the SemEval’16
task 4a using various embeddings in CNN. Kim (2014): the state of the art single layer CNN model.
Kalchbrenner et al. (2014b): dynamic CNN with k-max pooling. Le and Mikolov (2014): logistic
regression on top of paragraph vectors. Yin and Schiitze (2015): the state-of-the-art dual layer CNN with

five channel embeddings.

Comparing these lexicon integrated models with
the ones with embedding attention vectors (x-EAV),
EAV did not help much for S16 but significantly
improved the performance for SST, achieving the
state-of-the-art result of 48.8% for a single-layer
CNN model. The accuracy achieved by our best
model is still 0.8% lower than the state-of-the-art
result achieved by Yin and Schiitze (2015); how-
ever, considering their model uses five embedding
channels and dual-layer convolutions whereas our
model uses a single channel and a single-layer con-
volution, in other words, our model is much more
compact, this is very promising. These results sug-
gest that lexicon embeddings coupled with the em-
bedding attention vectors allow to build robust sen-
timent analysis models.

Figure 3 illustrates the robustness of our lexicon
integrated models with respect to the size of word
embeddings. Our baseline produces inconsistent
and unstable results as different sizes of word em-
beddings are used. Furthermore, a larger size of
word embeddings tends to significantly outperform
a smaller size of word embeddings. Such tendency
is reduced with the incorporation of lexicon em-
beddings. While the standard deviations for the
accuracies achieved by the baseline using different
sizes of word embeddings are 0.8491 and 1.1909
for S16 and SST, respectively, they are reduced
to 0.4208 and 0.5764 respectively for lexicon inte-
grated models. Furthermore, the accuracy achieved
by the lexicon integrated model using the word em-
bedding size 50 is higher or equal to the highest

154

accuracy achieved by the baseline using the word
embedding size 200, which implies that it is pos-
sible to build more compact models using lexicon
embeddings without compromising accuracy.

Without Lexicon T With Lexicon
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Figure 3: Performance changes across various di-
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4.4 Analysis

4.4.1 Randomness in Deep Learning

Different random seeds when training the CNN
models could possibly change the behavior of mod-
els, sometimes by more than 1%. This is due to the
randomness in deep learning, such as the random
shuffling the datasets, initialization of the weights
and drop-out rate of a tensor. To reduce the im-
pact of random seed on our result and capture the
general characteristic of the model, we performed
a group analysis by training each model with 10
different random seeds (Figure 4).

e
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|
|
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64
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I

Avg. F1 Score

+

EAY  NC-EAY MC-EAY SC-EAYV
Model

Baseline  NC MC SC

(a) SemEval Task: The baseline model has a higher variance
than the proposed models. Adding lexicon information im-
proves the baseline model to be more accurate. In addition,
EAV marginally pushes the performance.
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(b) SST Task: The baseline model itself is stable because the
vocabulary of the word embedding covers approximately all
words in SST, as shown in Table 3. Although adding lexicon
information destabilize the model lightly, lexicon information
enhance the accuracy. EAV is advantageous in general. This
effect is visually shown in this figure, when comparing naive
concatenation (NC; (Section 3.2.1) with NC-EAV.

Figure 4: Generalized performance evaluation of
the models. Each model is trained 10 times with
different random seeds and the results are summa-
rized as a bar plot. In this plot, the central red line
indicates the median, and the bottom and top edges
of the box indicate the 25th and 75th percentiles,
respectively. the *+” symbol represents outliers.
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4.4.2 S16: SemEval’16 Task 4

For S16, the lexicon integration tends to reduce
the variances, and the introducing embedding at-
tention vectors pushes the accuracy even higher
than the models without it across different ran-
dom seeds. Another notable observation for S16 is
that although multichannel method underperforms
when the random seed is fixed to a specific num-
ber as seen in Table 4, it produces a competitive
output in the group analysis setting. Such low per-
formance with a fixed random seed is probably at-
tributed to the well known problem of optimization,
trapping in local optima.

4.4.3 SST: Stanford Sentiment Treebank

The problem conditions for SST are different in
terms of vocabulary coverage. This difference is
caused by the source of the lexicon embeddings,
where all of them were constructed from Twitter
dataset. Since most of the lexical words are from
Twitter, it shows less vocabulary coverage on SST
than that of S16 as shown in the right columns
of Table 3. Because of this poor relatedness be-
tween lexicons and datasets, we hypothesized that
adding a lexicon might be less effective on the per-
formance of SST task. However, our models seems
to successfully adopt exogenous features enough
to push the accuracy marginally higher than the
models without lexicons.

On the contrary, the coverage of word embed-
dings on SST is notably high at around 98%, while
only around 70% for S16 (left columns of Table 3).
These conditions are well reflected in the group
analysis of the model in SST. Since word embed-
dings themselves are sufficient enough to cover
majority of words, the model variance of the base-
line is relatively small compared to S16.

4.4.4 Attention

Embedding attention vectors allow to visualize the
importance of each word and lexicon for sentiment
analysis through a heatmap. In Figure 5, all neg-
ative words get higher weights (reds), while non-
sentimental words do not (greens and light blues) in
EAV. This visualization is especially useful for neu-
ral models because it provides an compelling ex-
planatory information about how the models work.

4.4.5 Learning Speed

Another advantage of the proposed model, SC-EAYV,
is that it accelerates the learning speed (Figure 6).
High F1 score can be achieved in the earlier step,



Yakub  should |be to tomorrow  the Mumbai ‘s culprid else will [oppose | it by following |a day
11 December 1971 - 'An IRA [bomb on the [Shankill] Road the Balmoral Furniture Building 'and four [LINK]
If 1 dd [l have training tomorrow id ['be and at | the Json Aldean concert #maybenexttime

George |Osborne is @ [Faslane tomorrow |. \get ur By down [there . 57/59 of scotiands [NIPS] loppose| trident |, yet I0OBA] is gon na b spent renewing it
National Ice [JGF8@MN day on Sunday and now |it ‘s National | Hot [D8gl Day Is ' the calendar trying to me

-1 05 0 05 1

Figure 5: Five selected negative tweets with the attention heatmap. Examples are from the set where the
baseline gives wrong answers but SC-EAV predicts correctly. Intensity of each word roughly ranges from
-1 to 1. This weights (intensities) are the values of the attention vector of the word embeddings in the
SC-EAV model. While negative words get more attention (reds), non-sentimental words such as stop

words get less attention (greens and light blues).

if lexicon information is incorporated along with
EAV. This statement is general behavior because
the learning curves in Figure Figure 6 are the result
of averaging ten different learning attempts with
different random seeds.

o
=]

Avg. F1 Soore
IS
&

i ——BCEAV
st/ —— Baseline

500 1000 1500 2000 2500
Step

Figure 6: Lexicon information and EAV accelerate
the learning speed. High F1 score can be achieved
in the earlier step, if lexicon information is incor-
porated along with EAV.

5 Conclusion

This paper proposes several approaches that effec-
tively integrate lexicon embeddings and an atten-
tion mechanism to a well-explored deep learning
framework, Convolutional Neural Networks, for
sentiment analysis. Our experiments show that lexi-
con integration can improve accuracy, stability, and
efficiency of the traditional CNN model. Multiple
training results with different random seeds show
the generalization of the effectiveness of using lex-
icon embeddings and embedding attention vectors.
The training curve comparison further shows an-
other benefit of this integration for more robust
learning. The attention heatmap analysis confirms
that embedding attention vectors endow CNN mod-
els with explanatory features, which gives good
understanding of how the CNN models work.
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Much more future work is left. The proposed at-
tention models are applied to each single word.
However, focusing on multiple words could give
more promising information. Application of the
attention mechanism to multiple words at the same
time is a possible direction. Majority of the lex-
icons in this work are from tweet dataset. More
lexicon dataset from general could be used to im-
prove the coverage of our system. We focused on a
simple and yet well performing system. In order to
maximize the score, ensemble of multi layer CNN
models could be applied.’
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