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Abstract

We present the first shared task on de-
tecting the intensity of emotion felt by
the speaker of a tweet. We create
the first datasets of tweets annotated for
anger, fear, joy, and sadness intensities
using a technique called best–worst scal-
ing (BWS). We show that the annota-
tions lead to reliable fine-grained intensity
scores (rankings of tweets by intensity).
The data was partitioned into training, de-
velopment, and test sets for the compe-
tition. Twenty-two teams participated in
the shared task, with the best system ob-
taining a Pearson correlation of 0.747 with
the gold intensity scores. We summarize
the machine learning setups, resources,
and tools used by the participating teams,
with a focus on the techniques and re-
sources that are particularly useful for the
task. The emotion intensity dataset and the
shared task are helping improve our under-
standing of how we convey more or less
intense emotions through language.

1 Introduction

We use language to communicate not only the
emotion we are feeling but also the intensity of
the emotion. For example, our utterances can con-
vey that we are very angry, slightly sad, absolutely
elated, etc. Here, intensity refers to the degree or
amount of an emotion such as anger or sadness.1

Automatically determining the intensity of emo-
tion felt by the speaker has applications in com-
merce, public health, intelligence gathering, and
social welfare.

1Intensity should not be confused with arousal, which
refers to activation–deactivation dimension—the extent to
which an emotion is calming or exciting.

Twitter has a large and diverse user base
which entails rich textual content, including non-
standard language such as emoticons, emojis, cre-
atively spelled words (happee), and hashtagged
words (#luvumom). Tweets are often used to con-
vey one’s emotion, opinion, and stance (Moham-
mad et al., 2017). Thus, automatically detecting
emotion intensities in tweets is especially bene-
ficial in applications such as tracking brand and
product perception, tracking support for issues and
policies, tracking public health and well-being,
and disaster/crisis management. Here, for the first
time, we present a shared task on automatically
detecting intensity of emotion felt by the speaker
of a tweet: WASSA-2017 Shared Task on Emotion
Intensity.2

Specifically, given a tweet and an emotion X,
the goal is to determine the intensity or degree of
emotion X felt by the speaker—a real-valued score
between 0 and 1.3 A score of 1 means that the
speaker feels the highest amount of emotion X. A
score of 0 means that the speaker feels the low-
est amount of emotion X. We first ask human an-
notators to infer this intensity of emotion from a
tweet. Later, automatic algorithms are tested to
determine the extent to which they can replicate
human annotations. Note that often a tweet does
not explicitly state that the speaker is experienc-
ing a particular emotion, but the intensity of emo-
tion felt by the speaker can be inferred nonethe-
less. Sometimes a tweet is sarcastic or it conveys
the emotions of a different entity, yet the annota-
tors (and automatic algorithms) are to infer, based
on the tweet, the extent to which the speaker is
likely feeling a particular emotion.

2http://saifmohammad.com/WebPages/EmotionIntensity-
SharedTask.html

3Identifying intensity of emotion evoked in the reader, or
intensity of emotion felt by an entity mentioned in the tweet,
are also useful tasks, and left for future work.
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In order to provide labeled training, develop-
ment, and test sets for this shared task, we needed
to annotate instances for degree of affect. This is
a substantially more difficult undertaking than an-
notating only for the broad affect class: respon-
dents are presented with greater cognitive load
and it is particularly hard to ensure consistency
(both across responses by different annotators and
within the responses produced by an individual an-
notator). Thus, we used a technique called Best–
Worst Scaling (BWS), also sometimes referred to
as Maximum Difference Scaling (MaxDiff). It is
an annotation scheme that addresses the limita-
tions of traditional rating scales (Louviere, 1991;
Louviere et al., 2015; Kiritchenko and Moham-
mad, 2016, 2017). We used BWS to create the
Tweet Emotion Intensity Dataset, which currently
includes four sets of tweets annotated for inten-
sity of anger, fear, joy, and sadness, respectively
(Mohammad and Bravo-Marquez, 2017). These
are the first datasets of their kind.

The competition is organized on a CodaLab
website, where participants can upload their sub-
missions, and the leaderboard reports the results.4

Twenty-two teams participated in the 2017 it-
eration of the competition. The best perform-
ing system, Prayas, obtained a Pearson correla-
tion of 0.747 with the gold annotations. Seven
teams obtained scores higher than the score ob-
tained by a competitive SVM-based benchmark
system (0.66), which we had released at the start
of the competition.5 Low-dimensional (dense)
distributed representations of words (word em-
beddings) and sentences (sentence vectors), along
with presence of affect–associated words (derived
from affect lexicons) were the most commonly
used features. Neural network were the most com-
monly used machine learning architecture. They
were used for learning tweet representations as
well as for fitting regression functions. Support
vector machines (SVMs) were the second most
popular regression algorithm. Keras and Tensor-
Flow were some of the most widely used libraries.

The top performing systems used ensembles of
models trained on dense distributed representa-
tions of the tweets as well as features drawn from
affect lexicons. They also made use of a substan-
tially larger number of affect lexicons than sys-
tems that did not perform as well.

4https://competitions.codalab.org/competitions/16380
5https://github.com/felipebravom/AffectiveTweets

The emotion intensity dataset and the corre-
sponding shared task are helping improve our un-
derstanding of how we convey more or less in-
tense emotions through language. The task also
adds a dimensional nature to model of basic emo-
tions, which has traditionally been viewed as cat-
egorical (joy or no joy, fear or no fear, etc.). On
going work with annotations on the same data
for valence , arousal, and dominance aims to bet-
ter understand the relationships between the cir-
cumplex model of emotions (Russell, 2003) and
the categorical model of emotions (Ekman, 1992;
Plutchik, 1980). Even though the 2017 WASSA
shared task has concluded, the CodaLab competi-
tion website is kept open. Thus new and improved
systems can continually be tested. The best results
obtained by any system on the 2017 test set can be
found on the CodaLab leaderboard.

The rest of the paper is organized as follows.
We begin with related work and a brief back-
ground on best–worst scaling (Section 2). In Sec-
tion 3, we describe how we collected and anno-
tated the tweets for emotion intensity. We also
present experiments to determine the quality of
the annotations. Section 4 presents details of the
shared task setup. In Section 5, we present a com-
petitive SVM-based baseline that uses a number of
common text classification features. We describe
ablation experiments to determine the impact of
different feature types on regression performance.
In Section 6, we present the results obtained by
the participating systems and summarize their ma-
chine learning setups. Finally, we present conclu-
sions and future directions. All of the data, annota-
tion questionnaires, evaluation scripts, regression
code, and interactive visualizations of the data are
made freely available on the shared task website.2

2 Related Work

2.1 Emotion Annotation

Psychologists have argued that some emotions are
more basic than others (Ekman, 1992; Plutchik,
1980; Parrot, 2001; Frijda, 1988). However, they
disagree on which emotions (and how many)
should be classified as basic emotions—some pro-
pose 6, some 8, some 20, and so on. Thus, most ef-
forts in automatic emotion detection have focused
on a handful of emotions, especially since manu-
ally annotating text for a large number of emotions
is arduous. Apart from these categorical models of
emotions, certain dimensional models of emotion
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have also been proposed. The most popular among
them, Russell’s circumplex model, asserts that all
emotions are made up of two core dimensions:
valence and arousal (Russell, 2003). We created
datasets for four emotions that are the most com-
mon amongst the many proposals for basic emo-
tions: anger, fear, joy, and sadness. However, we
have also begun work on other affect categories,
as well as on valence and arousal.

The vast majority of emotion annotation work
provides discrete binary labels to the text instances
(joy–nojoy, fear–nofear, and so on) (Alm et al.,
2005; Aman and Szpakowicz, 2007; Brooks et al.,
2013; Neviarouskaya et al., 2009; Bollen et al.,
2009). The only annotation effort that provided
scores for degree of emotion is by Strapparava and
Mihalcea (2007) as part of one of the SemEval-
2007 shared task. Annotators were given newspa-
per headlines and asked to provide scores between
0 and 100 via slide bars in a web interface. It is dif-
ficult for humans to provide direct scores at such
fine granularity. A common problem is inconsis-
tency in annotations. One annotator might assign a
score of 79 to a piece of text, whereas another an-
notator may assign a score of 62 to the same text.
It is also common that the same annotator assigns
different scores to the same text instance at differ-
ent points in time. Further, annotators often have
a bias towards different parts of the scale, known
as scale region bias.

2.2 Best–Worst Scaling

Best–Worst Scaling (BWS) was developed by Lou-
viere (1991), building on some ground-breaking
research in the 1960s in mathematical psychology
and psychophysics by Anthony A. J. Marley and
Duncan Luce. Annotators are given n items (an n-
tuple, where n > 1 and commonly n = 4). They
are asked which item is the best (highest in terms
of the property of interest) and which is the worst
(lowest in terms of the property of interest). When
working on 4-tuples, best–worst annotations are
particularly efficient because each best and worst
annotation will reveal the order of five of the six
item pairs. For example, for a 4-tuple with items
A, B, C, and D, if A is the best, and D is the worst,
then A > B, A > C, A > D, B > D, and C > D.

BWS annotations for a set of 4-tuples can be
easily converted into real-valued scores of associ-
ation between the items and the property of inter-
est (Orme, 2009; Flynn and Marley, 2014). It has

Emotion Thes. Category Head Word
anger 900 resentment
fear 860 fear
joy 836 cheerfulness
sadness 837 dejection

Table 1: Categories from the Roget’s Thesaurus
whose words were taken to be the query terms.

been empirically shown that annotations for 2N
4-tuples is sufficient for obtaining reliable scores
(where N is the number of items) (Louviere, 1991;
Kiritchenko and Mohammad, 2016).6

Kiritchenko and Mohammad (2017) show
through empirical experiments that BWS produces
more reliable fine-grained scores than scores ob-
tained using rating scales. Within the NLP com-
munity, Best–Worst Scaling (BWS) has thus far
been used only to annotate words: for exam-
ple, for creating datasets for relational similar-
ity (Jurgens et al., 2012), word-sense disambigua-
tion (Jurgens, 2013), word–sentiment intensity
(Kiritchenko et al., 2014), and phrase sentiment
composition (Kiritchenko and Mohammad, 2016).
However, we use BWS to annotate whole tweets
for intensity of emotion.

3 Data

Mohammad and Bravo-Marquez (2017) describe
how the Tweet Emotion Intensity Dataset was cre-
ated. We summarize below the approach used
and the key properties of the dataset. Not in-
cluded in this summary are: (a) experiments show-
ing marked similarities between emotion pairs in
terms of how they manifest in language, (b) how
training data for one emotion can be used to im-
prove prediction performance for a different emo-
tion, and (c) an analysis of the impact of hashtag
words on emotion intensities.

For each emotion X, we select 50 to 100 terms
that are associated with that emotion at differ-
ent intensity levels. For example, for the anger
dataset, we use the terms: angry, mad, frustrated,
annoyed, peeved, irritated, miffed, fury, antago-
nism, and so on. For the sadness dataset, we use
the terms: sad, devastated, sullen, down, crying,
dejected, heartbroken, grief, weeping, and so on.
We will refer to these terms as the query terms.

We identified the query words for an emotion

6At its limit, when n = 2, BWS becomes a paired com-
parison (Thurstone, 1927; David, 1963), but then a much
larger set of tuples need to be annotated (closer to N2).
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by first searching the Roget’s Thesaurus to find
categories that had the focus emotion word (or a
close synonym) as the head word.7 The categories
chosen for each head word are shown in Table
1. We chose all single-word entries listed within
these categories to be the query terms for the cor-
responding focus emotion.8 Starting November
22, 2016, and continuing for three weeks, we
polled the Twitter API for tweets that included the
query terms. We discarded retweets (tweets that
start with RT) and tweets with urls. We created a
subset of the remaining tweets by:

• selecting at most 50 tweets per query term.

• selecting at most 1 tweet for every tweeter–
query term combination.

Thus, the master set of tweets is not heavily
skewed towards some tweeters or query terms.

To study the impact of emotion word hashtags
on the intensity of the whole tweet, we identified
tweets that had a query term in hashtag form
towards the end of the tweet—specifically, within
the trailing portion of the tweet made up solely
of hashtagged words. We created copies of these
tweets and then removed the hashtag query terms
from the copies. The updated tweets were then
added to the master set. Finally, our master set of
7,097 tweets includes:

1. Hashtag Query Term Tweets (HQT Tweets):
1030 tweets with a query term in the form
of a hashtag (#<query term>) in the trailing
portion of the tweet;

2. No Query Term Tweets (NQT Tweets):
1030 tweets that are copies of ‘1’, but with the
hashtagged query term removed;

3. Query Term Tweets (QT Tweets):
5037 tweets that include:
a. tweets that contain a query term in the form
of a word (no #<query term>)
b. tweets with a query term in hashtag form
followed by at least one non-hashtag word.

The master set of tweets was then manually an-
notated for intensity of emotion. Table 3 shows a
breakdown by emotion.

7The Roget’s Thesaurus groups words into about 1000
categories, each containing on average about 100 closely re-
lated words. The head word is the word that best represents
the meaning of the words within that category.

8The full list of query terms is available on request.

3.1 Annotating with Best–Worst Scaling

We followed the procedure described in Kir-
itchenko and Mohammad (2016) to obtain BWS
annotations. For each emotion, the annotators
were presented with four tweets at a time (4-
tuples) and asked to select the speakers of the
tweets with the highest and lowest emotion inten-
sity. 2 × N (where N is the number of tweets
in the emotion set) distinct 4-tuples were ran-
domly generated in such a manner that each item
is seen in eight different 4-tuples, and no pair of
items occurs in more than one 4-tuple. We re-
fer to this as random maximum-diversity selection
(RMDS). RMDS maximizes the number of unique
items that each item co-occurs with in the 4-tuples.
After BWS annotations, this in turn leads to di-
rect comparative ranking information for the max-
imum number of pairs of items.9

It is desirable for an item to occur in sets of 4-
tuples such that the the maximum intensities in
those 4-tuples are spread across the range from
low intensity to high intensity, as then the propor-
tion of times an item is chosen as the best is indica-
tive of its intensity score. Similarly, it is desirable
for an item to occur in sets of 4-tuples such that the
minimum intensities are spread from low to high
intensity. However, since the intensities of items
are not known before the annotations, RMDS is
used.

Every 4-tuple was annotated by three indepen-
dent annotators.10 The questionnaires used were
developed through internal discussions and pilot
annotations. (See the Appendix (8.1) for a sample
questionnaire. All questionnaires are also avail-
able on the task website.)

The 4-tuples of tweets were uploaded on the
crowdsourcing platform, CrowdFlower. About
5% of the data was annotated internally before-
hand (by the authors). These questions are referred
to as gold questions. The gold questions are inter-
spersed with other questions. If one gets a gold

9In combinatorial mathematics, balanced incomplete
block design refers to creating blocks (or tuples) of a handful
items from a set of N items such that each item occurs in the
same number of blocks (say x) and each pair of distinct items
occurs in the same number of blocks (say y), where x and y
are integers ge 1 (Yates, 1936). The set of tuples we create
have similar properties, except that since we create only 2N
tuples, pairs of distinct items either never occur together in a
4-tuple or they occur in exactly one 4-tuple.

10Kiritchenko and Mohammad (2016) showed that using
just three annotations per 4-tuple produces highly reliable re-
sults. Note that since each tweet is seen in eight different
4-tuples, we obtain 8× 3 = 24 judgments over each tweet.
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question wrong, they are immediately notified of
it. If one’s accuracy on the gold questions falls be-
low 70%, they are refused further annotation, and
all of their annotations are discarded. This serves
as a mechanism to avoid malicious annotations.11

The BWS responses were translated into scores
by a simple calculation (Orme, 2009; Flynn and
Marley, 2014): For each item t, the score is the
percentage of times the t was chosen as having the
most intensity minus the percentage of times t was
chosen as having the least intensity.12

intensity(t) = %most(t)−%least(t) (1)

Since intensity of emotion is a unipolar scale, we
linearly transformed the the−100 to 100 scores to
scores in the range 0 to 1.

3.2 Reliability of Annotations

A useful measure of quality is reproducibility of
the end result—if repeated independent manual
annotations from multiple respondents result in
similar intensity rankings (and scores), then one
can be confident that the scores capture the true
emotion intensities. To assess this reproducibility,
we calculate average split-half reliability (SHR),
a commonly used approach to determine consis-
tency (Kuder and Richardson, 1937; Cronbach,
1946). The intuition behind SHR is as follows.
All annotations for an item (in our case, tuples)
are randomly split into two halves. Two sets of
scores are produced independently from the two
halves. Then the correlation between the two sets
of scores is calculated. If the annotations are of
good quality, then the correlation between the two
halves will be high.

Since each tuple in this dataset was annotated by
three annotators (odd number), we calculate SHR
by randomly placing one or two annotations per
tuple in one bin and the remaining (two or one)
annotations for the tuple in another bin. Then two
sets of intensity scores (and rankings) are calcu-
lated from the annotations in each of the two bins.

11In case more than one item can be reasonably chosen as
the best (or worst) item, then more than one acceptable gold
answers are provided. The goal with the gold annotations
is to identify clearly poor or malicious annotators. In case
where two items are close in intensity, we want the crowd
of annotators to indicate, through their BWS annotations, the
relative ranking of the items.

12Kiritchenko and Mohammad (2016) provide code
for generating tuples from items using RMDS, as well
as code for generating scores from BWS annotations:
http://saifmohammad.com/WebPages/BestWorst.html

Emotion Spearman Pearson
anger 0.779 0.797
fear 0.845 0.850
joy 0.881 0.882
sadness 0.847 0.847

Table 2: Split-half reliabilities (as measured by
Pearson correlation and Spearman rank correla-
tion) for the anger, fear, joy, and sadness tweets
in the Tweet Emotion Intensity Dataset.

The process is repeated 100 times and the correla-
tions across the two sets of rankings and intensity
scores are averaged. Table 2 shows the split-half
reliabilities for the anger, fear, joy, and sadness
tweets in the Tweet Emotion Intensity Dataset.13

Observe that for fear, joy, and sadness datasets,
both the Pearson correlations and the Spearman
rank correlations lie between 0.84 and 0.88, indi-
cating a high degree of reproducibility. However,
the correlations are slightly lower for anger indi-
cating that it is relative more difficult to ascertain
the degrees of anger of speakers from their tweets.
Note that SHR indicates the quality of annotations
obtained when using only half the number of an-
notations. The correlations obtained when repeat-
ing the experiment with three annotations for each
4-tuple is expected to be even higher. Thus the
numbers shown in Table 2 are a lower bound on
the quality of annotations obtained with three an-
notations per 4-tuple.

4 Task Setup

4.1 The Task

Given a tweet and an emotion X, automatic sys-
tems have to determine the intensity or degree of
emotion X felt by the speaker—a real-valued score
between 0 and 1. A score of 1 means that the
speaker feels the highest amount of emotion X. A
score of 0 means that the speaker feels the low-
est amount of emotion X. The competition is or-
ganized on a CodaLab website, where participants
can upload their submissions, and the leaderboard
reports the results.14

13Past work has found the SHR for sentiment intensity an-
notations for words, with 8 annotations per tuple, to be 0.98
(Kiritchenko et al., 2014). In contrast, here SHR is calculated
from 3 annotations, for emotions, and from whole sentences.
SHR determined from a smaller number of annotations and
on more complex annotation tasks are expected to be lower.

14https://competitions.codalab.org/competitions/16380
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Emotion Train Dev. Test All
anger 857 84 760 1701
fear 1147 110 995 2252
joy 823 74 714 1611
sadness 786 74 673 1533
All 3613 342 3142 7097

Table 3: The number of instances in the Tweet
Emotion Intensity dataset.

4.2 Training, development, and test sets

The Tweet Emotion Intensity Dataset is partitioned
into training, development, and test sets for ma-
chine learning experiments (see Table 3). For each
emotion, we chose to include about 50% of the
tweets in the training set, about 5% in the develop-
ment set, and about 45% in the test set. Further, we
ensured that an No-Query-Term (NQT) tweet is
in the same partition as the Hashtag-Query-Term
(HQT) tweet it was created from.

The training and development sets were made
available more than two months before the two-
week official evaluation period. Participants were
told that the development set could be used to tune
ones system and also to test making a submission
on CodaLab. Gold intensity scores for the devel-
opment set were released two weeks before the
evaluation period, and participants were free to
train their systems on the combined training and
development sets, and apply this model to the test
set. The test set was released at the start of the
evaluation period.

4.3 Resources

Participants were free to use lists of manu-
ally created and/or automatically generated word–
emotion and word–sentiment association lexi-
cons.15 Participants were free to build a system
from scratch or use any available software pack-
ages and resources, as long as they are not against
the spirit of fair competition. In order to assist
testing of ideas, we also provided a baseline Weka
system for determining emotion intensity, that par-
ticipants can build on directly or use to determine
the usefulness of different features.16 We describe
the baseline system in the next section.

15A large number of sentiment and emo-
tion lexicons created at NRC are available here:
http://saifmohammad.com/WebPages/lexicons.html

16https://github.com/felipebravom/AffectiveTweets

4.4 Official Submission to the Shared Task

System submissions were required to have the
same format as used in the training and test sets.
Each line in the file should include:
id[tab]tweet[tab]emotion[tab]score

Each team was allowed to make as many as ten
submissions during the evaluation period. How-
ever, they were told in advance that only the fi-
nal submission would be considered as the official
submission to the competition.

Once the evaluation period concluded, we re-
leased the gold labels and participants were able to
determine results on various system variants that
they may have developed. We encouraged par-
ticipants to report results on all of their systems
(or system variants) in the system-description pa-
per that they write. However, they were asked to
clearly indicate the result of their official submis-
sion.

During the evaluation period, the CodaLab
leaderboard was hidden from participants—so
they were unable see the results of their submis-
sions on the test set until the leaderboard was sub-
sequently made public. Participants were, how-
ever, able to immediately see any warnings or er-
rors that their submission may have triggered.

4.5 Evaluation

For each emotion, systems were evaluated by cal-
culating the Pearson Correlation Coefficient of the
system predictions with the gold ratings. Pearson
coefficient, which measures linear correlations be-
tween two variables, produces scores from -1 (per-
fectly inversely correlated) to 1 (perfectly corre-
lated). A score of 0 indicates no correlation. The
correlation scores across all four emotions was av-
eraged to determine the bottom-line competition
metric by which the submissions were ranked.

In addition to the bottom-line competition met-
ric described above, the following additional met-
rics were also provided:

• Spearman Rank Coefficient of the submission
with the gold scores of the test data.
Motivation: Spearman Rank Coefficient consid-
ers only how similar the two sets of ranking
are. The differences in scores between adja-
cently ranked instance pairs is ignored. On the
one hand this has been argued to alleviate some
biases in Pearson, but on the other hand it can
ignore relevant information.
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• Correlation scores (Pearson and Spearman) over
a subset of the testset formed by taking in-
stances with gold intensity scores ≥ 0.5.
Motivation: In some applications, only those
instances that are moderately or strongly emo-
tional are relevant. Here it may be much more
important for a system to correctly determine
emotion intensities of instances in the higher
range of the scale as compared to correctly de-
termine emotion intensities in the lower range
of the scale.

Results with Spearman rank coefficient were
largely inline with those obtained using Pearson
coefficient, and so in the rest of the paper we report
only the latter. However, the CodaLab leaderboard
and the official results posted on the task website
show both metrics. The official evaluation script
(which calculates correlations using both metrics
and also acts as a format checker) was made avail-
able along with the training and development data
well in advance. Participants were able to use
it to monitor progress of their system by cross-
validation on the training set or testing on the de-
velopment set. The script was also uploaded on
the CodaLab competition website so that the sys-
tem evaluates submissions automatically and up-
dates the leaderboard.

5 Baseline System for Automatically
Determining Tweet Emotion Intensity

5.1 System

We implemented a package called Affec-
tiveTweets (Mohammad and Bravo-Marquez,
2017) for the Weka machine learning workbench
(Hall et al., 2009). It provides a collection of
filters for extracting features from tweets for
sentiment classification and other related tasks.
These include features used in Kiritchenko et al.
(2014) and Mohammad et al. (2017).17 We use
the AffectiveTweets package for calculating fea-
ture vectors from our emotion-intensity-labeled
tweets and train Weka regression models on this
transformed data. The regression model used is
an L2-regularized L2-loss SVM regression model
with the regularization parameter C set to 1,

17Kiritchenko et al. (2014) describes the NRC-Canada
system which ranked first in three sentiment shared tasks:
SemEval-2013 Task 2, SemEval-2014 Task 9, and SemEval-
2014 Task 4. Mohammad et al. (2017) describes a stance-
detection system that outperformed submissions from all 19
teams that participated in SemEval-2016 Task 6.

implemented in LIBLINEAR18. The system uses
the following features:19

a. Word N-grams (WN): presence or absence of
word n-grams from n = 1 to n = 4.
b. Character N-grams (CN): presence or absence
of character n-grams from n = 3 to n = 5.
c. Word Embeddings (WE): an average of the
word embeddings of all the words in a tweet. We
calculate individual word embeddings using the
negative sampling skip-gram model implemented
in Word2Vec (Mikolov et al., 2013). Word vectors
are trained from ten million English tweets taken
from the Edinburgh Twitter Corpus (Petrović
et al., 2010). We set Word2Vec parameters:
window size: 5; number of dimensions: 400.20

d. Affect Lexicons (L): we use the lexicons shown
in Table 4 by aggregating the information for all
the words in a tweet. If the lexicon provides nom-
inal association labels (e.g, positive, anger, etc.),
then the number of words in the tweet matching
each class are counted. If the lexicon provides nu-
merical scores, the individual scores for each class
are summed. and whether the affective associa-
tions provided are nominal or numeric.

5.2 Experiments

We developed the baseline system by learning
models from each of the Tweet Emotion Intensity
Dataset training sets and applying them to the cor-
responding development sets. Once the system
parameters were frozen, the system learned new
models from the combined training and develop-
ment corpora. This model was applied to the test
sets. Table 5 shows the results obtained on the
test sets using various features, individually and
in combination. The last column ‘avg.’ shows
the macro-average of the correlations for all of the
emotions.

Using just character or just word n-grams leads
to results around 0.48, suggesting that they are rea-
sonably good indicators of emotion intensity by
themselves. (Guessing the intensity scores at ran-
dom between 0 and 1 is expected to get correla-
tions close to 0.) Word embeddings produces sta-
tistically significant improvement over the ngrams
(avg. r = 0.55).21 Using features drawn from af-

18http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
19See Appendix (A.3) for further implementation details.
20Optimized for the task of word–emotion classification on

an independent dataset (Bravo-Marquez et al., 2016).
21We used the Wilcoxon signed-rank test at 0.05 signifi-

cance level calculated from ten random partitions of the data,
for all the significance tests reported in this paper.
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Twitter Annotation Scope Label
AFINN (Nielsen, 2011) Yes Manual Sentiment Numeric
BingLiu (Hu and Liu, 2004) No Manual Sentiment Nominal
MPQA (Wilson et al., 2005) No Manual Sentiment Nominal
NRC Affect Intensity Lexicon (NRC-Aff-Int) (Mohammad, 2017) Yes Manual Emotions Numeric
NRC Word-Emotion Assn. Lexicon (NRC-EmoLex) (Mohammad and Turney, 2013) No Manual Emotions Nominal
NRC10 Expanded (NRC10E) (Bravo-Marquez et al., 2016) Yes Automatic Emotions Numeric
NRC Hashtag Emotion Association Lexicon (NRC-Hash-Emo) Yes Automatic Emotions Numeric

(Mohammad, 2012a; Mohammad and Kiritchenko, 2015)
NRC Hashtag Sentiment Lexicon (NRC-Hash-Sent) (Mohammad et al., 2013) Yes Automatic Sentiment Numeric
Sentiment140 (Mohammad et al., 2013) Yes Automatic Sentiment Numeric
SentiWordNet (Esuli and Sebastiani, 2006) No Automatic Sentiment Numeric
SentiStrength (Thelwall et al., 2012) Yes Manual Sentiment Numeric

Table 4: Affect lexicons used in our experiments.

fect lexicons produces results ranging from avg.
r = 0.19 with SentiWordNet to avg. r = 0.53
with NRC-Hash-Emo. Combining all the lexicons
leads to statistically significant improvement over
individual lexicons (avg. r = 0.63). Combining
the different kinds of features leads to even higher
scores, with the best overall result obtained us-
ing word embedding and lexicon features (avg. r
= 0.66).22 The feature space formed by all the
lexicons together is the strongest single feature
category. The results also show that some fea-
tures such as character ngrams are redundant in
the presence of certain other features.

Among the lexicons, NRC-Hash-Emo is the
most predictive single lexicon. Lexicons that in-
clude Twitter-specific entries, lexicons that in-
clude intensity scores, and lexicons that label
emotions and not just sentiment, tend to be
more predictive on this task–dataset combination.
NRC-Aff-Int has real-valued fine-grained word–
emotion association scores for all the words in
NRC-EmoLex that were marked as being associ-
ated with anger, fear, joy, and sadness.23 Improve-
ment in scores obtained using NRC-Aff-Int over
the scores obtained using NRC-EmoLex also show
that using fine intensity scores of word-emotion
association are beneficial for tweet-level emotion
intensity detection. The correlations for anger,
fear, and joy are similar (around 0.65), but the cor-
relation for sadness is markedly higher (0.71). We
can observe from Table 5 that this boost in perfor-
mance for sadness is to some extent due to word
embeddings, but is more so due to lexicon fea-
tures, especially those from SentiStrength. Sen-
tiStrength focuses solely on positive and negative
classes, but provides numeric scores for each.

To assess performance in the moderate-to-high
range of the intensity scale, we calculated correla-

22The increase from 0.63 to 0.66 is statistically significant.
23http://saifmohammad.com/WebPages/AffectIntensity.htm

Pearson correlation r
anger fear joy sad. avg.

Individual feature sets
word ngrams (WN) 0.42 0.49 0.52 0.49 0.48
char. ngrams (CN) 0.50 0.48 0.45 0.49 0.48
word embeds. (WE) 0.48 0.54 0.57 0.60 0.55
all lexicons (L) 0.62 0.60 0.60 0.68 0.63
Individual Lexicons

AFINN 0.48 0.27 0.40 0.28 0.36
BingLiu 0.33 0.31 0.37 0.23 0.31
MPQA 0.18 0.20 0.28 0.12 0.20
NRC-Aff-Int 0.24 0.28 0.37 0.32 0.30
NRC-EmoLex 0.18 0.26 0.36 0.23 0.26
NRC10E 0.35 0.34 0.43 0.37 0.37
NRC-Hash-Emo 0.55 0.55 0.46 0.54 0.53
NRC-Hash-Sent 0.33 0.24 0.41 0.39 0.34
Sentiment140 0.33 0.41 0.40 0.48 0.41
SentiWordNet 0.14 0.19 0.26 0.16 0.19
SentiStrength 0.43 0.34 0.46 0.61 0.46

Combinations
WN + CN + WE 0.50 0.48 0.45 0.49 0.48
WN + CN + L 0.61 0.61 0.61 0.63 0.61
WE + L 0.64 0.63 0.65 0.71 0.66
WN + WE + L 0.63 0.65 0.65 0.65 0.65
CN + WE + L 0.61 0.61 0.62 0.63 0.62
WN + CN + WE + L 0.61 0.61 0.61 0.63 0.62

Over the subset of test set where intensity ≥ 0.5
WN + WE + L 0.51 0.51 0.40 0.49 0.47

Table 5: Pearson correlations (r) of emotion inten-
sity predictions with gold scores. Best results for
each column are shown in bold: highest score by
a feature set, highest score using a single lexicon,
and highest score using feature set combinations.

tion scores over a subset of the test data formed by
taking only those instances with gold emotion in-
tensity scores≥ 0.5. The last row in Table 5 shows
the results. We observe that the correlation scores
are in general lower here in the 0.5 to 1 range of
intensity scores than in the experiments over the
full intensity range. This is simply because this is
a harder task as now the systems do not benefit by
making coarse distinctions over whether a tweet is
in the lower range or in the higher range.
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6 Official System Submissions to the
Shared Task

Twenty-two teams made submissions to the shared
task. In the subsections below we present the re-
sults and summarize the approaches and resources
used by the participating systems.

6.1 Results

Table 6 shows the Pearson correlations (r) and
ranks (in brackets) obtained by the systems on the
full test sets. The bottom-line competition met-
ric, ‘r avg.’, is the average of Pearson correlations
obtained for each of the four emotions. (The task
website shows Spearman rank coefficient as well.
Those scores are close in value to the Pearson cor-
relations, and most teams rank the same by either
metric.) The top ranking system, Prayas, obtained
an r avg. of 0.747. It obtains slightly better cor-
relations for joy and anger (around 0.76) than for
fear and sadness (around 0.73). IMS, which ranked
second overall, obtained slightly higher correla-
tion on anger, but lower scores than Prayas on the
other emotions. The top 12 teams all obtain their
best correlation on anger as opposed to any of the
other three emotions. They obtain lowest correla-
tions on fear and sadness. Seven teams obtained
scores higher than that obtained by the publicly
available benchmark system (r avg. = 0.66).

Table 7 shows the Pearson correlations (r) and
ranks (in brackets) obtained by the systems on
those instances in the test set with intensity scores
≥ 0.5. Prayas obtains the best results here too
with r avg. = 0.571. SeerNet, which ranked third
on the full test set, ranks second on this subset. As
found in the baseline results, system results on this
subset overall are lower than than on the full test
set. Most systems perform best on the joy data and
worst on the sadness data.

6.2 Machine Learning Setups

Systems followed a supervised learning approach
in which tweets were mapped into feature vectors
that were then used for training regression models.

Features were drawn both from the training
data as well as from external resources such as
large tweet corpora and affect lexicons. Table
8 lists the feature types (resources) used by the
teams. (To save space, team names are abbre-
viated to just their rank on the full test set (as
shown in Table 6).) Commonly used features
included word embeddings and sentence repre-

sentations learned using neural networks (sen-
tence embeddings). Some of the word embed-
dings models used were Glove (SeerNet, UWa-
terloo, YZU NLP), Word2Vec (SeerNet), and
Word Vector Emoji Vectors (SeerNet). The mod-
els used for learning sentence embeddings in-
cluded LSTM (Prayas, IITP), CNN (SGNLP),
LSTM–CNN combinations (IMS, YMU-HPCC),
bi-directional versions (YZU NLP), and aug-
mented LSTMs models with attention layers (To-
dai). High-dimensional sparse representations
such as word n-grams or character n-grams were
rarely used. Affect lexicons were also widely
used, especially by the top eight teams. Some
teams built their own affect lexicons from addi-
tional data (IMS, XRCE).

The regression algorithms applied to the fea-
ture vectors included SVM regression or SVR
(IITP, Code Wizards, NUIG, H.Niemstov), Neural
Networks (Todai, YZU NLP, SGNLP), Random
Forest (IMS, SeerNet, XRCE), Gradient Boosting
(UWaterLoo, PLN PUCRS), AdaBoost (SeerNet),
and Least Square Regression (UWaterloo). Ta-
ble 9 provides the full list.

Some teams followed a popular deep learn-
ing trend wherein the feature representation and
the prediction model are trained in conjunction.
In those systems, the regression algorithm corre-
sponds to the output layer of the neural network
(YZU NLP, SGNLP, Todai).

Many libraries and tools were used for imple-
menting the systems. The high-level neural net-
works API library Keras was the most widely used
off-the-shelf package. It is written in Python and
runs on top of either TensorFlow or Theano. Ten-
sorFlow and Sci-kit learn were also popular (also
Python libraries).24 Our AffectiveTweets Weka
baseline package was used by five participating
teams, including the teams that ranked first, sec-
ond, and third. The full list of tools and libraries
used by the teams is shown in Table 10.

In the subsections below, we briefly summa-
rize the three top-ranking systems. The Ap-
pendix (8.3) provides participant-provided sum-
maries about each system. See system description
papers for detailed descriptions.

24TensorFlow provides implementations of a number of
machine learning algorithms, including deep learning ones
such as CNNs and LSTMs.
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Team Name r avg. (rank) r fear (rank) r joy (rank) r sadness (rank) r anger (rank)
1. Prayas 0.747 (1) 0.732 (1) 0.762 (1) 0.732 (1) 0.765 (2)
2. IMS 0.722 (2) 0.705 (2) 0.726 (2) 0.690 (4) 0.767 (1)
3. SeerNet 0.708 (3) 0.676 (4) 0.698 (6) 0.715 (2) 0.745 (3)
4. UWaterloo 0.685 (4) 0.643 (8) 0.699 (5) 0.693 (3) 0.703 (7)
5. IITP 0.682 (5) 0.649 (7) 0.713 (4) 0.657 (7) 0.709 (5)
6. YZU NLP 0.677 (6) 0.666 (5) 0.677 (8) 0.658 (6) 0.709 (5)
7. YNU-HPCC 0.671 (7) 0.661 (6) 0.697 (7) 0.599 (9) 0.729 (4)
8. TextMining 0.649 (8) 0.604 (10) 0.663 (9) 0.660 (5) 0.668 (10)
9. XRCE 0.638 (9) 0.629 (9) 0.657 (10) 0.594 (10) 0.672 (9)
10. LIPN 0.619 (10) 0.58 (11) 0.639 (11) 0.583 (11) 0.676 (8)
11. DMGroup 0.571 (11) 0.55 (12) 0.576 (12) 0.556 (12) 0.603 (11)
12. Code Wizards 0.527 (12) 0.465 (16) 0.534 (15) 0.532 (14) 0.578 (13)
13. Todai 0.522 (13) 0.470 (15) 0.561 (13) 0.537 (13) 0.520 (16)
14. SGNLP 0.494 (14) 0.486 (14) 0.512 (16) 0.429 (18) 0.550 (14)
15. NUIG 0.494 (14) 0.680 (3) 0.717 (3) 0.625 (8) -0.047 (21)
16. PLN PUCRS 0.483 (16) 0.508 (13) 0.460 (19) 0.425 (19) 0.541 (15)
17. H.Niemtsov 0.468 (17) 0.412 (17) 0.511 (17) 0.437 (17) 0.513 (17)
18. Tecnolengua 0.442 (18) 0.373 (18) 0.488 (18) 0.439 (16) 0.469 (18)
19. GradAscent 0.426 (19) 0.356 (19) 0.543 (14) 0.226 (20) 0.579 (12)
20. SHEF/CNN 0.291 (20) 0.277 (20) 0.109 (20) 0.517 (15) 0.259 (19)
21. deepCybErNet 0.076 (21) 0.176 (21) 0.023 (21) -0.019 (21) 0.124 (20)
Late submission
∗ SiTAKA 0.631 0.626 0.619 0.593 0.685

Table 6: Official Competition Metric: Pearson correlations (r) and ranks (in brackets) obtained by the
systems on the full test sets. The bottom-line competition metric, ‘r avg.’, is the average of Pearson
correlations obtained for each of the four emotions.

Team Name r avg. (rank) r fear (rank) r joy (rank) r sadness (rank) r anger (rank)
1. Prayas 0.571 (1) 0.605 (1) 0.621 (1) 0.500 (2) 0.557 (2)
3. SeerNet 0.547 (2) 0.529 (5) 0.551 (7) 0.551 (1) 0.556 (3)
4. UWaterloo 0.520 (3) 0.499 (9) 0.562 (4) 0.480 (3) 0.538 (4)
6. YZU NLP 0.516 (4) 0.544 (3) 0.552 (5) 0.471 (5) 0.495 (7)
2. IMS 0.514 (5) 0.519 (7) 0.552 (5) 0.415 (7) 0.570 (1)
5. IITP 0.505 (6) 0.525 (6) 0.575 (2) 0.406 (8) 0.513 (6)
7. YNU-HPCC 0.500 (7) 0.530 (4) 0.540 (8) 0.406 (8) 0.526 (5)
8. TextMining 0.486 (8) 0.480 (10) 0.513 (9) 0.472 (4) 0.477 (9)
9. XRCE 0.450 (9) 0.506 (8) 0.507 (10) 0.357 (14) 0.430 (12)
10. LIPN 0.446 (10) 0.435 (12) 0.496 (11) 0.366 (12) 0.489 (8)
11. DMGroup 0.432 (11) 0.456 (11) 0.483 (13) 0.329 (16) 0.462 (10)
15. NUIG 0.390 (12) 0.567 (2) 0.566 (3) 0.426 (6) 0.003 (21)
13. Todai 0.387 (13) 0.350 (15) 0.484 (12) 0.362 (13) 0.351 (17)
12. Code Wizards 0.380 (14) 0.344 (16) 0.422 (16) 0.318 (17) 0.437 (11)
14. SGNLP 0.373 (15) 0.386 (13) 0.390 (17) 0.330 (15) 0.387 (16)
19. GradAscent 0.367 (16) 0.245 (19) 0.457 (14) 0.376 (11) 0.392 (15)
17. H.Niemtsov 0.347 (17) 0.275 (17) 0.441 (15) 0.242 (18) 0.428 (13)
16. PLN PUCRS 0.313 (18) 0.361 (14) 0.315 (18) 0.155 (19) 0.424 (14)
20. SHEF/CNN 0.220 (19) 0.188 (21) 0.095 (20) 0.396 (10) 0.202 (20)
18. Tecnolengua 0.209 (20) 0.247 (18) 0.224 (19) 0.061 (20) 0.305 (18)
21. deepCybErNet 0.140 (21) 0.190 (20) 0.077 (21) 0.057 (21) 0.235 (19)
Late submission
∗ SiTAKA 0.484 0.496 0.46 0.465 0.513

Table 7: Pearson correlations (r) and ranks (in brackets) obtained by the systems on a subset of the test
set where gold scores ≥ 0.5
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Team
Features 1 2 3 4 5 6 7 8 9 ∗ 10 11 12 13 14 15 16 17 18 19 20 21
N-grams X X

CN X
WN X X X

Word Embeddings X X X X X X X X X X X X X X
Glove X X X X X X X X X X
Emoji Vectors X X
Word2Vec X X X X
Other X X X

Sentence Embeddings
CNN X X X X X X X X X
LSTM X X X X X X X X X
Other X X X X

Affective Lexicons X X X X X X X X X X X X
AFINN X X X X X
ANEW X
BingLiu X X X X X X
Happy Ratings X
Lingmotif X
LIWC X
MPQA X X X X X
NRC-Aff-Int X X X X
NRC-EmoLex X X X X X X X
NRC-Emoticon-Lex X X X X X
NRC-Hash-Emo X X X X X X X
NRC-Hash-Sent X X X X X
NRC-Hashtag-Sent. X X X
NRC10E X X X X
Sentiment140 X X X X X
SentiStrength X X X
SentiWordNet X X X X X X
Vader X
Word.Affect X
In-house lexicon X X X

Linguistic Features X
Dependency Parser X

Table 8: Feature types (resources) used by the participating systems. Teams are indicated by their rank.

Team
Regression 1 2 3 4 5 6 7 8 9 ∗ 10 11 12 13 14 15 16 17 18 19 20 21
AdaBoost X
Gradient Boosting X X X
Linear Regression X
Logistic Regression X X
Neural Network X X X X X X X X X X X
Random Forest X X X
SVM or SVR X X X X X X X X
Ensemble X X X X X

Table 9: Regression methods used by the participating systems. Teams are indicated by their rank.

Team
Tools 1 2 3 4 5 6 7 8 9 ∗ 10 11 12 13 14 15 16 17 18 19 20 21
AffectiveTweets-Weka X X X X X
Gensim X X
Glove X X X X X
Keras X X X X X X X X X X X
LIBSVM X
NLTK X X
Pandas X X X
PyTorch X
Sci-kit learn X X X X X X X
TensorFlow X X X X X X
Theano X X X
TweetNLP X
TweeboParser X
Tweetokenize X
Word2Vec X X X X
XGBoost X X

Table 10: Tools and libraries used by the participating systems. Teams are indicated by their rank.
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6.3 Prayas: Rank 1

The best performing system, Prayas, used an en-
semble of three different models: The first is a
feed-forward neural network whose input vector is
formed by concatenating the average word embed-
ding vector with the lexicon features vector pro-
vided by the AffectiveTweets package (Moham-
mad and Bravo-Marquez, 2017). These embed-
dings were trained on a collection of 400 million
tweets (Godin et al., 2015). The network has four
hidden layers and uses rectified linear units as ac-
tivation functions. Dropout is used a regulariza-
tion mechanisms and the output layer consists of
a sigmoid neuron. The second model treats the
problem as a multi-task learning problem with the
labeling of the four emotion intensities as the four
sub-tasks. Authors use the same neural network
architecture as in the first model, but the weights
of the first two network layers are shared across
the four subtasks. The weights of the last two lay-
ers are independently optimized for each subtask.
In the third model, the word embeddings of the
words in a tweet are concatenated and fed into
a deep learning architecture formed by LSTM,
CNN, max pooling, fully connected layers. Sev-
eral architectures based on these layers are ex-
plored. The final predictions are made by com-
bining the first two models with three variations
of the third model into an ensemble. A weighted
average of the individual predictions is calculated
using cross-validated performances as the relative
weights. Experimental results show that the en-
semble improves the performance of each individ-
ual model by at least two percentage points.

6.4 IMS: Rank 2

IMS applies a random forest regression model to a
representation formed by concatenating three vec-
tors: 1. a feature vector drawn from existing af-
fect lexicons, 2. a feature vector drawn from ex-
panded affect lexicons, and 3. the output of a
neural network. The first vector is obtained using
the lexicons implemented in the AffectiveTweets
package. The second is based on an extended
lexicons built from feed-forward neural networks
trained on word embeddings. The gold training
words are taken from existing affective norms and
emotion lexicons: NRC Hashtag Emotion Lex-
icon (Mohammad, 2012b; Mohammad and Kir-
itchenko, 2015), affective norms from Warriner
et al. (2013), Brysbaert et al. (2014), and ratings

for happiness from Dodds et al. (2011). The third
vector is taken from the output of neural network
that combines CNN and LSTM layers.

6.5 SeerNet: Rank 3

SeerNet creates an ensemble of various regres-
sion algorithms (e.g, SVR, AdaBoost, random for-
est, gradient boosting). Each regression model
is trained on a representation formed by the af-
fect lexicon features (including those provided by
AffectiveTweets) and word embeddings. Authors
also experiment with different word embeddings
models: Glove, Word2Vec, and Emoji embed-
dings (Eisner et al., 2016).

7 Conclusions

We conducted the first shared task on detecting
the intensity of emotion felt by the speaker of a
tweet. We created the emotion intensity dataset
using best–worst scaling and crowdsourcing. We
created a benchmark regression system and con-
ducted experiments to show that affect lexicons,
especially those with fine word–emotion associa-
tion scores, are useful in determining emotion in-
tensity.

Twenty-two teams participated in the shared
task, with the best system obtaining a Pearson cor-
relation of 0.747 with the gold annotations on the
test set. As in many other machine learning com-
petitions, the top ranking systems used ensem-
bles of multiple models (Prayas-rank1, SeerNet-
rank3). IMS, which ranked second, used random
forests, which are ensembles of multiple decision
trees. The top eight systems also made use of a
substantially larger number of affect lexicons to
generate features than systems that did not per-
form as well. It is interesting to note that despite
using deep learning techniques, training data, and
large amounts of unlabeled data, the best systems
are finding it beneficial to include features drawn
from affect lexicons.

We have begun work on creating emotion inten-
sity datasets for other emotion categories beyond
anger, fear, sadness, and joy. We are also creating
a dataset annotated for valence, arousal, and domi-
nance. These annotations will be done for English,
Spanish, and Arabic tweets. The datasets will be
used in the upcoming SemEval-2018 Task #1: Af-
fect in Tweets (Mohammad et al., 2018).25

25http://alt.qcri.org/semeval2018/
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8 Appendix

8.1 Best–Worst Scaling Questionnaire used
to Obtain Emotion Intensity Scores

The BWS questionnaire used for obtaining fear
annotations is shown below.

Degree Of Fear In English Language Tweets
The scale of fear can range from not fearful at all
(zero amount of fear) to extremely fearful. One
can often infer the degree of fear felt or expressed
by a person from what they say. The goal of this
task is to determine this degree of fear. Since it is
hard to give a numerical score indicating the de-
gree of fear, we will give you four different tweets
and ask you to indicate to us:

• Which of the four speakers is likely to be the
MOST fearful, and

• Which of the four speakers is likely to be the
LEAST fearful.

Important Notes

• This task is about fear levels of the speaker (and
not about the fear of someone else mentioned
or spoken to).

• If the answer could be either one of two or
more speakers (i.e., they are likely to be equally
fearful), then select any one of them as the
answer.

• Most importantly, try not to over-think the
answer. Let your instinct guide you.

EXAMPLE

Speaker 1: Don’t post my picture on FB #grrr
Speaker 2: If the teachers are this incompetent, I
am afraid what the results will be.
Speaker 3: Results of medical test today #terrified
Speaker 4: Having to speak in front of so many
people is making me nervous.

Q1. Which of the four speakers is likely to be the
MOST fearful?
– Multiple choice options: Speaker 1, 2, 3, 4 –
Ans: Speaker 3

Q2. Which of the four speakers is likely to be the
LEAST fearful?
– Multiple choice options: Speaker 1, 2, 3, 4 –
Ans: Speaker 1

The questionnaires for other emotions are similar
in structure. In a post-annotation survey, the re-
spondents gave the task high scores for clarity of
instruction (4.2/5) despite noting that the task it-
self requires some non-trivial amount of thought
(3.5 out of 5 on ease of task).

8.2 An Interactive Visualization to Explore
the Tweet Emotion Intensity Dataset

We created an interactive visualization to allow
ease of exploration of the Tweet Emotion Intensity
Dataset. This visualization was made public after
the the official evaluation period had concluded –
so participants in the shared task did not have ac-
cess to it when building their system. It is worth
noting that if one intends to evaluate their emotion
intensity detection system on the Tweet Emotion
Intensity Dataset, then as a matter of commonly-
followed best practices, they should not use the vi-
sualization to explore the test data in the system
development phase (until all the system parame-
ters are frozen).

The visualization has three main components:

1. Tables showing the percentage of instances in
each of the emotion partitions (train, dev, test).
Hovering over a row shows the corresponding
number of instances. Clicking on an emotion
filters out data from all other emotions, in all
visualization components. Similarly, one can
click on just the train, dev, or test partitions to
view information just for that data. Clicking
again deselects the item.

2. A histogram of emotion intensity scores. A
slider that one can use to view only those
tweets within a certain score range.

3. The list of tweets, emotion label, and emotion
intensity scores.

Notably, the three components are interconnected,
such that clicking on an item in one component
will filter information in all other components to
show only the relevant details. For example, click-
ing on ‘joy’ in ‘a’ will cause ‘b’ to show the his-
togram for only the joy tweets, and ‘c’ to show
only the ‘joy’ tweets. Similarly one can click on
the test/dev/train set, a particular band of emotion
intensity scores, or a particular tweet. Clicking
again deselects the item. One can use filters in
combination. For e.g., clicking on fear, test data,
and setting the slider for the 0.5 to 1 range, shows
information for only those fear–testdata instances
with scores ≥ 0.5.
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Figure 1: Screenshot of the interactive visualization to explore the Tweet Emotion Intensity Dataset.
Available at: http://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html

8.3 AffectiveTweets Weka Package:
Implementation Details

AffectiveTweets includes five filters for convert-
ing tweets into feature vectors that can be fed
into the large collection of machine learning al-
gorithms implemented within Weka. The package
is installed using the WekaPackageManager and
can be used from the Weka GUI or the command
line interface. It uses the TweetNLP library (Gim-
pel et al., 2011) for tokenization and POS tagging.
The filters are described as follows.

• TweetToSparseFeatureVector filter: calculates
the following sparse features: word n-grams
(adding a NEG prefix to words occurring in
negated contexts), character n-grams (CN), POS
tags, and Brown word clusters.26

• TweetToLexiconFeatureVector filter: calculates
features from a fixed list of affective lexicons.
26The scope of negation was determined by a simple

heuristic: from the occurrence of a negator word up until a
punctuation mark or end of sentence. We used a list of 28
negator words such as no, not, won’t and never.

• TweetToInputLexiconFeatureVector: calculates
features from any lexicon. The input lexicon
can have multiple numeric or nominal word–
affect associations. This filter allows users to
experiment with their own lexicons.

• TweetToSentiStrengthFeatureVector filter: cal-
culates positive and negative sentiment intensi-
ties for a tweet using the SentiStrength lexicon-
based method (Thelwall et al., 2012)

• TweetToEmbeddingsFeatureVector filter: calcu-
lates a tweet-level feature representation us-
ing pre-trained word embeddings supporting
the following aggregation schemes: average of
word embeddings; addition of word embed-
dings; and concatenation of the first k word em-
beddings in the tweet. The package also pro-
vides Word2Vec’s pre-trained word.27

Once the feature vectors are created, one can use
any of the Weka regression or classification algo-
rithms. Additional filters are under development.

27https://code.google.com/archive/p/word2vec/
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