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Abstract

In this paper we consider the insights
that can be gained by considering large
scale argument networks and the com-
plex interactions between their constituent
propositions. We investigate metrics for
analysing properties of these networks, il-
lustrating these using a corpus of argu-
ments taken from the 2016 US Presidential
Debates. We present techniques for deter-
mining these features directly from natu-
ral language text and show that there is a
strong correlation between these automat-
ically identified features and the argumen-
tative structure contained within the text.
Finally, we combine these metrics with ar-
gument mining techniques and show how
the identification of argumentative rela-
tions can be improved by considering the
larger context in which they occur.

1 Introduction

Argument and debate form cornerstones of civi-
lized society and of intellectual life. Processes
of argumentation elect and run our governments,
structure scientific endeavour and frame religious
belief. Understanding the nature and structure of
these argumentative processes has broad ranging
applications including: supporting legal decision
making (Palau and Moens, 2009); analysing prod-
uct reviews to determine not just what opinions are
being expressed, but why people hold those opin-
ions (Wyner et al., 2012); opening up the com-
plex debates in parliamentary records to a wider
audience (Hirst and Feng, 2015); and providing
in-depth, yet easily digestable, summaries of com-
plex issues (Lawrence et al., 2016).

Argument Mining! is the automatic identifi-

!Sometimes also referred to as argumentation mining
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cation of the argumentative structure contained
within a piece of natural language text. By auto-
matically identifying this structure and its associ-
ated premises and conclusions, we are able to tell
not just what views are being expressed, but also
why those particular views are held.

In this paper, we consider the insights that can
be gained by considering large scale argument net-
works as a whole. We present two metrics, Cen-
trality and Divisiveness which can be viewed as
how important an issue is to the argument as a
whole (how many other issues are connected to it),
and how much an issue splits opinion ( how many
others issues are in conflict with it and the amount
of support which the two sides have).

We first show how these metrics can be calcu-
lated from an annotated argument structure and
then showing how they can be automatically ap-
proximated from the original text. We use this au-
tomatic approximation, reversing the original cal-
culation, to determine the argumentative structure
of un-annotated text. Finally, we combine this ap-
proach with existing argument mining techniques
and show how the identification of properties of
argumentative relations can be improved by con-
sidering the larger context in which these relations
occur.

2 Related Work

Despite the rich heritage of philosophical research
in argumentation theory (van Eemeren et al., 2014;
Chesiievar et al., 2006), the majority of argument
mining techniques explored to date have focused
on identifying specific facets of the argumentative
structure rather than considering the complex net-
work of interactions which occur in real-life de-
bate. For example, existing approaches have con-
sidered, classifying sentences as argumentative or
non-argumentative (Moens et al., 2007), classify-
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ing text spans as premises or conclusions (Palau
and Moens, 2009), classifying the relations be-
tween specific sets of premises and their conclu-
sion (Feng and Hirst, 2011), or classifying the dif-
ferent types of premise that can support a given
conclusion (Park and Cardie, 2014).

The approach which we present in this pa-
per considers large scale argument networks as a
whole, looking at properties of argumentative text
spans that are related to their role in the entire ar-
gumentative structure. In our automatic determi-
nation of Centrality and Divisiveness, we first con-
struct a graph of semantic similarity between text
spans and then use the Textrank algorithm (Mi-
halcea and Tarau, 2004) to determine those which
are most central. For Divisiveness, we then look
at the sentiment polarity of each text span com-
pared to the rest of the corpus to measure how
many others are in conflict with it and the amount
of support which the two sides have. TextRank
has been successfully applied to many natural lan-
guage processing applications, including identify-
ing those parts of a text which are argumentative
(as opposed to those which are not) (Petasis and
Karkaletsis, 2016).

Similarly, Wachsmuth et al. (2017) propose a
model for determining the relevance of arguments
using PageRank (Brin and Page, 1998). In this
approch, the relevance of an argument’s conclu-
sion is decided by what other arguments reuse it
as a premise. These results are compared to an
argument relevance benchmark dataset, manually
annotated by seven experts. On this dataset, the
PageRank scores are found to beat several intuitive
baselines and correlate with human judgments of
relevance.

Lawrence and Reed (2015) used semantic simi-
larity to determine argumentative connections be-
tween text spans. The intuition being that if a
proposition is similar to its predecessor then there
exists some argumentative link between them,
whereas if there is low similarity between a propo-
sition and its predecessor, the author is going back
to address a previously made point or starting a
new topic. Using this method a precision of 0.72,
and recall of 0.77 are recorded when comparing
the resulting connections to a manual analysis,
however it should be noted that what is being iden-
tified here is merely that an inference relationship
exists between two propositions, and no indication
is given as to the direction of this inference.
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3 Data: The US 2016 Presidential Debate
Corpus

The data which we use is taken from transcripts
of the 2016 US presidential debates, along with a
sampling of the online reaction to these debates.
Specifically, the corpus consists of Argument In-
terchange Format (AIF) (Chesiievar et al., 2006)
analyses of the first general presidential head-to-
head debate between Donald Trump and Hillary
Clinton along with corresponding comments from
threads on Reddit (reddit.com) dedicated to
the debates as they were happening?.

3.1 The Argument Interchange Format

The Argument Interchange Format is a popular
standard for representing argument structures as
graphs, founded upon philosophical research in ar-
gumentation theory (van Eemeren et al., 2014),
implemented as a Semantic Web ontology, and
recently extended to handle dialogical interaction
(Reed et al., 2010). The AIF distinguishes in-
formation, I-nodes, from the schematic ways in
which they are related, S-nodes. I-nodes repre-
sent propositional information contained in an ar-
gument, such as a conclusion, premise etc. A
subset of I-nodes refers to propositional reports
specifically about discourse events: these are L-
nodes (locutions). S-nodes capture the applica-
tion of schemes of three categories: argumenta-
tive, illocutionary and dialogical. Amongst argu-
mentative patterns there are inferences or reason-
ing (RA-nodes), conflict (CA-nodes) and rephrase
(MA-nodes). Dialogical transitions (TA-nodes)
are schemes of interaction or protocol of a given
dialogue game which determine possible relations
between locutions. Illocutionary schemes (YA-
nodes) are patterns of communicative intentions
which speakers use to introduce propositional con-
tents. These node types are summarised in Table 1.

3.2 Annotation

Analysis was performed using the OVA+ (Online
Visualisation of Argument) analysis tool (Janier
et al., 2014) to create a series of argument maps
covering the entire televised debate along with
online reaction consisting of sub-threads selected
from the Reddit ‘megathreads’ created during the
debate. Annotators were instructed to select sub-

>The full annotated corpus along with the original

text is available at http://corpora.aifdb.org/
Us2016G1



[ Node | Component | Category [ Node | Component ]
. I-node but | contents of
Information .
I-node .o not L-node | locutions
(propositional Inod Tocuti
contents) -node ocutions
Aroument RA inference
Schemes sc};gemes CA conflict
S-node (relations ; ; MA rephrase
between Illocutionary schemes | YA illocutionary connections
contents) Dialogue schemes TA transitions

Table 1: Types and sub-types of nodes in the AIF standard and components of analysed argument data,

and the categories of schemes.

threads based on three criteria (a) sub-threads must
not be shorter than five turns; (b) sub-threads con-
taining only jokes and wordplays are excluded;
(c) technical and non-related threads are excluded.
Details of the resulting corpora can be seen in Ta-
ble 2 and a fragment of the analysed structure can
be seen in Figure 1. The total number of RA and
CA nodes is greater than the sum of these val-
ues for the TV and reddit corpora, this is due to
additional connections linking these two corpora
which appear in the combined corpus, but not in
the individual copora. These connections mean
that the total corpus forms a coherent whole where
topics discussed in the televised debate are linked
argumentatively to points made in the online dis-
cussion.

3.3 Inter-Annotator Agreement

Two analysts (A1, A2) completed analysis of tele-
vised debate; and a further two analysts (A3 and
A4) worked on the reddit reaction. A subset of
the dataset (approximately 10%) was randomly se-
lected for duplicate annotation by two analysts and
these sets were then used to calculate pairwise
inter-annotator agreement. Measures of agree-
ment were calculated using Cohen’s kappa « (Co-
hen, 1960) (x = 0.55) and the Combined Ar-
gument Similarity Score version of x, CASS-x
(Duthie et al., 2016), which refines Cohen’s
to avoid over-penalizing for segmentation differ-
ences (CASS-x = 0.71)3. In the former case, Co-
hen’s k is difficult to apply directly, because it as-
sumes that the items being categorized are fixed —
in this case, the items being categorized are seg-
ments, whereas analysts may differ on segmenta-
tion boundaries.

3The most usual interpretation of x scores is proposed in
(Landis and Koch, 1977) which suggest that 0.4 — 0.6 rep-
resents “good agreement”; 0.61 — 0.8 represents “substantial

agreement” and 0.81 — 1.0 represents “almost perfect agree-
ment”

4 Large Scale Argument Graph
Properties

The argument graphs described in the previous
section allow us to look at the structure of the de-
bate as a whole rather than focusing on the prop-
erties of individual relations between propositions.
In this section we look at two measures, Centrality
and Divisiveness, that individual propositions (I-
nodes) exhibit which can only be interpreted when
considering the broader context in which they oc-
cur.

Whilst there are certainly other measures that
could be applied to an argument graph highlight-
ing interesting features of the arguments being
made, we have selected these two metrics as they
can both be calculated as properties of the argu-
ment graph and approximations can be determined
directly from the original text. In Section 5, we de-
scribe methods to determine these approximations
directly from the original text. By first calculat-
ing them directly we can then reverse the process
of determining them from the argumentative struc-
ture, cutting the manual analysis out of the loop
and allowing us to determine the argumentative
structure directly. In Section 6, we look at how this
approach can be used to improve the accuracy of
extracting the full argumentative structure directly
from un-annotated text.

4.1 Centrality

Central issues are those that play a particularly im-
portant role in the argumentative structure. For
example, in Figure 1, we can see that the node
“CLINTON knows how to really work to get new
jobs...” is intuitively more central to the dialogue,
being the point which all of the others are respond-
ing to, than the node “CLINTON’s husband signed
NAFTA..”.

In order to calculate centrality scores for each
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Words I-nodes RA-nodes CA-nodes
Televised Debate 17,190 1,473 505 79
Reddit Reaction 12,694 1,279 377 242
Total (US2016G1 Corpus) 29,884 2,752 901 347

Table 2: US 2016 General Presidential Debate Corpora statistics, listing word counts, propositions (I-
nodes), supporting arguments (RAs) and conflicts (CAs).

I-node, we adapt eigenvector centrality (used in
the Google Pagerank algorithm (Brin and Page,
1998)). This measure is closer to intuitions about
claim centrality in arguments than alternative mea-
sures such as the Estrada index (Estrada, 2000) de-
spite the latter’s wide applicability. We have not
found the Estrada index an informative measure
for debate structure.

First, we consider the complete AIF struc-
ture as a directed graph, G (V,E), in
which vertices (V') are either propositions, locu-
tions or relations between propositions; and those
relations are either support, conflict, rephrase,
illocution or transition, captured by a func-
tion R which maps V' +— {prop,loc, support,
conflict,rephrase,illocution,transition} and
edges exist betweenthem £ C V x V.

From this we build the subgraph corresponding
only to vertices connected by support or conflict
relationships, which we call G; = (V}, E}), where
Vi={v eV : R(V) e {support,conflict}}
and Vv, € V, if (v;,0v) € E, then, (v,v') €
Ejandif (v/,v;) € E, then, (v',v;) € E;. We can
then define eigencentrality over GG; as in Equation
1, where ) is a constant representing the greatest
eigenvalue for which a non-zero eigenvector solu-
tion exists.

1
Central(v) =gey 1 Z Central(v')
v'eV;
s.t. (v,v’)ZEEl
(D

This results in a centrality score for each propo-
sition, from which we can rank the propositions
by how central they are to the debate. The top four
ranked central propositions are listed below:

e CLINTON could encourage them by giving
them tax incentives, for example

o there is/is not any way that the president can
force profit sharing

e CLINTON also wants to see more companies
do profit-sharing
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o CLINTON is hinting at tax incentives

It is encouraging that these issues all concern
the economy, which Pew Research identified as
the single most important issue to voters (with
84% of voters ranking it as “very important”) in
the 2016 US presidential elections®.

4.2 Divisiveness

Divisive issues are those that split opinion and
which have points both supporting and attacking
them (Konat et al., 2016). Looking again at Fig-
ure 1, we can see that the node “CLINTON knows
how to really work to get new jobs..” is not
only central, but also divisive, with both incom-
ing support and conflict. At the opposite end of the
scale, the node “CLINTON has been a secretary of
state”, is not divisive; such factual statements are
unlikely to be disputed by anyone on either side of
the debate.

The Divisiveness of an issue measures how
many others are in conflict with it and the amount
of support which the two sides have. By this mea-
sure, every proposition v which is in conflict with
v (i.e. for which there is an edge either outgo-
ing from v through a conflict v, to vg, or in the
other direction, or both) is assessed for its support
in comparison to that for v and the sum over all
such vy yields an overall measure of Divisiveness
as shown in Equation 2, in which |v|{% ) refers to
the in order of vertex v where constraint R(v) is
met.

Again we list the top four ranked divisive is-
sues below, and it is certainly easy to see how
such statements on the character of the candidates,
the validity of their claims and controversial issues
such as gun control could easily divide those com-
menting on the debate:

e TRUMP settled that lawsuit with no admis-
sion of guilt

o [ still support hand guns though

*http://www.people-press.orqg/2016/07/
07/4-top-voting—issues—-in-2016-election/



CLINTON has been a senator

of

Default Inference

when CLINTOM was secretary of .

CLINTON has been a secretary

state

CLINTON's husband signed
NAFTA, which was one of the
worst things that ever
happened to the manufacturing
industry

<~ Default Conflict

CLINTON has done a lot

~— Default Conflict

state, we actually increased
American exports globally 30

we increased them to China 50
percent

CLINTON hasn't work to get
new jobs in 30 years or 26

percent

Default Inference

= -

years or any number you want
to

—— Default Conflict

CLINTON knows how to really
work to get new jobs and to
get exports that helped to
create more new jobs

Figure 1: Fragment of Manually Analysed Argumentative Structure from the US 2016 General Presiden-
tial Debate Corpus. The nodes shown in this graph have been filtered to display only the propositional
text spans (I-nodes shown as rectangles) and the support and conflict relations between them (RA and

CA nodes shown as diamonds).

>
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Divisive(v) =qes

’1) Wg(v’):support * | U2 ‘ ;?(v’):support

[(v2,0¢),(ve,0)EE V
(’vac),('Uc,’Uz)eE] A
R(ve)=con flict

people have looked at both of our plans, have
concluded that CLINTON’s would create 10
million jobs and TRUMP’s would lose us 3.5
million jobs

CLINTON didn’t realize coming off as a
snarky teenager isn’t a good look either

5 Automating the Identification of Large
Scale Argument Graph Properties

In this section we investigate techniques to auto-
matically rank text fragments by their centrality
and divisiveness with no prior knowledge of the
argumentative structure contained within the text.
In each case, we take the manually segmented
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propositions from our corpus and apply techniques
to rank these, we then compare the resulting rank-
ings to the ranking determined from the manually
analysed argument structures as described in Sec-
tion 4.

5.1 Automatic Identification of Centrality

In order to calculate centrality automatically, we
first hypothesise that propositions (I-nodes) that
are connected by relations of either support or at-
tack in an AIF graph will have a higher semantic
similarity than those which have no argumentative
connection. We can again see an example of this in
Figure 1, where the node “CLINTON knows how



to really work to get new jobs and to get exports
that...” is connected via support and attack rela-
tions to nodes whose propositional contents are all
related to jobs or exports. The remaining nodes
in this example fragment all discuss more distant
concepts, such as Clinton’s experience.

We consider a range of methods for determin-
ing semantic similarity and in each case use these
as the edge weights in an automatically generated
similarity graph. We can then consider centrality
to be determined by high similarity to the great-
est number of other nodes. As such, we can use
TextRank (Mihalcea and Tarau, 2004) to produce a
centrality ranking directly from the text and com-
pare this to the ranking obtained from the argu-
mentative structure.

The first approach to determining similarity that
we consider is calculated as the number of com-
mon words between the two propositions, based
on the method proposed by Mihalcea and Tarau
(2004) for ranking sentences. Formally, given two
propositions F; and P;, with a proposition being
represented by the set of N; words that appear in
the proposition P; = wi, w%, ey wﬁvi, the similar-
ity of P; and P; is defined as:

__|{1Ukhuk e PNANwyg € f?}|

Whilst this approach is sufficient to determine
similarity in the example discussed above, it is re-
liant on the exact same words appearing in each
proposition. In order to allow for the use of syn-
onyms and related terms in the dialogue, we con-
sider several further measures of semantic similar-
ity.

The first of these approaches uses WordNet
(Miller, 1995) to replace the binary matching of
words in the method above with the distance be-
tween the synsets of each word. This value is in-
versely proportional to the number of nodes along
the shortest path between the synsets. The short-
est possible path occurs when the two synsets are
the same, in which case the length is 1, giving the
same result for exactly matching words.

We also tested two further methods of deter-
mining semantic similarity which have both been
shown to perform robustly when using models
trained on large external corpora (Lau and Bald-
win, 2016).

The first of these approaches uses word2vec
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(Mikolov et al., 2013), an efficient neural ap-
proach to learning high-quality embeddings for
words. Due to the relatively small size of our train-
ing dataset, we used pre-trained skip-gram vectors
trained on part of the Google News dataset®. This
model contains 300-dimensional vectors for 3 mil-
lion words and phrases obtained using a simple
data-driven approach described in Mikolov et al.
(2013).

To determine similarity between propositions,
we located the centroid of the word embeddings
for each by averaging the word2vec vectors for the
individual words in the proposition, and then cal-
culating the cosine similarity between centroids to
represent the proposition similarity.

The final approach which we implemented uses
a doc2vec (Le and Mikolov, 2014) distributed bag
of words (dbow) model to represent every propo-
sition as a vector with 300 dimensions. Again, we
then calculated the cosine similarity between vec-
tors to represent the proposition similarity.

For each of the methods described above, we
applied the ranking algorithm to give an ordered
list of propositions, we then compared the ranking
obtained by each to the centrality ranking calcu-
lated for the manually annotated argument struc-
ture, as described in Section 4, by calculating
the Kendall rank correlation coefficient (Kendall,
1938). The results for each method are shown in
Table 3. In each case the results show a correla-
tion between the rankings (p < 0.05) suggesting
that all of these methods are able to approximate
the centrality of propositions in the argumentative
structure. In Section 6 we explore these results fur-
ther and show that these approximations are in all
cases sufficient to improve the automatic extrac-
tion of the argumentative structure directly from
the original text.

5.2 Automatic Identification of Divisiveness

Whilst divisiveness is a related concept to central-
ity, it is more challenging to determine directly
from the text, as we need to not only locate those
nodes that are most discussed, but also to limit this
to those which are involved in conflict relations.
Here we implement a method of determining
conflict relations using SentiWordNet®, a lexical
resource for opinion mining. SentiWordNet as-
signs a triple of polarity scores to each synset of

Shttps://code.google.com/archive/p/
word2vec/
*http://sentiwordnet.isti.cnr.it/



Similarity Method | Kendall 7
Common words 0.524
WordNet Synsets 0.656
Word2vec 0.618
Doc2vec 0.620

Table 3: The Kendall rank correlation coefficient
(1) for the rankings determined using TextRank
for each method of determining semantic similar-
ity compared to the Centrality ranking obtained
from the manually annotated argument structure.

WordNet, a positivity, negativity and objectivity
score. The sum of these scores is always 1. For
example, the triple (1, 0, 0) (positivity, negativity,
objectivity) is assigned to the synset of the word
“good”.

Each proposition (I-node), is split into words
and each word is stemmed and tagged, and stop
words are removed. If a stemmed word belongs
to one of the word classes “adjective”, “verb” or
“noun”, its polarity scores are looked up in Sen-
tiWordNet. Where a word has multiple synsets,
each of the polarity scores for that word are av-
eraged across all of its synsets. The scores of all
words within a sentence are then summed and di-
vided by the number of words with scores to give
a resulting triple of {positivity, negativity, objec-
tivity } values for each proposition.

Having calculated the polarity triples for each
proposition, we are then able to calculate the dif-
ference in polarity between two propositions, P;
and P; as in equation 4.

We compute these differences in polarity for
each pair of propositions in the corpus and then,
for each of the methods of determining similar-
ity discussed in the previous Subsection, multiply
the similarity scores by the polarity difference to
obtain a value representing the likelihood of con-
flict between the two. Finally for each proposition,
we mirror the method of computing divisiveness
from the argument graph. To do this, we look at
each proposition, and take the sum of the central-
ity scores multiplied by the conflict value for each
other proposition.

Following this approach for each method of
determining similarity again gives us a ranking
which we can then compare to the divisiveness
ranking calculated for the manually annotated ar-
gument structure, as described in Section 4. For
each approach, we again calculate the Kendall
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rank correlation coefficient. These results are
shown in Table 4. We can see from these results
that whilst there is still a positive correlation be-
tween the rankings, these are substantially less sig-
nificant than those obtained for the centrality rank-
ings. In the next Section we investigate whether
these values are sufficient to have a positive im-
pact on the argument mining task.

Similarity Method | Kendall 7
Common words 0.197
WordNet Synsets 0.284
Word2vec 0.167
Doc2vec 0.133

Table 4: The Kendall rank correlation coefficient
(7) for the Divisiveness rankings for each method
of determining semantic similarity compared to
the Divisiveness ranking obtained from the man-
ually annotated argument structure.

6 Validation: Applying Automatically
Identified Centrality and Divisiveness
Scores to Argument Mining

Our final step is to validate both our concepts of
centrality and divisiveness as calculated from an-
notated argument structures and our methods of
calculating these same metrics directly from unan-
notated text. To do this, we adapt the “Topical
Similarity” argument mining technique presented
in (Lawrence et al., 2014), where it is assumed
firstly that the argument structure to be determined
can be represented as a tree, and secondly, that
this tree is generated depth first. That is, the con-
clusion is given first and then a line of reason-
ing is followed supporting this conclusion. Once
that line of reasoning is exhausted, the argument
moves back up the tree to support one of the pre-
viously made points. If the current point is not
related to any of those made previously, then it is
assumed to be disconnected and possibly the start
of a new topic.

Based on these assumptions the argumentative
structure is determined by looking at how similar
each proposition is to its predecessor. If they are
sufficiently similar, it is assumed that they are con-
nected and that the line of reasoning is being fol-
lowed. If they are not sufficiently similar, then it
is first considered whether we are moving back up
the tree, and the current proposition is compared to



_ |positivity(P;) — positivity(P;)| + |negativity(P;) — negativity(P;)|

Polarity(F;, Pj)

all of those statements made previously and con-
nected to the most similar previous point. Finally,
if the current point is not related to any of those
made previously, then it is assumed to be discon-
nected from the existing structure. This process is
illustrated in Figure 2.

Lawrence et al. perform these comparisons
using a Latent Dirichlet Allocation (LDA) topic
model. In our case, however, the argument struc-
tures we are working with are from much shorter
pieces of text and as such generating LDA topic
models from them is not feasible. To achieve the
same task, we use the same semantic similarity
measures described in Section 5. As in (Lawrence
et al., 2014), the threshold required for two propo-
sitions to be considered sufficiently similar can be
adjusted, altering the output structure, with a lower
threshold giving more direct connections and a
higher threshold greater branching and more un-
connected components.

We first carried out this process for each method
of computing semantic similarity using the same
methodology as Lawrence et al. We then adapted
Step 2 from Figure 2 by considering all of the
previous propositions as potential candidate struc-
tures and, having produced these candidate struc-
tures calculated the Centrality and Divisiveness
rankings for each structure as described in Sec-
tion 4. Finally we computed the Kendall rank cor-
relation coefficient comparing the centrality rank-
ing of each candidate structure to the ranking com-
puted only using similarity (as described in Sec-
tion 5) and selected the structure which maximised
the rank correlation.

Table 5 shows the precision, recall and F1-
scores for automatically determining connections
in the argumentative structure using each semantic
similarity measure combined with maximising the
rank correlations for centrality and divisiveness.
We can see from these results that maximising di-
visiveness results in small increases in accuracy,
and in all cases maximising centrality results in in-
creased accuracy in determining connections, with
increases of 0.03-0.05 in Fl-score demonstrated
for all the methods considered.

115

5 “)

7 Conclusion

In this paper we have presented two metrics, Cen-
trality and Divisiveness, for describing the nature
of propositions and their context within a large
scale argumentative structure. We have shown
how these metrics can be calculated from anno-
tated argument structures and produced reliable
estimations of these metrics that can be extracted
directly from un-annotated text, with strong posi-
tive correlations between both rankings.

Finally, we have shown how these metrics can
be used to improve the accuracy of existing argu-
ment mining techniques. By broadening the fo-
cus of argument mining from specific facets, such
as classifying as premise or conclusion, to look at
features of the argumentative structure as a whole,
we have presented an approach which can im-
prove argument mining results either as a feature
of existing techniques or as a part of a more ro-
bust ensemble technique such as that presented in
(Lawrence and Reed, 2015).

Similarity Method | p r F1

Common words 0.66 0.51 0.58
+ Max Centrality 0.68 0.55 0.61
+ Max Divisiveness | 0.67 0.51 0.58
WordNet Synsets 0.75 0.63 0.68
+ Max Centrality 0.81 0.64 0.72
+ Max Divisiveness | 0.77 0.63 0.69
Word2vec 072 0.74 0.73
+ Max Centrality 0.78 0.78 0.78
+ Max Divisiveness | 0.72 0.77 0.74
Doc2vec 0.67 0.66 0.66
+ Max Centrality 0.73 0.70 0.71
+ Max Divisiveness | 0.69 0.67 0.68

Table 5: Precision, recall and F1-scores for au-
tomatically determining connections in the argu-
mentative structure using each semantic similarity
measure combined with Centrality and Divisive-
ness.
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Step 1: The similarity of a new
proposition to its immediate
predecessor is calculated. If the
new proposition is sufficiently
similar, this is viewed as a
continuation of the previous line of
reasoning and the two are
connected.

Step 2: If the new proposition is
not sufficiently similar to its
immediate predecessor, the
similarity to all previous
propositions is calculated. The
most similar previous proposition is
then selected and, if it is
sufficiently similar to the new
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Step 3: If the new proposition is
not sufficiently similar to any of the
previous propositions, it is viewed
as the start of a new line of
reasoning, disconnected to the
existing argument structure.

proposition, a connection is made.

Figure 2: The steps involved in determining how the argument structure is connected using the “Topical
Similarity” argument mining technique presented in (Lawrence et al., 2014).
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