
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 457–467
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics

A Large Scale Quantitative Exploration of
Modeling Strategies for Content Scoring

Nitin Madnani Anastassia Loukina Aoife Cahill

Educational Testing Service
Princeton, NJ, 08541 USA

{nmadnani,aloukina,acahill}@ets.org

Abstract

We explore various supervised learning
strategies for automated scoring of content
knowledge for a large corpus of 130 dif-
ferent content-based questions spanning
four subject areas (Science, Math, English
Language Arts, and Social Studies) and
containing over 230,000 responses scored
by human raters. Based on our analy-
ses, we provide specific recommendations
for content scoring. These are based on
patterns observed across multiple ques-
tions and assessments and are, therefore,
likely to generalize to other scenarios and
prove useful to the community as auto-
mated content scoring becomes more pop-
ular in schools and classrooms.

1 Introduction

Automatic scoring of free-text content-based
questions is a challenging task. Although it may
appear similar to the task of automatically scoring
student responses for writing quality (Page, 1966;
Landauer et al., 2003; Attali and Burstein, 2006),
it has important differences. Scoring for content
deals with responses to open-ended questions de-
signed to test primarily what the student knows,
has learned, or can do in a specific subject area
such as Computer Science, Math, Biology, or Mu-
sic with fluency being secondary. It is not impor-
tant if the student makes some spelling mistakes
or grammatical errors as long as the desired spe-
cific information (e.g., scientific principles, trends
in a graph, or details from a reading passage) is
included in the response.

Assessing the content of student responses re-
quires a different set of features that pay atten-
tion to whether students are using the right con-
cepts, the right relationships between those con-

cepts, and whether they are providing the right
amount of detail. In addition, scoring for content
generally requires building separate scoring mod-
els for each question since each question usually
focuses on a specific set of concepts within a spe-
cific subject area. However, automated scoring for
writing quality can utilize “generic” scoring mod-
els that can be used to assess student responses in-
dependent of the question to which they were writ-
ten since the aspects of writing being measured are
topic-independent (Attali and Burstein, 2006).

In this paper, we focus on a content scoring
approach that learns a scoring model by extract-
ing a large number of sparse, binary features from
human-scored responses to a given question. The
model can then predict scores for previously un-
seen responses to the question. There are many
decisions that one needs to make for such an ap-
proach: what machine learning algorithm is likely
to give the best performance? Is it better to
use regression or classification? Is it worth al-
locating additional data and time for tuning the
hyper-parameters of the learning algorithm? For
many practical applications, the amount of human-
scored data available may not even be sufficient
for model training and evaluation let alone for
these types of meta-analyses.

We conduct analyses on a large corpus of real
student responses to identify patterns that are con-
sistent across multiple questions and contexts and
are, therefore, likely to generalize to other sce-
narios. Our corpus contains 130 different ques-
tions spanning four different subject areas and
more than 230,000 human-scored responses. To
our knowledge, this is the largest collection of re-
sponses ever used in a study on automated content
scoring. The large number of questions allows us
to test many of our hypotheses in a rigorous man-
ner and convert the answers into specific recom-
mendations for the community that we hope will
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be useful in guiding further development of super-
vised content scoring models.

2 Related Work

Content scoring is sometimes also referred to in
the literature as “short-answer” scoring. Although
it is true that many content-based questions tend
to be very specific and elicit responses that are rel-
atively short, this is not always the case. Previ-
ously published studies have considered responses
that span a range of lengths — from a few words
(Basu et al., 2013) to a few dozen words (Madnani
et al., 2013; Horbach et al., 2013) to a few hundred
words (Madnani et al., 2016). Given that the pri-
mary facet of interest is the content of the response
and not its length, we refer to the task as “content
scoring” in the rest of the paper.

Content scoring approaches fall into two gen-
eral categories: (a) reference-based where re-
sponses are scored on the basis of their simi-
larity to reference answers provided by the au-
thors of the question or selected from exist-
ing high-scoring responses (Alfonseca and Pérez,
2004; Nielsen et al., 2008; Meurers et al., 2011;
Sukkarieh et al., 2011; Horbach et al., 2013;
Pado and Kiefer, 2015). These studies gener-
ally use a small number of continuous-valued fea-
tures, often with a single model trained for mul-
tiple questions. (b) response-based which use a
large number of detailed features extracted from
the student responses themselves (e.g., word n-
grams, etc.) and human scores assigned to the
responses to learn a supervised machine-learning
model (Mohler et al., 2011; Dzikovska et al., 2013;
Ramachandran et al., 2015; Zesch et al., 2015; Zhu
et al., 2016). Response-based approaches gen-
erally require training a separate model for each
question.

The choice of whether the reference-based ap-
proach is better than the response-based approach
depends on the open-ended nature of the ques-
tion and whether there is a sufficient number
of human-scored responses available. Sakaguchi
et al. (2015) — who explored the combination of
the two approaches — observed that if sufficient
human-scored data is available, response-based
approaches often work better than reference-based
approaches. Since several of the questions in our
dataset are relatively open-ended and we have suf-
ficient scored data available for all of them, we fo-
cus on the response-based approach in this paper.

Our study is different from the work we have
discussed so far in that its goal is not simply to
obtain the best performance for a given question
or a set of questions. Instead, we focus on meta-
analyses of scoring performance as a function of
modeling strategies and data set characteristics.
Some previous studies have considered the choice
of learner in automated scoring for writing qual-
ity. Chen and He (2013) compared support vec-
tor classification, regression, and ranking for au-
tomatically scoring writing quality using a sin-
gle dataset. Chen et al. (2016) reported that us-
ing support vector regression with a radial kernel
produced better performance than a simple linear
model. In addition, several studies (Feng et al.,
2003; Haberman and Sinharay, 2010; Santos et al.,
2012) have consistently reported that use of prob-
abilistic classifiers such as cumulative logistic re-
gression might be more appropriate for the task
of automated scoring than linear regression since
such models incorporate the assumption that the
score is categorical in nature. All of these stud-
ies used a small number of continuous-valued fea-
tures.

More generally in the machine learning liter-
ature, papers have analyzed and compared the
performance of different learning algorithms on
standard machine learning datasets from the UCI
repository and/or synthetic datasets (Caruana and
Niculescu-Mizil, 2006; Matykiewicz and Pestian,
2012; Doan and Kalita, 2015). These studies
reported substantial variability in learner perfor-
mance across problems which suggests that the
learners that performed best for other applications
may not necessarily do so for our task.

The work that might be closest to ours is that
of Heilman and Madnani (2015) who explored the
impact of the amount of training data available
on content scoring performance across a range of
questions. However, they used a much smaller set
of 44 questions and did not investigate any ques-
tions about specific modeling strategies such as
the choice of learning algorithm or the impact of
hyper-parameter tuning.

2.1 Research Questions

We aim to answer the following specific questions
about supervised learning specifically in the con-
text of automated scoring of content:

1. What type of learner has the best perfor-
mance for response-based automated content
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Subject N Number of
Responses

Score
Range

Grade
Level Task Type Response

Lengths

Science 89 454–5824
0–4,
0–6,
1–5

6–10

Explanations and arguments em-
bedded in inquiry science units that
call for students to use evidence to
link ideas.

47–320
chars

English
Language
Arts

23 737–2685
0–2,
0–3,
0–4

7–10
Summarization, argument develop-
ment, and analysis of English read-
ing passages.

105–506
chars

Math 15 669–3265
0–2,
0–3,
0–4

7–9
Explanation of how mathematical
principles apply to given situations
involving linear equations.

40–150
chars

Social
Studies

3 3000–3100 0–3 9–12
Summarization of stories and pas-
sages focused on social issues.

150–180
chars

Table 1: A detailed breakdown of our corpus by subject. N: number of questions; Number of Responses:
minimum and maximum number of human-scored responses available for questions on this subject;
Score Range: ranges of possible scores that can be awarded to responses for questions on this subject
according to the human-authored scoring rubrics; Grade Level: the grades of students whose responses
were used for analysis; Response Lengths: minimum and maximum number of characters in responses
to questions on a given subject.

scoring? Do non-linear learners offer a sub-
stantial advantage over linear models? Do
margin-based methods such as support vec-
tor machines perform better than bagging en-
sembles like random forests?

2. How do probabilistic classifiers perform
compared to regressors when predicting real-
valued scores?

3. Do hyper-parameters matter? Is it worth
spending extra time and effort to tune the
hyper-parameters of any given learner over
simply using the default values provided by
the implementation being used?

3 Methodology

Before we provide more details of our corpus and
the specific learning strategies, we would like to
describe two factors that will be shared by all
strategies in order to perform a controlled compar-
ison: (a) the features and (b) the evaluation metric.

Features. Since the goal of this paper is to com-
pare modeling strategies, we need to use the same
fixed set of features for all strategies in order to ob-
tain a meaningful comparison. We use a set of fea-
tures that have been employed in many previously
published response-based approaches to building
content scoring models (Heilman and Madnani,
2015; Zesch et al., 2015; Sakaguchi et al., 2015;

Madnani et al., 2016). We extract the following
features for all of the responses in our corpus:

(a) character n-grams including whitespace and
punctuation (n=2–5)

(b) word n-grams (n=1,2)

(c) triples extracted over dependency parses ob-
tained from ZPar (Zhang and Clark, 2011),
and

(d) length bins (specifically, whether the log of 1
plus the number of characters in the response,
rounded down to the nearest integer, equals x,
for all possible x from the training set). For
example, consider a question for which the
responses in the training data are between 50
and 200 characters long. For this question,
we will have 3 length bins numbered from 5
(blog2 51c) to 7 (blog2 201c). For a new re-
sponse of length 150 characters, length bin 7
(blog2 151c) would be the binary feature that
gets a value of 1 with the other two bins get-
ting the value of 0.

All of the features are binary (indicating pres-
ence or absence) and can be thought to indirectly
approximate the requirements of content scoring
we described earlier: good responses generally

459



contain (a) the right concepts (approximately cap-
tured by words and bigrams), (b) the right syntac-
tic relationships between those concepts (approx-
imately captured by dependency triples), and (c)
the right amount of detail (coarsely captured by
length bins).

The character n-grams serve to capture spelling
and morphological variations such that responses
are not excessively penalized for misspellings or
for using the incorrect morphological variants. For
example, if the correct response to a question must
contain the phrase ”temperature increased”, a can-
didate response containing the phrase ”temprature
increase” (with a misspelling and an incorrect verb
form) can still get credit for that concept.

Metric. Human scores generally tend to be in-
tegers, while automated scores can be either inte-
gers or real values on a continuous scale. One ad-
vantage of the real-valued scores is that they allow
for more fine-grained distinction than a small set
of integers. In this paper, we predict real-valued
scores on a continuous scale and evaluate the accu-
racy of the predicted scores by using mean squared
error (MSE) as our default metric. Although some
previous studies have used quadratically-weighted
kappa (QWK) as another possible metric for eval-
uating content-scoring models, more recent work
has shown that QWK may possess properties that
render it less than suitable for automated scoring
evaluation (Yannakoudakis and Cummins, 2015).

3.1 Data

Our corpus contains over 230,000 human-scored
responses that were collected in response to 130
different questions. The questions spanned 4 sub-
ject areas: Science, English Language Arts, Math,
and Social Studies and are administered as part of
several different assessments. The 130 questions
include the 10 content-based questions from the
Automated Student Assessment Prize competition
organized by the Hewlett Foundation that are pub-
licly available.1 The remaining questions are in
active use in various classroom settings and are
not publicly available. Table 1 shows a detailed
breakdown of the corpus.

3.2 Learners

Table 2 summarizes the learners considered in this
study. We choose learners that (a) have either

1https://www.kaggle.com/c/asap-sas/
data

been shown to perform well with feature sets com-
parable to ours in previously published work —
Mohler et al. (2011), Sakaguchi et al. (2015), and
Zesch et al. (2015) all used support vector ma-
chines; Ramachandran et al. (2015) use a random
forest regressor — or (b) are generally known to
perform well with a large number of sparse fea-
tures (Hastie et al., 2001; Fan et al., 2008; Chang
and Lin, 2011). We use the scikit-learn (Pedregosa
et al., 2011) implementations for all learners.

All the implementations incorporate some
means of reducing learner variance either by de-
sign — random forests average over a large num-
ber of decision trees trained using bootstrapped
samples — or by explicitly incorporating some
form of regularization, e.g., an `2-penalty over the
feature weights for logistic regression and a mis-
classification error penalty for SVMs.

The first four learners are classifiers. Since we
are interested in predicting continuous values eval-
uated by using mean squared error, we would ex-
pect that classifiers that simply produce the most
likely (integer) score would generally do worse
than regressors, which produce continuous val-
ues. Therefore, for all four classifiers, we use
the predict proba() method of their scikit-
learn implementations to obtain probability distri-
butions2 over the possible score points and then
compute the expected value using the distribu-
tion as the final classifier prediction.3 For the
“Rescaled Support Vector Regressor”, we simply
rescale the predictions obtained from the regres-
sor using the mean and standard deviation of the
human scores for the training data. This form of
post-processing has been shown to be particularly
effective as evidenced by its use in many of the
top submissions to the Kaggle automated scoring
competitions.

3.3 Experiments

Although we have a fairly large number of re-
sponses for each question, we choose to use cross-
validation instead of a single train-test split in or-

2scikit-learn has two implementations available for a sup-
port vector classifier with a linear kernel: one using Lib-
SVM (Chang and Lin, 2011) and another using LibLin-
ear (Fan et al., 2008). We use the former since the latter
doesn’t support probabilistic classification.

3The probabilities can vary in reliability depending on the
calibration algorithm chosen to convert the predictions of the
classifier into posterior probabilities (Platt, 1999; Zadrozny
and Elkan, 2002). For this paper, we assume that scikit-learn
provides reasonably well-calibrated implementations.
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Learner Type Linear Grid
Random Forest Classifier Classifier No max depth: [1, 5, 10, None]
Logistic Regression Classifier Yes C: [10−3, 10−2, . . . , 103, 104]
SVC (linear) Classifier Yes C: [10−3, 10−2, . . . , 103, 104]

SVC (RBF) Classifier No
C: [10−3, 10−2, . . . , 103, 104],
γ: [ 1
‖F‖ , 10−7, 106, . . . , 10−3]

Random Forest Regressor Regressor No max depth: [1, 5, 10, None]
SVR (linear) Regressor Yes C: [10−3, 10−2, . . . , 103, 104]

SVR (RBF) Regressor No
C: [10−3, 10−2, . . . , 103, 104],
γ: [ 1
‖F‖ , 10−7, 106, . . . , 10−3]

Rescaled SVR (RBF) Regressor No
C: [10−3, 10−2, . . . , 103, 104],
γ: [ 1
‖F‖ , 10−7, 106, . . . , 10−3]

Table 2: Learners chosen for this study and their characteristics. “linear” and “RBF” refer to linear and
radial basis function kernels. The Grid column shows the grid of possible values searched when tuning
the hyper-parameters for each learner. C denotes the complexity parameter that controls the amount of
regularization for the learner. γ denotes the kernel coefficient for the RBF kernel ( 1

‖F‖ — where ‖F‖
refers to the number of features — is a commonly used value for γ and we include it in the grid). The
max depth parameter for random forests controls the maximum depth of the tree. Setting it to None
tells scikit-learn to automatically compute that number based on internal calculations.

der to average over any possible biases that a sin-
gle split might yield. We perform two sets of 5-
fold cross-validation experiments for each of the
eight learners. For both sets of experiments, the
folds are stratified by the human scores, e.g., all
train/test splits have similar distributions of human
scores.

In the first set of cross-validation experi-
ments, we train each learner using default hyper-
parameters for each of the five folds. We com-
pute the MSE for each of the five folds by com-
paring to the human scores and then use their
average as the final MSE for the learner. For
the second set of experiments, instead of us-
ing the default hyper-parameter values, we run
scikit-learn’s GridSearchCV over the (four-
fold) “training” set inside each of the five top-
level cross-validation runs in order to search a
pre-specified parameter grid for values that yield
the lowest estimated MSE. The learner with these
tuned hyper-parameters is then used to make pre-
dictions on the fifth held-out fold as per usual. As
before, we use the average MSE value across the
five folds as the final MSE value for the learner.

Table 2 shows the hyper-parameter grids that we
search for each of the eight learners in the sec-
ond set of experiments. Although there are sev-
eral hyper-parameters that can be tuned for each
learner, we focus on parameters that are more

likely to have a significant impact on performance,
e.g., those that control regularization and, hence,
over-fitting. Any parameters not included in the
grids are assigned default values by scikit-learn.

Both sets of cross-validation experiments (with
and without hyper-parameter tuning) were con-
ducted using the SKLL toolkit which makes it
easy to run scikit-learn experiments with multiple
learners in batch mode.4

4 An Aside: Feature Characteristics

Before we delve into the analyses of modeling
strategies, it might be instructive to explore some
characteristics of our feature set. On average, we
extract a total of ∼46,000 binary features for each
question. As expected, the largest set of features
are the character n-grams (about 3x as large as the
word n-grams and the dependency triples). The
length bin features constitute the smallest set with
at most a dozen or so features.

We also wanted to explore how the number of
features extracted for a given question varies by
(a) the average length of a response for that ques-
tion and by (b) the number of responses available
for that question. Figure 1 shows correlations be-
tween the average number of features and the aver-
age response length and number of responses for

4http://github.com/
EducationalTestingService/skll
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Figure 1: Joint distributions plots showing the impact of response length (in characters; left) and the
number of available responses (right) on the number of features extracted for the questions in our corpus.
Each plot is composed of a scatterplot with points denoting the 130 questions as well as histogram and
density plots for each of the two variables being correlated. r = Pearson’s correlation coefficient.

each question. As one might expect, the number
of extracted features is larger for longer responses
and for more numerous responses. We also ob-
serve that the average length of the response has
a substantially larger impact on the number of
extracted features than the number of responses
available.5 This intuitively makes sense since
among the answers to the same question, there is
a higher likelihood of newer words (and character
sequences and dependency relations, etc.) being
encountered within the same response as it grows
longer, than across different responses.

5 Results

5.1 Effects of Modeling Strategies

Table 3 shows the mean squared error — averaged
across all 130 questions in our corpus — for all
eight learners both with and without tuned hyper-
parameters. We observe that the best performance
is achieved by probabilistic support vector classi-
fiers with linear and RBF kernels.

5.1.1 General Learner Properties
We first explored whether general properties of the
learners such as being linear vs. non-linear or be-
ing a probabilistic classifier vs. a regressor had

5We removed an extreme outlier from the left plot to min-
imize its impact on the correlation.

Learner Average MSE
not tuned tuned

Logistic Regression .401 .391
Random Forest Classifier .385 .368
Random Forest Regressor .356 .356
SVC (linear) .336 .326
SVR (linear) .514 .388
SVC (RBF) .434 .321
SVR (RBF) .723 .342
Rescaled SVR .546 .343

Table 3: Average MSE across 130 questions for
each of the eight learners using hyper-parameter
values that are either not tuned (default) values or
tuned via grid search. Lower values are better.

a statistically significant impact on model perfor-
mance across different learners and questions.

We used a hierarchical mixed-effects linear
model (Snijders and Bosker, 2011) implemented
in R via the lmerTest package (Bates et al.,
2015; Kuznetsova et al., 2016) to determine which
modeling decisions have a statistically significant
effect on model MSE over multiple questions. As
our dependent variable, we used the standardized
MSE value for each question and each learner.
We also included the identity of each question and
learner as a random factor to account for any ran-
dom effects that might stem from characteristics
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unique to any particular question or learner. We
used the following learner properties as indepen-
dent variables, specified as discrete factors with a
fixed set of possible values (shown in quotes):

• Type. Is the learner a (probabilistic) “classi-
fier” or a “regressor”?

• Linearity. Is the learner “linear” or “non-
linear”?

• Family. Is the learner logistic regression
(“LR”), a random forest (“RF”), or a support
vector machine (“SVM”)?

• Tuning. Are the learner hyper-parameters
“tuned” or “not tuned”?

We generally focused on the main effects of
each factor but also included interactions between
the Tuning factor and the other factors.6 The
equation describing the mixed-effects model is
shown below:

MSE ∼ Type ∗ Tuning
+ Family ∗ Tuning
+ Linearity ∗ Tuning
+ (1|question) + (1|learner) (1)

where MSE denotes the dependent variable; Type,
Family, Linearity, and Tuning denote the
learner factors we defined earlier, used here as
fixed effects; the ∗ operator indicates an interac-
tion between two factors; question and learner
denote the question and learner identity respec-
tively; and (1|X) denotes the addition of a ran-
dom intercept to the model for X . The reference
values for the learner factors are: “classifier” (for
Type), “SVM” (for Family), “non-linear” (for
Linearity) and “tuned” (for Tuning).

The standardized coefficients for the model with
all four fixed effects and the interactions are shown
in Table 4. The coefficient in each row corre-
sponds to the estimated difference in MSE (in
number of standard deviations) relative to a learner

6Any other higher-level interactions cannot be consis-
tently evaluated using our set of learners. For exam-
ple, to consider the interaction between learner Type and
Linearity, we would want several learners representing
each of the four possible combinations of linear and non-
linear regressors and classifiers. In our chosen set of learn-
ers, linear regressors are represented only by SVR (linear)
which makes it impossible to tell whether any patterns ob-
served for linear regressors are actually meaningful or just
quirks of SVR (linear).

Factor Coef. p-value
1 Intercept −.322 .02
2 “linear” .094 .47
3 “regressor” .087 .43
4 “LR” .205 .27
5 “RF” .113 .38
6 “not tuned” .596 <.00001
7 “LR”: “not tuned” −.090 .15
8 “RF”: “not tuned” −.799 <.00001
9 “linear”: “not tuned” −.542 <.00001

10 “regressor”: “not tuned” .395 <.00001

Table 4: Standardized coefficients and p-values
for fixed factors and interactions included in the
mixed-effects model (Equation 1). N=130 ques-
tions × 8 learners × 2 tuning conditions=2,080.

with the chosen reference values for the learner
factors. Note that since lower values are better for
MSE, positive coefficients actually indicate worse
performance and vice versa.

These results clearly show that not tuning the
hyper-parameters leads to significantly worse per-
formance (higher MSE) irrespective of learner
(row 6). They also show that tuning interacts sig-
nificantly with learner family, with linearity, and
with learner type. For example, row 8 shows that
the difference between “tuned” and “ not tuned”
versions of “RF” is significantly lower than the
corresponding difference for the reference learner
family (“SVM”). Therefore, we can infer that not
tuning has a significantly larger detrimental effect
on SVMs than on random forests. Similarly, we
can infer that not tuning is significantly worse for
the (reference) non-linear learners than for linear
ones (row 9), and for regressors than for the (ref-
erence) classifiers (row 10).

The results also show that overall there are no
significant differences in performance due to lin-
earity (row 2), learner type (row 3), and learner
family (rows 4 and 5). We want to be particularly
clear about the interpretation of these rows. For
example, row 2 states that just because you pick
a non-linear model does not automatically mean
that you will obtain better performance than a lin-
ear model, and so on. The specifics matter. That
is, these results do not say anything about the dif-
ferences between the specific learner instantiations
used in our study.
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5.1.2 Comparing Specific Learners
In the previous section, we considered whether
there are any general learner properties that would
lead to consistently significant differences in per-
formance. However, one may also reasonably ask
which of the particular learners in our study turned
out to be most accurate. To answer this question,
we fit another mixed-effects model, which also
used MSE as a dependent variable and question as
a random factor, but uses the learner as a fixed fac-
tor instead of a random factor. Unlike the model
described by Equation 1 — where we treated the
chosen learners as a sample from the population of
all possible learners — in this model we are specif-
ically interested in the differences within this set of
learners. This model is described by the equation:

MSE ∼ Learner ∗ Tuning + (1|question) (2)

We set the reference learner to be the best per-
forming one from Table 3 – the SVC with RBF
kernel and tuned hyper-parameters. The model co-
efficients (not shown here due to lack of space)
confirmed the consistently useful effect of tun-
ing we observed in the previous section as well
as the different effect sizes of tuning for different
learners. They also showed that, among the tuned
learners, the reference learner significantly outper-
formed all other learners except for SVC (linear)
with tuned hyper-parameters. We discuss the im-
plication of these results in §6 and conclude with
practical recommendations in §7.

6 Discussion

In this paper, we considered the effect that differ-
ent modeling strategies have on the accuracy of au-
tomated content scoring. We analyzed the perfor-
mance of 8 different learners on a very large cor-
pus of real student responses to evaluate both the
impact of general learner characteristics as well as
differences between specific learner instantiations.

We found that no individual learner characteris-
tic had a consistent effect on model performance
across all learners and questions. For example,
SVM-based probabilistic classifiers with tuned
hyper-parameters outperformed all other learners,
but this was no longer the case for SVM-based re-
gressors or even SVM-based learners with default
hyper-parameters. Similarly, (linear) logistic re-
gression performed worse than random forests, but
an SVC with a linear kernel performed compara-
bly to SVC with an RBF kernel. In other words,

our results indicate that no general family of learn-
ers is likely to be the most appropriate for this
task out of the box: when choosing a learner, one
should take into account all the factors considered
in this study.

At the same time, we found that tuning hyper-
parameters significantly improves model perfor-
mance for all learners even when a moderate num-
ber of responses is available to train the model
for each question (the models in our study were
trained on an average on 1,400 responses). Finally,
we identified probabilistic support vector classi-
fiers with linear or RBF kernel and tuned hyper-
parameters as the best performing learners across
multiple questions in our corpus.

The sample of learners used in our paper is not
exhaustive by any means. We focused on learn-
ers that have generally been shown to work well
with similar features. There are other learners that
we did not include in our study such as deep neu-
ral networks, nearest neighbor regressors etc. We
leave the analysis of additional learner types for
future work.

In addition to modeling choices, content scoring
performance is also affected by data-related fac-
tors. In our analyses, we accounted for potential
variation in baseline performance for each ques-
tion by adding the question as a random factor to
both mixed-effects models (Equations 1 and 2).
We also conducted an additional exploratory study
to evaluate whether the variation in performance
of SVC (RBF), our best performing model, could
be explained by specific question characteristics:
the number of responses available, the number of
different score levels, and the subject area. We
found that the number of score levels had a mod-
erate effect with model performance being higher
for questions with a greater number of score lev-
els, but there was no further effect of the number
of responses available or of the subject area.

Of course, this does not mean that these pa-
rameters are not important for model performance.
In fact, Heilman and Madnani (2015) reported a
strong effect of the training size on the model per-
formance for content scoring. A more likely ex-
planation is that our data did not contain sufficient
contrasts to establish such an effect: their study
systematically considered training sets with N be-
tween 100 and 1,600, while in our study the N
varied between 454 and 5,824 with the median
at 1,350. It is also possible that the effects of
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the training size were confounded by other data-
related factors. Furthermore, model performance
may also be affected by the reliability of human
scores, the context in which the assessment was
delivered, and many other factors. We leave a
more detailed exploration of such factors to future
work.

7 Recommendations

Based on the observed results for general learner
properties (§5.1.1) and for the specific learners
(§5.1.2), we can provide the following recommen-
dations to practitioners building automated con-
tent scoring models specifically when using fea-
tures similar to ours:

1. It is generally beneficial to tune the hyper-
parameters for every learner, if sufficient data
and resources are available. 7

2. If the goal is to pick a single learner that per-
forms well for any question, the probabilistic
SVC with an RBF kernel and with the C and
γ parameters properly tuned via grid-search
is likely to be a very good choice.

3. Not tuning the hyper-parameters has a sub-
stantial detrimental effect for non-linear
SVMs, especially the regressors. If tuning
is not possible due to lack of data or an-
other reason, consider using random forests
or probabilistic SVC with a linear kernel. If
using scikit-learn/SKLL directly, these can
be used “out of the box”. However, if us-
ing another library, manually set the hyper-
parameter values to be the same as the scikit-
learn/SKLL defaults.
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Assessment of Open Ended Questions with a BLEU-
inspired Algorithm and Shallow NLP. In Advances
in Natural Language Processing, Springer, pages
25–35.
7We would go so far as to recommend hyper-parameter

tuning irrespective of task and the set of features used.

Yigal Attali and Jill Burstein. 2006. Automated essay
scoring with e-rater V. 2. The Journal of Technology,
Learning and Assessment 4(3):1–30.

Sumit Basu, Chuck Jacobs, and Lucy Vanderwende.
2013. Powergrading: a Clustering Aapproach to
Amplify Human Effort for Short Answer Grading.
Transactions of the Association for Computational
Linguistics 1:391–402.
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