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Abstract

We present the CIC-FBK system, which
took part in the Native Language Iden-
tification (NLI) Shared Task 2017. Our
approach combines features commonly
used in previous NLI research, i.e., word
n-grams, lemma n-grams, part-of-speech
n-grams, and function words, with re-
cently introduced character n-grams from
misspelled words, and features that are
novel in this task, such as typed char-
acter n-grams, and syntactic n-grams of
words and of syntactic relation tags. We
use log-entropy weighting scheme and
perform classification using the Support
Vector Machines (SVM) algorithm. Our
system achieved 0.8808 macro-averaged
F1-score and shared the 1st rank in the NLI
Shared Task 2017 scoring.

1 Introduction

Native language identification (NLI) is a natural
language processing (NLP) task that aims at au-
tomatically identifying the native language (L1)
of a language learner based on his/her writing in
the second language (L2). Identifying the native
language is based on the hypothesis that the L1
of a learner impacts his/her L2 writing due to the
language transfer effect. NLI can be used for a
variety of purposes, including marketing, security,
and educational applications. From the machine-
learning perspective, the NLI task is viewed as a
multi-class, single-label classification problem, in
which automatic methods have to assign class la-
bels (L1s) to objects (texts).

Recent trends in NLI include cross-genre and
cross-corpus NLI scenarios (Malmasi and Dras,
2015a), as well as identifying the L1 based on
writings in other non-English L2s and cross-

lingual NLI research (Malmasi and Dras, 2015b).
However, following the practice of the first NLI
shared task (Tetreault et al., 2013), this year’s task
focuses on L2 English data (Malmasi et al., 2017).
This can be related to the use of English as lingua
franca on the Internet and academia, when NLI
methods are particularly useful for languages with
a large number of foreign speakers. Moreover,
following the 2016 Computational Paralinguistics
Challenge (Schuller et al., 2016) and the VarDial
workshop (Malmasi et al., 2016), this year’s com-
petition covers an NLI task based on the spoken
response. Overall, this year’s task consists of three
tracks: NLI on the essay only, NLI on the spoken
response only, and NLI on both essay and spoken
response. In this paper, we describe the CIC-FBK
approach to the essay-only track.

Previous works on identifying the native lan-
guage from texts explored a large variety of
features, including lexical and part-of-speech
(POS) features (Koppel et al., 2005a), charac-
ter n-grams (Ionescu et al., 2014), spelling er-
rors (Koppel et al., 2005b), and syntactic fea-
tures (Wong and Dras, 2011). Following previ-
ous research on the NLI task, we incorporate com-
monly used word n-grams, lemma n-grams, POS
n-grams, and function words. In order to capture
the L1 influences at the character level, we use
recently introduced character n-grams from mis-
spelled words (Chen et al., 2017), as well as 10
categories of character n-gram features proposed
by Sapkota et al. (2015). We also include syn-
tactic features by extracting syntactic dependency-
based n-grams of words and of syntactic relation
tags (Sidorov et al., 2014) using the algorithm de-
signed by Posadas-Durán et al. (2014, 2017). We
describe the features used by the CIC-FBK system
in more detail in subsection 3.1.

Our system achieved 0.8808 macro-averaged
F1-score and 0.8809 accuracy in the essay-only
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track and shared the 1st rank in the NLI Shared
Task 2017 scoring, obtaining the 2nd absolute
score with the difference of 0.0010 F1-score and
0.0009 accuracy with the 1st place.

2 Data

The dataset used in the NLI Shared Task 2017 is
composed of English essays written by non-native
learners in a standardized assessment of English
proficiency for academic purposes. The corpus
consists of 13,200 essays (1,000 essays per L1 for
training, 100 for development, and 100 for test-
ing). The essays are sampled from 8 prompts,
and score levels (low/medium/high) are provided
for each essay. The training, development, and
test sets are balanced in terms of the number of
essays per L1 group. The 11 L1s covered by
the corpus are: Arabic (ARA), Chinese (CHI),
French (FRE), German (GER), Hindi (HIN), Ital-
ian (ITA), Japanese (JAP), Korean (KOR), Span-
ish (SPA), Telugu (TEL), and Turkish (TUR). The
detailed description of the corpus and its statistics
can be found in Malmasi et al. (2017).

3 Methodology

Our system incorporates a wide range of features,
i.e., word, lemma, and POS n-grams, spelling er-
ror character n-grams, typed character n-grams,
and syntactic n-grams. We used the tokenized ver-
sion of essays provided by the organizers. For the
evaluation of our approach, we merged the train-
ing and development sets, and conducted experi-
ments under 10-fold cross-validation. System per-
formance was measured in terms of both classifi-
cation accuracy and F1 (macro) score. The for-
mer was used as evaluation metric in the majority
of previous works on NLI, whilst the later is the
official evaluation metric in the NLI Shared Task
2017.

3.1 Features
3.1.1 Word, lemma, and POS n-grams
Word and lemma features represent the lexical
choice of a writer, while part-of-speech (POS)
features capture the morpho-syntactic patterns
in a text. Following previous works on the NLI
task (Jarvis et al., 2013; Malmasi and Dras, 2017),
we use word, lemma, and POS n-grams with
n ranging from 1 to 3. We include punctuation
marks and split n-grams by a full stop. We lower-
case word and lemma n-grams and replace each

digit by the same symbol (e.g., 12,345→ 00,000),
as proposed in Markov et al. (2017), to capture the
format (e.g., 00.000 vs. 00,000), which reflects
stylistic choice of a learner and not the value of a
number that does not carry stylistic information.
Lemmas and POS tags were obtained using the
TreeTagger software package (Schmid, 1995).

3.1.2 Function words
Function words are the most common words
in a language (e.g., articles, determiners, con-
junctions). They are considered one of the most
important stylometric features (Kestemont, 2014).
Function words can be seen as indicators of the
grammatical relations between other words. We
use a set of 318 English function words from
the scikit-learn package (Pedregosa et al., 2011).
Other examined function word lists obtained
from the Natural Language Toolkit1 (127 function
words) and the Onix Text Retrieval Toolkit2

(429 function words), as well as function word
skip-grams (Guthrie et al., 2006) did not lead to
an improvement in accuracy.

3.1.3 Spelling error character n-grams
Spelling errors have been used as features for NLI
since Koppel et al. (2005b). They are considered
a strong indicator of an author’s L1, since they
reflect L1 influences, such as sound-to-character
mappings in L1. Recently, Chen et al. (2017)
introduced the use of character n-grams from
misspelled words. The authors showed that
adding spelling error character n-grams to other
commonly used features (word and lemma
n-grams) improves NLI classification accuracy.
We extract 39,512 unique misspelled words from
the training and development sets using the spell
shell command. Then we build character n-grams
(n = 4) from the extracted misspelled words.
Other examined size of spelling error character
n-grams (n = 1, 2, 3, and 5), as well as their
combinations did not lead to an improvement in
system performance.

3.1.4 Typed character n-grams
Character level features are sensitive to both the
content and the form of a text and able to cap-

1http://www.nltk.org
2http://www.lextek.com/manuals/onix/functionwords1.html
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ture lexical and syntactic information, punctuation
and capitalization information related with the au-
thors’ style (Stamatatos, 2013). The effectiveness
of character n-gram features for representing the
stylistic properties of a text has been demonstrated
in previous NLI studies (Ionescu et al., 2014; Chen
et al., 2017). Their effectiveness in NLI is hypoth-
esized to be a result of phoneme transfer from the
learner’s L1, and by their ability to capture ortho-
graphic conventions of a language (Tsur and Rap-
poport, 2007).

Sapkota et al. (2015) defined 10 different char-
acter n-gram categories based on affixes, words,
and punctuation. In this approach, instances of the
same n-gram may refer to different typed n-gram
features. For example, in the phrase less care-
lessness, the two instances of the 4-gram less are
assigned to different character n-gram categories.
As an example, consider the following sample sen-
tence:

(1) Lisa said, “John should repair it tomorrow.”

The character n-grams (n = 4) for the sample
sentence (1) for each of the categories proposed
by Sapkota et al. (2015) are shown in Table 1. For
clarity, spaces are represented by the underscore.

SC Category N-grams

af
fix

prefix shou repa tomo
suffix ould pair rrow
space-prefix sai sho rep it tom
space-suffix isa ohn uld air

w
or

d whole-word Lisa said John
mid-word houl epai omor morr orro
multi-word ∗ sa s hn s ld r ir i it t

pu
nc

t beg-punct “Joh
mid-punct ∗∗ , “ . ”
end-punct aid, row.

∗ If the previous word is more than one character long, two characters are
considered; otherwise, only one character is considered.
∗∗ We use the tokenized version of essays and set the size of n-grams to 3
for this category. For other categories of typed character n-grams, the size
is set to 4.

Table 1: Typed character 4-grams per category for
the sample sentence (1) after applying the algo-
rithm proposed by Sapkota et al. (2015).

Typed character n-grams have shown to be pre-
dictive features for other classification tasks, such
as authorship attribution (Sapkota et al., 2015),
author profiling (Markov et al., 2016), and dis-
criminating between similar languages (Gómez-
Adorno et al., 2017). In our experiments, typed

character n-grams (n = 4) outperformed tradi-
tional character n-grams of the same size in most
system configurations. In addition, we compared
the performance of typed and traditional charac-
ter n-grams on the 7-way ICLEv2 corpus (Granger
et al., 2009), following the corpus splitting as de-
scribed in Ionescu et al. (2014). In this experi-
ment, typed character n-grams proved to be more
indicative than traditional character n-grams when
used in combination with features described in this
paper.

3.1.5 Syntactic n-grams
Syntactic features, including production
rules (Wong and Dras, 2011) and Tree Sub-
stitution Grammars (TSGs) (Swanson and
Charniak, 2012), have been previously explored
for NLI. Tetreault et al. (2012) experimented with
the Stanford parser (de Marneffe et al., 2006)
dependency features and concluded that they
are strong indicators of structural differences
in L2 writing. We exploit the Stanford depen-
dencies to build syntactic n-gram features by
using the algorithm designed and made available
by Posadas-Durán et al. (2014, 2017).3 Consider
the following sample sentence:

(2) I remember this great experience.

The dependencies generated by the Standard
parser for the the sample sentence (2) are the fol-
lowing:
root(ROOT, remember),
nsubj(remember, I),
dobj(remember, experience),
det(experience, this),
amod(experience, great).

These dependencies, including backoff trans-
formation based on POS, were used as features for
NLI in Tetreault et al. (2012). According to the
metalanguage proposed in Sidorov (2013a), the
syntactic 2-grams of words are the following:
remember[I],
remember[experience],
experience[this],
experience[great];
when the syntactic 3-grams of words are:
remember[I,experience],
remember[experience[this]],
remember[experience[great]],

3The Python implementation of the algorithm is available
on http://www.cic.ipn.mx/ sidorov/MultiSNgrams 3.py
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experience[this,great];
the syntactic 2-grams of syntactic relation tags are:
root[nsubj],
root[dobj],
dobj[det],
dobj[amod];
the syntactic 3-grams of syntactic relation tags are:
root[nsubj,dobj],
root[dobj[det]],
root[dobj[amod]],
dobj[det,amod].

Here, the head element is on the left of a square
parenthesis and inside there are the dependent el-
ements; the elements separated by a coma refer to
non-continuous syntactic n-grams, that is, the ele-
ments are at the same level in a syntactic tree.

Syntactic n-grams can be used in any task
where traditional n-grams are applied. They allow
to introduce syntactic information into machine-
learning methods (obviously, at cost of previ-
ous syntactic parsing). Syntactic n-grams outper-
formed traditional n-grams in the task of author-
ship attribution (Sidorov et al., 2014) and were ap-
plied in tasks related with L2, for example, auto-
matic English as L2 grammar correction (Sidorov,
2013b). In our system, we use only continuous
syntactic n-grams of words and of syntactic re-
lation tags with n ranging from 2 to 3. The in-
clusion of non-continuous syntactic n-grams im-
proved 10-fold cross-validation accuracy; how-
ever, did not perform well on the test set.

3.2 Frequency threshold
The fine-tuning of feature set size has proved to be
a useful strategy for NLI (Jarvis et al., 2013) and
other NLP tasks (Stamatatos, 2013; Markov et al.,
2017). In our approach, we selected the frequency
threshold value that provided the highest 10-fold
cross-validation result. We consider only those
features that occur in at least two documents in the
training corpus and that occur at least 4 times in
the entire training corpus. This frequency thresh-
old improves 10-fold cross-validation accuracy by
about 1%, compared to the configuration when all
the features are considered, and reduces the size of
the feature set by approximately 90% of the origi-
nal. The final size of our feature set is 726,494.

3.3 Weighting scheme
We use log-entropy weighting scheme, which
showed good results in previous studies on
NLI (Jarvis et al., 2013; Chen et al., 2017).

Log-entropy weighting scheme consists of lo-
cal weighting (denoted as Llog(i, j)) and global
weighting (denoted as Gent(i)). The local weight-
ing is calculated by taking the logarithm value of
adding-one smoothed term frequency:

Llog(i, j) = log(frequency(i, j) + 1), (1)

where frequency(i, j) is the frequency of term
i with regard to document j. The global entropy
weighting is calculated by the following formula:

Gent(i) = 1 +

J∑
j=1

pij log pij

log(J + 1)
, (2)

where J is the total number of documents in the

corpus.
J∑

j=1
pij log pij is the additive inverse of en-

tropy of the conditional distribution given i and

pij =
frequency(i, j)∑

j
frequency(i, j)

. (3)

The final weighting W is calculated as follows:

W = Llog(i, j)×Gent(i). (4)

Other examined feature representations, i.e., bi-
nary feature representation, tf , tf -idf , and nor-
malized feature representation did not enhance
system performance. Using log-entropy weight-
ing scheme outperforms tf -idf , the second best
scheme in our experiments, by 2.6% in 10-fold
cross-validation accuracy.

3.4 Classifier
Support Vector Machines (SVM) is considered
among the best performing classification algo-
rithms for text categorization tasks; moreover, it
was the classifier of choice for the majority of the
teams in the previous edition of the NLI shared
task. We use the liblinear scikit-learn (Pedregosa
et al., 2011) implementation of SVM with ‘ovr’
multi-class strategy. We set the penalty hyper-
parameter C to 100 based on our model selection
result.

4 Results

We present the results of our experiments in two
phases. First, we show the performance of each
type of features in isolation under 10-fold cross
validation on the merged training and develop-
ment sets. Then, we compare the performance
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obtained on the test set with other participating
teams. We present the 10-fold cross-validation re-
sults in terms of classification accuracy. For each
experiment, the difference between accuracy and
F1 (macro) score was less than 0.0003.

The individual performance of the features used
in our system with the configurations described in
the previous section, as well as the number of fea-
tures (N) of each type are shown in Table 2.

Features Accuracy N
words n-grams (n = 1–3) 0.8463 230,714
lemma n-grams (n = 1–3) 0.8454 228,229
POS n-grams (n = 1–3) 0.4930 14,510
function words 0.5004 302
spelling error character 4-grams 0.3779 12,322
typed character 4-grams 0.7779 35,480
syntactic n-grams of words (n = 2–3) 0.7064 148,728
syntactic n-grams of SR tags (n = 2–3) 0.2361 5,344
combination of the above 0.8640 726,494

Table 2: 10-fold cross-validation accuracy of each
feature type individually on the merged training
and development sets.

In line with the previous works on the NLI
task (Tetreault et al., 2013; Jarvis et al., 2013;
Chen et al., 2017), in our configurations word
and lemma n-grams are the most predictive fea-
tures. They showed 0.8463 and 0.8454 10-fold
cross-validation accuracy, respectively, when eval-
uated in isolation. Typed character n-grams also
performed well with a much smaller feature size,
achieving 0.7779 accuracy. Syntactic n-grams of
syntactic relation tags showed the lower accuracy
when evaluated in isolation; however, when used
in combination with other features, they improve
10-fold cross-validation accuracy by 0.2%. The
combination of all the features showed 0.8640
10-fold cross-validation accuracy on the merged
training and development sets.

The NLI Shared Task 2017 organizers reported
several 1st ranked teams based on McNemar’s sta-
tistical significance test with an alpha value of
0.05. The official results for the essay-only track
in terms of F1 (macro) score and classification ac-
curacy for the 1st ranked teams, as well as the base-
line results are shown in Table 3.

The CIC-FBK best run differs 0.0009 in terms
of classification accuracy from the highest result
achieved by the ItaliaNLP Lab system, which cor-
responds to one correctly predicted label. All the
17 participating teams in the NLI Shared Task
2017 achieved higher level of F1 (macro) score
than the official baseline of 0.7104.

Rank Team F1 (macro) Accuracy
1 ItaliaNLP Lab 0.8818 0.8818
1 CIC-FBK 0.8808 0.8809
1 Groningen 0.8756 0.8755
1 NRC 0.8740 0.8736
1 taraka rama 0.8716 0.8718
1 UnibucKernel 0.8695 0.8691
1 WLZ 0.8654 0.8655
- Official baseline 0.7104 0.7109
- Random baseline 0.0909 0.0909

Table 3: Results for the essay-only track for the 1st

ranked teams. The results for our team are high-
lighted in bold typeface.

The CIC-FBK system showed 0.8639 F1
(macro) score and 0.8640 accuracy under 10-fold
cross-validation on the merged training and devel-
opment sets. Our other runs in the NLI Shared
Task 2017 included small modifications in sys-
tem configurations, such as variations in frequency
threshold values and different strategy for dealing
with digits (e.g., 12,345→ 0,0). However, since
these modifications showed only marginal accu-
racy variations and did not improve system perfor-
mance on the test set, the results for these runs are
omitted in this paper.

The confusion matrix for our best run is shown
in Figure 1. The highest level of confusion is
between Hindi and Telugu classes. Korean and
Japanese is another problematic language pair, in
which Korean native speakers are often classified
as Japanese. The highest accuracy of 0.9800 was
achieved for German native speakers. These re-
sults are in line with the ones reported in the pre-
vious edition of the NLI share task (Tetreault et al.,
2013), where the teams achieved low levels of ac-
curacy for the Hindi/Telugu (none of the systems
was able to reach 0.8000 accuracy for Hidni) and
the Korean/Japanese pairs. In future work, we in-
tend to tackle these two language pairs in isola-
tion in order to improve the overall system perfor-
mance.

5 Conclusions

We presented the description of the best submis-
sion of the CIC-FBK team to the NLI Shared Task
2017. Our approach combines features commonly
used in the NLI task with recently introduced
spelling error character n-grams, as well as with
typed character n-grams, and syntactic n-grams of
words and of syntactic relation tags.
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Figure 1: Confusion matrix for the best CIC-FBK run.
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Typed character n-grams and syntactic n-grams
are new types of features that are introduced in
the NLI task for the first time. It was found
during the preliminary experiments on the train-
ing and development sets that these features im-
prove the classification accuracy when used in
combination with other types of features, such
as word n-grams, lemma n-grams, part-of-speech
n-grams, spelling error character n-grams, and
function words. The CIC-FBK system achieved
0.8808 F1 (macro) score and 0.8809 accuracy and
shared the 1st rank in the competition.

Acknowledgements

This work was partially supported by the Mexican
Government (CONACYT project 240844, SNI,
COFAA-IPN, and SIP-IPN 20171813, 20171344,
20172008). We would like to thank Vivi Nastase
for the discussion about spelling errors.

References
Lingzhen Chen, Carlo Strapparava, and Vivi Nastase.

2017. Improving native language identification by
using spelling errors. In Proceedings of the 55th an-
nual meeting of the Association for Computational
Linguistics (ACL 2017). ACL, Vancouver, Canada.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed

dependency parses from phrase structure parses.
In Proceedings of the Fifth International Confer-
ence on Language Resources and Evaluation (LREC
2006). ELRA, Genoa, Italy, pages 449–454.
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