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Abstract

We describe the submissions entered by
the National Research Council Canada in
the Native Language Identification Shared
Task 2017. We mainly explored the use
of voting, and various ways to optimize
the choice and number of voting systems.
We also explored the use of features that
rely on no linguistic preprocessing. Long
ngrams of characters obtained from raw
text turned out to yield the best perfor-
mance on all textual input (written es-
says and speech transcripts). Voting en-
sembles turned out to produce small per-
formance gains, with little difference be-
tween the various optimization strategies
we tried. Our top systems achieved ac-
curacies of 87% on the ESSAY track, 84%
on the SPEECH track, and close to 92% by
combining essays, speech and i-vectors in
the FUSION track.

1 Introduction

This paper describes the system entered by the
National Research Council Canada in the Native
Language Identification (NLI) Shared Task 2017
(Malmasi et al., 2017).

The task of Native Language Identification con-
sists of predicting the native (L1) language of a
foreign speaker, from textual and speech clues
in a second (L2) language. Applications of this
task are mostly in language learning and foren-
sic/security, see (Malmasi, 2016, Section 1.1) for
a good overview. This is an interesting exam-
ple of a task that is difficult to perform for hu-
mans, especially when the number of target na-
tive languages is large. In fact, in a comparison
between automated and human evaluation, Mal-
masi et al. (2015) could only use 5 L1 languages,

whereas the automated classifier covered 11 lan-
guages. They also found that, even in these lim-
ited settings, humans generally under-performed
the automated systems.

An international evaluation in 2013 (Tetreault
et al., 2013) showed that statistical methods could
reach a high level of performance on this task
(close to 84% accuracy) using a mixture of sur-
face form features, linguistic features, and model
combination. Ensemble methods, in particular,
have proved crucial to reach top performance on
this task and other related document categoriza-
tion tasks like the discrimination of language vari-
ants (Goutte et al., 2014). Recent work has con-
firmed this; we refer the reader to Malmasi and
Dras (2017) for an overview and evaluation of
many combination approaches.

Our best attempts at the NLI-2013 evaluation
used model combination by voting, a simple strat-
egy in which each base model contributes a vote
towards a category, and final prediction goes to
the category with the most votes. In this evalu-
ation, we therefore explore this strategy further,
looking into important aspects of the process: se-
lecting the models to add to the combination, as
well as their number. An attractive perk of the
voting/combination approach is that it provides a
natural way to handle multimodal data such as the
text and speech data available in the evaluation.
One can train models using either modality, and
combine their predictions using voting. This is
known as the late fusion approach. By contrast,
the early fusion approach combines different sets
of features and trains a single model on those. We
test and compare a simple early fusion model in
the FUSION track below.

Our second investigation is on the feature side.
In particular, we investigate the use of long char-
acter ngram, without any other linguistic process-
ing. Previous work reached state-of-the-art perfor-
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mance on the 2013 NLI Shared Task using string
kernels (Ionescu et al., 2016), considering sub-
sequences of 5 to 9 characters. On the task of
discriminating similar languages (Goutte et al.,
2016), long character ngrams also reach top per-
formance (Goutte and Léger, 2016) using subse-
quences of 5 and 6 characters. We looked in
more detail into how useful this type of feature
could be in the context of NLI. This contrasts with
many systems used in the 2013 evaluation, includ-
ing ours, which used a combination of lexical and
syntactic features, including short character and
word ngrams, part-of-speech and syntactic depen-
dencies. We test character ngrams up to 6grams,
extracted from raw text without any linguistic pre-
processing (no tokenization or casing normaliza-
tion).

In the following section, we quickly review the
data and introduce the approaches we tested for
the NLI Shared Task 2017. Section 3 presents our
results, both during development and evaluated on
the final test data.

2 Data and Methods

2.1 Data

The NLI-2017 collection covers 11 native lan-
guages: Arabic, Chinese, French German, Hindi,
Italian, Japanese, Korean, Spanish, Telugu and
Turkish, stratified across categories (Table 1). It
was obtained from a standardized assessment of
English proficiency for academic purposes. Each
document contains three parts:

1. The text of an essay written in English by a
native L1 speaker, in response to a prompt;

2. The orthographic transcript of a 45-second
English spoken reply given by the native L1
speaker in response to a prompt;1

3. 800-dimensional i-vectors, computed from
the 45s audio file recording the spoken reply.

The i-vectors (Verma and Das, 2015) are a com-
pact representation of the audio signal, typically
used in speaker recognition. The raw audio file
is not available for this task. The prompts for the
text and spoken replies are also provided for both
training and test data, but we did not use that in-
formation in our work.

1Speech and text prompts are different.

(Estimation)
L1 Train Dev Test
ARA 1000 100 100
CHI 1000 100 100
FRE 1000 100 100
GER 1000 100 100
HIN 1000 100 100
ITA 1000 100 100
JPN 1000 100 100
KOR 1000 100 100
SPA 1000 100 100
TEL 1000 100 100
TUR 1000 100 100
Total 11000 1100 1100

Table 1: NLI-2017 collection: #doc per L1.

In the NLI Shared Task 2017, the ESSAY track
uses the text of the essay alone; The SPEECH track
uses the transcript as well as the i-vectors; In the
FUSION track, all information can be used. Fi-
nally, note that we only participated in the closed
data condition, where only the provided collection
may be used for modelling.

2.2 Features

For the text data (essays and transcripts), we gen-
erated a number of fairly standard textual features.
Each type of feature results in a specific feature
space that we denote by a tag indicating the type
of feature, and a number indicating the size, e.g.
char3 for trigrams of characters.

Characters: We extracted subsequences of 3 to
6 characters from the text. This was done
first on the tokenized text (as provided by
the orgnizers), resulting in 4 feature spaces:
char3, char4, char5 and char6. We
extracted the same features from the raw, un-
tokenized text, resulting in another four sets
of features: rchar3, rchar4, rchar5
and rchar6.

Words: We extracted subsequences of 1 to 4
words from the tokenized text, ignoring
punctuation, resulting in 4 feature sets:
bow1, bow2, bow3 and bow4.

POS: We extracted subsequences of 1 to 3
part-of-speech tags, as produced by the
freely available Stanford POS tagger,2 v3.7.0

2http://www-nlp.stanford.edu/software/tagger.shtml
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(Toutanova et al., 2003). This produced three
feature sets: pos1, pos2, pos3.

For the character and word ngrams, we use a
tf-idf weighting corresponding to the ltc weight-
ing scheme (i.e. log term frequency, (log) inverse
document frequency, and cosine normalization) in
SMART (Manning et al., 2008, Fig. 6.7). Be-
cause most part-of-speech tags tend to occur in
most documents, we did not use idf on the part-of-
speech ngrams, and only perform scaling to unit
length (nnc weighting in SMART).

Finally, in the SPEECH and FUSION tracks, the
i-vectors were used as provided, either alone or in
conjunction with another transcript feature. In that
case, we scaled the i-vectors to unit length (cosine
normalization).

2.3 Models
Equipped with multiple ways to generate features
from documents, we will now review the models
we estimated on those, as well as the approaches
we investigated to improve the voting combina-
tion.

Model Estimation
We addressed the problem of identifying the na-
tive language as a document categorization prob-
lem with 11 classes (one per native language). We
use 11 binary classifiers trained in a one-versus-all
fashion, with a calibration layer on the classifier
output in order to provide proper multilabel pre-
dictions.

Each of the base one-vs-all classifier is a
Support Vector Machine trained using SVMlight

(Joachims, 1998) with linear kernels, all default
parameters and cost factor (-j) set to 10 in order
to balance positive and negative examples. Once
a classifier is trained, its output is calibrated in or-
der to output proper probabilities, using a mixture
of Gaussian distributions (Bennett, 2003). This al-
lows the output of the 11 classifiers to be well-
behaved probabilities that we can compare in or-
der to predict the most probable class, or use in
further post-processing in combination with other
classifier’s outputs.

Our first submission in each of Tables 2–4 is a
single model trained that way, all other submis-
sions are voting combinations, as described below.

Model Combination
Leveraging ensembles of models has proven ef-
fective in order to improve performance on Na-

tive Language Identification (Tetreault et al., 2013;
Malmasi and Dras, 2017) and many other NLP
tasks (Goutte et al., 2014). Among many alter-
natives, we focus on voting, a conceptually and
practically simple approach where each model in
the ensemble casts a vote towards a class, votes
are tallied and prediction goes to the most voted
class. In plurality voting, all models cast a sin-
gle, identical vote towards one class. Other vari-
ants weigh votes according to, for example, how
confident each model is in its prediction. Two
important hyper-parameters influence the result-
ing prediction and its quality: 1) the number of
voting systems, and 2) the way these systems are
selected.

In a typical learning setup, it makes sense to let
both of these choices be led by the resulting esti-
mated prediction error. In previous work, we sim-
ply ranked models according to prediction error,
estimated on either a separate validation/dev set
or by cross-validation, and selected models in de-
scending order of performance until the resulting
combined performance started to drop.

For this evaluation, we experimented with a
greedy selection approach: instead of considering
all models in descending order of performance, we

1. Start with an ensemble containing only the
highest performing model; place all remain-
ing models in a candidate pool.

2. Add each candidate from the pool in turn to
the current ensemble; compute resulting esti-
mated performance.

3. Pick the candidate that produce the best per-
formance, remove it from the pool and place
it in the ensemble.

4. Iterate Steps 2–3 until pool is empty.

This greedy algorithm performs the optimal
choice at each step but does not reconsider pre-
vious choices in order to further improve the
model. It provides a one-step-optimal order in
which models are added to the ensemble. In or-
der to pick the number of models to include in the
ensemble, we again look at the estimated predic-
tion error. The simplest method is to look again at
dev set or cross-validation performance. There are
two issues with this, however:

1. When the order and number of models are set
using the same prediction performance esti-
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mate, these choices are clearly not indepen-
dant, so our results will be biased. Typically,
the number of models will be over-estimated.

2. We are essentially performing multiple com-
parisons between ensembles based on the
same performance estimate. Unless we cor-
rect for multiple comparison, this will again
lead to overestimate the ensemble size.

In order to partly address these concerns, we
proceed with a selection method inspired by half
sampling (Mccarthy, 1969). We split the evalua-
tion data in two balanced halves (half the dev set,
or half the full set in cross-validation). We use one
half to estimate the best models to add to the en-
semble, as above, and use the other half to get an
unbiased estimate of the gain in performance from
each addition, in order to select the best ensemble
size. Of course we can swap the two halves, and
there are many (correlated) ways to split the eval-
uation data. In our experiment we only considered
one split in half, and swapped the two halves, re-
sulting in two ensembles (last two submissions in
Table 4).

Another combination approach is stacking
(Wolpert, 1992), where a meta-classifer is trained
to predict on the basis of base model scores. This
approach was shown to be effective on Native Lan-
guage Identification (Malmasi and Dras, 2017),
and when several meta-classifiers are available,
they can again be combined for further gains. The
main drawback is that there are more parameters
to estimate than in a simple ensemble combination
approach.

3 Results

3.1 Explorations
In our preliminary experiments, we validated all
design decisions by evaluating performance in two
ways:

1. Building models on the official train set, and
testing on the official dev set containing 1100
examples;

2. Joining the official train and dev data into one
training set on which we run 10-fold cross-
validation.

We later present both performance estimates for
our submitted systems, together with the official
test performance.

Dev CV Test
System Acc. Acc. m-F1 Acc.
Org. baseline .724 n/a .710 .710
(rchar6) single .835 .836 .862 .862
Best Dev Vote .847 .842 .874 .874
Best CV Vote .842 .845 .870 .869
Closed Task Best n/a n/a .882 .882

Table 2: Results for the closed ESSAY track: orga-
nizer’s baseline, our three submissions (our best
result emphasized, best results in bold) and the
best ranked system. ’Acc.’ is accuracy and ’m-
F1’ is macro-averaged F1.

3.2 ESSAY track

Our three submissions to the ESSAY track are sim-
ple and typical illustrations of the ideas we ex-
plored for this evaluation:

1. Best single feature set (rchar6): the use of
6-grams on raw text (no tokenization or cas-
ing) provides the best performance estimates
on both the dev set and in cross-validation.

2. The best vote, optimized on dev set perfor-
mance, includes 10 models trained on the
following feature sets: rchar6, char6,
pos3, bow2, bow4, char3, bow1, bow3,
char4, pos2.

3. The best vote, optimized on cross-validation
performance, includes 7 models trained on
the following feature sets: rchar6, char6,
bow3, rchar3, bow1, bow2, pos3.

The performance of our three submissions on
the test set is shown in Table 2. The first out-
come is that the single model based on raw
text character 6-grams performs very significantly
above the organizer-provided baseline. It is also
our best performing single system, outperforming
bag-of-words, bag of word ngrams, part-of-speech
ngrams, or character ngrams extracted from to-
kenized text. This suggests that large character
ngrams, without any linguistic pre-processing, are
more than competitive with any of the typical tex-
tual features. The test performance of this simple
model is around 86%, which is higher than any
performance reported at the NLI-2013 evaluation
(on a different dataset, of course).

As expected, ensemble prediction allows to im-
prove the performance further. Gains are small,
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Dev CV Test
System Acc. Acc. m-F1 Acc.
Org. baseline .755 n/a .798 .798
(rchar6+ivec) .826 .737 .845 .845
Best Dev vote .843 .810 .841 .841
Closed Task Best n/a n/a .876 .876

Table 3: Results for the closed SPEECH track: or-
ganizer’s baseline, our two submissions (our best
result emphasized, best result in bold) and the best
ranked system. ’Acc.’ is accuracy and ’m-F1’ is
macro-averaged F1.

however: our best voting combination reached
87.4% accuracy, a gain of 1.2% over our best sin-
gle system. This was obtained by optimizing the
number of voting systems on the dev set, although
the cross-validation-optimized vote performs less
than 0.5% below our top submission on this track.

Our best result is 0.78% below the top ranked
system in the closed ESSAY track, a difference that
is not statistically significant and places our result
in a set of 7 groups tied for first (out of 17 groups).
We believe that this shows both how sophisticated
and how mature statistical models for NLI have
become. The confusion table for our best entry in
shown in Figure 1 (left).

3.3 SPEECH track

For the SPEECH track, we only considered the use
of transcripts and i-vectors, either together in a
joint feature space, or within a voting ensemble.
Also, we do not present the results of our first three
submissions, due to an incorrect scaling of the i-
vectors. The two systems we report here are:

1. A system with a single feature set (rchar6)
together with the unit-scaled i-vectors: the
use of 6-grams alone on the transcript clearly
under-performs, topping at 58% in our exper-
iments; the addition of i-vectors proved nec-
essary to get competitive performance.

2. The best vote, optimized on dev set perfor-
mance, includes 9 models: five with scaled i-
vectors (with rchar6, bow2, pos3, bow1,
pos2) and four using transcripts alone
(pos2, rchar5, rchar3, char3). This
shows that even though transcript features
underperform, they may be useful in an en-
semble.

Dev CV Test
System Acc. Acc. m-F1 Acc.
Org. baseline .783 n/a .790 .790
Early fusion .886 .886 .906 .906
Best Dev vote .910 .893 .903 .903
Best CV vote .902 .901 .917 .917
Top10 vote .891 .894 .912 .912
Top15 vote .896 .899 .917 .917
Best 1

2Sample#1 .898 .901 .919 .919
Best 1

2Sample#2 .901 .899 .916 .916
Closed Task Best n/a n/a .932 .932

Table 4: Results for the closed FUSION track: or-
ganizer’s baseline, our two submissions (our best
result emphasized, best result in bold) and the best
ranked system.

Results from Table 3 show that both submis-
sions outperform the baseline. The voting ensem-
ble actually achieved slightly lower performance
than the single system (by a handful of examples),
the accuracy of which is 2.9% below our best ES-
SAY track submission.

Our best result is 3.07% below the top ranked
system in the closed SPEECH track, a difference
that is statistically significant and places our result
alone below a set of 3 groups tied for first (out of
10 groups). The confusion table for our best entry
in shown in Figure 1 (middle).

3.4 FUSION track
For the FUSION track, we submitted several sys-
tems, as this was the core of our investigation:

1. A simple early fusion system plays the role of
the “single feature set” for the FUSION track:
it uses rchar6 on the essay text, char6 on
the transcripts and scaled i-vectors.

2. The best ensemble, selected to maximize dev
set performance (both order and number of
base models), contains 23 base models mix-
ing essay, transcripts and i-vector features.

3. The best ensemble, selected to maximize
cross-validation performance, contains 24
base models mixing essay, transcripts and i-
vector features.

4. The top-10 and top-15 ensembles of base
models, based on the order optimized on dev
set performance. The idea is to evaluate
whether optimizing the number of models in
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Figure 1: Confusion tables of our best system in each track: ESSAY (left), SPEECH and FUSION (right).

the ensemble on the same performance in-
deed overestimates the ensemble size.

5. Two half-sample ensembles, estimated by
splitting the cross-validated predictions in
halves, as described in Section 2.3 and swap-
ping the halves for ordering and selecting the
models.

Table 4 shows that most ensembles gain over
the early fusion approach, but the improvement is
limited to less than 1.5%. Only the “Best Dev
vote” ensemble displays a drop in performance.
This suggests that, as expected, the smaller dev set
provides a less reliable estimate of performance,
and performance improvements, than the cross-
validation or half-sampling approaches. The Top-
15 ensemble yields the same performance as the
“Best CV” vote, which contains 24 base models.
This shows that several of those base models bring
no actual gain in predictive performance, confirm-
ing that selecting the order and number of base
models in the ensemble tends to over-estimate the
ensemble size. The best overall result is provided
by the first half-sampling ensemble, which reaches
91.9% accuracy. This is less than .3% above, and
likely not significant compared to the three clos-
est following ensembles (“Best CV”, “Top15” and
“Best 1

2Sample#2”).
We also note that all FUSION systems, even the

simple early fusion, are clearly above the ESSAY

and SPEECH results, suggesting that using multi-
ple sources of information is indeed beneficial.

Our best result is 1.26% below the top ranked
system in the closed FUSION track, a difference
that is not statistically significant and places our
result in a set of 4 groups tied for first (out of 4
groups). Again, this shows that several approaches
are able to yield high accuracy and state-of-the-

art results on this difficult NLI task. The confu-
sion table for our best entry in shown in Figure 1
(right). This suggest a high level of predictive per-
formance, except for the confusion between Hindi
and Telugu, which was already noted in the 2013
evaluation.

4 Discussion

4.1 Voting and Optimal Ensembles
Our results confirm that ensemble methods, and
voting in particular, provide small, but system-
atic gains in predictive performance. Our work
suggests, however, that there is some variability
in results depending on how the ensemble is esti-
mated, and in particular on what estimator of pre-
dictive performance is used. For example, the as-
sessment of performance improvement is hardly
consistent across the dev, CV and test estimators,
although each estimator usually will produce en-
sembles that gain over a single system. We feel
that there may be room to improve the design on
ensembles, and voting ensembles in particular.

4.2 Are Characters the New Words?
Our work on Native Language Identification con-
firms that long character ngrams can yield state-of-
the-art performance, and often outperform word
ngrams. This confirms earlier work on similar
tasks such as Discriminating Similar Languages.
Clearly, the fact that we are able to handle large
ngram sizes allows the index to cover many word
tokens, as frequent words are typically also short.
Character ngrams may also be able to model word
stems, in many situations, without any linguis-
tic modelling or heuristics. The big advantage
of this approach is that it requires no linguis-
tic preprocessing, not even tokenization, and may
be applicable to languages with rich morphology,
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on which word-based approaches typically suffer.
The downside is the need to index many ngrams.
This is partly offset by 1) the fact that the number
of actually observed ngrams grows much slower
than the number of possible ngrams, and 2) mod-
ern indexing techniques such as hashing are essen-
tially insensitive to the theoretical feature set size.
Working with long ngrams offers the prospect of
developping versatile document categorizers that
work on several languages and character sets with
no prior linguistic tools (eg no segmentation for
Chinese or no vowelization for Arabic).
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