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Abstract

Learners need to find suitable documents to
read and prioritize them in an appropriate
order. We present a method of automati-
cally generating reading lists, selecting doc-
uments based on their pedagogical value
to the learner and ordering them using the
structure of concepts in the domain. Result-
ing reading lists related to computational lin-
guistics were evaluated by advanced learn-
ers and judged to be near the quality of
those generated by domain experts. We pro-
vide an open-source implementation of our
method to enable future work on reading
list generation.

1 Introduction
More scientific and technical literature is instantly
accessible than ever before, but this means that it
can also be harder than ever to determine what
sequence of documents would be most helpful for a
learner to read. Standard information retrieval tools,
e.g., a search engine, will find documents that are
highly relevant, but they will not return documents
about concepts that must be learned first, and they
will not identify which documents are appropriate
for a particular user. Learners would greatly benefit
from an automated approximation of the sort of
personalized reading list an expert tutor would
create for them. We have developed TechKnAcq
– short for Technical Knowledge Acquisition – to
automatically construct this kind of pedagogically
useful reading list for technical subjects.

Presented with only a “core corpus” of technical
material that represents the subject under study,
without any additional semantic annotation, Tech-
KnAcq generates a reading list in response to a
simple query. For instance, given a corpus of doc-
uments related to natural language processing, a

reading list can be generated for the query “machine
translation.” The reading list should be similar to
what a PhD student might be given by her advisor:
it should include prerequisite subjects that need to
be understood before attempting to learn material
about the query, and it should be tailored to the
individual needs of the student.

To generate such a reading list, we first infer the
conceptual structure of the domain from the core
corpus. We then expand this corpus to include a
greater amount of relevant, pedagogically useful
documents, and we relate concepts to one another
and to the individual documents in a concept graph
structure. Using this graph and a model of the
learner’s expertise, we generate personalized read-
ing lists for the user’s queries. In the following
sections, we describe these steps and then evaluate
the resulting reading lists for several concepts in
computational linguistics, compared to reading lists
generated by domain experts.

2 Generating a Concept Graph

A concept graph (Gordon et al., 2016) is a model
of a knowledge domain and related documents. To
generate a concept graph, we start with a core cor-
pus, consisting of technical documents, e.g., the
archives of an academic journal. We identify tech-
nical phrases in the core corpus and use these to
find additional, potentially pedagogically valuable
documents, such as reference works or tutorials. For
each document in the resulting expanded corpus,
we infer a distribution over a set of pedagogical
roles. We model the concepts in the domain using
topic modeling techniques and apply information-
theoretic measures to predict concept dependency
(roughly, prerequisite) relations among them. Asso-
ciating the documents of the expanded corpus with
these concepts results in a rich graph representation
that enables structured reading list generation.
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2.1 Pedagogical Corpus Expansion
Most technical corpora are directed at experts, so
they typically focus on presenting new methods
and results. They often lack more introductory
or instructional documents, and those covering
fundamental concepts. Therefore, before generating
a reading list, we want to automatically expand a
core technical corpus to include relevant documents
that are directed at learners at different levels.

Identifying terms Given a collection of docu-
ments, our first step is to identify a list of technical
terms that can be used as queries. We adapt the
lightweight, corpus-independent method presented
by Jardine (2014):
1. Generate a list of n-grams that occur two or

more times in the titles of papers in the corpus.
2. Filter unigrams that appear in a Scrabble dic-

tionary (e.g., common nouns).
3. Filter n-grams that begin or end with stop

words, such as conjunctions or prepositions.
(Remove “part of” but not “part of speech”.)

4. Filter any n-gram whose number of occur-
rences is within 25% of the occurrences of
a subsuming n+1-gram. E.g., remove “statis-
tical machine” because “statistical machine
translation” is nearly as frequent.

Based on manual inspection of the results, we
increased the threshold for subsumption to 30%
and added two steps:
5. Filter regular plurals if the list includes the

singular.
6. Order technical terms based on the density of

the citation graph for documents containing
them (Jo et al., 2007).

Jardine (2014) removes the bottom 75% of uni-
grams and bigrams by frequency (but keeps all
longer n-grams). The Jo et al. (2007) method is
better for comparing terms than simple frequency,
butmost technical termswe discover are also of high
quality, making aggressive filtering of unigrams and
bigrams unnecessary. Jardine also adds acronyms
(uppercase words in mixed-case titles), regardless
of frequency. We find acronyms from the initial
collection of terms and do not consider it necessary
to add singleton acronyms to our results – or those
that are also a common noun, e.g., TRIPS, since we
cannot assure case sensitivity in our searches.

Wikipedia and ScienceDirect We retrieve book
chapters from Elsevier’s ScienceDirect full-text
document service and encyclopedia articles from

Wikipedia. For Wikipedia, each term is queried in-
dividually, but only the top two results are included.
For ScienceDirect, terms are used to retrieve batches
of 50 results for each disjunction of 100 technical
terms. This identifies documents that are central
to the set of query terms rather than those with
minimal shared content, and it reduces the num-
ber of API requests required. These documents are
filtered based on heuristic relevance criteria: For
Wikipedia, we keep documents if they contain at
least 15 occurrences of at least five unique technical
terms. For ScienceDirect, we require at least 20
occurrences of at least 10 unique technical terms
since these documents tend to be longer.
Given this initial set of matching documents,

we can then exploit their natural groupings: For
Wikipedia, these are the categories that articles
belong to, while for ScienceDirect, they are the
books the chapters are from. For each grouping
of the matched documents, ordered by size, we
add the most relevant 75% of the documents that
belong to the grouping and pass a weaker threshold
of relevance to the query terms (four occurrences
of two unique technical terms). This adds back in
documents that would not pass the more stringent
filters above but are likely to be relevant based on
these groupings. These thresholds were manually
tuned to balance the accuracy and coverage of
expansion documents for these sources, but a full
consideration of the parameter space is left for
future work.

Tutorials Tutorials are often written by re-
searchers for use within their own groups or for
teaching a course and are then made available to
the broader community online. For developing sci-
entists in the field, these serve as valuable training
resources, but they are not indexed or collected in
any centralized way. Our approach for downloading
tutorials from the Web is as follows:
1. Search Google or Bing for each of the top-200

technical terms and for randomized disjunc-
tions of 10 technical terms for the full list.

2. Filter the results with the “.pdf” file extension
and containing the phrase “this tutorial.”

3. For each result found for more than one query,
perform OCR and export the document.

2.2 Computing Pedagogical Roles
Given an expanded corpus of pedagogically diverse
documents, we would like to infer a distribution for
each document of how well it fulfills different ped-
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agogical roles. Sheng et al. (2017) have created an
annotated corpus and trained a classifier to predict
these roles:

• Survey: A survey examines or compares
across a broad concept.

• Tutorial: Tutorials describe a coherent process
about how to use tools or understand a concept,
and teach by example.

• Resource: Does this document describe the
authors’ implementation of a tool, corpus, or
other resource that has been distributed?

• Reference work: Is this document a collection
of authoritative facts intended for others to
refer to? Reports of novel, experimental results
are not considered authoritative facts.

• Empirical results: Does this document de-
scribe results of the authors’ experiments?

• Software manual: Is this document a manual
describing how to use different components
of a piece of software?

• Other: This includes theoretical papers, pa-
pers that present a rebuttal for a claim, thought
experiments, etc.

For the training corpus – a subset of the pedagog-
ically expanded corpus – annotators were instructed
to select all applicable pedagogical roles for each
document. In the experiments we report, we use a
combination of the predicted roles and manually
set prior probabilities for the different document
sources (e.g., an article from Wikipedia is most
likely to be a Reference work).

2.3 Computing Concepts and Dependencies
To infer conceptual structure in a collection of doc-
uments, TechKnAcq must first identify the concepts
that are important in the document domain. We
model concepts as probability distributions over
words or phrases, known as topics (Griffiths and
Steyvers, 2004). Specifically, we use latent Dirichlet
allocation (LDA) (Blei et al., 2003), implemented
in MALLET (McCallum, 2002), to discover topics
in the core corpus.1
Many relations can hold between concepts, but

for reading list generation we are most interested
in concept dependency, which holds whenever one
concept would help you to understand another.
This is strongest in the case of prerequisites (e.g.,
First-order logic is a prerequisite for understand-
ing Markov logic networks). Gordon et al. (2016)

1 Concepts are not tied to standard topic modeling, e.g.,
they can also come from running Explicit Semantic Analysis
(Gabrilovich and Markovitch, 2007) using Wikipedia pages.

propose and evaluate approaches to predict concept
dependency relations between LDA topics, and we
adopt the average of their best-performing methods:

Word-similarity method The strength of depen-
dency between two topics is the Jaccard similarity
coefficient J(t1, t2) = t1∩t2

t1∪t2 , using the top 20 words
in the associated topic distributions. A limitation
of this method is that it is symmetric, while depen-
dency relations can be asymmetric.

Cross-entropy method Topic t1 depends on
topic t2 if the distribution (e.g., of top-k associ-
ated words) for t1 is better approximated by that
of t2 than vice versa – for cross entropy H func-
tion, H(t1, t2) > H(t2, t1) – and their joint entropy is
lower than a chosen threshold, namely, the average
joint entropy of topics known not to be dependent.

2.4 Concept Graphs

In a concept graph, concepts are nodes, which
may be connected by weighted, directed edges for
relations including concept dependency. These con-
cepts have associated features, most importantly
their distribution over words or phrases, which will
be used to match learners’ queries. Documents
are also represented as nodes, which have as their
features basic bibliographic information and their
pedagogical role distributions. Documents are con-
nected to concepts by weighted edges indicating
their relevance.

A natural basis for identifying the most relevant
documents for a concept is the distribution over top-
ics that LDA produces for each document. However,
high relevance of a topic to a document does not
entail that the document is highly relevant to the
topic. In particular, the LDA document–topic com-
position gives anomalous results for documents that
are not well aligned with the topic model. Therefore,
we also compute scores for a document’s relevance
to a topic based on the importance of each word
in the document to the topic. For each document,
we sum the weight of each word or phrase for the
topic (i.e., the number of times LDA assigned the
word to that topic in the entire corpus). This score
is then normalized by dividing by the length of the
document and then by the maximum score of any
document for that topic. The algorithm is given in
Figure 1. In the concept graph, we use the average
of the original document–topic composition weight
and this alternative measure.
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Input: topic model T , corpus C, document d
scores← nested hash table
foreach topic t ∈ T do

scores[t][d]← 0
max_score← 0
foreach document d ∈ C do

foreach word w ∈ d do
scores[t][d]← scores[t][d] +
topic_weight(w, t)

scores[t][d]← scores[t][d] / length(d)
if scores[t][d] > max_score then

max_score← scores[t][d]
foreach document d ∈ C do

scores[t][d]← scores[t][d] /max_score
return scores

Figure 1: Algorithm to score the relevance of docu-
ments to concepts.

3 Generating a Reading List

Given a concept graph linking each concept to the
concepts it depends upon and to the documents that
describe it, we generate a reading list by
1. computing the relevance of each concept to

the user’s query string,
2. performing a depth-first traversal of the depen-

dencies, starting from the best match, and
3. selecting documents for each concept based

on our model of the user’s expertise and the
documents’ pedagogical roles.

Learner models The learner model gives the
user’s level of familiarity with each concept in the
concept graph for the domain. By modeling the
user’s familiarity with concepts when we generate
personalized reading lists, we can prefer introduc-
tory material for new concepts and more advanced
documents for the user’s areas of expertise, omit-
ting them when they would be included only as
dependencies for another concept. Such a model
can be built from an initial questionnaire or inferred
from other inputs, such as documents the user has
marked as read. In the absence of a model of the
specific user, we fall back to generic “beginner,” “in-
termediate,” and “advanced” preferences, where all
concepts are assigned the same level of familiarity.

Concept relevance Given a query, we match con-
cepts based on lexical overlap with their associated
word distribution. For each concept with a match
score over a threshold, if the learner model indicates
that the user is a beginner at that concept, we tra-
verse concept dependencies until the relevance score
drops below a threshold. If concept d is a prerequi-
site of the matched topic m with weight P(d,m), the

relevance R(d) = M(d)+M(m) ·P(d,m), where M
is the function giving the lexical overlap strength.

Document selection When we include concept
dependencies, we bookend their presentation on
the reading list by presenting one or more introduc-
tory or overview documents, presenting documents
about the dependencies, and then proceeding to
more advanced documents about the original con-
cept. So, for instance, a reading list might include
an overview about Markov logic networks, then
present documents about the prerequisite concepts
First-order logic andMarkov network, and end with
more advanced documents about Markov logic net-
works. This avoids the confusion of presenting doc-
uments in strict concept dependency order, where
the learner may not have the basic understanding
of a subject to recognize why the prerequisites are
in the reading list and how they relate to the query
concept.

If the user already has advanced knowledge of a
concept, we do not follow dependencies. Instead,
we present three papers for that concept: a survey
and two empirical results papers. We keep track of
the concepts and documents that have been covered
by the reading list generation so that, for instance,
a matching topic that is also a dependency of a
stronger match will be included as a dependency
but not repeated later.

4 Evaluation
To enable comparison to an existing gold standard,
we evaluated TechKnAcq on the domain of compu-
tational linguistics and natural language processing.
Our evaluation covers 16 topics: For eight topics,
we evaluate the expert-generated Jardine (2014)
gold standard (JGS) reading lists and reading lists
generated by TechKnAcq for the same topics. We
additionally evaluated reading lists generated by
TechKnAcq for eight topics of central importance
in the domain, sampled from the list of “Major
evaluations and tasks” on the Wikipedia article on
natural language processing.2 In this section, we
describe the generation of a concept graph for the
evaluation domain, the evaluation methodology and
participants, and the results.

4.1 Evaluation Domain
As our core corpus, we used the ACL Anthology,
which consists of PDFs – many of them scanned –

2 https://en.wikipedia.org/wiki/Natural_language_
processing#Major_evaluations_and_tasks
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of conference and workshop papers and journal arti-
cles. There have been multiple attempts to produce
machine-readable versions of the corpus, but all
suffer from problems of text quality and extraction
coverage. We used the December 2016 release of
the ACL Anthology Network corpus (Radev et al.,
2009), which includes papers published through
2014. We automatically and manually enhanced
this corpus by adding missing text, removing doc-
uments not primarily written in English and ones
with only abstracts, and joining words split across
lines. After running the corpus expansion method
described in Section 2.1, the corpus includes:

• 22,084 papers from the ACL Anthology
• 1,949 encyclopedia articles from Wikipedia
• 1,172 book chapters from ScienceDirect
• 114 tutorials retrieved from the Web

The concept graph was generated using a 300-topic
LDA model, defined over bigrams. Names were
manually assigned to 238 topics, and 62 topics that
could not be assigned a name were excluded from
the concept graph.

4.2 Evaluation Method
We recruited 33 NLP researchers to take part in
the evaluation, primarily from an online mailing
list for the computational linguistics community.
Participants were required to have institutional af-
filiations and expertise in NLP. In the evaluation,
participants were presented with the reading lists3
and asked to change the order of documents to the
order they would recommend a novice in NLP to
read, i.e., ensuring that the first documents require
limited knowledge and the documents that follow
are predicated on the ones that came before. The
participants could also remove documents from the
reading list and suggest new documents be added
in any position. By tracking changes in the reading
lists, we can measure how many entries had to be
changed for the list to be satisfactory.
Three sets of reading lists were evaluated. The

first two were comparable lists, consisting of expert-
generated lists, and their TechKnAcq counterparts.
Together, these constitute the “comparison” set.
The third set consisted of additional TechKnAcq-
generated reading lists; this constitutes the “stand-
alone” set. In addition to this edit-based evaluation,
for the stand-alone set participants were asked to
rate their agreement with statements about read-

3 The order in which TechKnAcq and JGS reading lists
were presented was randomized and counterbalanced to control
for order effects.

ing lists generated by TechKnAcq for a qualitative
measure of a reading list’s pedagogical value.

4.3 Evaluation Results
The similarity of TechKnAcq reading lists to expert-
generated ones in terms of pedagogical value was
assessed based on the changes participants made
to the lists – the fewer documents that were moved,
deleted, or added, the better the participant consid-
ered the reading list. The total number of changes to
a reading list was measured using edit distance, but
we are also interested specifically in the stability
of document positions, the number of documents
deleted, and the number of documents added to the
reading lists.

Edit distance One of the most natural ways to
compute how much a participant modified a given
reading list overall is to use Levenshtein (1966) edit
distance. This is a method of computing the fewest
edit operations necessary to turn one sequence into
another, classically applied to spell-checking. The
operations are insertion, deletion, and substitution
of an item. So, for instance, if the participant re-
moves a paper and adds another in the same location
in the reading list, she has performed a substitution,
with an edit distance of one. If she then moves a pa-
per from the end of the reading list to the beginning,
that is a deletion from the old location followed
by an insertion. A limitation of edit distance is
that it does not take into account the length of the
sequence being modified. E.g., a long reading list
that is mostly considered to be good may have the
same number of edits as a shorter reading list that
is much worse. As such, we also normalized the
edit distance scores by dividing by the length of the
original reading list. For the comparable set, the
average edit distance was 0.22 for an expert reading
list and 0.33 for a TechKnAcq-generated one. The
edit distance for TechKnAcq reading lists for the
stand-alone set was 0.38. These results are shown
in Figure 2.

List stability One indicator of reading list qual-
ity is how stable a list is, i.e., whether a document
changes position within a list. This is computed
as the number of documents whose absolute posi-
tion in the reading list has changed, not including
documents that were added (written in) by the par-
ticipants. The mean level of stability for reading
lists is given in Table 1. Smaller means, paired with
smaller standard deviations indicate more stability
within the reading list for a query. Minimums and
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Average edit distance (normalized by original reading list length)

Query Average edit distance

Expert TechKnAcq

Concept to Text 0.31521739 0.36363636

Distributional Semantics 0.20089286 0.31972789

Domain Adaptation 0.21090909 0.27142857

Information Extraction 0.45925926 0.68181818

Lexical Semantics 0.30000000 0.57428571

Parser Evaluation 0.10000000 0.11868132

Statistical Machine Translation Models 0.09130435 0.14661654

Statistical Parsing 0.10101010 0.19542620

Coreference Resolution 0.35585586

Machine Translation 0.23725490

Morphological Segmentation 0.22493225

Parsing 0.47272727

Question Answering 0.42424242

Sentiment Analysis 0.67171717

Speech Recognition 0.27272727

Word Sense Disambiguation 0.41250000

Avg for comp. 0.22232413 0.33395260

Avg for extra 0.38399464
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Figure 2: Average Levenshtein edit distances for reading lists produced by domain experts and by
TechKnAcq, normalized by dividing by the original length of each reading list.

TechKnAcq-generated reading lists Expert-generated reading lists
Domain Norm Mean SD Min Max Len. Norm Mean SD Min Max Len.

Concept to Text 0.63 3.75 2.01 0 6 6 0.80 12.83 4.26 0 16 16
Distributional Semantics 0.66 4.62 2.93 0 7 7 0.71 10.00 4.73 0 14 14
Domain Adaptation 0.69 4.13 1.55 2 6 6 0.80 8.78 1.64 6 10 11
Information Extraction 0.64 7.04 3.25 0 10 11 0.65 5.85 3.72 0 9 9
Lexical Semantics 0.60 5.95 3.95 0 10 10 0.56 7.90 5.04 0 14 14
Parser Evaluation 0.77 10.00 1.41 9 12 13 0.75 3.00 1.41 1 4 4
Stat. Machine Trans. Models 0.84 15.88 3.40 10 19 19 0.55 2.75 2.05 0 5 5
Statistical Parsing 0.79 10.29 4.64 0 13 13 0.66 14.57 10.03 0 22 22

Average 0.70 0.69

Coreference Resolution 0.60 3.58 1.98 0 6 6
Machine Translation 0.55 8.25 4.74 0 13 15
Morphological Segmentation 0.67 6.00 2.78 0 9 9
Parsing 0.54 5.40 4.81 0 10 10
Question Answering 0.56 3.36 2.17 0 6 6
Sentiment Analysis 0.68 4.05 1.86 0 6 6
Speech Recognition 0.73 8.00 4.18 0 11 11
Word Sense Disambiguation 0.64 3.81 2.04 0 6 6

Average 0.62

Table 1: Changes to document positions in expert and TechKnAcq reading lists, for the comparison and
stand-alone sets. Lower numbers indicate greater list stability. Norm is the mean number of changes
normalized by dividing by the reading list length to allow comparison across lists.
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maximums are also reported, with TechKnAcq scor-
ing a minimum of zero more often, indicating that
participants left these lists unchanged more often
than the expert (JGS) lists. Note that, unlike for edit
distance, some changes to reading lists, such as mov-
ing the first document to the end, have an outsize
effect on the stability score compared with others,
like swapping the first and last documents. This in-
dicator is also sensitive to list length – the longer the
list, the more potential there is for changes within
the list. For the comparison set, the average stability
for TechKnAcq reading lists, normalized by length,
is 0.70 vs 0.69 for expert-generated reading lists,
indicating a similar level of document movement.

Deletions Fewer deletions signals a judgment that
the reading list contents are appropriate. Table 2
presents the mean number of deletions. When dele-
tions are normalized by reading list length, there are
fewer (0.16) for expert-generated reading lists than
for for TechKnAcq (0.23) on the comparison set.
While the stability scores were similar for the com-
parison set, the deletions suggest that TechKnAcq
does worse at selecting documents than experts
do. This may be a limitation of computing rele-
vance using a coarse-grained topic model or it may
reflect that TechKnAcq includes more documents
for concept dependencies than the participants felt
necessary.

Additions Participants were encouraged to add
any documents they felt belonged in the reading list
that were not present. However, this was relatively
labor-intensive, requiring the participant to either
remember or look up relevant papers and then enter
information about them. As such, relatively few
documents were added. Statistics for additions are
given in Table 3, but the rate with which documents
were added is similar for TechKnAcq and expert-
generated reading lists.

Qualitative For reading lists generated for the
stand-alone set, participants qualitatively evaluated
whether they were appropriate to use in a pedagogi-
cal setting. They were asked to rate their agreement
with these statements on a scale from 1 (strongly
disagree) to 7 (strongly agree):
1. This reading list is complete.
2. This is a good reading list for a PhD student.
3. I would use this reading list in one of my

classes.
4. I would send this reading list to a colleague of

mine.

5. This is a good reading list for a master’s stu-
dent.

6. I could come up with a more complete reading
list than the one provided.

7. If a PhD read the articles in this reading list in
order, they would master the concepts.

Cronbach’s α was calculated for each set of ques-
tions; high values (α > .8) indicate that each set of
items were internally consistent, and closely related
as a set (Santos, 1999). Thus, we averaged these
ratings (with responses to Statement 6 inverted) for
a composite measure of the pedagogical value of
each reading list. Results indicate that, on average,
the reading lists have moderate-to-high potential.
These results are in Table 4.

5 Related Work

Research on information retrieval provides a his-
torically sizable literature describing methods to
catalog, index, and query document collections, but
it focuses on the task of finding the most relevant
documents for a given query (Witten et al., 1999).
Wang et al. (2007) build a repository of learning
objects characterized bymetadata and then personal-
ize recommendations based on a user’s preferences.
Tang (2008) introduces the problem of reading list
generation and addresses it using collaborative fil-
tering techniques. Ekstrand et al. (2010) provide a
good run-through of possible competition based on
collaborative filtering.
The doctoral work of Jardine (2014) addresses

the question of building reading lists over corpora
of technical papers. Given an input word, phrase,
or entire document, Jardine identifies a weighted
set of relevant topics using an LDA model trained
on a corpus and then selects the most relevant
papers for each topic using his ThemedPageRank
metric. This is an unstructured method for reading
list generation, while TechKnAcq uses concept
dependency relations to order the presentation of
topics. Jardine’smethod selects documents based on
their importance to a topic butwithout consideration
of the pedagogical roles the documents serve for
different learner models.

Jardine’s work provides a set of expert-generated
gold-standard reading lists, which we have reused
in our evaluation. Jardine asked experts to compose
gold standard reading lists and compared these to
the reading lists generated by his system, using a
citation substitution coefficient to judge how similar
a paper in his output is to that chosen by an expert.

267



TechKnAcq-generated reading lists Expert-generated reading lists
Domain Norm Mean SD Min Max Len. Norm Mean SD Min Max Len.

Concept to Text 0.17 1.00 1.28 0 4 6 0.31 4.92 4.27 0 14 16
Distributional Semantics 0.73 5.08 1.04 3 7 7 0.09 1.23 1.59 0 4 14
Domain Adaptation 0.11 0.78 1.09 0 3 7 0.19 2.11 1.05 0 4 11
Information Extraction 0.12 1.37 1.71 0 5 11 0.50 4.48 1.19 2 7 9
Lexical Semantics 0.26 2.55 3.43 0 10 10 0.07 1.00 1.62 0 5 14
Parser Evaluation 0.08 1.00 1.41 0 3 13 0.00 0.00 0.00 0 0 4
Stat. Machine Trans. Models 0.18 3.50 2.33 1 7 19 0.05 0.25 0.71 0 2 5
Statistical Parsing 0.19 2.43 1.81 0 4 13 0.11 2.43 2.37 0 7 22

Average 0.23 0.16

Coreference Resolution 0.05 0.27 0.47 0 1 6
Machine Translation 0.08 1.13 2.80 0 8 15
Morphological Segmentation 0.23 2.11 2.32 0 6 9
Parsing 0.08 0.83 1.60 0 4 10
Question Answering 0.06 0.36 0.63 0 2 6
Sentiment Analysis 0.07 0.41 0.80 0 3 6
Speech Recognition 0.18 2.00 1.80 0 5 11
Word Sense Disambiguation 0.07 0.44 0.89 0 3 6

Average 0.10

Table 2: Number of documents participants deleted from expert and TechKnAcq reading lists, for the
comparison and stand-alone sets. Lower numbers indicate better document selection. Norm is the mean
number of deletions normalized by dividing by the reading list length to allow comparison across lists.

TechKnAcq-generated reading lists Expert-generated reading lists
Domain Norm Mean SD Min Max Len. Norm Mean SD Min Max Len.

Concept to Text 0.00 0.00 0.00 0 0 6 0.00 0.00 0.00 0 0 16
Distributional Semantics 0.11 0.77 1.17 0 3 7 0.04 0.54 0.78 0 2 14
Domain Adaptation 0.06 0.44 1.01 0 3 7 0.04 0.44 1.01 0 3 11
Information Extraction 0.04 0.48 0.98 0 4 11 0.02 0.19 0.48 0 2 9
Lexical Semantics 0.09 0.85 1.69 0 5 10 0.00 0.00 0.00 0 0 14
Parser Evaluation 0.08 1.00 1.41 0 3 13 0.13 0.50 0.58 0 1 4
Stat. Machine Trans. Models 0.07 1.38 1.41 0 4 19 0.08 0.38 0.74 0 2 5
Statistical Parsing 0.07 0.86 1.46 0 3 13 0.02 0.43 1.13 0 3 22

Average 0.06 0.04

Coreference Resolution 0.10 0.58 1.24 0 4 6
Machine Translation 0.01 0.13 0.35 0 1 15
Morphological Segmentation 0.06 0.56 1.01 0 3 9
Parsing 0.04 0.40 0.97 0 3 10
Question Answering 0.02 0.14 0.53 0 2 6
Sentiment Analysis 0.08 0.48 0.93 0 3 6
Speech Recognition 0.05 0.56 1.33 0 4 11
Word Sense Disambiguation 0.05 0.31 0.70 0 2 6

Average 0.05

Table 3: Number of documents participants added to expert and TechKnAcq reading lists, for the comparison
and stand-alone sets. Lower numbers indicate better original reading lists. Norm is the mean number of
additions normalized by dividing by the reading list length to allow comparison across lists.
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N Mean SD Min Max α

Coreference Resolution 12 4.22 1.18 1.33 5.50 0.89
Machine Translation 8 4.04 1.95 1.00 5.83 0.97
Morphological Segmentation 9 3.41 1.73 1.00 5.50 0.96
Parsing 10 4.32 1.63 1.17 6.83 0.97
Question Answering 14 3.80 1.51 1.33 5.50 0.93
Sentiment Analysis 22 4.18 1.25 1.00 6.67 0.93
Speech Recognition 9 4.41 1.35 2.00 6.83 0.91
Word Sense Disambiguation 16 4.40 1.23 1.17 6.50 0.92

Table 4: Descriptive statistics for the pedagogical value of each TechKnAcq reading list, with 1 = weak
pedagogical potential and 7 = strong pedagogical potential. N is the number of participants who rated the
reading list for each query.

He also performed user satisfaction evaluations,
where thousands of users of the Qiqqa document
management system evaluated the quality of the
technical terms and documents generated from their
libraries.
In Section 2.1, we use a variant of Jardine’s

method for identifying technical terms in a set of
documents, in order to run queries for expanding a
core technical corpus to includemore pedagogically
helpful documents. There is significant prior work
on identifying key phrases or technical terminology,
e.g., Justeson and Katz (1995). We could also select
phrases based on TF–IDF weighting of n-grams or
using the highest weighted phrases in the LDA topic
model. However, since the technical terms are only
used to find additional documents, whose relevance
is then determined by the LDA topic model and
the document–topic relevance algorithm (Figure 1),
the accuracy of technical term identification is not
critical to our results. As this was not a focus of our
research, Jardine’s method was chosen largely for
its simplicity.

6 Conclusions
We have presented the first system for generating
reading lists based on inferred domain structure and
models of learners. Ourmethod builds a topic-based
index for a technical corpus, expands that corpus
with relevant pedagogically oriented documents,
provides a preliminary encoding of the pedagogical
roles played by individual documents, and builds
a personalized, structured reading list for use by
learners.
We predict that the greatest performance gains

to be generated in future work are likely to come
from more detailed and complete studies of the
pedagogical value of specific documents (and types
of documents) for individual learners. Thus, an
important direction for future investigation may be

to characterize a learner’s knowledge in order to
be able to score the pedagogical value of reading
material for that person rather than for the generic
learner models used in our evaluation.

We have demonstrated that the quality of reading
lists generated in this way may be quantitatively
compared to existing expert-generated lists and
that our system approaches the performance of hu-
man experts. We are releasing our implementation4
to support future efforts and serve as a basis for
comparison.
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