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Abstract

We investigate the utility of different aux-
iliary objectives and training strategies
within a neural sequence labeling ap-
proach to error detection in learner writ-
ing. Auxiliary costs provide the model
with additional linguistic information, al-
lowing it to learn general-purpose com-
positional features that can then be ex-
ploited for other objectives. Our experi-
ments show that a joint learning approach
trained with parallel labels on in-domain
data improves performance over the pre-
vious best error detection system. While
the resulting model has the same number
of parameters, the additional objectives al-
low it to be optimised more efficiently and
achieve better performance.

1 Introduction

Automatic error detection systems for learner
writing need to identify various types of error
in text, ranging from incorrect uses of function
words, such articles and prepositions, to seman-
tic anomalies in content words, such as adjective—
noun combinations. To tackle the scarcity of error-
annotated training data, previous work has inves-
tigated the utility of automatically generated un-
grammatical data (Foster and Andersen, 2009; Fe-
lice and Yuan, 2014), as well as explored learning
from native well-formed data (Rozovskaya and
Roth, 2016; Gamon, 2010).

In this work, we investigate the utility of sup-
plementing error detection frameworks with addi-
tional linguistic information that can be extracted
from the available error-annotated learner data.
We construct a neural sequence labeling system
for error detection that allows us to learn better
representations of language composition and de-
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tect errors in context more accurately. In addition
to predicting the binary error labels, we experi-
ment with also predicting additional information
for each token, including token frequency and the
specific error type, which can be extracted from
the existing data, as well as part-of-speech (POS)
tags and dependency relations, which can be gen-
erated automatically using readily available toolk-
its.

These auxiliary objectives provide the sequence
labeling model with additional linguistic informa-
tion, allowing it to learn useful compositional fea-
tures that can then be exploited for error detec-
tion. This can be seen as a type of multi-task
learning, where the model learns better composi-
tional features via shared representations with re-
lated tasks. While common approaches to multi-
task learning require randomly switching between
different tasks and datasets, we demonstrate that a
joint learning approach trained on in-domain data
with parallel labels substantially improves error
detection performance on two different datasets.
In addition, the auxiliary labels are only required
during the training process, resulting in a better
model with the same number of parameters.

In the following sections, we describe our ap-
proach to the task, systematically compare the in-
formativeness of various auxiliary loss functions,
investigate alternative training strategies, and ex-
amine the effect of additional training data.

2 Error Detection Model

In addition to the scarcity of errors in the train-
ing data (i.e., the majority of tokens are correct),
recent research has highlighted the variability in
manual correction of writing errors: re-annotation
of the CoNLL 2014 shared task test set by 10
annotators demonstrated that even humans have
great difficulty in agreeing how to correct writ-
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ing errors (Bryant and Ng, 2015). Given the chal-
lenges of the all-errors correction task, previous
research has demonstrated that detection models
can detect more errors than systems focusing on
correction (Rei and Yannakoudakis, 2016), and
therefore provide more extensive feedback to the
learner.

Following Rei and Yannakoudakis (2016), we
treat error detection as a sequence labeling task —
each token in the input sentence is assigned a label,
indicating whether it is correct or incorrect given
the current context — and construct a bidirectional
recurrent neural network for detecting writing er-
rors. The model is given a sequence of tokens as
input, which are then mapped to a sequence of dis-
tributed word embeddings [z1, ..., x7]. These em-
beddings are then given as input to a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) mov-
ing through the sentence in both directions. At
each step, the LSTM calculates a new hidden rep-
resentation based on the current token embedding
and the hidden state from the previous step.

h?) = LST™(zy, b)) (1)

W = LSTM(a, b)) )

Next, the network includes a tanh-activated
feedforward layer, using the hidden states from
both LSTMs as input, allowing the model to learn
more complex higher-level features. By combin-
ing the hidden states from both directions, we are
able to have a vector that represents a specific to-
ken but also takes into account context on both
sides:

dy = tanh(W,h") + Wn) 3)
where Wy and W}, are fully-connected weight ma-
trices.

The final layer calculates label predictions
based on the layer d;. The softmax activation func-
tion is used to output a normalised probability dis-
tribution over all the possible labels for each to-
ken:

yy = softmax(W,d;) 4)

where W), is a weight matrix and y; is a vector
with a position for each possible label. In order
to find the predicted label, we return the element
with the highest predicted value.
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The model is optimised using cross entropy,
which is equivalent to optimising the negative log-
likelihood of the correct labels:

E==Y" Hnrlog(yr)
t k

where y; 1. is the predicted probability of token ¢
having label %, and y ;. has the value 1 if the cor-
rect label for token ¢ is k, and the value O other-
wise.

We also make use of the character-level exten-
sion described by Rei et al. (2016). Each token is
separated into individual characters and mapped
to character embeddings. Using a bidirectional
LSTM and a hidden feedforward component, the
character vectors are composed into a character-
based token representation. Finally, a dynamic
gating function is used to combine this represen-
tation with a regular token embedding, taking ad-
vantage of both approaches. This component al-
lows the model to capture useful morphological
and character-based patterns, in addition to learn-
ing individual token-level vectors of common to-
kens.

&)

3 Auxiliary Loss Functions

The model in Section 2 learns to assign error labels
to tokens based on the manual annotation available
in the training data. However, there are nearly lim-
itless ways of making writing errors and learning
them all explicitly from hand-annotated examples
is not feasible. In addition, writing errors can be
very sparse, leaving the system with very little use-
ful training data for learning error patterns. In or-
der to train models that generalise well with lim-
ited training examples, we would want to encour-
age them to learn more generic patterns of lan-
guage, grammar, syntax and composition, which
can then be exploited for error detection.
Multi-task learning allows models to learn from
multiple objectives via shared representations, us-
ing information from related tasks to boost per-
formance on tasks for which there is limited tar-
get data. For example, Plank et al. (2016) ex-
plored the option of using word frequency as an
auxiliary loss function for part-of-speech (POS)
tagging. Rei (2017) describe a semi-supervised
framework for multi-task learning, integrating lan-
guage modeling as an additional objective. Fol-
lowing this work, we adapt auxiliary objectives
for the task of error detection, and further experi-



words My husband was following a course all the week in Berne

target [ c c 1 c c c i ¢ c c c
freq 5 3 8 4 8 5 7 9 5 8 0 10
lang fr fr fr fr fr fr fr fr fr fr fr fr

error c c c RV c c c UD c c c c
POS APP$ NN1 VBDZ VVG AT1  NNI1 DB AT NNTI1 1T NP1
GR det ncsubj aux null det dobj ncmod det ncmod ncmod  dobj  null

Table 1: Alternative labels for an example sentence from the FCE training data.

ment with a larger set of possible objectives. In- G | | yi |

stead of only predicting the correctness of each i i

token in context, we extend the system to predict I dy’ I [ dy ]
additional information and labels for every token.

The information from these auxiliary objectives hy

is propagated into the weights of the model dur- %}D—
ing training, without requiring the extra labels at

testing time. While common neural approaches to Xt

multi-task learning switch randomly between dif-
ferent tasks and datasets, we use a joint learning ~ Figure 1: The bidirectional recurrent architecture
approach trained on in-domain data only. for one time-step, using one main objective and

The lower parts of the model function similarly ~ one auxiliary objective.
to the system described in Section 2. Token repre-
sentations are first passed through a bidirectional . . -

. . . where is the predicted probability of the ¢-th

LSTM in order to build context-specific represen- Yik P P Y

' octive i token having label k for the n-th task; 7" has
tations. After that, each separate objective is as- ving n > Ytk

(n)

signed an individual hidden layer: value 1 only if that label is correct, and O oth-
erwise; «,, is the weight for task n. Since our

b i i .

din) _ W}n) hgf) + Wb(n) hi ) (6) ~ main goal is to develop more accurate error de

tection models, «,, allows us to control how much
where W}") and Wb(n) are weight matrices spe-  the model depends on the n-th auxiliary task. For
cific to the n-th task. While the recurrent compo-  example, setting the value of «, to 0.1 means any
nents are shared between all objectives, the hid-  updates for the n-th task will have 10 times less
den layers allow parts of the model to be cus-  importance. We tune a specific weight for each
tomised for a specific task, learning higher-level  task by trying values [0.05,0.1,0.2,0.5,1.0] and
features and controlling how the information from  choosing the ones that achieved the highest result
forward- and backward-moving LSTMs is com-  on the development data.

bined. The main goal of our system is to classify to-
Next, a task-specific output distribution is cal-  kens as being correct or incorrect, and this objec-
culated based on dg"); tive is included in all configurations. In addition,
we experiment with a number of auxiliary loss ob-
yt(”) = softmax( Wén)dl@) (7)  Jectives that are only required during training:
where Wy(n) is a weight matrix and ygn) has the di- e frequency: Plank et al. (2016) propose us-
mensionality of the total number of labels for the ing word frequency as an additional objec-
n-th task. Figure 1 presents a diagram of the net- tive for POS tagging, since words with cer-
work with n = 2, although the number of possible tain POS tags can be more likely to belong to
auxiliary tasks can also be larger. specific frequency groups. The frequency of
The whole model is optimised by minimising a token w in the training corpus is discretized
the cross-entropy for every task and every token: as int(log(freqy,,(w)) and used as an auxil-
iary label.

E—_ a7 oo (y™ ) e error type: While the task is defined as bi-
Zt: zn: Zk: n Yk g(yt’k ) nary classification, available learner data also
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FCE DEV FCE TEST

predicted correct P R Fys | predicted correct P R  Fys
R&Y (2016) ‘ - - 545 282 46.0 3898 1798 46.1 285 4l1.1
Main system 1837 1140 623 246 47.6 2653 1468 557 233 434
+ frequency 1870 1111 59.7 239 458 2702 1461 544 232 427
+ language 1929 1150 604 24.8 46.6 2690 1458 549 23.1 428
+ errors 1905 1206 63.3 26.0 49.2 2778 1584 57.0 25.1 455
+ POS 2199 1334 60.7 28.8 49.7 3322 1803 543 28.6 46.0
+ GR 1952 1207  62.1 26.0 484 2887 1654 579 262 464
+ err POS GR 2087 1320 63.2 28.4 50.8 3090 1781.0 57.7 283 47.7

Table 2: Error detection results on the FCE dataset using different auxiliary loss functions.

contains more fine-grained labels per error.
For example, the FCE (Yannakoudakis et al.,
2011) training set has 75 different labels for
individual error types, such as missing deter-
miners or incorrect verb forms. By giving the
model access to these labels, the system can
learn more fine-grained error patterns that are
based on the individual error types.

first language: Previous work has experi-
mentally demonstrated that the distribution of
writing errors depends on the first language
(L1) of the learner (Rozovskaya and Roth,
2011; Chollampatt et al., 2016). We inves-
tigate the usefulness of L1 as an auxiliary ob-
jective during training.

part-of-speech: POS tagging is a well-
established sequence labeling task, requiring
the model to disambiguate the word types
based on their contexts. We use the RASP
(Briscoe et al., 2006) parser to automatically
generate POS labels for the training data, and
include them as additional objectives.

grammatical relations: We include as an
auxiliary objective the type of the Grammat-
ical Relation (GR) in which the current to-
ken is a dependent, in order to incentivise the
model to learn more about semantic composi-
tion. Again we use the RASP parser, which is
unlexicalised and therefore more suitable for
learner data where spelling and grammatical
errors are common.

Table 1 presents the labels for each of the auxil-
iary tasks for an example sentence from the FCE
training data.

The auxiliary objectives introduce additional
parameters into the model, in order to construct the

36

hidden and output layers. However, these compo-
nents are required only during the training process;
at testing time, these can be removed and the re-
sulting model has the same architecture and num-
ber of parameters as the baseline, with the only
difference being in how the parameters were opti-
mised.

4 Evaluation setup and datasets

Rei and Yannakoudakis (2016) investigate a num-
ber of compositional architectures for error detec-
tion, and present state-of-the-art results using a
bidirectional LSTM. We follow their experimen-
tal setup and investigate the impact of auxiliary
loss functions on the same datasets: the First Cer-
tificate in English (FCE) dataset (Yannakoudakis
et al., 2011) and the CoNLL-14 shared task test
set (Ng et al., 2014b).

FCE contains texts written by non-native learn-
ers of English in response to exam prompts elic-
iting free-text answers. The texts have been
manually annotated with error types and error
spans by professional examiners, which Rei and
Yannakoudakis (2016) convert to a binary cor-
rect/incorrect token-level labeling for error detec-
tion. For missing-word errors, the error label is
assigned to the next word in the sequence. The re-
leased version contains 28,731 sentences for train-
ing, 2,222 sentences for development and 2,720
sentences for testing. The development set was
randomly sampled from the training data, and the
test set contains texts from a different examination
year.

The CoNLL-14 test set contains 50 texts an-
notated by two experts. Compared to FCE, the
texts are more technical and are written by higher-
proficiency learners. In order to make our results
comparable to Rei and Yannakoudakis (2016), we



CoNLL-14 TEST1 CoNLL-14 TEST2

predicted | correct P R Fys correct P R Fys
R&Y (2016) 4449 683 154 228 164 1052 23.6 251 239
Main system 3222 452 14.1 151 143 750 233 179 219
+ frequency 3428 484 14.1 16.2 145 790 23.1 18.8  22.0
+ language 3633 502 13.8 168 142 828 228 197 220
+ errors 3582 557 156 186 16.1 890 250 212 240
+ POS 3938 657 16.7 220 175 1045 26.5 249 26.2
+ GR 3945 593 150 198 157 912 232 217 228
+ err POS GR 3722 621 16.7 20.8 174 979 263 233 256

Table 3: Error detection results on the CoNLL-14 test set using different auxiliary loss functions.

also evaluate our models on the two CoNLL-
14 test annotations and train our models only
on the public FCE dataset. This corresponds to
their FCE-public model that treats the CoNLL-14
dataset as an out-of-domain test set corpus.

Following the CoNLL-14 shared task, we also
report Fp 5 as the main evaluation metric. How-
ever, while the shared task focused on correction
and calculated Fy 5 over error spans using multi-
ple annotations, we evaluate token-level error de-
tection performance. Following recommendations
by Chodorow et al. (2012), we also report the raw
counts for predicted and correct tokens.

For pre-processing, all the texts are lowercased
and digits are replaced with zeros for the token-
level representations, although the character-based
component has access to the original version of
each token. Tokens that occur only once are
mapped to a single OOV token, which is then used
to represent previously unseen tokens during test-
ing. The word embeddings have size 300 and
are initialised with publicly available word2vec
(Mikolov et al., 2013) embeddings trained on
Google News. The LSTM hidden layers have
size 200 and the task-specific hidden layers have
size 50 with tanh activation. The model is opti-
mised using Adadelta (Zeiler, 2012) and training
is stopped based on the error detection F{ 5 score
on the development set. We implement the pro-
posed framework using Theano and make the code
publicly available online.'

5 Results

Table 2 presents the results for different sys-
tem configurations trained and tested on the FCE
dataset. The first row contains results from the
current state-of-the-art system by Rei and Yan-

'http://www.marekrei.com/projects/seqlabaux

nakoudakis (2016), trained on the same FCE
data. The main system in our experiments is the
bi-directional LSTM error detection model with
character-based representations, as described in
Section 2. We then use this model and test the ef-
fect on performance when adding each of the aux-
iliary loss functions described in Section 3 to the
training objective.

The auxiliary frequency loss improves perfor-
mance for POS tagging (Plank et al., 2016); how-
ever in error detection the same objective does not
help. While certain POS tags are more likely to be-
long to specific frequency classes, there is less rea-
son to believe that word frequency provides a use-
ful cue for error detection. A similar drop in per-
formance is observed for the auxiliary loss involv-
ing the first language of the learner. It is likely that
the system learns specific types of features for the
L1 identification auxiliary task (such as the pres-
ence of certain words or phrases), and these are
not directly useful for error detection. Investigat-
ing different architectures for incorporating the L1
as an auxiliary task is an avenue for future work.

The integration of fine-grained error types
through an auxiliary loss function gives an abso-
lute improvement of 2.1% on the FCE test set.
While the baseline only differentiates between
correct and incorrect tokens, the auxiliary loss al-
lows the system to learn feature detectors that are
specialised for individual error types, thereby also
making these features available to the binary error
detection component.

The inclusion of POS tags and GRs gives con-
sistent improvements over the basic configura-
tion. Both of these tasks require the system to
understand how each token behaves in the sen-
tence, thereby encouraging it to learn higher-
quality compositional representations. If the ar-
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FCE CoNLL-14 CoNLL-14
Aux dataset  TEST TEST1 TEST2
None 434 14.3 21.9
CoNLL-00 42.5 154 223
CoNLL-03 394 12.5 20.0
PTB-POS 44.4 14.1 20.7

Table 4: Results on error detection when the
model is pre-trained on different tasks.

chitecture is able to predict the POS tags or GR
type based on context, then it can use the same
features to identify irregular sequences for error
detection. The added advantage of these loss func-
tions over the L1 and the fine-grained error types
is that they can be automatically generated and re-
quire no additional manual annotation. As far as
we know, this is the first time automatically gen-
erated GR labels have been explored as objectives
in a multi-task sequence labeling setting.

Finally, we evaluate a combination system, inte-
grating the auxiliary loss functions that performed
the best on the development set. The combina-
tion architecture includes four different loss func-
tions: the main binary incorrect/correct label, the
fine-grained error type, the POS tag and the GR
type. We left out frequency and L1, as these low-
ered performance on the development set. The
resulting system achieves 47.7% Fy.5, which is
a 4.3% absolute improvement over the baseline
without auxiliary loss functions, and a 6.6% abso-
lute improvement over the current state-of-the-art
error detection system by Rei and Yannakoudakis
(2016), trained on the same FCE dataset.

Table 3 contains the same set of evaluations on
the two CoNLL-14 shared task annotations. Word
frequency and L1 have nearly no effect, whereas
the fine-grained error labels lead to roughly 2%
absolute improvement over the basic system. The
inclusion of POS tags in the auxiliary objective
consistently leads to the highest Fj 5. While GRs
also improve performance over the main system,
their overall contribution is less compared to the
FCE test set, which can be explained by the differ-
ent writing style in the CoNLL data.

6 Alternative Training Strategies

In contrast to our approach, most previous work on
multi-task learning has focused on optimising the
same system on multiple datasets, each annotated
with one specific type of labels. To evaluate the
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FCE CoNLL-14 CoNLL-14
Aux dataset  TEST TEST1 TEST2
None 434 14.3 21.9
CoNLL-00 30.3 13.0 17.6
CoNLL-03 31.0 13.1 18.2
PTB-POS 31.9 11.5 14.9

Table 5: Results on error detection when training
is alternated between the two tasks (e.g., error de-
tection and POS tagging) and datasets.

effectiveness of our approach, we implement two
alternative multi-task learning strategies for error
detection. For these experiments, we make use of
three established sequence labeling datasets that
have been manually annotated for different tasks:

e The CoNLL 2000 dataset (Tjong Kim Sang
and Buchholz, 2000) for chunking, contain-
ing sections of the Wall Street Journal and
annotated with 22 different labels.

The CoNLL 2003 corpus (Tjong Kim Sang
and De Meulder, 2003) contains texts from
the Reuters Corpus and has been annotated
with 8 labels for named entity recognition
(NER).

The Penn Treebank (PTB) POS corpus (Mar-
cus et al., 1993) contains texts from the Wall
Street Journal and has been annotated with 48
POS tags.

The CoNLL-00 dataset was identified by Bingel
and Sggaard (2017) as being the most useful ad-
ditional training resource in a multi-task setting;
The CoNLL-03 NER dataset has a similar label
density as the error detection task; and the PTB
corpus was chosen as POS tags gave consistently
good performance for error detection on both the
development and test sets, as demonstrated in the
previous section.

In the first setting, each of these datasets is used
to train a sequence labeling model for their re-
spective tasks, and the resulting model is used to
initialise a network for training an error detection
system. While it is common to preload word em-
beddings from a different model, this strategy ex-
tends the idea to the compositional components
of the network. Results in Table 4 show the per-
formance of the error detection model with and
without pre-training. There is a slight improve-
ment when pre-training the model on the CoNLL-
00 dataset, but the increase is considerably smaller



compared to the results in Section 5. One of the
main advantages of multi-task learning is regular-
isation, actively encouraging the model to learn
more general-purpose features, something which
is not exploited in this setting since the training
happens in separate stages.

In the second set of experiments, we explore the
possibility of training on the second domain and
task at the same time as error detection. Similar to
Collobert and Weston (2008), we randomly sam-
ple a sentence from one of the datasets and update
the model parameters for that specific task. By al-
ternating between the two tasks, the model is able
to retain the regularisation benefits. However, as
shown in Table 3, this type of training does not im-
prove error detection performance. One possible
explanation is that the domain and writing style of
these auxiliary datasets is very different from the
learner writing corpus, and the model ends up op-
timising in an unnecessary direction. By includ-
ing alternative labels on the same dataset, as in
Section 5, the model is able to extract more in-
formation from the domain-relevant training data
and thereby achieve better results.

7 Additional Training Data

The main benefits of multi-task learning are ex-
pected in scenarios where the available task-
specific training data is limited. However, we
also investigate the effect of auxiliary objectives
when training on a substantially larger training
set. More specifically, we follow Rei and Yan-
nakoudakis (2016), who also experimented with
augmenting the publicly available datasets with
training data from a large proprietary corpus. In
total, we train this large model on 17.8M to-
kens from the Cambridge Learner Corpus (CLC,
Nicholls 2003), the NUS Corpus of Learner En-
glish (NUCLE, Dahlmeier et al. 2013), and the
Lang-8 corpus (Mizumoto et al., 2011).

We use the same model architecture as Rei and
Yannakoudakis (2016), adding only the auxiliary
objective of predicting the automatically gener-
ated POS tag, which was the most successful ad-
ditional objective based on the development ex-
periments. Table 6 contains results for evaluating
this model, when trained on the large training set.
On the FCE test data, the auxiliary objective does
not provide an improvement and the model per-
formance is comparable to the results by Rei and
Yannakoudakis (2016) (R&Y). Since most of the
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R&Y Fos P R Fps
FCE DEV 60.7 75.1 351 61.2
FCE TEST 64.3 784 370 64.1
CoNLL TEST1 34.3 447 20.5 36.1
CoNLL TEST2 44.0 63.8 20.8 45.1

Table 6: Error detection results using auxiliary ob-
jectives, trained on additional data.

large training set comes from the CLC, which is
quite similar to the FCE dataset, it is likely that the
available training data is sufficient and the auxil-
iary objective does not offer an additional benefit.
However, there are considerable improvements on
the CoNLL test sets, with 1.8% and 1.1% absolute
improvements on the corresponding benchmarks.
Only small amounts of the training data are simi-
lar to the CoNLL dataset, and including the aux-
iliary objective has provided a more robust model
that delivers better performance on different writ-
ing styles.

8 Previous Work

Error detection: Early error detection systems
were based on manually constructed error gram-
mars and mal-rules (e.g., Foster and Vogel 2004).
More recent approaches have exploited error-
annotated learner corpora and primarily treated the
task as a classification problem over vectors of
contextual, lexical and syntactic features extracted
from a fixed window around the target token. Most
work has focused on error-type specific detec-
tion models, and in particular on models detecting
preposition and article errors, which are among the
most frequent ones in non-native English learner
writing (Chodorow et al., 2007; De Felice and Pul-
man, 2008; Han et al., 2010; Tetreault et al., 2010;
Han et al., 2006; Tetreault and Chodorow, 2008;
Gamon et al., 2008; Gamon, 2010; Kochmar and
Briscoe, 2014; Leacock et al., 2014). Maximum
entropy models along with rule-based filters ac-
count for a substantial proportion of utilized tech-
niques. Error detection models have also been an
integral component of essay scoring systems and
writing instruction tools (Burstein et al., 2004; An-
dersen et al., 2013; Attali and Burstein, 2006).
The Helping Our Own (HOO) 2011 shared task
on error detection and correction focused on a
set of different errors (Dale and Kilgarriff, 2011),
though most systems were type specific and tar-
geted closed-class errors. In the following year,



the HOO 2012 shared task only focused on cor-
recting preposition and determiner errors (Dale
et al., 2012). The recent CoNLL shared tasks
(Ng et al., 2013, 2014a) focused on error cor-
rection rather than detection: CoNLL-13 targeted
correcting noun number, verb form and subject-
verb agreement errors, in addition to preposition
and determiner errors made by non-native learners
of English, whereas CoNLL-14 expanded to cor-
rection of all errors regardless of type. Core com-
ponents of the top two systems across the CoNLL
correction shared tasks include Average Percep-
trons, L1 error correction priors in Naive Bayes
models, and joint inference capturing interactions
between errors (e.g., noun number and verb agree-
ment errors) (Rozovskaya et al., 2014), as well as
phrase-based statistical machine translation, under
the hypothesis that incorrect source sentences can
be “translated” to correct target sentences (Felice
et al., 2014; Grundkiewicz, 2014).

The work that is most closely related to our own
is the one by Rei and Yannakoudakis (2016), who
investigate a number of compositional architec-
tures for error detection, and propose a framework
based on bidirectional LSTMs. In this work, we
used their system architecture as a baseline, com-
pared our model to their results in Sections 5 and
7, and showed that multi-task learning can further
improve performance and allow the model to gen-
eralise better.

Multi-task learning: Multi-task learning was first
proposed by Caruana (1998) and has since been
applied to many language processing tasks and
neural network architectures. For example, Col-
lobert and Weston (2008) constructed a convolu-
tional architecture that shared some weights be-
tween tasks such as POS tagging, NER and chunk-
ing. Whereas their model only shared word em-
beddings, our approach focuses on learning better
compositional features through a shared bidirec-
tional LSTM.

Luong et al. (2016) explored a multi-task archi-
tecture for sequence-to-sequence learning where
encoders and decoders in different languages are
trained jointly using the same semantic represen-
tation space. Klerke et al. (2016) used eye tracking
measurements as a secondary task in order to im-
prove a model for sentence compression. Bingel
and Sggaard (2017) explored beneficial task rela-
tionships for training multitask models on differ-
ent datasets. All of these architectures are trained
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by randomly switching between different tasks
and updating parameters based on the correspond-
ing dataset. In contrast, we treat alternative tasks
as auxiliary objectives on the same dataset, which
is beneficial for error detection (Section 6).

There has been some research on using aux-
iliary training objectives in the context of other
tasks. Cheng et al. (2015) described a system
for detecting out-of-vocabulary names by also pre-
dicting the next word in the sequence. Plank et al.
(2016) predicted the frequency of each word to-
gether with the POS, and showed that this can im-
prove tagging accuracy on low-frequency words.
However, we are the first to explore the auxiliary
objectives described in Section 3 in the context of
error detection.

9 Conclusion

We have described a method for integrating aux-
iliary loss functions with a neural sequence label-
ing framework, in order to improve error detec-
tion in learner writing. While predicting binary
error labels, the model also learns to predict addi-
tional linguistic information for each token, allow-
ing it to discover compositional features that can
be exploited for error detection. We performed
a systematic comparison of possible auxiliary la-
bels, which are either available in existing annota-
tions or can be generated automatically. Our ex-
periments showed that POS tags, grammatical re-
lations and error types gave the largest benefit for
error detection, and combining them together im-
proved the results further.

We compared this training method to two other
multi-task approaches: learning sequence labeling
models on related tasks and using them to initialise
the error detection model; and training on multiple
tasks and datasets by randomly switching between
them. Both of these methods were outperformed
by our proposed approach using auxiliary labels
on the same dataset — the latter has the benefit of
regularising the model with a different task, while
also keeping the training data in-domain.

While the main benefits of multi-task learning
are expected in scenarios where the available task-
specific training data is limited, we found that er-
ror detection benefits from additional labels even
with large training sets. Successful error detection
systems have to learn about language composition,
and introducing an additional objective encour-
ages the model to train more general composition



functions and better word representations. The
error detection model, which also learns to pre-
dict automatically generated POS tags, achieved
improved performance on both CoNLL-14 bench-
marks. A useful direction for future work would
be to investigate dynamic weighting strategies for
auxiliary objectives that allow the network to ini-
tially benefit from various available labels, and
then specialise to performing the main task.
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