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Abstract

For medical students, virtual patient di-
alogue systems can provide useful train-
ing opportunities without the cost of em-
ploying actors to portray standardized pa-
tients.  This work utilizes word- and
character-based convolutional neural net-
works (CNNs) for question identification
in a virtual patient dialogue system, out-
performing a strong word- and character-
based logistic regression baseline. While
the CNNs perform well given sufficient
training data, the best system perfor-
mance is ultimately achieved by com-
bining CNNs with a hand-crafted pattern
matching system that is robust to label
sparsity, providing a 10% boost in system
accuracy and an error reduction of 47% as
compared to the pattern-matching system
alone.

1 Introduction

Standardized Patients (SPs) are actors who play
the part of a patient with a specific medical his-
tory and pathology. Medical students interact with
SPs to train skills like taking a patient history and
developing a differential diagnosis. However, SPs
are expensive and can behave inconsistently from
student to student. A virtual patient dialogue sys-
tem aims to overcome these issues as well as pro-
vide a means of automated evaluation of the med-
ical student’s interaction with the patient (see Fig-
ure 1).

Previous work with a hand-crafted pattern-
matching system called ChatScript (Danforth
et al., 2009, 2013) used a 3D avatar and al-
lowed for students to input questions using text
or speech. ChatScript matches input text using
hand-written patterns and outputs a scripted re-
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| was hoping you could help me with my back

Figure 1: Virtual Patient avatar used to train med-
ical students

sponse for each input question identified by the
system. While pattern matching with ChatScript
can achieve relatively high accuracy with suffi-
cient pattern-writing skill and effort, it is unable to
take advantage of large amounts of training data,
somewhat brittle regarding misspellings, and diffi-
cult to maintain as new questions and patterns are
added.

With an apparent plateau in system perfor-
mance, this work explores new data-driven meth-
ods. In particular, we use convolutional neural
networks with both words and characters as in-
put, demonstrating a significant improvement in
overall question identification accuracy relative to
a strong multiclass logistic regression baseline.
Furthermore, inspired by the different error pat-
terns between the ChatScript and CNNs, we de-
velop a simple system combination using a bi-
nary classifier that results in the highest overall
performance, achieving a remarkable 47% reduc-
tion in error in comparison to the ChatScript sys-
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tem alone. Frequency quantile analysis shows that
the hybrid system is able to leverage the relatively
higher performance of ChatScript on the infre-
quent label items, while also taking advantage of
the CNN system’s superior accuracy where more
data is available for training.

2 Related Work

Question identification has been formulated as at
least two distinct tasks. Multi-class logistic regres-
sion is a standard approach that can take advan-
tage of class-specific features but requires a good
amount of training data for each class. A pairwise
setup involves a more general binary classification
decision which is then made for each label, choos-
ing the highest confidence match.

Early work (Ravichandran et al., 2003) found
that treating a question answering task as a max-
imum entropy re-ranking problem outperformed
using the same system as a classifier. DeVault
et al. (2011) observed maximum entropy systems
performed well with simple n-gram features. Jaffe
et al. (2015) explored a log-linear pairwise rank-
ing model for question identification and found it
to outperform a multiclass baseline along the lines
of DeVault et al. However, Jaffe et al. (2015) used
a much smaller dataset with only about 915 user
turns, less than one-fourth as many as in the cur-
rent dataset. For this larger dataset, multiclass lo-
gistic regression outperforms a pairwise ranking
model. With no pairwise comparisons, a multi-
class classifier is also much faster, lending itself to
real-time use.

It is probable that multiclass vs. pairwise ap-
proaches’ overall effectiveness depends on the
amount of training data; pairwise ranking meth-
ods have potential advantages for cross-domain
and one-shot learning tasks (Vinyals et al., 2016)
where data is sparse or non-existent. In the closely
related task of short-answer scoring, Sakaguchi
et al. (2015a) found that pairwise methods could
be effectively combined with regression-based ap-
proaches to improve performance in sparse-data
cases.

Other work involving dialogue utterance classi-
fication has traditionally required a large amount
of data. For example, Suendermann et al. (2009)
acquired 500,000 dialogues with over 2 million ut-
terances, observin that statistical systems outper-
form rule-based ones as the amount of data in-
creases. Crowdsourcing for collecting additional
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dialogues (Ramanarayanan et al., 2017) could al-
leviate data sparsity problems for rare categories
by providing additional training examples, but this
technique is limited to more general domains that
do not require special training/skills. In the cur-
rent medical domain, workers on common crowd-
sourcing platforms are unlikely to have the exper-
tise required to take a patient’s medical history in a
natural way, so any data collected with this method
would likely suffer quality issues and fail to gen-
eralize to real medical student dialogues. Rossen
and Lok (2012) have developed an approach for
collecting dialogue data for virtual patient sys-
tems, but their approach does not directly address
the issue that even as the number of dialogues col-
lected increases, there can remain a long tail of
relevant but infrequently asked questions.

CNNs have been used to great effect for image
identification (Krizhevsky et al., 2012) and are be-
coming common for natural language processing.
In general, CNNs are used for convolution over in-
put language sequences, where the input is often a
matrix representing a sequence word embeddings
(Kim, 2014). Intuitively, word embedding kernels
are convolving n-grams, ultimately generating fea-
tures that represent n-grams over word vectors of
length equal to the kernel width. CNNs are very
popular in systems for tasks like paraphrase detec-
tion (Yin and Schiitze, 2015; Yin et al., 2016; He
et al., 2015), community question answering (Das
et al., 2016; Barbosa et al., 2016) and even ma-
chine translation (Gehring et al., 2017). Character-
based models that embed individual characters as
input units are also possible, and have been used
for language modeling (Kim et al., 2016) to good
effect. It is worth noting that character sequences
are more robust to spelling errors and potentially
have the same expressive capability as word se-
quences given long enough character sequences.

3 Dataset

The dataset consists of 94 dialogues of medical
students interacting with the ChatScript system.
The ChatScript system has been deployed in a
medical school to assess student’s ability to in-
teract with patients through a text-based interface
and the questions typed by the students and the re-
sponses given by ChatScript, which then are hand-
corrected by annotators, form this dataset. There
are 4330 total user turns, with a mean of 46.1 turns
per dialogue. Each turn consists of the question
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Figure 2: Label frequency distribution is ex-
tremely long-tailed, with few frequent labels and
many infrequent labels. Values are shown above
quintile boundaries.

the student asked, ChatScript’s automatic label
(with hand-correction) and the scripted response
associated with the label. An example turn could
be represented with the tuple, ( ‘hello mr. wilkins,
how are you doing today?’, ‘how are you’, ‘well i
would be doing pretty well if my back weren’t hurt-
ing so badly.’). The task is to predict the label of
the asked question.

There are 359 unique labels, with a mean of 12
instances per label, median of 4, and large stan-
dard deviation of 20. Of note, the distribution of
labels is extremely long-tailed (Figure 2), with 8
of the most common labels accounting for nearly
20% of the data, while the bottom 20% includes
265 infrequent labels. The most frequent label oc-
curs 156 times.

4 The CNN model

We now turn to the structure of our model. The
main model used in this work follows Kim (2014).
There are four layers in the model: an embedding
layer, a convolution layer, a max-pooling layer and
a linear layer. Let x; € R* a k-dimensional em-
bedding for the i-th element of the sequence, i.e.
the i-th word or character. The representation of a
sentence, S; € RI%i1>* ig the concatenation of all
the embeddings of the elements in the sentence s;.
The multichannel setup, shown in Kim (2014) as
marginally effective, is not used in this work. The
following equations will all work on sentence S,
thus j is dropped for clarity.

A convolutional kernel is defined as a filter w €
R" which slides across the sentence matrix S to
produce a feature map. Because the kernel is as
wide as the embeddings, it will only produce one
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value for each window.

ey

In Eq. 1, bis a scalar and o is a non-linearity. The
feature map ¢ € RISI="*+1 for this kernel is the
concatenation of all the feature values from the
convolution. In order to maintain fixed dimension
for the output, max-over-time pooling (Collobert
et al., 2011) is applied to the feature map and the
maximum value ¢ is extracted from c.

Because there are many kernels for each kernel
height h, the output from a group of kernels with
the same height is o, = [¢1,¢2, ..., ¢y, ], where
nyp, 1s the number of kernels for the kernel width h.

We concatenate all the outputs from all the ker-
nels into a single vector o € RY where N =
> nnn, and apply a linear transformation with
the softmax non-linearity to it as the final fully-
connected neural network layer for the CNN.

¢; = 0(W - Xii1h1+0b)

y = softmax(W;o + by) 2)
where W, € RV>™ is the weight matrix of the
final layer, b; € R™ is the bias term for the final
layer, and m is the number of classes that we are
trying to predict.

4.1 Regularization

We follow Kim (2014) for regularization strate-
gies. Dropout (Srivastava et al., 2014) prevents the
final layer from overfitting to training data by ran-
domly setting some input values to zero according
to a Bernoulli distribution with parameter p. We
adopt this strategy and put a dropout layer between
the max-pooling layer and the final linear layer.
Kim (2014) also applies a max norm constraint
to the weight matrix of the final linear layer
instead of using [2-regularization over all the
parameters. In Kim (2014), a row in the weight
matrix W; is renormalized to the max-norm s if
the 2-norm of the row exceeds s after a parameter
update. However, in a recent reimplementation of
Kim (2014)!, the renormalization is always ap-
plied to the rows of W, regardless of whether the
2-norm exceeds s or not. This change shows up as
a 1% difference in accuracy on the development
datasets. Therefore, we use this renormalization
strategy instead of max-norm in the original paper

'nttps://github.com/harvardnlp/
sent-conv-torch



and refer to it as max-renorm in this work.

5 Ensemble methods

In order to reduce variance of performance when
training on different splits of data, models trained
with different training datasets and models with
different architecture are combined together. Pre-
vious research has shown that ensembling models
improves performance (Sakaguchi et al., 2015b;
Ju et al., 2017; He et al., 2017). We train dif-
ferent models with different splits of training and
develop data, and ensemble them together. We
use two methods to combine the submodels to-
gether: majority voting and stacking. The indi-
vidual CNNs, or the submodels, first are ensem-
bled together according to their input features into
two ensembled models, and then the two ensem-
bles are stacked together to form the final stacked
model.

Majority voting

The majority voting strategy is adopted by the sub-
models to reduce variance and also to provide bet-
ter generalizability. Each submodel gives one vote
to the best class given some input according to
their parameters, and whichever class has the most
votes wins. Let ¥4 be the output of d-th submodel
in the ensemble, and the final output of the ensem-
ble y. is

Ve = Zhardmax(yd) ?3)
d

where hardmax is the function that converts the ar-
gument of the function into a one-hot vector where
the original maximum value of the argument is re-
placed by 1 and the rest by 0. In the case of ties, we
pick the class that appears first in the vector. For
the ensemble, the predicted class is argmax(ye).
However, y. is also an unnormalized distribution
used by the stacked model.

Stacking

We use stacking (Wolpert, 1992) to combine re-
sults from the ensembles. Stacking is essentially
weighted linear interpolation of the ensemble re-
sults. Let y. , be the output of the r-th ensemble,
thus the final output of stacking y,:

Vi = softmax(z Yer) 4)

r
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where «, is the coefficient of the r-th ensemble.
The coefficients need to be trained.

6 Model setup and training

We now explain preprocessing steps, the hyperpa-
rameters we used for training, model initialization
as well as the training process.

6.1 Preprocessing

We represent a sentence with both a sequence of
words and a sequence of characters. Using word
sequences as input allows us to take advantage
of pre-trained word embeddings so that even if a
word never appears in the training set due to data
sparsity, its embedding may still provide enough
information for the models to classify correctly.
Using character sequences allows the models to be
robust to spelling variations. This helps the word-
based models, which are susceptible to misspelled
words. Therefore we train separate word- and
character-based CNN models. We then ensem-
ble the word CNN submodels into a word CNN
ensemble, and also ensemble the character CNN
submodels into a character CNN ensemble, us-
ing majority voting in both cases. The two en-
sembles are then combined together with stacking
to form the stacked CNN model. All submodels
are trained separately and remain fixed when the
stacked model is being trained.

6.2 Hyperparameters

The hyperparameters for both the word CNN
and the character CNN submodels are mostly the
same. In the following paragraph, if not other-
wise mentioned, all hyperparameters are shared.
All hyperparameters are tuned on the development
dataset of each fold. We set the number of sub-
models d to 5. We set the number of kernels of
the character CNN to be 400, and the word CNN
300. We use kernels of widths 2 to 5 for the char-
acter CNN, and 3 to 5 for the word CNN. All non-
linearities in the models are rectified linear units
(Nair and Hinton, 2010). We use Adadelta (Zeiler,
2012) as the optimizer for the submodels, and use
the recommended values for its hyperparameters
(p = 0.9,¢ = 1 x 1075, learning_rate = 1.0).
We set the max-renorm to be 3.0 and the dropout
rate for the linear layer to be 0.5. We use negative
log-likelihood as our training objective to mini-
mize.



6.3 Initialization

For the word CNNs, we follow Kim (2014) to
initialize the parameters. We use pre-trained
word2vec word embeddings (Mikolov et al., 2013)
for words that are in the whole dataset, and ini-
tialize embeddings of the other out-of-vocabulary
words with Unif(—0.25,0.25). This keeps the
variance of each randomly initialized embedding
close to the word2vec embeddings. We also tried
the GloVe embeddings Pennington et al. (2014)
and found it to be slight worse in performance than
word2vec embeddings. We initialize the convolu-
tional kernels with Unif (—0.01,0.01) and the lin-
ear layer N (0, le —4). We initialize all bias terms
to 0.

For the character CNNs, we initialize all
weights to follow Unif (—1A/Min, 1A/Min) (Glo-
rot and Bengio, 2010) where n;, is the length of
the input vector. For the convolutional kernels,
the length of the input vector is hk. Additionally,
we randomly initialize the embedding matrix with
N(0,1).

6.4 Training

We use 10-fold cross validation for training and
evaluation. Shuffling the original dataset reduces
performance variance on the development sets,
improving generalizability. For each fold, we split
the whole dataset into training and testing sets
with 90/10 ratio, and further split the training set
into training and development sets with 90/10 ra-
tio. For training the submodels, we split the train-
ing set into training and development sets at dif-
ferent places to create different training data for
each submodel, and add all the labels as training
instances to the training set. We use minibatch up-
dates with batch size 50 and train each submodel
for 40 epochs, shuffling the training set for each
epoch. We evaluate the performance of the sub-
models after each epoch of training, using early
stopping on development data to select the best-
performing set of parameters.

Majority voting does not need training, but
stacking does. We train the stacked model also for
40 epochs with the training/development split that
is done for the first submodel. The optimizer is
also Adadelta with recommended hyperparameter
values.
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Simple | Ensembled
ChatScript | 79.8 n/a
Baseline 77.2 n/a
CharCNN | 76.16 78.20
WordCNN | 76.92 77.67
Stacked n/a 79.02

Table 1: Mean 10-fold Accuracy by System Type.
Numbers reported are on the test set.

00 Average accuracy of different systems in groups of label frequency quintiles
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Figure 3: System Accuracy by Label Frequency,
in Quintiles. Note the high performance in the
least frequent labels for ChatScript, the hand-
crafted pattern matching system. With more data,
the CNNs perform better.

6.5 Baseline

We also create a simple baseline system for com-
parison. The baseline system is a logistic regres-
sion classifier that takes in one-hot representa-
tions of 1,2, 3-grams of words, word stems, and
1,2,3,4,5, 6-grams of characters from a sentence
as features and predict what class this sentence be-
longs to. The baseline system also follows the 10-
fold cross validation training setup.

7 CNN Results

System performance is measured by correct ques-
tion identification for each of the 4330 user turns.
Accuracies reported are the average 10-fold cross-
validation accuracies. Apart from performance re-
sults from the baseline logistic classifier and the
stacked model, we also include results from the
rule-based ChatScript system.

Table 1 shows the test accuracies of different
systems averaged over the 10 folds. For machine
learning systems, the stacked CNN model per-
forms the best overall. For single models, the



baseline system works the best. It is widely be-
lieved that deep learning models are generally
data-hungry, and the training sets are small com-
pared to popular training sets for deep learning
models. In terms of single model performance, the
simple logistic regression is better than the deep
learning models and it is reasonable to believe that
data sparsity is at issue. However, through ensem-
bling and stacking, the final stacked model per-
forms the best, and the performance gap between
a machine learning system and a carefully created
and actively maintained rule-based system on this
task becomes very small. The 2-point difference
between the baseline system and the stacked CNN
model is highly significant (p = 8.19 x 1076, Mc-
Nemar’s test).

System accuracies by label frequency show a
striking difference between ChatScript and all
other systems for the most infrequent labels. Fig. 3
shows a clear advantage for ChatScript in the quin-
tile with the least frequent labels. ChatScript is
not trained, so data sparsity does not affect per-
formance of this system as much as the machine
learning systems. Also, most of the time, the train-
ing instances for a rare label are very close to
the label itself. Therefore by pattern matching,
ChatScript performs best among all models for
items with rare labels. The stacked CNN model
performs slightly better than the baseline model
in this quintile, but still is very low compared to
ChatScript.

However, ChatScript does relatively worse to
the other systems as label frequency increases.
This is expected because when training instances
increase in a dataset, it means that probabilistically
variants of the label that differ substantially will
also increase. Therefore more non-conflicting pat-
terns need to be added and existing patterns need
to be updated, which may be difficult or even im-
possible to do. Machine learning based systems
are good at frequent labels. There are more train-
ing instances, and constraint of non-conflicting
rules does not apply to such models. We can see
in Figure 3 that the stacked CNN model outper-
forms the baseline in all quintiles, and outperforms
ChatScript in the last three quintiles where training
data is ample. The clear difference of model be-
havior of ChatScript and the stacked CNN shows
that they may be combined together and perform
even better in all quintiles.
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The effectiveness of ensembling

Figure 4 shows accuracy numbers on the test set
of each fold for the best individual submodels
and ensembles. The best individual submodels
are chosen based on performance on the develop-
ment set. For the character CNN submodels and
the ensemble, it is clear that the ensembled model
always performs better than the best individual
model. For all 10 folds, the ensembled character
CNN model always outperforms the best model in
the ensemble and the average performance gain
is about 1.04%. For the word CNN submodels
and the ensemble, the relation is less obvious. Al-
though in 9 out of 10 folds, the ensemble outper-
forms the best individual model, the difference be-
tween performances of the two systems is smaller
compared to the difference between best character
CNN submodel and the character CNN ensemble,
and the average performance gain is about 0.75%.
A Student’s t test on the accuracy numbers con-
firms this observation. The improvement gained
from ensembling the character CNN submodels is
significant (p = 0.0045), but the improvement
gained from ensembling the word submodels is
not (p = 0.43).

The result for the ensembles and the stacked
model can also be seen in Figure 4. Except for
fold 1, where the stacked model is outperformed
by the character CNN ensemble, the stacked
model outperforms all the ensembles in all the
other folds. The performance gained from stack-
ing the character CNN ensemble on top of the
word CNN ensemble is significant (p = 0.049),
but insignificant the other way around (p = 0.11).
This could mean that the character CNN ensem-
ble has all the information it can extract from text
for prediction that the word CNN ensemble is not
providing new information for it to do better.

Comparing the stacked model with the individ-
ual best model, stacking always provides signif-
icant performance gain (p = 0.033 for the best
word CNN submodel and p = 9 x 10~ for the
best character CNN submodel).

Error analysis

One of the hypotheses of why the stacked CNN
model works better is because it has access to
word embeddings, and word embeddings are good
at modeling words that are superficially different
but synonymous. Table 2 shows a few examples
where the baseline classifier makes the wrong pre-



Question

Baseline predicted label

Stacked CNN predicted label

constipation

does anything aggravate your back pain

are you employed

have you taken any tylenol or done anything
to help your back pain this time

do you use any contraception
what makes the pain better
are you happy

what makes the pain better

do you have any bowel problems
what makes the pain worse

what do you do for a living

are you taking any medication
for the pain

have you ever had any psychotherapy treatment
have you injured your back previously
can you stand up

e | N e 4
o

have you tried any treatment
have you had back injury
are you able to stand

do you have a history of depression
when was your last period
what do you do for a living

Table 2: Prediction examples. The stacked CNN model predicts the correct label for the first 4 cases and
the wrong label for the last 3 cases. The baseline predicts the last 3 cases correctly.

Accuracy of different folds for submodels and ensembles

BestCharCNN

CharCNNEns
mmm BestWordCNN
mmm WordCNNENs
mmm Stacked

82

80 H

78 A

Accuracy %

74 A

72 1

70 -
fold 0 fold 1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9

Figure 4: System Accuracy of the Submodels and
Ensembles by Fold

diction but the stacked CNN model makes the cor-
rect prediction. These examples show how the
stacked CNN model is able to use semantic in-
formation provided by the word embeddings to
make the correct prediction whereas the baseline
classifier can not. Example 1 requires the mod-
els to know ‘constipation’ is related to ‘bowel’.
The baseline classifier is confused by the spelling
similarities between ‘constipation’ and ‘contra-
ception’, but the stacked model is able to make the
right prediction. Example 2 requires the models to
know that ‘aggravate’ means ‘get worse’, not ‘get
better’, and the stacked model makes the correct
decision. Similarly, ‘employed’ and ‘tylenol’ in
examples 3 and 4 all show that the stacked CNN
can tap into the semantic information provided by
the word embeddings and use them in prediction.

However, it appears that the semantic informa-
tion in word vectors can sometimes backfire as
well. In examples 5 and 6, the words that are sim-
ilar in meaning are making unhelpful connections.
The stacked CNN links ‘psychotherapy treatment’
to ‘depression’ in example 5, but the question as
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Combined System Accuracy

CNN confidence full

95.0%
90.0%
85.0%

80.0%

- I I

70.0%
chatscript CNN oracle

Figure 5: Accuracy of model trained to combine
ChatScript and CNN predictions

a whole is about treatment, so the prediction from
the stacked model is wrong. Similarly, the stacked
model predicts example 6 to be in the class ‘when
was your last period’ maybe because ‘last’ and
‘previously’ are similar, apparently missing the
‘injury’ part of the question. The stacked CNN
missed example 7 because of data sparsity. There
are only two instances of the class ‘are you able to
stand’ in the whole dataset, therefore the stacked
CNN has low confidence in the gold class and in-
stead chooses a class which has much more train-
ing examples.

8 Combining ChatScript with the CNN

While the fully ensembled and stacked CNN per-
forms at 79% accuracy, which is slightly below
that of ChatScript, its error pattern is distinct from
ChatScript, as seen in Fig. 3. ChatScript, because
it only uses pattern matching to do classification,
is less affected by the imbalance of training in-
stances belonging to target classes in the training
data. The CNN, however, is affected by such im-
balance and generally performs worse when train-
ing instances for one class is scarce. Meanwhile,
despite the use of automatic spelling correction in
ChatScript, a substantial portion (11.1%) of the



Chatscript errors were on questions with typos
or other spelling errors in them; on these items,
the CNN managed to make the correct prediction
74.1% of the time. This indicates that the character
CNNs are more robust to spelling errors, as there
is no need to make a possibly erroneous guess as to
the correctly spelled word. Additionally, whereas
the CNN always makes its best guess on test items,
the ChatScript patterns failed to match (yielding
no answer) on 7.4% of the questions, representing
36.5% of the ChatScript errors. On these ques-
tions, the CNN achieved 59.6% accuracy, indicat-
ing that they are considerably more difficult to rec-
ognize than the average question.

Given that our two methods make rather differ-
ent errors, we investigated whether it would make
sense to combine them, and found that an oracle
that always chose the correct system if either was
right could achieve 92.9% accuracy, much higher
than the ChatScript systems 79.8% accuracy by it-
self. As such, we experimented with training a lo-
gistic regression binary classifier for automatically
choosing between the two systems, again using
10-fold cross-validation. The binary classifier was
trained to choose the CNN prediction when it was
correct and ChatScript was wrong, otherwise to
choose the ChatScript output—including in cases
where the ChatScript patterns yielded no match,
on the assumption that a no-match response would
be preferable to an incorrect response. To make
its choices, the binary classifier used the following
features:”

Log Prob The log probability of the predicted
class in the final output of the stacked model.

Entropy The entropy of the distribution over
classes output by the stacked model.

Confidence For each submodel, the confidence
score is the unnormalized score for the pre-
dicted class. For the stacked model, the con-
fidence score is the average of all confidence
scores from the submodels.

CNN Label The label predicted by the CNN.
CS Label The label matched by ChatScript.

CS Log Prob The log probability according to
the CNN of the ChatScript prediction.
’Note that ChatScript does not output scores for its

matched patterns, so we did not pursue a stacking-based ap-
proach.
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Note that an automatic method for choosing be-
tween the two systems could in principle do worse
than simply always choosing the ChatScript sys-
tem. Nevertheless, as shown in Fig. 5, a classi-
fier trained to make the choice based on the log
prob, entropy and confidence of the CNN'’s pre-
diction achieves 85.0%, a large gain. This binary
classifier can be improved further by taking into
account how likely the logistic regression model
considers the ChatScript choice, including the spe-
cial case of no match from the ChatScript system,
along with the specific label of both system pre-
dictions. The full model, making use of these ad-
ditional features, achieves 89.3% accuracy, a huge
gain that represents more than two-thirds of the
potential gains revealed by the oracle analysis, and
a47 % reduction in error over the ChatScript sys-
tem by itself. This shows that the stacked CNN
effectively compliments the rule-based ChatScript
system on the mid-to-high frequency labels, mak-
ing the final system much stronger than either of
the component systems.

We also investigated whether it would make
sense to always choose the CNN prediction when
the ChatScript system yielded no match. By al-
lowing the binary combination classifier to choose
the ChatScript system even when it yielded no
match, the combined system reduced the number
of no match outputs from 7.4% to 2.4%, close to
the 3.0% oracle rate for cases where neither sys-
tem is correct. Always choosing the CNN pre-
diction in these cases increases the combined sys-
tem accuracy by 0.6%, but at the cost of a 1.8%
increase in erroneous responses rather than no-
match responses. As such, it appears preferable
to allow the binary combination classifier to make
the choice even in the no-match cases.

9 Discussion and Future Work

CNNs are very sensitive to their hyperparameters
and initializations. Differences in normal vs. uni-
form weight matrix initializations were observed
to impact word- and character-based CNN mod-
els differently. He et al. (2017) use orthonor-
mal initializations following Saxe et al. (2013),
while Kim (2014) suggests initializing unknown
word embeddings using parameters (e.g., vari-
ance) sampled from pre-trained word embeddings,
etc.; further exploration of hyperparameter tuning
and initialization strategies are left as future work.

Models with more complicated architecture,



such as Memory Networks (Weston et al., 2015),
Highway Networks (Srivastava et al., 2015) and
Convolutional sequence models (Gehring et al.,
2017) can also be explored and integrated as well,
although more data is needed to successfully train
these models. Other ensemble methods like Super
Learner (Ju et al., 2017) should be tried as well.

Since label sparsity is at the heart of the per-
formance difference between ChatScript and the
CNN models, a more direct way to deal with lack
of training examples (possibly obviating the need
for a hand-crafted system like ChatScript) could
be to automatically generate paraphrases to aug-
ment available data, potentially with a content au-
thor in the loop; we are currently exploring strate-
gies for doing so.

10 Conclusion

This work shows the value of combining a hand-
authored pattern matching system with CNN mod-
els to overcome label sparsity in training. The
stacked CNN model with ensembled word and
character CNN submodels significantly outper-
forms the logistic regression baseline. Within
the CNN models, ensembling is found to sig-
nificantly improve performance for the character
model, while stacking always provides significant
improvement over the best word- or character-
based submodels. The final system uses a binary
classifier over ChatScript and a stacked CNN, im-
proving overall accuracy by 10% and achieving
an impressive 47% error reduction on a question
identification task in a virtual patient dialogue sys-
tem.
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