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Preface

The Workshop on Stylistic Variation (StyVa) at EMNLP 2017 is the first of its kind, offering a new venue
for bringing together a large but previously underserved and splintered community within computational
linguistics. Our goal in creating this workshop was to attract a variety of perspectives on style from
traditional areas within NLP, including authorship attribution, author profiling, genre studies, natural
language generation, distributional lexicography, and literary and educational applications; to this end we
have defined stylistic variation as broadly as possible, to include any variation in phonological, lexical,
syntactic, or discourse realization of particular semantic content, due to differences in extralinguistic
variables such as individual speaker, speaker demographics, target audience, genre, etc.

We received 22 submissions, of which we accepted 14 (64%), seven as talks and seven as poster
presentations.Though there was indeed a great deal of diversity in the submissions, including at least one
submission in several of the major topic areas discussed above, we also noted a clear trend: we received
several papers on style-sensitive language generation, particularly using neural network models. This
clearly reflects a more general interest in the field, and one we would expect to continue. More generally,
we are pleased that this workshop has served as a venue for both traditional and cutting-edge approaches
to style.

We’d like to thank the authors for choosing StyVa as a venue for their excellent work, our invited
speakers (Ani Nenkova and Walter Daelemans) for their invaluable contribution, and of course the
reviews provided by our esteemed Program Committee. We’d also want to thank the ACL workshop
organizing committee for giving us this opportunity to bring together the NLP stylistic community.

We look forward to a great workshop in Copenhagen!

Julian Brooke, Moshe Koppel, and Thamar Solorio
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From Shakespeare to Twitter: What are Language Styles all about?

Wei Xu
Department of Computer Science and Engineering

The Ohio State University
weixu@cse.ohio-state.edu

Abstract
As natural language processing research is
growing and largely driven by the avail-
ability of data, we expanded research from
news and small-scale dialog corpora to
web and social media. User-generated
data and crowdsourcing opened the door
for investigating human language of var-
ious styles with more statistical power
and real-world applications. In this posi-
tion/survey paper, I will review and dis-
cuss seven language styles that I believe
to be important and interesting to study:
influential work in the past, challenges at
the present, and potential impact for the
future.

1 Top Three Problems

The top three problems for studying language
styles are data, data and data. More specifically,
they are data shortage, data fusion, and data anno-
tation problems. The data shortage problem has
been improving, which is the main reason that
there is surge in the number of research studies
on language styles. The data fusion problem is
more specific to the area, due to the subtle and
often subjective nature of linguistic styles. For
instance, while men and women talk in different
ways (note this is not the same as talking about dif-
ferent things), they also talk about a lot of things
in an indistinguishable way. Moreover, there is
also a huge variance from one man to another, one
woman to another. The styles are often fused to-
gether in the data and not easy to separate out or
make black-and-white judgements on. This also
leads to challenges in data annotation or data col-
lection, comparing to other NLP tasks (e.g. ques-
tion answering). Throughout the rest of this paper,
we shall see many creative solutions, interesting
work, and promising potential.

2 Seven Styles of Language

Disclaimers: (i) We discuss primarily in the con-
text of natural language processing research; (ii)
There are certainly more than seven language
styles as there are more than seven wonders in the
world.

2.1 Simple and Short

Text simplification is one of the earliest topics in
computational linguistics that directly deals with
language styles, rewriting regular texts into sim-
pler versions for people with limited reading ca-
pabilities. The major transition from rule-based
to machine learning approach for automatic sen-
tence simplification did not happen until 2010 af-
ter Simple English Wikipedia became available. It
is worth noting that the Simple Wikipedia data has
some issues on the quality and degree of simplic-
ity (Xu et al., 2015b). The shortage of high qual-
ity data is becoming gradually alleviated as the
Newsela corpus (Xu et al., 2015b) of profession-
ally edited 1000+ articles is released, and as more
and more attention and appreciation are given
by the research community to data construction
(Brunato et al., 2016; Hwang et al., 2015). Mul-
tiple studies have shown crowcourcing workers
can produce high quality simplifications (Xu et al.,
2016; Amancio and Specia, 2014; Pellow and Es-
kenazi, 2014), though it is costly to scale up. Data
will remain a central problem1 as the data-hungry
neural generation models (Nisioi et al., 2017) are
a promising direction for future work.

Besides data, another severe problem is eval-
uation. In fact, one common human evaluation
that uses a five point Likert scale on grammatical-
ity, meaning and simplicity should be considered

1Lexical simplification as a subtask can utilize or bypass
the need of parallel data (Glavaš and Štajner, 2015; Paetzold
and Specia, 2016; Pavlick and Callison-Burch, 2016).
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unacceptable when deletion is involved, as it un-
fairly biases towards deletions over paraphrasing.
There has been some progress on creating auto-
matic evaluation metrics (Xu et al., 2016) and ex-
ploring new human evaluation methodologies (Xu
et al., 2016; Nisioi et al., 2017; Siddharthan and
Mandya, 2014). We are going to need more data,
clever ideas and careful evaluation designs.

For the record, everything about sentence sim-
plification is much harder than sentence compres-
sion2 primarily due to the interactions between
deletion and paraphrasing. Like simplification,
previously, sentence compression also use human
evaluation with Likert scale on grammaticality
and meaning. However, it is shown to be prob-
lematic without controlling for compression ratio
(Napoles et al., 2011). Now sentence compres-
sion systems are mostly compared at the same
compression ratio. It is also worth noting that
neural compression is similarly lacking in large-
scale parallel data (Toutanova et al., 2016) and cur-
rently relies on news headline data which results in
headline-like outputs (Filippova et al., 2015; Rush
et al., 2015).

2.2 Instructional and Robotic
Despite the fact that instructional language is im-
portant in our everyday lives, there have been
relatively limited efforts to design automated al-
gorithms that link language to action in real
world applications. Largely because of the lim-
ited availability of annotated datasets which are
much-needed for training and evaluating machine
learning models, existing works are primarily on
cooking recipes (Tasse and Smith, 2008), airline
booking conversations (Zettlemoyer and Collins,
2007), software help documents (Branavan et al.,
2009) and robot navigation commands (Chen and
Mooney, 2011). In particular, cooking recipe has
sprouted a rich line of research as a proxy to
robotic instructions (Bollini et al., 2013; Jermsura-
wong and Habash, 2015; Kiddon et al., 2015). Re-
cent efforts aim to study natural language instruc-
tions for biology lab experiments (Kulkarni et al.,
2017). Two closely relevant research areas, se-
mantic parsing and dialog, have also both made
major advances in recent years to utilize large-
scale data via weak supervision (Cai and Yates,
2013; Artzi and Zettlemoyer, 2013) and neural

2which is closely related to, sometimes used interchange-
ably with, though different from, abstractive summarization,
headline generation, sentence fusion.

network models (Lee et al., 2016; Misra and Artzi,
2016). The 1st Workshop on Language Ground-
ing for Robotics (RoboNLP) will be held at ACL
2017. We shall expect research on instructional
language become more and more fruitful in the
near future.

2.3 Historical and Evolving

The rise of digital humanities certainly helps to
provide more digitized materials for leaning tech-
niques. Historical documents are proven fun (in
the other word, hard) to work with. Garrette and
Alpert-Abrams (2016) used the following exam-
ple to present the challenges of having multiple
unknown fonts and inking on a single page of a
book in the Primeros Libros corpus:

A series of work (Berg-Kirkpatrick et al., 2013;
Berg-Kirkpatrick and Klein, 2014; Garrette et al.,
2015) have been conducted on this and other cor-
pora to develop historical document optical char-
acter recognition (OCR) better handle fonts, off-
sets, etc, together with language models through
unsupervised learning. Unsupervised domain
adaptation to historic text was also attempted by
Yang and Eisenstein (2015) using feature embed-
ding on the part-of-speech tagging task.

Shakespeare plays in contrast are perfect for in-
vestigating a consistent writing style from a single
author. Even with a relatively small amount of par-
allel training data, it is possible to learn paraphrase
models which capture stylistic phenomena and can
transform the line in the Star Wars “If you will
not be turned, you will be destroyed!” to Shake-
spearean style “If you will not be turn’d, you will
be undone!” (Xu et al., 2012b; Xu, 2014). One
can image such stylistic paraphrasing, as it contin-
ues to improve, would possibly help preserve pri-
vacy and anonymity (Brennan et al., 2012). This
is one thing about research on language styles, it
often involves a sense of social justice and for so-
cial good (e.g. simplification for children, robotics
for repetitive wet lab experiments).

Being able to handle evolving language is cru-
cial in natural language processing applications.
As the most high-performance systems often uti-
lize fully supervised or weakly supervised learn-
ing, the time elapsed from training data to new
test data will cause performance deteriorating

2



(Plank, 2018). The most apparent case is out-
of-vocabulary (OOV) words (van der Wees et al.,
2015; Seraj et al., 2015), especially new emerg-
ing named entities and newly coined words (e.g.
“selfie”, “Brexiteers”). This problem will become
more pressing and more feasible to study as more
and more time-sensitive online text data is accu-
mulating. Learning up-to-date paraphrases (Lan
et al., 2017), vector semantics (Cherry and Guo,
2015) and character-based neural models (Ling
et al., 2015; Rei et al., 2016) from online data
streams could be plausible solutions that connect
unseen data with known expressions.

2.4 Colloquial and Internet

As social media started booming, especially after
Twitter released the streaming API for free in 2010
that provides real-time tweets as posted, there is a
huge explosion on social media research. Multiple
workshops are dedicated to this special type of text
including the Workshop on Noisy User-generated
Text (WNUT) and Workshop on Making Sense of
Microposts (#microposts) that hold annual shared
tasks. Before that, most unedited text data (vs.
well-edited such as news) is from web forums
and blogs, while short message service (SMS) and
email data are limited to rather small amounts due
to privacy reasons (Baldwin et al., 2013). Inter-
esting research falls into two camps: normalize
lexical variants to standard form (Han and Bald-
win, 2011; Xu et al., 2013) or develop domain
adapted NLP systems (Ritter et al., 2011; Gimpel
et al., 2011; Kong et al., 2014; Tabassum et al.,
2016). The iconic opinion paper What to do about
bad language on the Internet by Jacob Eisenstein
(2013) highlighted this divide.

There is a third point we have often missed.
Besides the noisy hard-to-understand Internet lan-
guage, many users also use rather standard lan-
guage on social networks, formal or colloquial.
Don’t forget that all the traditional news agencies
also have Twitter accounts (Hu et al., 2013). Can
we make the connections between the formal and
colloquial languages as they are heavily mixed on
social media? I think the answer is yes, and the
twin research topics of paraphrasing and seman-
tic similarity could be part of the solution as many
language styles are heavily mixed on social media.
For example, in the SemEval shared task PIT-2015
corpus (Xu et al., 2015a), the figurative meaning
of the phrase “on fire” is captured by the senten-

tial paraphrase of “Aaaaaaaaand stephen curry is
on fire” and “What a incredible performance from
Stephen Curry”. Semantic equivalences, as for-
mal as “fetuses” and “fetal tissue” (Lan et al.,
2017) or as informal as “gets the boot from” and
“has been sacked by” (Xu et al., 2014; Xu, 2014),
can also be learned automatically from Twitter
data. Not to mention that there are also stud-
ies that focus on multiword expressions (Schnei-
der and Smith, 2015), idioms (Muzny and Zettle-
moyer, 2013), and slang.

2.5 Gendered and Personalized

One unique and exciting opportunity offered by
social media data is to learn about the users author-
ing the texts. Much interesting research on gen-
der difference3 in language styles appeared in the
past few years. Besides gender (Verhoeven et al.,
2016; Bamman et al., 2014), other user attributes
such as age (Sap et al., 2014), race (Jørgensen
et al., 2015) and personality (Schwartz et al., 2013;
Ruan et al., 2016; Plank and Hovy, 2015) are also
commonly studied for social science and strongly
motivated by commercial usages of profiling users
and personalized services. Leveraging user demo-
graphic factors also shows benefits on improving
natural language processing applications such as
sentiment analysis (Volkova et al., 2013) and sar-
casm detection (Bamman and Smith, 2015).

One particularly interesting challenge is how to
handle the situation that stylistic differences (e.g.
female users more likely use “wonderful” while
male users use “superb”) are much more subtle
than topical preferences (e.g. using word “hus-
band” is a strong indicator of female user). Our
recent work (Preoţiuc-Pietro et al., 2016) isolated
stylistic differences from topic bias by using para-
phrase pairs and clusters, and showed their predic-
tive power in user profiling and potential for future
work. We also found crowdsourcing workers are
surprisingly good at perceiving gender from lex-
ical choices when aggregating their judgments –
an infamous phenomenon of so-called The Wis-
dom of Crowds (Surowiecki, 2005). Beyond lexi-
cal choice, Johannsen et al. (2015) further showed
demographic differences in syntactic variances us-
ing multilingual data of online customer reviews
and universal dependency parsing.

3Although unrelated to linguistic styles, the readers may
find He Said, She Said: Gender in the ACL Anthology (Vo-
gel and Jurafsky, 2012), a paper on gender-based statistics of
NLP researchers, interesting.
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Another subsequent challenge is how to transfer
the subtle style differences into natural language
generation and dialog systems. While we were
able to transform contemporary texts into Shake-
speare style (Xu et al., 2012b), we found gendered
language style much harder to impose. It is possi-
bly that because we have not found the right data
for evaluation, for instance, it is hard to expect a
randomly drawn sentence to be possible to take
on a feminine or masculine style. It could also
be the case that it is easier for finer-grained lan-
guage style to show distinctions. One evident ex-
ample is author recognition based on an individ-
ual’s frequent word choices (Clark and Hannon,
2007). Another example is persona-based dialog
system that not only captures background knowl-
edge of a user (Li et al., 2016) but also speaking
style (Mizukami et al., 2015). It is not a coinci-
dent that the later work (Mizukami et al., 2015) is
on spoken Japanese, which exhibits extensive gen-
der differences as well as honorifics (not as much
in written Japanese).

2.6 Pervasive and Framing

The increasing availability of data also make fea-
sible to study the textural characteristics of per-
suasion, argumentation and framing in realistic
(not laboratory) settings and quantitatively. Be-
sides movie quotes, political speeches, and tweets
(Guerini et al., 2015), many interesting data are
created and discovered, leading to a growing num-
ber of studies. Online discussion platforms pro-
vide almost ideal real world data with users stat-
ing, reasoning and contesting opinions (Somasun-
daran and Wiebe, 2009), and sometimes even with
explicitly marked successful arguments such as
ChangeMyView on Reddit. One recent work (Tan
et al., 2016) found that in the ChangeMyView
data, after controlled for similar arguments, stylis-
tic choices in how the opinion is expressed carry
more predictive power on how likely a user to be
persuaded than how likely an argument is persua-
sive. However, predicting pervasiveness turns out
to a difficulty task with about 60-65% accuracy us-
ing bag-of-words and linguistic features, in con-
strast of 75-85% accuracy for predicting polite-
ness). Another interesting work (Recasens et al.,
2013) utilized Wikipedia edit history to study bi-
ased language (e.g. “stated” vs. “claimed”)
as well as framing (e.g. “pro-life” vs. “anti-
abortion”). The recent construction of the Me-

dia Frames Corpus (Card et al., 2015)4 presents
another encouraging opportunity to study fram-
ing. The legal domain, such as supreme court doc-
uments, is another common place for arguments
(Sim et al., 2015) and would possibly be used for
studying linguistic styles.

2.7 Polite and Abusive
Another angle that has been looked at is the po-
liteness conveyed in language. Unlike many other
styles that come in close pairs (e.g. formal vs. in-
formal, feminine vs. masculine), the polite lan-
guage does not necessarily have an impolite coun-
terpart. In addition, politeness is expressed more
through function words. For example, showing
gratitude by “I appreciate that” or apologizing by
“Sorry to bother you”. In fact, the phrase “in
fact” can be negative as “in fact you did ...”. Many
other cues are identified and annotated (Danescu-
Niculescu-Mizil et al., 2013) on the online inter-
changes of Wikipedia editors and StackExchange
QA users, which can train classifier to predict po-
liteness at about 80% accuracy. A recent study
(Voigt et al., 2017) also used automatic methods
to examine the respectfulness of police officers to-
ward white and black people from transcripts of
body-worn camera footage.

In other words, abusive language is closely re-
lated to politeness but not the reverse. The tar-
gets could vary from one swear word to multi-
sentences, such as the mean tweet Barack Obama
read on Jimmy Kimmel’s show: “Obama’s hair
is looking grayer these days. Can’t imagine
why since he doesn’t seem to be one bit wor-
ried about all that’s going on.” The context-
dependent nature makes it challenging to collect
data or design experiments. Moreoever, although
bullying traces are abundant, it is a tiny frac-
tion out of random samples which is estimated to
0.02∼0.73% of a 95% confidence internal on 2011
TREC Microblog track corpus (Xu et al., 2012a).
The compromise is to look at tweets that include
keywords “bully”, “bullied”, “bullying” instead,
which is inspiring and an important first step, but
far from satisfying. Another representative solu-
tion is a carefully designed crowdsourcing experi-
ment which reveals patterns of Internet trolling be-
havior using user comments on CNN.com news
website (Cheng et al., 2017). Perhaps, the 1st

4which is a great example why data resource papers even
without learning results should be considered acceptable in
ACL/EMNLP/NAACL/EACL main conferences.
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Workshop on Abusive Language Online (ALW) at
ACL 2017 will spark more ideas. I would like to
quote an anonymous source who raised a thought-
ful question: “Under what circumstances is lan-
guage use considered to be an abuse? For exam-
ple, in many states when a women criticizes her
husband in public, this might be considered there
as abuse of language or hate speech”, as a re-
minder of being aware and mindful of the great so-
cial factors and impacts embedded in the research
of language styles.

3 Conclusion

At this point of the development, natural language
processing research ranges a wide variety of genre,
domain, register or type of data. I think the term
style is an all-in-one umbrella concept to bring re-
searchers and scattered attentions in various NLP
subareas to a common place. There are certainly
many nuances in language styles besides those
mentioned in this paper. For example, connota-
tion (e.g. “childlike” vs. “childish” vs. “youth-
ful”) (Rashkin et al., 2016; Carpuat, 2015) and
geographical lexical variations from regional (e.g.
“sode” vs. “coke” vs. “pop”) to cross-country
(e.g. Austrilian vs. American English) (Eisen-
stein et al., 2010; Garimella et al., 2016; Han et al.,
2016). There are also certainly many other rel-
evant works besides those mentioned in this pa-
per. Last but not least, we would like to point out
Dan Jurafsky’s recent book The Language of Food
(2014) and one more paper: Do Linguistic Style
and Readability of Scientific Abstracts Affect their
Virality? (Guerini et al., 2012).
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Abstract

Variations in writing styles are commonly
used to adapt the content to a specific con-
text, audience, or purpose. However, ap-
plying stylistic variations is still largely a
manual process, and there have been little
efforts towards automating it. In this paper
we explore automated methods to trans-
form text from modern English to Shake-
spearean English using an end to end train-
able neural model with pointers to enable
copy action. To tackle limited amount of
parallel data, we pre-train embeddings of
words by leveraging external dictionaries
mapping Shakespearean words to modern
English words as well as additional text.
Our methods are able to get a BLEU score
of 31+, an improvement of ≈ 6 points
over the strongest baseline. We publicly
release our code to foster further research
in this area. 1

1 Introduction

Text is often morphed using a variety of lexi-
cal and grammatical transformations, adjusting the
degree of formality, usage of catchy phrases, and
other such stylistic changes to make it more ap-
pealing. Moreover, different text styles appeal to
different user segments (Saha Roy et al., 2015)
(Kitis, 1997) (Schwartz et al., 2013). Thus there is
a need to effectively adapt text to different styles.
However, manually transforming text to a desired
style can be a tedious process.

There have been increased efforts towards ma-
chine assisted text content creation and editing
through automated methods for summarization

∗* denotes equal contribution
1https://github.com/harsh19/Shakespearizing-Modern-

English

No Type Text

1
MODERN Oh my, my bones ache so much
ORIGINAL Fie, how my bones ache !
COPY fie, how my bones ache !
SIMPLES2S you’ll be, sir, what the bones are tired .
STAT Oh my, my bones ache so much .

2
MODERN I am in a rush .
ORIGINAL I stand on sudden haste .
COPY i stand on sudden haste .
SIMPLES2S i’m stand right here .
STAT I am in a Fly

3
MODERN Give my compliments to your lady
ORIGINAL Commend me to thy lady
COPY commend me to your lady
SIMPLES2S give my regards to your lady
STAT give my praises to your lady

4
MODERN Showing mercy by pardoning killers only causes more murders .
ORIGINAL Mercy but murders, pardoning those that kill .
COPY mercy but murders, those those who kill us .
SIMPLES2S but except the murders to those murders to kill you .
STAT of mercy by pardoning killers causes more dire.

5
MODERN Holy Saint Francis, this is a drastic change !
ORIGINAL Holy Saint Francis, what a change is here !
COPY holy saint francis, what a change is here !
SIMPLES2S it’s the holy flute, what’s the changed !
STAT Holy Saint Francis, this is a drastic change !

6
MODERN was that my father who left here in such a hurry ?
ORIGINAL Was that my father that went hence so fast ?
COPY was that my father that went went so fast ?
SIMPLES2S was that my father was so that ?
STAT was that my father that left here in such a haste ?

7
MODERN Give me one kiss and I’ll go down .
ORIGINAL One kiss, and I’ll descend .
COPY one kiss me, and I’ll descend .
SIMPLES2S one kiss,and I come down .
STAT Give me a kiss, and I’ll go down .

8
MODERN then the window lets day in, and life goes out the window .
ORIGINAL Then, window, let day in and life out .
COPY then, window out, and day life .
SIMPLES2S then she is just a life of life, let me life out of life .
STAT then the window will let day in, and life out .

Table 1: Examples from dataset showing mod-
ern paraphrases (MODERN) of few sentences from
Shakespeare’s plays (ORIGINAL). We also show
transformation of modern text to Shakespearean
text from our models (COPY, SIMPLES2S and
STAT).

10



(Rush et al., 2015) , brand naming (Hiranandani
et al., 2017), text expansion (Srinivasan et al.,
2017), etc. However, there is a dearth of auto-
mated solutions for adapting text quickly to differ-
ent styles. We consider the problem of transform-
ing text written in modern English text to Shake-
pearean style English. For the sake of brevity and
clarity of exposition, we henceforth refer to the
Shakespearean sentences/side as Original and the
modern English paraphrases as Modern.

Unlike traditional domain or style transfer, our
task is made more challenging by the fact that the
two styles employ diachronically disparate regis-
ters of English - one style uses the contemporary
language while the other uses Early Modern En-
glish 2 from the Elizabethan Era (1558-1603). Al-
though Early Modern English is not classified as a
different language (unlike Old English and Middle
English), it does have novel words (acknown and
belike), novel grammatical constructions (two sec-
ond person forms - thou (informal) and you (for-
mal) (Brown et al., 1960)), semantically drifted
senses (e.g fetches is a synonym of excuses) and
non-standard orthography (Rayson et al., 2007).
Additionally, there is a domain difference since the
Shakespearean play sentences are from a dramatic
screenplay whereas the parallel modern English
sentences are meant to be simplified explanation
for high-school students.

Prior works in this field leverage a language
model for the target style, achieving transforma-
tion either using phrase tables (Xu et al., 2012),
or by inserting relevant adjectives and adverbs
(Saha Roy et al., 2015). Such works have lim-
ited scope in the type of transformations that can
be achieved. Moreover, statistical and rule MT
based systems do not provide a direct mecha-
nism to a) share word representation information
between source and target sides b) incorporating
constraints between words into word representa-
tions in end-to-end fashion. Neural sequence-to-
sequence models, on the other hand, provide such
flexibility.

Our main contributions are as follows:

• We use a sentence level sequence to sequence
neural model with a pointer network compo-
nent to enable direct copying of words from
input. We demonstrate that this method per-
forms much better than prior phrase transla-

2https://en.wikipedia.org/wiki/Early_
Modern_English

Original Modern
# Word Tokens 217K 200K
# Word Types 12.39K 10.05K
Average Sentence Length 11.81 10.91
Entropy (Type.Dist) 6.15 6.06
∩Word Types 6.33K

Table 2: Dataset Statistics

tion based approaches for transforming Mod-
ern English text to Shakespearean English.

• We leverage a dictionary providing mapping
between Shakespearean words and modern
English words to retrofit pre-trained word
embeddings. Incorporating this extra infor-
mation enables our model to perform well in
spite of small size of parallel data.

Rest of the paper is organized as follows. We
first provide a brief analysis of our dataset in (§2).
We then elaborate on details of our methods in (§3,
§4, §5, §6). We then discuss experimental setup
and baselines in (§7). Thereafter, we discuss the
results and observations in (§8). We conclude with
discussions on related work (§9) and future direc-
tions (§10).

2 Dataset

Our dataset is a collection of line-by-line mod-
ern paraphrases for 16 of Shakespeare’s 36 plays
(Antony & Cleopatra, As You Like It, Comedy of
Errors, Hamlet, Henry V etc) from the educational
site Sparknotes3. This dataset was compiled by
Xu et al. (2014; 2012) and is freely available on
github.4 14 plays covering 18,395 sentences form
the training data split. We kept 1218 sentences
from the play Twelfth Night as validation data set.
The last play, Romeo and Juliet, comprising of
1462 sentences, forms the test set.

2.1 Examples
Table 1 shows some parallel pairs from the test
split of our data, along with the corresponding
target outputs from some of our models. Copy
and SimpleS2S refer to our best performing atten-
tional S2S models with and without a Copy com-
ponent respectively. Stat refers to the best sta-
tistical machine translation baseline using off-the-
shelf GIZA++ aligner and MOSES. We can see
through many of the examples how direct copy-
ing from the source side helps the Copy generates

3www.sparknotes.com
4 http://tinyurl.com/ycdd3v6h

11



better outputs than the SimpleS2S. The approaches
are described in greater detail in (§3) and (§7).

2.2 Analysis

Table 2 shows some statistics from the training
split of the dataset. In general, the Original side
has longer sentences and a larger vocabulary. The
slightly higher entropy of the Original side’s fre-
quency distribution indicates that the frequencies
are more spread out over words. Intuitively, the
large number of shared word types indicates that
sharing the representation between Original and
Modern sides could provide some benefit.

3 Method Overview

Overall architecture of the system is shown in Fig-
ure 1. We use a bidirectional LSTM to encode
the input modern English sentence. Our decoder
side model is a mixture model of RNN module
amd pointer network module. The two individ-
ual modules share the attentions weights over en-
coder states, although it is not necessary to do so.
The decoder RNN predicts probability distribution
of next word over the vocabulary, while pointer
model predicts probability distribution over words
in input. The two probabilities undergo a weighted
addition, the weights themselves computed based
on previous decoder hidden state and the encoder
outputs.

Let x,y be the some input - output sentence pair
in the dataset. Both input x as well as output y
are sequence of tokens. x = x1x2...xTenc , where
Tenc represents the length of the input sequence x.
Similarly, y = y1y2...yTdec

. Each of xi, yj is a
token from the vocabulary.

4 Token embeddings

Each token in vocabulary is represented by a M
dimensional embedding vector. Let vocabulary V
be the union of modern English and Shakepearean
vocabularies i.e. V = Vshakespeare ∪ Vmodern.
Eenc and Edec represent the embedding matri-
ces used by encoder and decoder respectively (
Eenc, Edec ∈ R|V |×M ). We consider union of
the vocabularies for both input and output em-
beddings because many of the tokens are com-
mon in two vocabularies, and in the best per-
forming setting we share embeddings between en-
coder and decoder models. Let Eenc(t), repre-
sent encoder side embeddings of some token t.

For some input sequence x, Eenc(x) is given as
(Eenc(x1), Eenc(x2), ...).

4.1 Pretraining of embeddings

Learning token embeddings from scratch in an
end-to-end fashion along with the model greatly
increases the number of parameters. To mitigate
this, we consider pretraining of the token embed-
dings. We pretrain our embeddings on all training
sentences. We also experiment with adding ad-
ditional data from PTB (Marcus et al., 1993) for
better learning of embeddings. Additionally we
leverage a dictionary mapping tokens from Shake-
spearean English to modern English.

We consider four distinct strategies to train the
embeddings. In the cases where we use exter-
nal text data, we first train the embeddings us-
ing both the external data and training data, and
then for the same number of iterations on train-
ing data alone, to ensure adaptation. Note that we
do not directly use off-the-shelf pretrained embed-
dings such as Glove (Pennington et al., 2014) and
Word2Vec (Mikolov et al., 2013) since we need to
learn embeddings for novel word forms (and also
different word senses for extant word forms) on
the Original side.

4.1.1 Plain
This method is the simplest pre-training method.
Here, we do not use any additional data, and train
word embeddings are trained on the union of Mod-
ern and Original sentences.

4.1.2 PlainExt
In this method, we add all the sentences from the
external text source (PTB) in addition to sentences
in training split of our data.

4.1.3 Retro
We leverage a dictionary L of approximate Orig-
inal → Modern word pairs (Xu et al., 2012; Xu,
2014), crawled from shakespeare-words.
com, a source distinct from Sparknotes. We ex-
plicitly add the two 2nd persons and their corre-
sponding forms (thy, thou, thyself etc) which are
very frequent but not present inL. The final dictio-
nary we use has 1524 pairs. Faruqui et al (2014)
proposed a retrofitting method to update a set of
word embeddings to incorporate pairwise similar-
ity constraints. Given a set of embeddings pi ∈ P ,
a vocabulary V , and a setC of pairwise constraints
(i, j) between words, retrofitting tries to learn a

12



Figure 1: Depiction of our overall architecture (showing decoder step 3). Attention weights are computed
using previous decoder hidden state h2, encoder representations, and sentinel vector. Attention weights
are shared by decoder RNN and pointer models. The final probability distribution over vocabulary comes
from both the decoder RNN and the pointer network. Similar formulation is used over all decoder steps

new set of embeddings qi ∈ Q to minimize the
following objective:

f(Q) = δ

i=|V |∑
i=1

(pi − qi)
2 + ω

∑
(i,j)∈C

(qi − qj)
2 (1)

We use their off-the-shelf implementation 5 to en-
code the dictionary constraints into our pretrained
embeddings, setting C = L and using suggested
default hyperparameters for δ, ω and number of
iterations.

4.1.4 RetroExt
This method is similar to Retro, except that we use
sentences from the external data (PTB) in addition
to training sentences.

We use None to represent the settings where we
do not pretrain the embeddings.

4.2 Fixed embeddings
Fine-tuning pre-trained embeddings for a given
task may lead to overfitting, especially in scenarios
with small amount of supervised data for the task
(Madhyastha et al., 2015). This is because embed-
dings for only a fraction of vocabulary items get
updated, leaving the embeddings unchanged for
many vocabulary items. To avoid this, we con-
sider fixed embeddings pretrained as per proce-
dures described earlier. While reporting results in
Section (§8), we separately report results for fixed

5github.com/mfaruqui/retrofitting

(FIXED) and trainable (VAR) embeddings, and ob-
serve that keeping embeddings fixed leads to bet-
ter performance.

5 Method Description

In this section we give details of the various mod-
ules in the proposed neural model.

5.1 Encoder model

Let
−−−−−−→
LSTMenc and

←−−−−−−
LSTMenc represent the for-

ward and reverse encoder. h
−→enc
t represent hidden

state of encoder model at step t (h
−→enc
t ∈ RH ). The

following equations describe the model:

h
−−→enc
0 =

−→
0 ,h

←−−enc
|x| =

−→
0 (2)

h
−−→enc
t =

−−−−−−→
LSTMenc(h

enc
t−1, Eenc(xt)) (3)

h
←−−enc
t =

←−−−−−−
LSTMenc(h

enc
t+1, Eenc(xt)) (4)

henc
t = h

−−→enc
t + h

←−−enc
t (5)

We use addition to combine the forward and back-
ward encoder states, rather than concatenation
which is standardly used, since it doesn’t add ex-
tra parameters, which is important in a low-data
scenario such as ours.

5.2 Attention

Let hdec
t represent the hidden state of the decoder

LSTM at step t. Let Edec(yt−1) represent the de-
coder side embeddings of previous step output.
We use special START symbol at t = 1.
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We first compute a query vector, which is a
linear transformation of hdec

t−1. A sentinel vector
s ∈ RH is concatenated with the encoder states to
create Fatt ∈ R(Tenc+1)×H , where Tenc represents
the number of tokens in encoder input sequence
x. A normalized attention weight vector αnorm is
computed. The value g, which corresponds to at-
tention weight over sentinel vector, represents the
weight given to the decoder RNN module while
computing output probabilties.

q = hdec
t−1Wq Wq ∈ RH×H (6)

Fatt = concat(henc
1..Tenc

, s) Fatt ∈ R(Tenc+1)×H

(7)

αi =

H∑
j=1

(tanh(F
(ij)
att qj)) + bi αi,bi ∈ R (8)

αnorm = softmax(α) αnorm ∈ RTenc+1

(9)

β = αnorm
1,2,...,Tenc

β ∈ RTenc (10)
g = αnorm

Tenc+1 g ∈ R (11)

5.3 Pointer model
As pointed out earlier, a pair of corresponding
Original and Modern sentences have significant
vocabulary overlap. Moreover, there are lot of
proper nouns and rare words which might not be
predicted by a sequence to sequence model. To
rectify this, pointer networks have been used to en-
able copying of tokens from input directly (Merity
et al., 2016). The pointer module provides location
based attention, and output probability distribution
due to pointer network module can be expressed as
follows:

PPTR
t (w) =

∑
xj=w

(βj) (12)

5.4 Decoder RNN
Summation of encoder states weighed by corre-
sponding attention weights yields context vector.
Output probabilities over vocabulary as per the de-
coder LSTM module are computed as follows:

ct =

Tenc∑
i=1

βi h
enc
i (13)

hdec
t = LSTM(hdec

t−1, [concat(Edec(yt−1), ct)]) (14)

PLSTM
t = softmax(Wout[concat(hdec

t , ct)] + bout) (15)

During training, we feed the ground truth for yt−1,
whereas while making predictions on test data,
predicted output from previous step is used in-
stead.

5.5 Output prediction

Output probability of a token w at step t is
a weighted sum of probabilities from decoder
LSTM model and pointer model given as follows:

Pt(w) = g × PLSTM
t (w) + (1− g)× PPTR

t (w) (16)

PPTR
t (w) takes a non-zero value only if w oc-

curs in input sequence, otherwise it is 0. Forc-
ing g = 0 would correspond to not having a Copy
component, reducing the model to a plain atten-
tional S2S model, which we refer to as a Sim-
pleS2S model.

6 Loss functions

Cross entropy loss is used to train the model. For
a data point (x,y) ∈ D and predicted probability
distributions Pt (w) over the different words w ∈
V for each time step t ∈ {1, . . . , Tdec}, the loss is
given by

−
Tdec∑
t=1

log p
(
Pt (yt)

)
(17)

Sentinel Loss (SL): Following from work by
(Merity et al., 2016), we consider additional sen-
tinel loss. This loss function can be considered
as a form of supervised attention. Sentinel loss is
given as follows:

−
Tdec∑
t=1

log(g(t) +
∑

xj=yt

(β
(t)
j )) (18)

We report the results demonstrating the impact
of including the sentinel loss function (+SL).

7 Experiments

In this section we describe the experimental setup
and evaluation criteria used.

7.1 Preprocessing

We lowercase sentences and then use NLTK’s
PUNKT tokenizer to tokenize all sentences. The
Original side has certain characters like æwhich
are not extant in today’s language. We map these
characters to the closest equivalent character(s)
used today (e.g æ→ ae)
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7.2 Baseline Methods

7.2.1 As-it-is
Since both source and target side are English, just
replicating the input on the target side is a valid
and competitive baseline, with a BLEU of 21+.

7.2.2 Dictionary
Xu et al. (2012) provide a dictionary mapping be-
tween large number of Shakespearean and modern
English words. We augment this dictionary with
pairs corresponding to the 2nd person thou (thou,
thy, thyself ) since these common tokens were not
present.

Directly using this dictionary to perform word-
by-word replacement is another admittable base-
line. As was noted by Xu et al. (2012), this base-
line actually performs worse than As-it-is. This
could be due to its performing aggressive replace-
ment without regard for word context. Moreover,
a dictionary cannot easily capture one-to-many
mappings as well as long-range dependencies 6.

7.2.3 Off-the-shelf SMT
To train statistical machine translation (SMT)
baselines, we use publicly available open-source
toolkit MOSES (Koehn et al., 2007), along with
the GIZA++ word aligner (Och, 2003), as was
done in (Xu et al., 2012). For training the target-
side LM component, we use the lmplz toolkit
within MOSES to train a 4-gram LM. We also use
MERT (Och, 2003), available as part of MOSES,
to tune on the validation set.

For fairness of comparison, it is necessary to use
the pairwise dictionary and PTB while training the
SMT models as well - the most obvious way for
this is to use the dictionary and PTB as additional
training data for the alignment component and the
target-side LM respectively. We experiment with
several SMT models, ablating for the use of both
PTB and dictionary. In 8, we only report the per-
formance of the best of these approaches.

7.3 Evaluation

Our primary evaluation metric is BLEU (Papineni
et al., 2002) . We compute BLEU using the freely
available and very widely used perl script7 from
the MOSES decoder.

We also report PINC (Chen and Dolan, 2011),
which originates from paraphrase evaluation liter-

6thou-thyself and you-yourself
7http://tinyurl.com/yben45gm

ature and evaluates how much the target side para-
phrases resemble the source side. Given a source
sentence s and a target side paraphrase c generated
by the system, PINC(s,c) is defined as

PINC(s, c) = 1− 1

N

n=N∑
n=1

|Ngram(c, n) ∩Ngram(s, n)|
|Ngram(c, n)|

where Ngram(x, n) denotes the set of n-grams
of length n in sentence x, and N is the maxi-
mum length of ngram considered. We set N =
4. Higher the PINC, greater the novelty of para-
phrases generated by the system. Note, however,
that PINC does not measure fluency of generated
paraphrases.

7.4 Training and Parameters
We use a minibatch-size of 32 and the ADAM op-
timizer (Kingma and Ba, 2014) with learning rate
0.001, momentum parameters 0.9 and 0.999, and
ε = 10−8. All our implementations are written in
Python using Tensorflow 1.1.0 framework.

For every model, we experimented with two
configurations of embedding and LSTM size -
S (128-128), ME (192-192) and L (256-256).
Across models, we find that the ME configura-
tion performs better in terms of highest valida-
tion BLEU. We also find that larger configurations
(384-384 & 512-512) fail to converge or perform
very poorly 8. Here, we report results only for the
ME configuration for all the models. For all our
models, we picked the best saved model over 15
epochs which has the highest validation BLEU.

7.5 Decoding
At test-time we use greedy decoding to find the
most likely target sentence9. We also experiment
with a post-processing strategy which replaces
UNKs in the target output with the highest aligned
(maximum attention) source word. We find that
this gives a small jump in BLEU of about 0.1-0.2
for all neural models 10. Our best model, for in-
stance, gets a jump of 0.14 to reach a BLEU of
31.26 from 31.12.

8 Results

The results in Table 3 confirm most of our hy-
potheses about the right architecture for this task.

8This is expected given the small parallel data
9Empirically, we observed that beam search does not give

improvements for our task
10Since effect is small and uniform, we report BLEU be-

fore post-processing in Table 3
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• Copy component: We can observe from
Table 3 that the various Copy models each
outperform their SimpleS2S counterparts by
atleast 7-8 BLEU points.

• Retrofitting dictionary constraints: The
Retro configurations generally outperform
their corresponding Plain configura-
tions. For instance, our best configuration
Copy.Yes.RetroExtFixed gets a better BLEU
than Copy.Yes.PlainExtFixed by a margin of
atleast 11.

• Sharing Embeddings: Sharing source and
target side embeddings benefits all the Retro
configurations, although it slightly deterio-
rates performance (about 1 BLEU point) for
some of the Plain configurations.

• Fixing Embeddings: Fixed configura-
tions always perform better than corre-
sponding Var ones (save some exceptions).
For instance, Copy.Yes.RetroExtFixed get a
BLEU of 31.12 compared to 20.95 for
Copy.Yes.RetroExtVar. Due to fixing embed-
dings, the former has just half as many pa-
rameters as the latter (5.25M vs 9.40M)

• Effect of External Data: Pretrain-
ing with external data Ext works well
along with retrofitting Retro. For in-
stance, Copy.Yes.RetroExtFixed gets a
BLEU improvement of 2+ points over
Copy.Yes.RetroFixed

• Effect of Pretraining: For the Sim-
pleS2S models, pre-training adversely af-
fects BLEU. However, for the Copy mod-
els, pre-training leads to improvement in
BLEU. The simplest pretrained Copy model,
Copy.No.PlainVar has a BLEU score 1.8
higher than Copy.No.NoneVar.

• PINC scores: All the neural models have
higher PINC scores than the statistical and
dictionary approaches, which indicate that
the target sentences produced differ more
from the source sentences than those pro-
duced by these approaches.

• Sentinel Loss: Adding the sentinel loss does
not have any significant effect, and ends up
reducing BLEU by a point or two, as seen
with the Copy+SL configurations.

8.1 Qualitative Analysis

Figure 2 shows the attention matrices from our
best Copy model (Copy.Yes.RetroExtFixed)
and our best SimpleS2S model (Sim-
pleS2S.Yes.Retrofixed) respectively for the
same input test sentence. Without an explicit
Copy component, the SimpleS2S model cannot
predict the words saint and francis, and drifts off
after predicting incorrect word flute.

Model Sh Init BLEU (PINC)
AS-IT-IS - - 21.13 (0.0)
DICTIONARY - - 17.00 (26.64)
STAT - - 24.39 (32.30)

SIMPLES2S

× NoneV ar 11.66 (85.61)
× PlainV ar 9.27 (86.52)
× PlainExtV ar 8.73 (87.17)
× RetroV ar 10.57 (85.06)
× RetroExtV ar 10.26 (83.83)
X NoneV ar 11.17 (84.91)
X PlainV ar 8.78 (85.57)
X PlainFixed 8.73 (89.19)
X PlainExtV ar 8.59 (86.04)
X PlainExtFixed 8.59 (89.16)
X RetroV ar 10.86 (85.58)
X RetroFixed 11.36 (85.07)
X RetroExtV ar 11.25 (83.56)
X RetroExtFixed 10.86 (88.80)

COPY

× NoneV ar 18.44 (83.68)
× PlainV ar 20.26 (81.54)
× PlainExtV ar 20.20 (83.38)
× RetroV ar 21.25 (81.18)
× RetroExtV ar 21.57 (82.89)
X NoneV ar 22.70 (81.51)
X PlainV ar 19.27 (83.87)
X PlainFixed 21.20 (81.61)
X PlainExtV ar 20.76 (83.17)
X PlainExtFixed 19.32 (82.38)
X RetroV ar 22.71 (81.12)
X RetroFixed 28.86 (80.53)
X RetroExtV ar 20.95 (81.94)
X RetroExtFixed 31.12 (79.63)

COPY+SL

× NoneV ar 17.88 (83.70)
× PlainV ar 20.22 (81.52)
× PlainExtV ar 20.14 (83.46)
× RetroV ar 21.30 (81.22)
× RetroExtV ar 21.52 (82.86)
X NoneV ar 22.72 (81.41)
X PlainV ar 21.46 (81.39)
X PlainFixed 23.76 (81.68)
X PlainExtV ar 20.68 (83.18)
X PlainExtFixed 22.23 (81.71)
X RetroV ar 22.62 (81.15)
X RetroFixed 27.66 (81.35)
X RetroExtV ar 24.11 (79.92)
X RetroExtFixed 27.81 (84.67)

Table 3: Test BLEU results. Sh denotes encoder-
decoder embedding sharing (No=×,Yes=X) . Init
denotes the manner of initializing embedding vec-
tors. The -Fixed or -Var suffix indicates whether
embeddings are fixed or trainable. COPY and
SIMPLES2S denote presence/absence of Copy
component. +SL denotes sentinel loss.

Table 1 presents model outputs11 for some test
examples. In general, the Copy model outputs re-

11All neural outputs are lowercase due to our preprocess-
ing. Although this slightly affects BLEU, it helps prevent
token occurrences getting split due to capitalization.
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Figure 2: Attention matrices from a Copy (top)
and a simple S2S (bottom) model respectively on
the input sentence “Holy Saint Francis, this is a
drastic change!” . < s > and< /s > are start and
stop characters. Darker cells are higher-valued.

semble the ground truth more closely compared to
SimpleS2S and Stat . In some cases, it faces is-
sues with repetition (Examples 5 and 7) and flu-
ency (Example 9).

9 Related Work

There have been some prior work on style adapta-
tion. Xu et al. (2012) use phrase table based statis-
tical machine translation to transform text to target
style. On the other hand our method is an end-
to-end trainable neural network. Saha Roy et al
(2015) leverage different language models based
on geolocation and occupation to align a text to
specific style. However, their work is limited to
addition of adjectives and adverbs. Our method
can handle more generic transformations includ-
ing addition and deletion of words.

Pointer networks (Vinyals et al., 2015) allow the
use of input-side words directly as output in a neu-
ral S2S model, and have been used for tasks like
extractive summarization (See et al., 2017) (Zeng
et al., 2016) and question answering (Wang and
Jiang, 2016). However, pointer networks cannot
generate words not present in the input. A mix-
ture model of recurrent neural network and pointer

network has been shown to achieve good perfor-
mance on language modeling task (Merity et al.,
2016).

S2S neural models, first proposed by Sutskever
et al. (2014), and enhanced with a attention mech-
anism by Bahdanau et al. (2014), have yielded
state-of-the-art results for machine translation
(MT), , summarization (Rush et al., 2015), etc. In
the context of MT, various settings such as multi-
source MT (Zoph and Knight, 2016) and MT with
external information (Sennrich et al., 2016) have
been explored. Distinct from all of these, our work
attempts to solve a Modern English → Shake-
spearean English style transformation task. Al-
though closely related to both paraphrasing and
MT, our task has some differentiating character-
istics such as considerable source-target overlap
in vocabulary and grammar (unlike MT), and dif-
ferent source and target language (unlike para-
phrasing). Gangal et al. (2017) have proposed a
neural sequence-to-sequence solution for generat-
ing a portmanteau given two English root-words.
Though their task also involves large overlap in
target and input, they do not employ any spe-
cial copying mechanism. Unlike text simplifica-
tion and summarization, our task does not involve
shortening content length.

10 Conclusion

In this paper we have proposed to use a mix-
ture model of pointer network and LSTM to
transform Modern English text to Shakespearean
style English. We demonstrate the effectiveness
of our proposed approaches over the baselines.
Our experiments reveal the utility of incorporat-
ing input-copying mechanism, and using dictio-
nary constraints for problems with shared (but
non-identical) source-target sides and sparse par-
allel data.

We have demonstrated the transformation to
Shakespearean style English only. Methods have
to be explored to achieve other stylistic variations
corresponding to formality and politeness of text,
usage of fancier words and expressions, etc. We
release our code publicly to foster further research
on stylistic transformations on text. 12.

12https://github.com/harsh19/Shakespearizing-Modern-
English
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Abstract

Detecting and analyzing stylistic variation
in language is relevant to diverse Natu-
ral Language Processing applications. In
this work, we investigate whether salient
dimensions of style variations are em-
bedded in standard distributional vector
spaces of word meaning. We hypothesize
that distances between embeddings of lex-
ical paraphrases can help isolate style from
meaning variations and help identify latent
style dimensions. We conduct a qualitative
analysis of latent style dimensions, and
show the effectiveness of identified style
subspaces on a lexical formality prediction
task.

1 Introduction

Automatically analyzing and generating natural
language requires capturing not only what is said,
but also how it is said. Consider the sentences
“he shot himself” and “he committed suicide”.
The first one is less formal than the second one,
and carries information beyond its literal meaning,
such as the situation in which it might be used.
Another example is “stamp show” vs. “philatelic
exhibition”, English learners with limited vocabu-
lary can use the former term since it is simpler.

As Natural Language Processing systems are
deployed in a variety of settings, detecting and
analyzing stylistic variations is becoming increas-
ingly important, and is relevant to applications
ranging from dialogue systems (Mairesse, 2008)
to predicting power differences in social interac-
tions (Danescu-Niculescu-Mizil et al., 2012).

In this work we aim to determine to what ex-
tent such stylistic variations are embedded in the
topology of distributional vector space models.
We focus on dense word embeddings, which pro-

vide a compact summary of word usage on the ba-
sis of the distributional hypothesis, and have been
showed to capture semantic similarity and other
lexical semantic relations (Mikolov et al., 2013;
Baroni et al., 2014; Levy and Goldberg, 2014).

We hypothesize that differences between em-
beddings of words that share the same meaning are
indicative of style differences. In order to test this
hypothesis, we introduce a method based on Prin-
cipal Component Analysis to identify salient di-
mensions of variations betwen word embeddings
of lexical paraphrases.

Applying our method to word embeddings
learned from two large corpora representing dis-
tinct genres, we conduct a qualitative analysis
of the principal components discovered. It sug-
gests that the principal components indeed dis-
cover variations that are relevant to style.

Second, we evaluate the style dimensions more
directly, using them to distinguish more formal
from less formal words. Formality is consid-
ered a key dimension of style variation (Hey-
lighen and Dewaele, 1999), and it encompasses a
range of finer-grained dimensions, including po-
liteness, serious-trivial, etc (Irvine, 1979; Brown
and Fraser, 1979).

The formality prediction task lets us evaluate
empirically the impact of different factors in iden-
tifying style-relevant dimensions, including di-
mensionality of the subspace and the nature of the
prediction method. We also conduct an error anal-
ysis revealing the limitation of predicting formal-
ity based on vector space models.

2 Background

Many studies of style variations have focused on
the corpus or sentence level. For instance, multidi-
mensional corpus analysis (Biber, 1995) relies on
statistical analysis to identify the salient linguistic
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co-occurrence patterns that underlie register vari-
ations. More recently, richer combinations of fea-
tures have been used to predict style dimensions
such as formality: (Pavlick and Tetreault, 2016)
provide a thorough study of sentence-level formal-
ity and show that classifiers based on features in-
cluding POS tags and dependency parses can pre-
dict formality as defined by the collective intuition
of human annotators.

Here, we focus on identifying dimensions of
style variations at the lexical level, motivated by
the usefulness of word embeddings in many NLP
tasks (Mikolov et al., 2013; Baroni et al., 2014),
and by recent work that showed that meaningful
ultradense subspaces that capture dimensions such
as polarity and concreteness can be induced from
word embeddings in a supervised fashion (Rothe
and Schütze, 2016). Bolukbasi et al. (2016) in-
duced a gender subspace using 10 human-selected
gender pairs for reducing stereotypes. In contrast,
we aim to discover style relevant dimensions with-
out supervision, using instead lexical paraphrases
to discover dimensions of variations that are not
explained by semantic differences.

Prior work on evaluation of style factors at the
word level has used standard word embeddings as
features, and relied on external supervised meth-
ods to identify style relevant information in these
embeddings. Brooke et al. (2010) proposed to
score the formality of a word w by comparing its
meaning to that of seed words of known formal-
ity using cosine similarity (Turney and Littman,
2003). Other approaches include work by Pavlick
and Nenkova (2015) who used a unigram language
model to capture the difference between lexical
distributions across genres.

Beyond formality, analysis of stylistic varia-
tions from the point of view of the lexicon in-
cludes predicting term complexity, as annotated by
non-native speakers (Paetzold and Specia, 2016).
Preotiuc-Pietro et al. (2016) isolated stylistic dif-
ferences associated with user attributes (gender,
age) by using paraphrase pairs and word distribu-
tions similar to Pavlick and Nenkova (2015). Xu
et al. (2012) used a machine translation model to
paraphrasing Shakespeares plays into/from mod-
ern English.

3 Approach

Our approach to discovering stylistic variations in
vector space models is based on the assumption

that these variations cannot be explained by dif-
ferences in meaning, and they can be captured by
salient dimensions of variation in the distributional
spaces.

Lexical paraphrases should have the same
meaning, and therefore their embeddings should
be close to each other. When lexical paraphrases
are not in the same location in the vector space,
distances between them might be indicative of
latent style variations. We discover such latent
directions using Principal Component Analysis
(PCA).1

Concretely, suppose ei is the word embedding
in the vector space for word wi. Given pairs of
word embeddings (e1, e2) for lexical paraphrases
(w1, w2), we subtracted them to get the relative
direction d = e1 − e2.

For a given word pair, the difference vector
might capture many things besides style varia-
tions. We hypothesize that the regularities among
these differences for a large number of examples
will reveal stylistic variations. Therefore, we then
trained a PCA model on all directional vectors
to get principal components (pck) capturing latent
variations.

4 Qualitative Analysis of Latent Style
Dimensions

4.1 Models Settings

The approach outlined above requires two types of
inputs: (1) a word embedding space, and (2) a set
of lexical paraphrases.

Word Embeddings We used word2vec
(Mikolov et al., 2013) to build 300-dimensional
vector space models for two corpora representing
different genres. As suggested by Brooke et al.
(2010), we selected the ICWSM 2009 Spinn3r
dataset (English tier-1) as the training corpus
(Burton et al., 2009). It consists of about 1.6
billion words in 7.5 million English blogs and
is expected to have wide variety of language
genres. We also compared it with the pre-trained
300-dimensional model of Google News 2, which
represents an even larger training corpus but in a
narrower register. By working with two different

1Other algorithms for dimensionality reduction could also
be leveraged to discover latent variations. E.g. multidimen-
sional scaling (MDS) and t-distributed stochastic neighbor
embedding (t-SNE).

2https://code.google.com/archive/p/
word2vec/
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k Representative word pairs
ICWSM 2009 Spinn3r Blogs

1
annulling • canceling ‖ abolished • canceled ‖ centre • center ‖ emphasise • highlight
programme • program ‖ imperatives • essentials ‖ motorway • freeway ‖ labour • labor
organised • organize ‖ six-party • six-way ‖ tranquility • serenity ‖ tripartite • three-way

2
spendings • expenditures ‖ summons • subpoenas ‖ anti-malaria • antimalarial
doctor • physician ‖ falls • decreases ‖ banned • prohibiting ‖ fallen • decreased

3 decreased • receded ‖ decreased • fallen ‖ decreased • declined ‖ decreased • shrank

4
agreements • understandings ‖ unlimited • unbounded ‖ disruptions • perturbations
discriminatory • discriminative ‖ timetable • time-scale ‖ amended • altered ‖ ban • forbidden

5
underscored • underline ‖ eliminated • delete ‖ highlights • underline ‖ widened • expand
widened • broaden ‖ emphasises • underline ‖ decreased • reduce ‖ performed • fulfil

6
co-operate • collaborating ‖ interdomain • cross-domain ‖ cooperate • collaborating
origin • sourcing ‖ executions • implementations ‖ multifunctional • cross-functional

7
refusing • rebuffs ‖ stopped • halts ‖ stress • underlines ‖ inspected • reviewed
withdrawals • withdraws ‖ supervising • oversees ‖ stress • emphasises ‖ refused • rejects

8
restarting • revitalising ‖ co-operation • collaborations ‖ cooperation • collaborations
restart • resumes ‖ cleric • clergymen ‖ cooperates • collaborates ‖ expel • expulsions

9
obtain • gain ‖ multi-factor • multifactorial ‖ restricts • hampers ‖ retrieves • recovers
obstructs • hampers ‖ revoking • canceling ‖ contravened • breaches ‖ invalidated • canceled

10
delete • eliminate ‖ underline • stresses ‖ underline • emphasises ‖ schema • schemes
restarting • revitalising ‖ decreased • reduce ‖ underline • highlight ‖ permissions • permits
Google News

1
educator • educationist ‖ ousts • deposes ‖ exemptions • derogations ‖ educator • educationalist
legal • juridical ‖ truck • lorry ‖ exceptions • derogations ‖ accomplishments • attainments
roadway • carriageway ‖ prohibit • proscribe ‖ freeway • motorway ‖ lucrative • remunerative

2 standardize • standardizing ‖ intercept • intercepting ‖ evacuate • evacuating ‖ isolate • isolating
3 destroys • demolishing ‖ solves • resolving ‖ impedes • obstructing ‖ examines • investigating
4 falls • decreases ‖ widens • increases ‖ spends • expenditures ‖ shrinks • decreases

5
infeasible • impracticable ‖ impossible • impracticable ‖ earmarks • allocates
unworkable • impracticable ‖ confines • restricts ‖ impractical • impracticable

Table 1: Representative word pairs for top principal components (indexed by k) are listed for both blogs
and news corpora. A mixed variation of formality and American-British English (grey-boxed) can be
characterized by the first principal component, but the following principal components seem vaguer in
terms of interpreting stylistic variations.

corpora, we aim to discover whether they share
some common stylistic variations even though
they have distinct word distributions.

Lexical Paraphrases PPDB 2.0 (Pavlick et al.,
2015) provides automatically extracted lexical
paraphrases with entailment annotations. We use
the S-size pack and extracted word pairs with
Equivalence entailment relation, which repre-
sent a cleaner subset of the original PPDB. This
process yields 9427 paraphrase pairs found in the
vocabulary of the blogs embeddings and 6988
pairs found in the vocabulary of the Google news

embeddings.

4.2 Analysis
We illustrate the principal components discovered
in Table 1. For each of the k-th principal com-
ponents, we can identify the most representative
word pairs for that component by projecting all
word pairs on pck and ranking pairs based on
d · pck.

The first observation is that the first principal
components for both blogs and news corpora cap-
ture the pattern of American/British-English vari-
ations (grey-boxed in the Table). These might also
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be related to the formality dimension of style, as
British-English can be regarded to be more formal
than American-English (Hurtig, 2006). However,
not all representative word pairs fall in that cate-
gory, and the nature of the variation between e.g.,
“annulling” and “canceling” is harder to charac-
terize.

We can observe clues of stylistic variations in
the subsequent (2nd+) principal components, but
in general it is difficult to interpret each group.
Several word pairs can be seen as illustrating
formality variations (e.g., “falls” ↔ “decrease”,
“delete”↔ “eliminate”). Many word pairs are lit-
erally exchangeable but either one is preferred un-
der certain context, such as “summons” vs. “sub-
poenas”, “decreased” vs. “fallen”, etc. Some prin-
cipal components simply capture groups of words
having semantic correlations, such as third PC of
blogs and fourth PC of news (all contain “de-
crease/increase”), due to the biased word distribu-
tion of PPDB.

Although blogs and news corpora are expected
to have different word distributions, they share the
stylistic variation patterns mentioned above. One
key difference between the principal components
discovered int these two embedding spaces can be
found in the second and third principal component
of the news corpus, where “base (verb)↔ present
participle” is a dominant pattern, while it cannot
be found in the top principal components of the
blogs corpus.

Overall, this manual inspection suggests that the
principal components do capture information that
is relevant to style variations, even if they do not
directly align to clear-cut style dimensions. Iden-
tifying how many top PCs are style-related (i.e.
form a style subspace) is subjective and difficult.
Therefore, we now turn to a quantitative evalua-
tion.

5 Extrinsic Evaluation: Lexical
Formality Scoring

We evaluate the usefulness of the latent dimen-
sions discovered in Section 4 on a lexical formality
prediction task. If the dimensions discovered are
relevant to style, they should help predict formal-
ity with high accuracy.

5.1 Identifying A Style Subspace
5.1.1 Experimental Setup
Task Following Brooke et al. (2010), we used
a list of 399 synonym pairs from a writing man-
ual – Choose the Right Word (CTRW) (Hayakawa,
1994) – to evaluate the formality model. Given a
pair of words, such as “hurry” vs. “expedite”, the
task is to predict which is the more formal of the
two.

Ranking method The predictions were made by
linear SVM classifiers (similar to the method pro-
posed by Brooke and Hirst (2014)). They were
trained on 105 formal seed words and 138 in-
formal seed words used by Brooke et al. (2010).
Each word was represented by a feature vector in
word2vec spaces or their subspaces. When rank-
ing two words, we actually compared their dis-
tances to the separating hyperplane, i.e. w · e− ρ,
where w, e and ρ are weight, embedding and bias.

Embedding spaces We first trained word2vec
(W2V) models of blogs corpus with different space
sizes (dimensionality=1-10, 15, 20, 25, 30, 35, 40,
45, 50, 100, 150, 200, 250, 300, 350, 400, 450,
500). We then fixed the space size of word2vec
models to 300 since it provides large enough orig-
inal vector space and is a routinely used setting.
All subspaces would be extracted from these 300-
dimensional original spaces.

Style subspaces Next, we identified style sub-
spaces (i.e. top PCs) using the PCA method intro-
duced in Section 3. We examined every possible
subspace size in the range of [1, 300] and denoted
this method as PCA-PPDB.

For comparison, we also trained PCA subspaces
using the seed words (PCA-seeds). Since seed
words are not paraphrases, the PCA model was
simply applied on word vectors. This method is
based on the assumption that representative for-
mal/informal words principally vary along the di-
rection of formality.

5.1.2 Results
As illustrated in Figure 1, *** train indicates
the training accuracy of SVM classifiers while
*** test indicates the CTRW-pairs test accu-
racy.

The test accuracy of W2V curve has two peaks
when dimensionality=10 (accuracy=0.798) and di-
mensionality=300 (accuracy=0.792). Consider-
ing the near-monotonicity of the training accuracy
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Figure 1: Train accuracy of formal/informal words classification and test accuracy of CTRW word-
pair ranking v.s. the (sub)space dimensionality. An SVM-based formality model achieved the best test
performance on subspaces identified by PCA on PPDB data.

curve, we attribute the trough around dimension-
ality=45 to over-fitting (increasing number of fea-
tures) while attribute the rebound after that to more
formality-related dimensions introduced.

Recall that we fixed the original spaces to 300
dimensions. The accuracy curve provides another
reason to choose this number: 300-dimensional
original spaces can model formality well by itself
and the performance converges when dim ≥ 300.

Comparing PCA-PPDB test and W2V
test, we can observe clear advantage of using
subspaces that capture latent lexical variations.
Even a single first principle dimension surpassed
original word2vec models of any size, including
the full 300-dimensional space which yielded a
test accuracy of 0.792. Further improvements
were achieved when 9th-21st principle dimen-
sions were introduced (max accuracy=0.826) –
back to Table 1, we can notice additional clues of
formality variations from 9th PC.

The accuracy curves of PCA-seeds indicate
that this model can fit the training set better with
fewer dimensions than PPDB-based model but
does not generalize as well to unseen test data.
However, PCA-seeds still surpassed original
word2vec models of any size.

5.2 SVM-based Ranking vs. Other Formality
Models

We have discussed the effectiveness of modeling
formality using a subspace of small size (1 for
good results and ∼20 for best results). All analy-

ses so far were based on linear SVM, but can other
sophisticated methods perform even better on the
style-embedded subspaces?

5.2.1 Formality Models
We compare SVM with state-of-the-art lexical for-
mality models based on vector space models, such
as SimDiff (Brooke et al., 2010) and DENSIFIER

(Rothe et al., 2016).
SimDiff (Brooke et al., 2010) scores the for-

mality of a word w by comparing its meaning to
that of seed words of known formality.3 Intu-
itively, w is more likely formal if it is semantically
closer to formal seed words than to informal seed
words. Formally, given a formal word set Sf and
an informal word set Si, SimDiff scores a word
w by

score(w) =
1
|Sf |

∑
v∈Sf

ew · ev − 1
|Si|

∑
v∈Si

ew · ev

Further manipulations such as score de-biasing
and normalization were also introduced in
(Brooke et al., 2010), but they would not affect
rankings examined by our evaluation.

DENSIFIER (Rothe et al., 2016) is a supervised
learning algorithm that transforms word embed-
dings into pre-defined ultra-dense orthogonal di-
mensions such as sentiment and concreteness. Un-
der the formality ranking scenario, it optimizes a

3While Brooke et al. (2010) used cosine to measure the
similarity in LSA spaces, we found that dot product yields
better results with word2vec embeddings.
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Figure 2: Test accuracy of CTRW word-pair ranking v.s. the subspace dimensionality. All formality
models achieved similar performance on subspaces of size 9-21 identified by PCA-PPDB.

Incorrect Examples Correct Examples
w1 w2 s1 s2 s2 − s1 w1 w2 s1 s2 s2 − s1
crony friend ‡† 0.667 -1.414 -2.081 grill ‡ interrogate -1.370 1.212 2.581
conceit vanity ‡ 1.107 -0.697 -1.804 excuse ‡ remit -0.608 2.001 2.609
present † gift 1.017 -0.732 -1.749 gardening ‡† tillage -0.846 1.795 2.641
shiv knife ‡ 0.681 -0.863 -1.543 get ‡† obtain -1.435 1.296 2.731
quotation quote ‡ 0.910 -0.594 -1.504 hurry ‡ expedite -1.632 1.174 2.806
frighten scare ‡ 0.157 -1.244 -1.400 catch ‡† apprehend -1.443 1.381 2.824
phony fake † 0.237 -1.100 -1.337 watch ‡ observe -1.628 1.264 2.892
parched dehydrated † 0.173 -1.035 -1.209 loud ‡† clamorous -1.304 1.819 3.123
punish ‡ chasen 0.260 -0.697 -0.956 quote ‡‡ adduce -0.594 2.529 3.123
penetrating ‡ perspicacious 1.527 0.644 -0.883 beach ‡† littoral -1.116 2.143 3.259

Table 2: Top (mis-)predicted CTRW word pairs, where si is the SVM (formality) score for word wi. w2

is supposed to be more formal than w1. † This word is more frequent than the other in a pair according
to the blogs corpus. (‡/ ‡ †/ ‡ ‡ means at least 10/100/1000 times more.)

formality dimension (transition vector) that aims
at separating words in Sf and words in Si, and
grouping words in the same set.

5.2.2 Results
All three formality scoring models (i.e. linear
SVM, SimDiff and DENSIFIER) were applied
to subspaces extracted from 300-dimensional
word2vec spaces using PCA on PPDB data. Fig-
ure 2 shows that three models achieves nearly
identical accuracy on subspaces with size smaller
than 28.4 Furthermore, we also compared the for-
mality directions discovered by linear SVM (co-
efficient w) and Densifier (transition vector). For
any dimensionality, the cosine similarity between
them are larger than 0.8. It is even larger than 0.9

4SVM could also have similar accuracy curve after di-
mension=28 if an RBF kernel was used.

when dim ≥ 21. These suggest that the choice
of ranking models has marginal impact, therefore
identifying the style subspace plays a more critical
role in modeling formality.

5.3 Error Analysis
Identified subspaces capture formality decently in
terms of ranking lexical formality – as high as
0.826 accuracy in the CTRW dataset (based on the
best performing model, i.e. a linear SVM trained
on a 20-dimensional subspace identified by PCA-
PPDB). The question then arises: what types of
errors contribute to the incorrect predictions?

Top (mis-)predicted CTRW word pairs are
listed in Table 2, where si is the SVM (formal-
ity) score for word wi. w2 is supposed to be more
formal than w1.

One category of errors roots in the mechanism
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of vector space models such as word2vec: they are
all based on word co-occurrence patterns, which
sometimes introduce unwanted biases. For ex-
ample, “crony” itself is an informal synonym of
“friend” in our dataset. However, “crony capital-
ism” is a tightly glued economy term. For compar-
ison, the formality score of “capitalism” is 0.966,
which is very close to 0.667 of “crony”.

Ambiguity is another key factor that influences
the formality scoring based on vector space mod-
els. Arora et al. (2016) pointed out that in the vec-
tor space, a word having multiple meanings lies
in middle of its senses. Consequently, its formal-
ity score is also controlled by all its senses. We
can find many ambiguous words in the list of in-
correct examples, such as “vanity” (clothing store,
singer), “present”, “shiv” (Hindu god), “parched”
(film), “chasen” (surname, band), etc.

Last but not least, word frequency is a strong
signal of predicting formality, but predictions can
easily be stereotyped. We used word frequencies
in the blogs corpus to rank CTRW word pairs and
got an accuracy as high as 0.771 (by arguably
treating more frequent as less formal). Project-
ing to the top (in)correct examples, a † symbol is
placed behind the more frequent word in a pair.
We can observe that top correctly ranked pairs fol-
lowed the more-frequent-less-formal rule. How-
ever, this rule also biased the prediction to some
incorrectly ranked pairs. Frequency information is
not designed to be embedded into Word2vec mod-
els, but it still can be partially reconstructed (Rothe
et al., 2016).

In a nutshell, formality models based on vec-
tor space models suffers from the limitation that a
word representation is affected by word associa-
tion, word sense and word frequency.

6 Conclusion

We presented an approach to discovering stylis-
tic variations in distributional vector spaces using
lexical paraphrases. Qualitative analysis suggests
that the principle components discovered by PCA
indeed capture variations related to style. Evalu-
ation on a formality prediction task demonstrates
the benefits of the induced subspace to detect style
variations. We also compared the impact of dif-
ferent factors in identifying style-relevant dimen-
sions such as the training data for PCA, the di-
mensionality of subspaces and the nature of pre-
diction methods. Finally, the error analysis indi-

cated some intrinsic limitation of comparing style
(formality) based on vector space models.
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Abstract

Many of the creative and figurative el-
ements that make language exciting are
lost in translation in current natural lan-
guage generation engines. In this paper,
we explore a method to harvest templates
from positive and negative reviews in the
restaurant domain, with the goal of vastly
expanding the types of stylistic variation
available to the natural language generator.
We learn hyperbolic adjective patterns that
are representative of the strongly-valenced
expressive language commonly used in ei-
ther positive or negative reviews. We then
identify and delexicalize entities, and use
heuristics to extract generation templates
from review sentences. We evaluate the
learned templates against more traditional
review templates, using subjective mea-
sures of convincingness, interestingness,
and naturalness. Our results show that
the learned templates score highly on these
measures. Finally, we analyze the linguis-
tic categories that characterize the learned
positive and negative templates. We plan
to use the learned templates to improve the
conversational style of dialogue systems in
the restaurant domain.

1 Introduction

The restaurant domain has been one of the most
common applications for spoken dialogue systems
for at least 25 years (Polifroni et al., 1992; Whit-
taker et al., 2002; Stent et al., 2004; Devillers
et al., 2004; Gasic et al., 2008). There has been
a tremendous amount of previous work on natural
language generation of recommendations and de-
scriptions for restaurants (Howcroft et al., 2013;
Wen et al., 2015; Novikova et al., 2016), some of

# Stars Review

1 1/5 This place is probably the worst thing that ever
happened to the history of the known world. [...]
The food, however, I initially would want to call
unremarkable but I can’t. I can’t call it unre-
markable because it is so incredibly remarkably
terrible. [...]

2 2/5 Can’t say anything about the food, as we were
never served. We never saw a server, even after
sitting at our table for 15 minutes. Unacceptable.

3 3/5 I was back here a couple of days ago with my
family. And although I remember The food be-
ing a lot better than this time around. I was kind
of disappointed. The service was okay since I
had no Jose this time. Nothing to mention here
just refills chips salsa and beverages when you
need and food when it’s ready.

4 4/5 I would eat here everyday if I didn’t think I’d end
up 400 pounds... Minus 1 star because each time
I’ve been here the service has kinda sucked and
orders have been messed up. Regardless, their
fried chicken on waffles topped with syrup and
a slice of Red Velvet cake to top it off......... is
sooooooo heavenly.

5 5/5 I only have one warning about this restaurant.
The food is so amazing that you cannot eat Mex-
ican food anywhere else. [...] I had chicken and
beef enchiladas which had homemade corn tor-
tillas and the most tender meat I had ever tasted.
[...] I will be a customer for life here!

Table 1: Restaurant Reviews by Rating from the
Yelp Dataset Challenge Corpus

which has even focused on generating stylistically
varied restaurant recommendations (Higashinaka
et al., 2007b; Mairesse and Walker, 2010; Deth-
lefs et al., 2014). Given this, it is surprising that
previous work has not especially noted that restau-
rant reviews are a fertile source of creative and
figurative language. For example, consider the
elaborate descriptions in the restaurant reviews in
Table 11, e.g. phrases such as worst thing that

1Reviews from the Yelp 2016 dataset challenge:
https://www.yelp.com/dataset_challenge
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ever happened in the history of the known world
along with incredibly remarkably terrible (Row
1), eat here everyday if I didn’t think I’d end up
400 pounds and sooooooo heavenly (Row 4), and
food so amazing you cannot eat [...] anywhere
else (Row 5). These phrases express extremely va-
lenced reactions to restaurants, their menu items,
and related attributes, using figurative language.

The creativity exhibited in these user-generated
restaurant reviews can be contrasted with natural
language generation (NLG) for the restaurant do-
main. Methods for NLG typically begin with a
structured meaning representation (MR), as shown
in Table 2, and map these meaning representations
into surface language forms, using a range of dif-
ferent methods, including template-based gener-
ation, statistically trained linguistically-informed
NLG engines, and neural approaches (Bangalore
and Rambow, 2000; Walker and Rambow, 2002).
These approaches vary in the degree to which they
can generate syntactically and semantically cor-
rect utterances, but in most cases the stylistic vari-
ation they can generate is extremely limited. Ta-
ble 2 illustrates sample restaurant domain utter-
ances produced by recent statistical/neural natu-
ral language generators (Higashinaka et al., 2007a;
Mairesse and Walker, 2007; Wen et al., 2015;
Novikova et al., 2016; Dusek and Jurcı́cek, 2016).

One of the most prominent characteristics of
restaurant reviews in the Yelp corpus is the preva-
lent use of hyperbolic language, such as the phrase
“incredibly remarkably terrible” in Table 1. Hy-
perbole is often found in persuasive language, and
is classified as a form of figurative language (Mc-
Carthy and Carter, 2004; Cano Mora, 2009). Col-
ston and O’Brien describe how an event or situa-
tion evokes a scale, and how hyperbole exagger-
ates a literal situation, introducing a discrepancy
between the “truth” and what is said (Colston and
Keller, 1998; Colston and O’Brien, 2000). Hy-
perbole moves the strength of a statement up and
down the scale, away from the literal meaning,
where the degree of movement reflects the degree
of contrast or exaggeration. Depending on what
they modify, adverbial intensifiers like totally, ab-
solutely, and incredibly can shift the strength of the
assertion to extreme negative or positive.

Similarly, Kreuz and Roberts (1995) describe
a standard frame for hyperbole in English where
an adverb modifies an extreme, positive adjective,
e.g. “That was absolutely amazing!” or “That

was simply the most incredible dining experi-
ence in my entire life.” Such frames can be seen
in the reviews in Table 1, but we also see many
other idiomatic hyperbolic expressions such as out
of this world (Cano Mora, 2009).

Our goal is to develop a natural language gen-
erator for the restaurant domain that can harvest
and make use of these types of stylistic variations.
We explore a data-driven approach to automati-
cally select stylistically varied utterances in the
restaurant review domain as candidates for review
construction. We empirically learn hyperbolic ad-
jective patterns that are highly correlated with two
classes (positive and negative reviews). Using dif-
ferent resources, we also identify and delexicalize
restaurant, cuisine, food, service, and staff enti-
ties, and select short, single-entity utterances that
are simple to templatize.

Our overall approach is thus similar to Hi-
gashinaka et al. (2007a,b), who describe a method
for harvesting an NLG dictionary from restaurant
reviews, however our focus on learning expressive
language, in particular hyperbole as a type of figu-
rative language, is novel. Our framework consists
of the following steps:

1. Collect a large number of strongly positive
and strongly negative reviews in the restau-
rant domain;

2. Use a linguistic pattern learner to identify lin-
guistic frames that use hyperbole;

3. Create generation templates from the iden-
tified linguistic patterns and infer their con-
texts of use;

4. Learn to rank the generation templates for
convincingness and quality.

We see Steps 1 to 3 as the overgeneration phase,
aimed at vastly expanding the types of stylistic
variation possible, while Step 4 is the ranking
phase, in a classic overgenerate and rank NLG ar-
chitecture (Langkilde and Knight, 1998; Rambow
et al., 2001). We focus in this paper on Steps 1
to 3, expecting to improve these steps before we
move on to Step 4.

Thus, in this paper, we conducted an evalua-
tion experiment to compare three different types
of NLG templates: pre-defined BASIC templates
similar to those used in current NLG engines for
the restaurant domain (Walker et al., 2007; Wen
et al., 2015), the basic templates stylized with
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MR NLG System

name[Emilios]
foodquality[excellent]
location[city centre]
cuisine[Italian]
decor[decent]
service[decent]

Emilios decor and service are both decent, but its food quality
is nothing short of excellent. It serves Italian food and its in
the City Centre.

Seq2Seq NLG
(Nayak et al., 2017)

name[The Eagle]
eattype[coffee shop]
pricerange[moderate]
customerrating[3/5]
kidsFriendly[yes]
near[Burger King]

The three star coffee shop, The Eagle, gives families a mid-
priced dining experience featuring a variety of wines and
cheeses. Find The Eagle near Burger King.

Human annotators
(Novikova et al., 2016)

name[X]
type[placetoeat]
near[Y]
food[Continental]
food[French]

X is a restaurant providing french and continental food, near
Y.

Seq2Seq Generation
(Dusek and Jurcı́cek, 2016)

name[Red door cafe]
goodformeal[breakfast]
area[cathedral hill]
kidsallowed[no]

Red door cafe is a good restaurant for breakfast in the area of
cathedral hill and does not allow children .

LSTM Generation
(Wen et al., 2015)

name[Le Marais]
cuisine[French]
foodquality[good]
service[good]
decor[decent]
price[$44]

I am sure you would like Le Marais, you know. The atmo-
sphere is acceptable, the servers are nice and it’s a fresh,
kosher and steak house place. Actually, the food is good, even
if its price is 44 dollars.

PERSONAGE
(Mairesse and Walker, 2007)

name[Babbo]
foodquality[superb]
service[excellent]
decor[superb]

The food is phenomenal and the atmosphere is very unique.
Babbo has excellent service. It has the best overall quality
among the selected restaurants.

Unsupervised Method for
Lexicon Learning
(Higashinaka et al., 2007a)

Table 2: Example Meaning Representations (MR) and Corresponding Natural Language Generation
(NLG) Output in the Restaurant Domain

our learned patterns for more HYPERBOLIC tem-
plates, and finally a class of CREATIVE templates
that incorporate full sentence templates from user
reviews. Our expectation was that many of the
CREATIVE templates would fail to be appropriate
to their contexts, but that our HYPERBOLIC tem-
plates would be both appropriate and more inter-
esting and convincing than the BASIC templates.
However, our results show that our creative tem-
plates are preferred as more convincing, interest-
ing, and natural across the board. We discuss how
we can use quantitative metrics associated with the
learned templates for future ranking, and analyze
characteristic linguistic categories in each class.

2 Data

Our restaurant review data comes from the Yelp
dataset challenge, which includes 144K busi-
nesses with over 4.1M reviews. We randomly se-
lect 10K businesses located in the US that are clas-
sified as restaurants, resulting in a set of around
40K reviews. The data consists of around 4K 1

stars, 3.8K 2 stars, 5.6K 3 stars, 11.3K 4 stars, and
15K 5 stars. We divide the reviews by stars, and
create three datasets: negative (using all of the 1-2
stars), positive (balancing the number of negative
reviews using the 5 stars), and neutral (using all of
the 3 stars). Table 3 shows our data distribution.

Split Stars Num Reviews

POSITIVE 5 7,853
NEUTRAL 3 5,610
NEGATIVE 1-2 7,853

Table 3: Selected Review Data Distribution

3 Learning Patterns for Hyperbole

Our goal is to learn patterns that are highly asso-
ciated with the extreme positive and negative re-
views, and that exemplify strong, expressive lan-
guage. To automatically learn such patterns, we
use the AutoSlog-TS weakly-supervised extrac-
tion pattern learner (Riloff, 1996).

AutoSlog-TS uses a set of syntactic templates
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to learn lexically-grounded patterns. AutoSlog
does not require fine-grained labels on training
data: all it requires is that the training data be di-
vided into two distinct classes. Here, we run two
separate AutoSlog experiments, one in which the
classes are POSITIVE compared to NEUTRAL, and
the other where the NEGATIVE class is compared
to NEUTRAL. We hypothesize that in this way,
we can surface the most commonly used patterns
from each class that are not necessarily sentiment-
related.

AutoSlog applies the Sundance shallow parser
(Riloff and Phillips, 2004) to each sentence of
each review, finds all possible matches for its syn-
tactic templates, and then instantiates the syntactic
templates with the words in the sentence to pro-
duce a specific lexico-syntactic expression. Most
importantly, it uses the labels associated with the
data to compute statistics for how frequently each
pattern occurs in each class. Thus, for each pat-
tern p, we learn the P(POSITIVE/NEGATIVE| p),
the P(NEUTRAL| p), and the pattern’s frequency.

Table 4 shows examples of the patterns we learn
and sample instantiations, with their respective
frequency (F) and probabilities (P). In the pattern
template column of Table 4, PassVP refers to pas-
sive voice verb phrases (VPs), ActVP refers to
active voice VPs, InfVP refers to infinitive VPs,
and AuxVP refers to VPs where the main verb is
a form of to be or to have. Subjects (subj), di-
rect objects (dobj), noun phrases (np), and posses-
sives (genitives) can also be extracted by the pat-
terns. Because we are particularly interested in de-
scriptive patterns, we also use ngram pattern tem-
plates, AdjAdj, AdvAdj, AdvAdvAdj, as
in related work (Oraby et al., 2015, 2016).

Our goal is to find highly reliable patterns with-
out sacrificing linguistic variation. Current statis-
tical methods for training NLG engines typically
eliminate linguistic variability by seeking to learn
standard, more generic patterns that occur fre-
quently in the data (Liu et al., 2016; Nayak et al.,
2017). Since this phase of our work aims to vastly
expand the amount of linguistic variation possible,
we select instantiations that have a frequency of at
least 3, and a probability of at least 0.75 associa-
tion with the respective class (Oraby et al., 2015,
2016). We hypothesize that patterns that occur at
least 3 times should be fairly reliable, and those
that have at least a 75% probability of being as-
sociated with the positive or negative class should

F P Pattern Template Example Pattern
Positive

40 1.0 <subj>ActInfVP Dobj <subj> wait come
19 1.0 ActVP Prep <Np> tucked in <Np>
54 0.9 AdjAdj hands down
30 0.9 <subj>ActVP Dobj <subj> worth wait
20 0.9 NpPrep <Np> screaming for
10 0.9 <subj> AuxVP Adj <subj> be scrumptious
416 0.8 AdjNoun great food
16 0.8 PassVP Prep NP addicted to
113 0.7 AdvAdj very fresh
4 0.7 AdjNoun go-to restaurant

Negative

17 1.0 <subj> AuxVP Adj <subj> be impossible
13 1.0 AdjNoun negative stars
12 1.0 <subj> ActVP Dobj <subj> got poisoning
23 0.9 AdjNoun no sense
134 0.8 <subj> AuxVP Adj <subj> be awful
26 0.8 <subj> AuxVP Adj <subj> be rubbery
19 0.8 <subj> ActVP <subj> not waste
107 0.8 AdjNoun poor service
100 0.8 AdjNoun no way
201 0.8 <subj> AuxVP Adj <subj> not be back

Table 4: Examples of Pattern Templates in
AutoSlog-TS and Instantiations by Class

be distinctive. Using these filters, we learn 8,320
positive adjective patterns, and 7,839 negative ad-
jective patterns.

We also observe that patterns learned using
stricter thresholds (for example, frequency of at
least 10 and probability of at least 0.9) also gives
us useful patterns, and note that we can use the fre-
quencies and probabilities in our future rank task.
For larger coverage, we experiment with our less
restrictive thresholds in the current work.

4 Designing Review Templates

To make use of the descriptive adjective patterns
we learned, we needed to first identify what en-
tities each of the patterns describes. To do this,
we aggregate lexicons for each of five important
restaurant entities: restaurant-type, cuisine, food,
service, and staff using Wikipedia2 and DBpedia3.
We end up with 14 items for restaurant-types (e.g.
“cafe”), 45 for cuisines (e.g. “Italian”), 4,913 for
foods and ingredients (e.g. “sushi”), 12 for staff
(e.g. “waiters”), and 2 for service (e.g. “customer
service”).

4.1 Basic Templates
To construct the most basic set of templates, we
use simple relationships between adjectives and
the entities they describe to define a set of sen-
tences with entity slots, i.e. “They had [adj] (en-
tity).”, “The (entity) was|is [adj].”, “The (entity)

2https://www.wikipedia.org/
3http://wiki.dbpedia.org/
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looked|tasted [adj].” We use basic lists of adjec-
tives commonly found in reviews for these base-
line templates. To vary the templates, we alternate
between using only simple sentences, and some-
times combine related entities into more complex
sentences (e.g. service and staff, or restaurant-
type and cuisine).

4.2 Hyperbolic Templates
For our hyperbolic templates, we replace the stan-
dard adjectives in the basic templates with adjec-
tive patterns learned from the restaurant reviews.
To select appropriate adjectives patterns for re-
placement in each basic template, we first delex-
icalize the sentences that instantiate our learned
adjective patterns for each class, and create sets
of (entity, adjective pattern) pairs based on the
relationship between the adjective and the entity
(“is”, “was”, “tasted”, etc.), as above. Using this
method, we collect 37 restaurant, 30 cuisine, 247
food, 45 service, and 56 staff patterns for positive
and 18 restaurant, 9 cuisine, 221 food, 75 service,
and 61 staff patterns for negative. Table 5 shows
example patterns in each class for the food and
staff entity types.

4.3 Creative Templates
Finally, for our creative templates, we sample
from our set of delexicalized sentences for each
entity type, as long as they:

• contain a single AutoSlog adjective pattern
• contain a single identifiable entity type
• are between 5-15 words long

We enforce these limitations to gather sim-
ple sentences that are short enough to templa-
tize. Thus, we end up with sentence templates for
each entity type for both the positive and negative
classes, collecting 146 restaurant, 61 cuisine, 743
food, 90 service, and 144 staff patterns for posi-
tive and 45 restaurant, 12 cuisine, 480 food, 126
service, and 89 staff patterns for negative. Table
6 shows examples of our templatized sentences
for the positive and negative classes, with their
AutoSlog-TS adjective patterns between brackets,
and capitalized subject extractions when applica-
ble. To construct a full review of a certain polar-
ity, we randomly select a sentence from the sets
for each entity type.

We hypothesized that the creative templates
would optimize stylistic variation and hence inter-
estingness, but that they would also include cases

Positive Negative
INSANELY GOOD
SIMPLY PERFECT
RIDICULOUSLY GOOD
ALSO INCREDIBLE
MY FAV
PERFECTLY CRISP
DEFINITELY UNIQUE
ALWAYS SO FRESH
JUST PHENOMENAL
SO DECADENT
HIGHLY ADDICTIVE
CONSISTENTLY GREAT
WOW AMAZING
PERFECT LITTLE
EXPERTLY PREPARED
FRESHLY BAKED

ALMOST RAW
VERY FATTY
PREVIOUSLY FROZEN
COMICALLY BAD
ABSOLUTELY AWFUL
NOT PALATABLE
FAIRLY TASTELESS
PRETTY GENERIC
SO MEDIOCRE
SO BLAND
STILL RAW
BARELY WARM
PREPACKAGED FROZEN
MOST PATHETIC
SICKLY SWEET
LUKE WARM

(a) Sample Learned Adjective Patterns for Foods

Positive Negative
SUPER HELPFUL
INCREDIBLY FRIENDLY
SUPER NICE
VERY PERSONABLE
SO GOOD
SO GRACIOUS
VERY KNOWLEDGEABLE
SO KIND
EXTREMELY PROFESSIONAL
ALSO FABULOUS
EVEN BETTER
STILL AWESOME
ALWAYS WARM
ALWAYS ATTENTIVE
ABSOLUTELY BEST
OUR SWEET

NOT APOLOGETIC
NOT KNOWLEDGEABLE
VERY RUDE
TOO BUSY
FRIENDLY ENOUGH
JUST HORRIBLE
NOT ATTENTIVE
VERY PUSH
MORE INTERESTED
TOO LAZY
EVEN WORSE
EVERY SINGLE
VERY POOR
SO FEW
STILL NO
VERY UNHAPPY

(b) Sample Learned Adjective Patterns for Staff

Table 5: Sample Learned Adjective Patterns

that would require further refinement, or perhaps
elimination by a subsequent ranking phase. Since
our focus here is on overgeneration, we include
these and evaluate their quality. Table 7 shows ex-
amples of each template type we create.

5 Evaluating Template Styles

In order to evaluate our template variations,
we choose to focus on three particular criteria:
convincingness, interestingness, and naturalness.
We evaluate convincingness because creative lan-
guage such as hyperbole is often used in persua-
sive language, along with other figurative forms
(Kreuz and Roberts, 1995). Naturalness is an im-
portant concern in generation, so we are also inter-
ested in the comparison between the perceived nat-
uralness of each variation style, and we hypothe-
size that interestingness would increase as we used
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Entity Template

Positive

RESTAURANT By [FAR MY] favorite <RESTAURANT ENTITY> I HAVE EVER been to in my life .
CUISINE Wow what a great [LITTLE <CUISINE ENTITY> ] joint !
FOOD The <FOOD ENTITY> is not cheap , but [WELL WORTH] it.
SERVICE The <SERVICE ENTITY> is [ALWAYS FRIENDLY] and fast .
STAFF <STAFF ENTITY> was [EXTREMELY HELPFUL] and knowledgeable and was on top of everything.

Negative

RESTAURANT I was appalled by the experience and will [NOT FREQUENT] this <RESTAURANT ENTITY> ever again.
CUISINE [ITS YOUR] typical <CUISINE ENTITY> buffet , nothing to rave about .
FOOD <FOOD ENTITY> smelled [VERY BAD] and tasted worse .
SERVICE We waited another 5 minutes , [STILL NO] <SERVICE ENTITY> .
STAFF I went with 5 friends and our <STAFF ENTITY> was [REALLY RUDE] .

Table 6: Examples of Learned Creative Sentence Templates by Entity and Polarity

BASIC The bar is beautiful. They had authen-
tic japanese cuisine. The udon looked
excellent. The hosts is dedicated. They
had reliable customer service.

HYPERBOLIC The bar is also very fresh. They had de-
licious authentic japanese cuisine. The
udon looked so delicious. The hosts is
also very friendly. They had such amaz-
ing customer service.

CREATIVE This is by far my favorite bar in town.
plus there is a great japanese cuisine
grocery store that has tons of stuff.
The udon is always fresh, delicious
and made to order. Hosts was su-
per friendly, looking forward to coming
back and trying more items. The cus-
tomer service is great and the employ-
ees are always super nice!

Table 7: Examples of Instantiated Positive Review
Variations

more content from organic reviews in our HYPER-
BOLIC and CREATIVE templates.

To create an evaluation dataset, we instantiate
each template type with entities from a hypothet-
ical MR in one of seven popular cuisine types
to standardize the content, as illustrated in Ta-
ble 7. For example, sample slot values could
be: {RESTAURANT[BAR], CUISINE[JAPANESE],
FOOD[UDON], SERVICE[CUSTOMER SERVICE],
STAFF[HOSTS]}.

Our objective is to evaluate whether we can
improve upon vanilla-style hand-crafted templates
for restaurant reviews by utilizing in hyperbolic
and creative elements of organic reviews that we
harvest. We set up an annotation experiment on
Amazon Mechanical Turk4, where each Human
Intelligence Task (HIT) presents Turkers with a

4https://www.mturk.com/

sample of our three review variations, all of the
same polarity and instantiated with the same enti-
ties. Turkers are asked to judge the reviews based
on three criteria: convincingness (Do you believe
the opinion given?), interestingness (Is the review
engaging?), and naturalness (Is the review coher-
ent?). Turkers are asked to rate each review on
a three point scale (high, medium and low) for
each criteria. We release 200 variation triples (100
per polarity class) and ask for five judgements per
HIT, tagging a review with a quality if the majority
of annotators agree on it (i.e. 3 or more Turkers).
Average agreement for individual Turkers with the
majority is above 73%.

Figure 1 shows the distribution of high,
medium, and low scores for each of the variation
types for each criterion. From the results, we ob-
serve that for all criteria, the CREATIVE class has
the highest distribution of high majority votes. In-
terestingly, although we hypothesized that the HY-
PERBOLIC reviews would be better received than
the BASIC reviews, we observe that in fact the
BASIC reviews receive more high votes on con-
vincingness. We note that for the future ranking,
more context information is necessary when se-
lecting appropriate hyperbolic patterns with which
to modify the BASIC reviews. For example, if a
learned pattern is OTHER AMAZING, the pattern
should only be used when a set of items are being
described, and not stand-alone. Similarly, the BA-
SIC reviews are also more natural than the HYPER-
BOLIC ones, although both variation types score
very similar percentages for medium scores.

For the creative reviews, a crucial next step
for ranking is to consider context and develop
heuristics for finding the most appropriate enti-
ties for lexicalization. For example, for very

33



specific creative templates such as: “I also got
one that HAD NOT been separated , so it was
[JUST HALF] of a <FOOD ENTITY> .”, or
“The <FOOD ENTITY> were similarly a mix
of nearly raw to overly crisp.”, it is necessary to
select food items similar to the original instantia-
tions, or to characterize and classify entities based
on specific properties.

Figure 1: Distribution of Template Variations by
Evaluation Criteria

Given the high appeal of the CREATIVE reviews
on all counts, we are interested in more closely
exploring examples in the data. Table 8 shows
two examples of CREATIVE reviews: one that re-
ceived high scores on all criteria, and one that re-
ceived majority (no creative review received all
lows). It is clear that the biggest disconnect in
the low-scoring creative review is the coherence
between sentences, which as an important next
step to consider as future work given the proof-
of-concept presented here. We also note that we
can also improve the fully high-scoring review by
fixing grammatical errors and applying more in-
formed content selection.

To get a better sense of how grammatically cor-
rect the review template variations are, we conduct
another evaluation study where we present Turk-
ers with the same set of reviews, and ask them
to rate each review based on the content (check-
ing subject-verb agreement, plurality, tense, etc.).
Similar to the previous study, we gather 5 judge-
ments for each set of three variations, and aggre-
gate results using majority vote. Average agree-
ment for individual Turkers with the majority in
this task is above 80%, higher than the more sub-

ALL
HIGH

It is one of my favorite cafe in las vegas. Thank
you irma for your amazing mediterranean cui-
sine cooking! I am always amazed at how fast
my falafel arrives. Victor the owner was super
nice and cordial our hosts norma was also. Al-
ways a great place to go and service is always
amazing!

MOSTLY
LOW

It’s just too bad that the bar itself is not better.
Very bad american cuisine.... Guess what came
on top of my hotdog? I took my family there for
father’s day and the hosts was so rude. 555 pm
still no customer service.

Table 8: Example of High and Low Rated Creative
Reviews

jective study on convincingness, interestingness,
and naturalness.

Figure 2 shows the results of the study. We find
that for all three variations, the med class receives
the majority of the votes, but that the BASIC re-
views are the most grammatically correct (since
the templates are designed, not harvested). Sim-
ilarly, the HYPERBOLIC reviews have the largest
percentage of low scores, since their creation in-
volves modifying templates with learned adjec-
tives. Ranking the best patterns/sentences to use
will allow us to improve the grammatical coher-
ence of the templatized utterances for the HYPER-
BOLIC and CREATIVE classes.

To better understand the linguistic characteris-
tics of the creative reviews by class, we run the
Linguistic Inquiry and Word Count (LIWC) tool
(Pennebaker et al., 2015) on the full set of 100
POSITIVE and 100 NEGATIVE creative reviews.
When comparing the linguistic categories for each
class, we find that the difference between the POS-
ITIVE and NEGATIVE reviews are significant (p <
0.05, t-test) for many of the categories. Table 9
shows some of the most interesting categories5.

On average, the POSITIVE templates are char-
5All of the categories are statistically significant, and are

shown in order of most to least significant.

Figure 2: Distribution of Votes on Template Vari-
ation Grammar
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Positive Negative
AFFECTIVE PROC.
EXCLAMATIONS
FRIENDS
1st PERSON SINGULAR
ACHIEVE
CERTAINTY
BIOLOGICAL PROC.
INGESTIONS
INSIGHT
REWARD

DIFFERENTIATION
RISK
1st PERSON PLURAL
ANXIETY
ADVERBS
ANGER
SOCIAL PROC.
2nd PERSON
MOTION
COGNITIVE PROC.

Table 9: Statistically Significant LIWC Categories
by Polarity

acterized by word classes that exemplify achieve-
ment (e.g. “even better”, “champion”) and cer-
tainty (e.g. “always excellent”, “absolutely amaz-
ing”, and “definitely my go-to place”). As well as
1st person statements relating to use of the senses
(affective processes like “my favorite place to get
rice in Las Vegas!”, biological processes (“I just
had the most amazingly delicious and freshly pre-
pared couscous!”), and ingestion (“good, tasty
comfort pizza”).

The negative contains more oppositional lan-
guage directed at the second person, often as ad-
vice (“you can get a much better pizza elsewhere
at far less cost.”), with categories like differentia-
tion (“but it’s not great”), and strong emotion in-
dicators like anxiety (“horrible service, finally just
left”) and anger (“I was so angry that I contacted
the restaurant manager”).

6 Conclusions

In this paper, we show that we can construct con-
vincing, interesting, and natural restaurant review
templates by using a data-driven method to har-
vest highly descriptive sentences from hyperbolic
restaurant reviews. We generate three variations
of review templates, ranging from very basic, to
hyperbolic, to very creative, and show that the cre-
ative ones are more appealing to readers than the
others. Future work will focus on ranking the can-
didate sentence templates we harvest to improve
review coherence. As we develop better templates,
we will evaluate them against baselines from ex-
isting NLG systems to guide our generation of
more exciting and expressive stylistically varied
reviews.
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Abstract

The problem of detecting scientific fraud
using machine learning was recently intro-
duced, with initial, positive results from
a model taking into account various gen-
eral indicators. The results seem to sug-
gest that writing style is predictive of sci-
entific fraud. We revisit these initial ex-
periments, and show that the leave-one-out
testing procedure they used likely leads to
a slight over-estimate of the predictability,
but also that simple models can outper-
form their proposed model by some mar-
gin. We go on to explore more abstract
linguistic features, such as linguistic com-
plexity and discourse structure, only to ob-
tain negative results. Upon analyzing our
models, we do see some interesting pat-
terns, though: Scientific fraud, for exam-
ples, contains less comparison, as well as
different types of hedging and ways of pre-
senting logical reasoning.

1 Introduction

Cases of scientific misconduct are identified every
year. Scientific papers are retracted because of er-
rors, or for suspected fraud, ranging from plagia-
rism and minor manipulations to faking the data
and disguising the results. It has been shown that,
however, among the retracted articles indexed in
PubMed, only 21.3% are retracted due to error,
while 67.4% were removed due to misconduct,
among which suspected fraud amounts to 43.4%,
the others being due to duplicate publications or
plagiarism (Fang et al., 2012).

In a recent paper, Markowitz and Hancock
(2015) proposed the first analysis of writing style
in fraudulent papers across authors and disci-
plines. They approached the question of whether

these authors have a specific writing style, from a
psychological perspective. They found that these
papers exhibit a higher rate of jargon, make a
higher use of references, and have a lower read-
ability rate, suggesting that the authors try to ob-
fuscate their writing, making them harder to read
and analyze. They report classification results us-
ing a leave-one-out strategy over the dataset, with
a classification accuracy of 57.2%. As suggested
in the paper, we propose to improve this perfor-
mance by evaluating different classification mod-
els.

In this paper, we first show that much better re-
sults can be obtained using a simple bag-of-words
representation and Logistic Regression. Our best
model is a syntax-enhanced trigram-model. We
also show that the leave-one-out strategy used by
the authors leads to an over-estimation of model
precision, and we report new results based on a
more robust strategy, taking into account the low
number of instance available; namely a nested
cross-validation (Varma and Simon, 2006; Schef-
fer, 1999). We also considered semantic and dis-
course features, but we did not observe improve-
ments with such features.

Of course, that a bag-of-words model outper-
forms a model based on psychologically motivated
features, may simply be the result of overfitting.
We present an extensive feature analysis to vali-
date our models, as well as to test psychologically
motivated hypotheses from the literature.

Contributions (i) We present a simple model
with high accuracy, and show that it implicitly
captures the previously-proposed psychologically-
motivated features. (ii) We show that adding se-
mantics and discourse features does not lead to
improvements. (iii) On the other hand, our feature
analysis suggests that the models do learn to focus
on concepts that are intuitively related to scientific
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misconduct, e.g., that scientific fraud contains less
comparison.

2 Related work

Markowitz and Hancock (2015) were the first to
study writing style in fraudulent papers. They
gathered a corpus of 253 articles indexed in
PubMed that have been retracted for fraudulent
data, as well as 253 unretracted papers (see Sec-
tion 3). They define five indicators of obfuscation,
and show that fraudulent papers tend to demon-
strate a higher rate of linguistics obfuscation, cor-
responding to a lower readability, an higher use of
jargon and a higher degree of abstraction. Linked
to studies on deception identification, they also re-
port a lower rate of positive emotion terms and a
higher rate of causal terms (e.g. “depend”, “in-
duce”, “manipulated”) in fraudulent papers. The
readability score was computed using Coh-Metrix
(McNamara et al., 2013), while the other scores
were based on the Linguistic Inquiry and Word
Count (LIWC; (Pennebaker et al., 2007)), a dic-
tionary associating a word to various scores such
as abstraction (a word is considered as jargon if
it is not found in the dictionary). Finally, they
report 57.2% in accuracy using these five indica-
tors as features, a score that we show is probably
a little too optimistic, since it is based on a leave-
one-out procedure (see Section 5). We extend their
work by first showing that a simple unigram model
outperforms their model by a large margin, but
also by considering more indicators, including dis-
course and syntax, and by showing, as mentioned,
that their scores were probably over-estimated due
to their validation strategy.

Our work is also inspired by another related
field of research concerned with deception detec-
tion. Mihalcea and Strapparava (2009) built three
datasets consisting of 100 true and 100 deceptive
short statements on three different topics (abor-
tion, death penalty, best friend). Using only un-
igrams, they report 70.8% accuracy in a 10-fold
cross validation. They found that specific word
classes, as defined in the LIWC, were predictive
of deceptive texts, especially classes indicating de-
tachment from self or related to certainty.

Feng et al. (2012a) investigate syntactic fea-
tures, using lexicalized and unlexicalized produc-
tion rules in addition to shallow features (words
unigram and bigram, and POS unigram). They
experiment on truthful and deceptive reviews

from TripAdvisor, either gold (Ott et al., 2011)
or retrieved using a fake review detector (Feng
et al., 2012b), reviews automatically extracted
from Yelp, and the corpus introduced in (Mihal-
cea and Strapparava, 2009). They report scores be-
tween 64.3 and 91.2% accuracy, depending on the
dataset. They found that, for all datasets, syntax
helps, and that deceptive reviews more frequently
use VP, SBAR and WHADVP.

We also consider n-gram features, syntactic fea-
tures, as well as discourse features. Our task is
however a bit different, since authors of fraudu-
lent papers are not directly lying, rather trying to
conceal their fraud. Moreover, our documents are
longer and are of a different genre, i.e. scientific
articles.

3 Data

We use the dataset proposed in (Markowitz and
Hancock, 2015) containing 253 publications re-
tracted for data fraud and 253 unretracted publi-
cations. These publications were taken from the
PubMed archives from 1973 through 2013.

The unretracted papers are extracted by consid-
ering one retracted paper and taking a control pa-
per published the same year, in the same journal,
and with some common keywords when possible.
When no such paper exists (around 19% of the pa-
pers), a paper from an adjacent year, or using the
same words in the abstract, was selected.

The data used is the pre-processed version pre-
sented in (Markowitz and Hancock, 2015): Words
were converted from British English to American
English forms. Brackets, parentheses, and percent
signs were removed. Periods were removed from
certains words, such as ‘Dr.’ or nc.’. The docu-
ments only contain the main body text (no section
titles, figures, or tables).

4 Methodology

We investigate different types of features, from n-
grams to discourse. In large vocabulary feature
spaces, we perform feature reduction, to reduce
sparsity. We then provide an analysis of the fea-
tures to identify the most informative indicators.

Word features We use word n-grams as fea-
tures, with n ∈ {1, 2, 3}. In order to test the
hypotheses presented in previous studies, we also
use lexicons to extract information about the to-
kens. We use the General Inquirer (Stone and
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Kirsh, 1966) to extract words expressing a polarity
– the features built represent the polarity between
positive, negative, both and neutral –, and words
corresponding to a causal term. We also use this
lexicon to map the words to a more general seman-
tic category (Inquirer).

We identify all the personal pronouns using
manually defined lists. Finally, we also include
as features hedge and modal words, also using a
pre-defined list.1

Syntactic features In order to obtain syntactic
information, we parse the data using UDPipe2

(Straka et al., 2016), and a prebuilt model avail-
able online for English.3 We follow (Johannsen
et al., 2015) in extracting all subtrees of up to three
tokens (treelets).

Discourse features Finally, we automatically
annotate all the data with discourse connec-
tives and explicit discourse relations using simple
models trained on the Penn Discourse Treebank
(PDTB) (Prasad et al., 2008), a corpus of news ar-
ticles from the Wall Street Journal. Discourse co-
herence is an indicator of the quality of a text (Lin
et al., 2011), of its reasoning that could reveal an
attempt to deceive. Some specific semantic rela-
tions could also be good indicators (e.g. Cause).

We used models to identify the discourse con-
nectives (Connectives) and to identify the explicit
discourse relation4 (Explicit relations) they trig-
ger, either among the 4 coarse-grained classes
(lvl1) at the top of the hierarchy of sense or using
the 11 more fine-grained relations at the second
level (lvl2). Our models use Logistic Regression
and the connective and the surrounding words and
their POS as features (Lin et al., 2009). They are
trained on the sections 2-21 of the PDTB. Our re-
sults on the section 23 are close to the state-of-the-
art (Pitler and Nenkova, 2009; Pitler et al., 2008;
Lin et al., 2014): 92.9% in accuracy for identi-
fying the connectives, 95.1% for the level-1 rela-
tions, and 86.2% for the level-2 relations.

Feature analysis In addition to presenting ac-
curacies obtained with these feature sets, we

1https://github.com/wooorm/hedges/
blob/master/index.json

2http://ufal.mff.cuni.cz/udpipe
3UD 1.2, https://lindat.mff.cuni.cz/

repository/xmlui/handle/11234/1-1659
4We ignore the non explicit relations for which the in-

domain scores are very low – around 40-57% in accuracy
(Rutherford and Xue, 2015; Lin et al., 2014).

Category # Orig. feat. # Selec. feat.

Unigrams 65, 798 118
2-3-grams 1, 745, 188 154
Polarity 4 −
Causal 68 −
Inquirer 180 −
Pronouns 7 −
Hedges 121 −
Treelets 50, 522 136

Connectives 70 −
Explicit relations lvl1 4 −
Explicit relations lvl2 10 −

Table 1: Size of the original vocabulary and num-
ber of selected features for n-grams and treelets.

also perform a feature analysis. For this pur-
pose we use a combination of correlation coeffi-
cients, logistic regression coefficients, and stabil-
ity selection (Meinshausen and Bühlmann, 2010)
– a method that consists in repeatedly fitting the
model across different random subsamples, and
counting how many times features are selected in
`1-regularized logistic regression models. For sta-
bility selection, we use the implementation avail-
able in scikit-learn (Pedregosa et al., 2011) with its
default parameters, run it on the whole dataset and
keep features selected more than 50% of the time.

We indicate the size of the original vocabulary
and the number of selected features for each cate-
gory in Table 1.

5 Classification

Representation We test separately count vec-
torizations with each set of features – unigrams,
2-3-grams, polarity, causality, Inquirer categories,
pronouns (grouping per person, or considering
each lemma), treelets, connectives, hedge words,
level-1 relations and level-2 relations, and combi-
nations of these features.

Model We use a binary logistic regression clas-
sifier, optimizing the norm (`1 or `2) and strength
(c ∈ {0.001, 0.005, 0.01, 0.1, 0.5, 1, 5, 10, 100} of
the regularization term on held-out data.

Validation schemes Markowitz and Hancock
(2015) report results with a leave-one-out strat-
egy (LOO). However, LOO often under-estimates
the error rate. We compare with a nested cross-
validation procedure that can provide an almost
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(a) Unigrams (b) 2-3-grams (c) Treelets

Figure 1: Accuracy difference between LOO and Nested LOO for each trial for different features.

System LOO N-LOO

(Markowitz and Hancock, 2015) 57.2 -

Unigrams 72.1 71.7
2-3-grams 70.8 69.6
Polarity 50.0 45.3
Causal 59.9 58.4
Inquirer 58.7 54.3
Pronouns 54.5 52.2
Hedges 56.7 54.1

Treelets 72.9 71.7

Connectives 60.1 58.3
Explicit Relations lvl1 54.3 53.2
Explicit Relations lvl2 54.5 54.3

1-2-3-grams+treelets 76.3 76.0
All 70.3 69.8

Table 2: Results (accuracy, in %).

unbiased estimate of the true error (Varma and Si-
mon, 2006; Scheffer, 1999).

Specifically, we use two cross-validation loops:
the inner loop is used for tuning the hyper-
parameters, and the outer loop estimates the gener-
alization error. The data are first split intoN folds,
the fold k (1 ≤ k ≤ N ) is the current evaluation
set, and the N − 1 other folds are used as training
data and split into M folds used for model fitting.
The best model is then evaluated on fold k. Final
scores are averages over the N folds.

For comparison with Markowitz and Hancock
(2015), we report performance with LOO and
with nested cross-validation using LOO as outer
loop, the inner loop being a random 5-fold cross-
validation. We repeat each evaluation 10 times,
and report a mean over these trials.

Results Our results are summarized in Table 2.
Our results are generally higher than the 57.2% re-
ported in (Markowitz and Hancock, 2015), with at
best 71.7% with a nested LOO and a single group
of features (unigrams or treelets) and 76.0% when

n-grams and treelets are combined.
Using all the n-grams already leads to a bet-

ter accuracy score (+1.3%) compared to us-
ing only unigrams (73.0% in accuracy for 1+2-
3-grams with N-LOO). On the other hand,
combining discourse features to the n-grams
does not allow improvements over using only
the n-grams (72.8% with N-LOO for 1+2-3-
grams+Connectives+Explicit Relations lvl1).

The scores obtained with LOO are over-
estimate performance, compared to nested cross-
validation, see for example Figure 1: Even if the
differences are low, they are consistent across the
trials and the feature sets.

6 Feature analysis

We use Pearson’s ρ (w. Bonferroni correction) to
establish what features are predictive of fraud and
non-fraud. We report the values for the features
cited in Table 3.

Hedging There is an interesting contrast be-
tween adverbial hedges (conceivably, presumably,
surely, effectively) and verbal hedges (suggest) in-
dicative of fraud, and adverbial hedges (practi-
cally, occasionally) and verbal hedges assume,
speculate) indicative of non-fraud: It seems ad-
verbs and verbs used in fraud are for interpret-
ing the data on behalf of the reader, whereas the
adverbs and verbs indicative of fraud are more
observer-aware (e.g., we speculate). This sug-
gest that a fraud strategy is to hide observers bias,
rather than being explicit about it.

Comparison Both the discourse relation and the
Inquirer class for comparison are predictive of
non-fraud. Scientific fraud thus seems less likely
to compare. On the other hand, neither the causal
relations or the presence of causal terms were sig-
nificantly linked to fraudulent papers.

Therefore vs. since A peculiar, but statistically
significant difference between fraud and non-fraud
articles, is that fraud articles prefer therefore over
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since, and vice versa. We speculate that it may
be a fraud strategy to make the reasoning more
verbose by separating out premises (because the
authors are, consciously or not, afraid the readers
will not accept them). This is in slight contrast
with or qualifies the main hypothesis in Markowitz
and Hancock (2015), that fraudulent writers try to
obfuscate their writing.

Other markers of fraud Many technical con-
cepts were highly correlated with fraud, but we
suspect these are cases of overfitting. More in-
terestingly, the bigram described previously was
among the top-5 most highly correlated features,
indicating fraud. From our syntactic treelets,
proper nouns and interjections were both slightly
indicative of fraud (p < 0.01).

Other markers of non-fraud From our syntac-
tic treelets, conjunctions of numbers were indica-
tive of non-fraud, suggesting maybe a higher level
of technical detail. Non-fraud articles are also
more likely to use the pronoun they, as compared
to we, compared to fraud papers.

7 Conclusion

We show that a simple unigram model outper-
forms previous work on scientific fraud detection.
Overall, more high-level linguistic features, be-
yond syntactic treelets, do not lead to improve-
ments, but we also presented a feature analysis
showing, for example, that comparison and expla-
nation (at the semantic and discourse level) are in-
dicators of non-fraud, and that fraudulent writing
uses slightly different hedging strategies.
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Abstract

Metaphor is one of the most studied and
widespread figures of speech and an essen-
tial element of individual style. In this pa-
per we look at metaphor identification in
Adjective-Noun pairs. We show that us-
ing a single neural network combined with
pre-trained vector embeddings can outper-
form the state of the art in terms of accu-
racy. In specific, the approach presented in
this paper is based on two ideas: a) trans-
fer learning via using pre-trained vectors
representing adjective noun pairs, and b) a
neural network as a model of composition
that predicts a metaphoricity score as out-
put. We present several different architec-
tures for our system and evaluate their per-
formances. Variations on dataset size and
on the kinds of embeddings are also inves-
tigated. We show considerable improve-
ment over the previous approaches both in
terms of accuracy and w.r.t the size of an-
notated training data.

1 Introduction

The importance of metaphor to characterize both
individual and genre-related style has been under-
lined in several works (Leech and Short, 2007;
Simpson, 2004; Goodman, 1975). Studying the
kinds of metaphors used in a text can contribute
to differentiate between poetic and prosaic style,
between different types of fiction, etc. In literary
studies, metaphor analysis is often undertaken on
a stylistic perspective: ”after all, metaphor in lit-
erature is a stylistic device and its forms, mean-
ings and use all fall within the remit of stylistics”

∗This research is funded by the Centre of Linguistic The-
ory and Studies in Probability at the University of Gothen-
burg.

(Steen, 2014). Metaphor is thus often taken into
consideration qualitative stylistic analyses (Fahne-
stock, 2009). Nonetheless, it is still very diffi-
cult to take metaphors into account in computa-
tional stylistics due to the complexity of automatic
metaphor identification (Neuman et al., 2013; Kle-
banov et al., 2015), which is the task of identifying
metaphorical usages of text, sentences or subsen-
tential fragments.

This paper’s focus of interest is the automatic
detection of adjective-noun (AN) pairs like the fol-
lowing:

(1) Clean floor / clean performance

(2) Bright painting / bright idea

(3) Heavy table / heavy feeling

The above examples illustrate that adjectives
“normally” used to describe physical characteris-
tics, e.g. a feature that can be perceived through
senses like size or weight, are reused to describe
more abstract properties. Thus, both a painting
and an idea can be bright, both a table and a feel-
ing can be heavy. We will not provide a mean to
retrieve AN metaphors in unconstrained texts (e.g.
we won’t focus on segmentation) but we will study
ways to detect metaphoricity in given pairs. The-
oretical work on metaphor in the linguistics litera-
ture goes back a long way and spans different the-
oretical paradigms. One of the earliest and most
influential works is Conceptual Metaphor The-
ory (CMT) (Lakoff and Johnson, 2008) (originally
published in 1981) and subsequently elaborated in
a couple of papers (Lakoff, 1989, 1993). Accord-
ing to CMT, metaphors in natural language can
be seen as instances of conceptual metaphors. A
conceptual metaphor roughly corresponds to un-
derstanding a concept or an idea via association
or relation with another idea or concept. Other in-
fluential linguistic approaches to metaphor include
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pragmatic approaches cast within frameworks like
relevance theory (Romero and Soria, 2014; Wil-
son, 2011), and also approaches where some sort
of formal semantics is used (Vogel, 2001). The
common denominator in all these approaches is
the recognition that there is systematicity in the
way metaphorical meanings arise and also that
the process of metaphor construction is extremely
productive. Thus, given these properties, one
would expect metaphors to be quite common in
Natural Language (NL). Evidence from corpus
linguistics seems to support this claim (Cameron,
2003).

Metaphor detection in statistical NLP has been
attempted through several different frames, such
as topic modeling (Li and Sporleder, 2010b),
semantic similarity graphs (Li and Sporleder,
2010a), distributional clustering (Shutova et al.,
2010), vector space based learning (Gutiérrez
et al., 2016) and, most of all, feature-based classi-
fiers (Tsvetkov et al., 2014). In the latter case, the
challenge consists in selecting the right features to
annotate the training data with, and to review their
”importance” or weight based on machine learn-
ing results.

In this paper we show how using a single-
layered neural network combined with pre-trained
distributional embeddings can outperform the
state of the art in an AN metaphor detection task.

More specifically, this paper’s contributions are
the following:

• We introduce a system to predict AN
metaphoricity and test it on the corpus intro-
duced by (Gutiérrez et al., 2016), showing a
significant improvement in accuracy.

• We explore different variations of this model
based on ideas found in the literature for
composing distributional meaning and we
evaluate them under different constraints.

The paper is structured as follows: in Section 2
we present the background on AN metaphor de-
tection and we detail the dataset we use to train
our model. In Section 3 we describe our approach,
giving a general overview and further describing
three alternative architectures on the same model.
In Section 4 we present several evaluations of our
model. Table 1 and Table 2 synthesize some of our
findings. In Section 5 we discuss our findings and
possible future applications of the work described
in this paper.

2 Background

In the specific task of detecting metaphoricity for
AN pairs we find four relevant works that seem
to represent the main stages in figurative language
detection until now.

The oldest work of the series, (Krishnakumaran
and Zhu, 2007), strongly relies on external re-
sources. They adopt a WordNet based approach
to recognize Noun-Noun (NN), Noun-Verb (NV)
and AN metaphors. Their work is mainly based
on qualitative analyses of specific examples and
shows that, while they can be useful in such a
task, hyponym/hypernym relations are not enough
to distinguish metaphors from literal expressions.

More recently, Turney et al. (2011) adopt a two-
stage machine learning approach. They first try to
learn the words’ degree of concreteness and then
use this knowledge to detect whether an AN cou-
ple is metaphorical or not. They measure their
performance on 100 phrases involving 5 adjectives
and reach an accuracy of 0.79. It is worth noting
that this choice is not random: the authors select
the abstract/concrete polarity based on psycholin-
guistic findings that seem to validate the hypoth-
esis that some kinds of metaphorical expressions
are processed as abstract elements.1

These results were outperformed by Tsvetkov
et al. (2014) through a random forest classifier
using DSM vectors, WordNet senses and several
accurately selected features, such as abstractness.
They also introduce a new set of 200 phrases, on
which they declare an F-score of 0.85.

Finally, Gutiérrez et al. (2016) train a distribu-
tional model on a corpus of 4.58 billion tokens
and test it on an annotated dataset they introduce
consisting of 8592 AN phrases. This is the same
dataset we are using in this paper and the largest
available to date.

They first train distributional vectors for the
words in the dataset using positive pointwise mu-
tual information. Then, for each adjective present
in the dataset, they divide the literal phrases the
adjective occurs in from the metaphorical phrases
the same adjective appears in. Then, three differ-
ent adjective matrices are trained: one to model
the adjective’s literal sense, one to model its
metaphorical sense, and one trained on all the
phrases containing this adjective, both literal and
metaphorical. They then develop a system to “de-

1For a more recent study on this issue see (Forgács et al.,
2015).
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Accuracy Feature engineering Annotated dataset Embedding
(Turney et al., 2011) 0.79 Yes 100 LSA
(Tsvetkov et al., 2014) 0.85 Yes 200 -
(Gutiérrez et al., 2016) 0.81 No 8592 DSM
Our model 0.91 No 8592 Word2Vec

Table 1: The reported accuracy from previous words on AN metaphor detection. The first two studies
used different datasets. We are using larger pre-trained vectors than Gutiérrez et al. (2016); at the same
time, we don’t need a parsed corpus to build our vectors and we don’t use adjectival matrices. Given
these differences, this comparison should not be considered a “competition”.

Random W Trained W
cat-linear 0.8973 0.9153
cat-relu 0.8763 0.9228
sum-linear 0.8815 0.9068
sum-relu 0.8597 0.9150
mul-linear 0.7858 0.8066
mul-relu 0.7795 0.8186

Table 2: The accuracy results after training the
model based on each architecture. In all setups,
we trained on 500 samples in 20 epochs. Using
a random W is equivalent to preventing our net-
work from learning any form of compositionality
(we could consider it as a baseline for models with
trained W). As we discuss in the paper, the differ-
ence in accuracies with the “baseline” (not training
W) shows that training W is helpful.

cide” whether a particular occurrence of an adjec-
tive is more likely to relate to the “literal matrix”
or the “metaphorical matrix”. It is shown that, al-
though such matrices are trained on relatively few
examples, they can reach an accuracy of over 0.78.

2.1 Corpus/Experimental Data

The dataset we are using comes from (Gutiérrez
et al., 2016). 2 It contains 8592 annotated AN
pairs, 3991 being literal and 4601 being metaphor-
ical. The dataset focuses on a set of 23 adjectives
that: a) can potentially have both metaphorical and
literal meanings, and b) are fairly productive.

The choice of adjectives was based on the test
set of (Tsvetkov et al., 2014) and focuses on 23
adjectives.

In details, all adjectives belong to one of the fol-
lowing categories:

1. temperature adjectives (e.g. cold)
2The dataset is publicly available here:

http://bit.ly/1TQ5czN

2. light adjectives (e.g. bright)

3. texture adjectives (e.g. rough)

4. substance adjectives (e.g. dense)

5. clarity adjectives (e.g. clean)

6. taste adjectives (e.g. bitter)

7. strength adjectives (e.g. strong)

8. depth adjectives (e.g. deep)

The corpus was carefully built in order to avoid
non-ambiguous elements: all the AN phrases
present in this dataset were extracted from large
corpora and all phrases that seemed to require a
larger context for their interpretation were filtered
out in order to eliminate potentially ambiguous id-
iomatic expressions such as bright side.

In other terms, the corpus was designed to con-
tain elements whose metaphoricity could be de-
duced by a human annotator without the need of
a larger context.

More details about the construction of the
dataset and annotation methodology can be found
in (Gutiérrez et al., 2016).

3 Describing our approach

3.1 The model framework

Our objective is to build a classifier that disam-
biguates between metaphoric and literal AN com-
positions by providing a probability measure be-
tween 0 and 1. We based the framework of the
model on the following ideas:

1. Transfer learning: we use pre-trained word-
vectors to represent AN pairs as input.

2. A neural network as a model of composi-
tion for the AN phrase: our model represents
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phrases with vectors, then based on this rep-
resentation predicts a metaphoricity score as
output. Although we are going to present sev-
eral variations of this framework, it’s impor-
tant to remember that the basic model is al-
ways a standard NN with a single fully con-
nected hidden layer we will call p.

Our approach is thus based on the idea that well-
trained distributional vectors contain more valu-
able information than their reciprocal similarity
and, furthermore, that it is possible to treasure
such information through machine learning in dif-
ferent tasks. We use 300-dimensional word vec-
tors trained on different corpora (see Evaluation
for more details) . Our approach can be considered
as a way of transferring the learned representation
from one task to another. Although it is not pos-
sible to point out an explicit mapping between the
word-vector learning task (e.g. Word2Vec model)
and our metaphoricity task, as it is pointed out by
Torrey and Shavlik 2009, we use neural networks
which automatically learn how to adapt the feature
representations between two tasks (Bengio et al.,
2013). In this way we stretch the original embed-
dings, trained in order to learn lexical similarity, to
identify AN metaphors.

Our neural network, being a parameterized
function, follows the generalized architecture of
word-vector composition similar to (Mitchell and
Lapata, 2010):

p = f(u,v; θ) (4)

where u and v are two word vector representa-
tions to be composed, while p is the vector rep-
resentation of their composition with the same di-
mensions. The function f in our model is param-
eterized by θ, a list of parameters to be learned as
part of our neural network architecture.

Based on the argument by (Mitchell and Lapata,
2010), parameters such as θ are encoded knowl-
edge required by the compositional process. In
our case, the gradient based learning in neural net-
works will find these parameters as an optimiza-
tion problem where p is just an intermediate rep-
resentation in the pipeline of the neural network,
which ends with a prediction of a metaphoricity
score.

In other words, in order to predict the degree
of metaphoricity, we end up learning a specific
semantic space for phrase representations p and
a vector q which actually does not represent a

phrase itself, but rather the maximal possible level
of metaphoricity given our training set.

The degree of metaphoricity of a phrase can
thus be directly computed as cosine similarity be-
tween this vector and the phrase vector. However,
in the network we used a sigmoid function to pro-
duce the measure:

ŷ = σ(p·q + b1) =
1

1 + e−p·q+b1
(5)

where q and b1 are parameters of the final
layer and work as metaphoricity indicators, while
ŷ is the predicted score (metaphoric or literal)
for the composition p. Given a dataset of D =
{(xt, yt)}t∈{1,...,T}, the composition p can be for-
malized as a model for Bernoulli distribution:

yt = Pr(xt being metaphorical|D) ∈ {0, 1}
ŷt = σ(pt·q + b1)
≈ Pr(xt being metaphorical) ∈ (0, 1)

(6)
where each xt is an AN pair in the training

dataset labeled with a binary value yt (0 or 1).
Given the labels in D, we interpret yt as a categor-
ical probability score: the probability of a given
phrase being metaphorical. Then, for each pair of
words in xt, we use pre-trained word-vector repre-
sentations such as ut and vt in the Equation 4 to
produce pt and, consequently, the score ŷt.

In this formulation, the objective is to minimize
the binary cross entropy distance between the es-
timated ŷt and the given annotation yt. Adding q
and b1 in the list of parameters Θ, we fit all param-
eters with a small annotated data size T :

x = (x1, ...xT )
y = (y1, ...yT )
Θ = (θ,q, b1)

(7)

L(Θ; x,y) = −∑T
t=1(yt log(ŷt)+

(1− yt) log(1− ŷt))
(8)

where, on each iteration, we update the param-
eters in Θ using Adam stochastic gradient descent
(Kingma and Ba, 2014), with a fixed number of
iterations over x and y to minimize L.

In this paper, we describe three alternative ar-
chitectures to implement this framework. All
three, with small variations, show a robust ability
to generalize on the dataset and perform correct
predictions.
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3.2 First Architecture
One possible formulation of this frame is similar
to additive composition as described in (Mitchell
and Lapata, 2010), but instead of performing a
scalar modification of each vector, a weight ma-
trix modifies all feature dimensions at once:

p = W T
adju +W T

nounv + b (9)

W =

[
Wadj

Wnoun

]
(10)

where the composition function in equation (4)
now has θ = (W, b).

This formulation is very similar to the compo-
sition model in (Socher et al., 2011) without the
syntactic tree parametrization. As such, instead of
the non-linearity function we have linear identity:

p = fθ(u,v) = W T

[
u

v

]
+ b (11)

In practice, this approach represents a simple
merging through concatenation: given two words’
vectors, we concatenate them before feeding them
to a single-layered, fully connected Neural Net-
work.

As a consequence, the network learns a weight
matrix that represents linearly the AN combina-
tion. To visualize this concept, we could say that,
since our pairs always hold the same internal struc-
ture (adjective in first position and noun in sec-
ond position), the first half of the weight matrix
is trained on adjectives and the second half of the
weight matrix is trained on nouns.

By using 300 dimension pre-trained word vec-
tors, the parameter space for this composition
function will be as following: W ∈ IR300×600 and
b ∈ IR300.

3.3 Second architecture
The second architecture we describe has the ad-
vantage of training a smaller set of parameters
with respect to the first. In this model, the weight
matrix is shared between the noun and the adjec-
tive:

p = fθ(u,v) = W Tu +W Tv + b (12)

Notice that in the case of comparing the vec-
tor representations of two different AN phrases,
b will be essentially redundant. An advantage of

this model is that the learned composition func-
tion f can also map all words’ vectors, regardless
of the part of speech these words belong to, in the
new vector space without losing accuracy in the
original task. In this new vector space, a simple
addition operator composes two vectors:

u′ = W Tu (13)

v′ = W Tv (14)

p = u′ + v′ (15)

Compared to the first architecture, in this archi-
tecture we don’t assume the need of distinguish-
ing the weight matrix for the adjectives from the
weight matrix for the nouns.

It is rather interesting, then, that this architec-
ture doesn’t present significant differences in per-
formance with respect to the first one. The num-
ber of parameters, however, is smaller: W ∈
IR300×300 and b ∈ IR300.

3.4 Third Architecture
The third architecture, similarly to the second, fea-
tures a shared composition matrix of weights be-
tween the noun and the adjective, but we perform
elementwise multiplication between the two vec-
tors:

p = fθ(u,v) = (u× v)W + b (16)

The number of parameters in this case is similar
to previous architecture: W ∈ IR300×300 and b ∈
IR300.

3.5 Other Architectures
In all three previous architectures we saw that a
weight matrix W can be learned as part of the
composing function. Throughout our exploration,
we found that W can be a random and a constant
uniform matrix (not trained in the network) and
still being able to learn q unless we use a non-
linear activation functions over the AN composi-
tions.

p = g(fθ(u,v)) (17)

An intuition is to take W as an identity matrix
in Second architecture, the network will take the
sum of pre-trained vectors to as features and learn
how to predict metaphoricity. A fixed uniform W
basically keeps the information in input vectors.
For a short overview of all these alternative archi-
tectures see Table 2.
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4 Evaluation

Our classifier achieved 91.5% accuracy trained on
500 labeled AN-phrases out of 8592 in the corpus
and tested on the rest. Training on 8000 and test-
ing on the rest gave us accuracy of 98.5%.3

We tested several combinations of the architec-
tures we described in the paper. For each of the
three architectures, we also tested the Rectified
linear unit (ReLU) as the non-linearity mentioned
in Section 3.5. Our test also shows that a random
constant matrixW is enough to train the rest of the
parameters (reported in Table 2). In general, the
best performing combinations involve the use of
concatenation (the first architecture), while multi-
plication led to the lowest results. In any case, all
experiments returned accuracies above 75% 4.

To test the robustness of our approach, we have
evaluated our model’s performance under several
constraints:

• Total separation of vocabulary in train and
test sets (Table 3) in case of out of vocabu-
lary words.

• Use of different pretrained word embeddings
(Figure 3).

• Cross validation (Figure 1).

• Qualitative selection of the training data
based on the semantic categories of adjec-
tives (Figure 2).

Finally, we will provide some qualitative insights
on how the model works.

Our model is based on the idea of transfer learn-
ing: using the learned representation for a new
task, in this case the metaphor detection. Our
model should generalize very fast with a small
set of samples as training data. In order to test
this matter, we have to train and test on totally
different samples so vocabulary doesn’t overlap.
The splitting of the 8592 labeled phrases based
on vocabulary gives us uneven sizes of training
and test phrases5. In Table 3 using the pretrained

3These results are based on the first architecture, the per-
formance of other architectures are not very different in this
simple test. The sample code is available on https://gu-
clasp.github.io/anvec-metaphor/

4The number of parameters in case of using concatenation
(as in first architecture) is 180 601 and other compositions,
including addition and multiplication, number of parameters
is almost the half: 90 601.

5We chose the vocabulary splitting points for every 10%
from 10% to 90%, then we applied the splitting separately on
nouns and adjective

Word2Vec embeddings trained on Google News
(Mikolov et al., 2013) we examined the accuracy,
precision and recall of the our trained classifier.

We have used three different word embeddings:
Word2Vec embeddings trained on Google News
(Mikolov et al., 2013), GloVe embeddings (Pen-
nington et al., 2014) and Levy-Goldberg embed-
dings (Levy and Goldberg, 2014).

These embeddings are not up-dated during the
training process. Thus, the classification task is
always performed by learning weights for the pre-
existing vectors.

The results of our experiment can be seen in
Figure 3. All these embeddings have returned sim-
ilar accuracies both when trained on scarce data
(100 phrases) and when trained on half of the
dataset (4000 phrases).

Training on 100 phrases indicates the ability of
our model to learn from scarce data. One way of
checking the consistency of our model under data
scarcity is to perform flipped cross-validation: this
is a cross-validation where, instead of training our
model on 90% of the data and testing it on the re-
maining 10%, we flipped the sizes train it on 10%
of the data and test it on the remaining 90%. Re-
sults for both classic cross-validation and flipped
cross-validation can be seen in Figure 1. Training
on 10% of the data proved to consistently achieve
accuracies not much lower than 90%. In other
terms, a model trained on 90% of the data does
not do much better than a model trained on 10%.

Finally, we tried training our model on only one
of the semantic categories we introduced at the be-
ginning of the paper and testing it on the rest of the
dataset. Results can be seen in Figure 2.

We can wonder “why” our system is working:
with respect to more traditional machine learn-
ing approaches, there is no direct way to evaluate
which features mostly contribute to the success of
our system. One way to have an idea of what is
happening in the model is to use the “metaphoric-
ity vector” we discussed in Section 3. Such vector
represents what is learned by our model and can
help making it less opaque for us.

If we compute the cosine similarity between
all the nouns in our dataset and this learned vec-
tor, we can see that nouns tend to polarize on an
abstract/concrete axis: abstract nouns tend to be
more similar to the learned vector than concrete
nouns.

It is likely that our model is learning nouns’
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Test Train Accuracy Precision Recall
6929 72 0.83 0.89 0.77
5561 299 0.89 0.86 0.93
4406 643 0.91 0.92 0.90
3239 1203 0.90 0.91 0.88
2253 1961 0.91 0.92 0.92
1568 2763 0.89 0.90 0.90
707 4291 0.91 0.94 0.91
313 5494 0.93 0.92 0.95
148 6282 0.93 0.94 0.92

Table 3: This table shows consistent results in ac-
curacy, precision and recall of the classifier trained
with different split points of vocabulary instead of
phrases. Splitting the vocabulary creates different
sizes of training phrases and test phrases.

level of abstractness as a mean to determine phrase
metaphoricity. In Table 4 we show the 10 most
similar and the 10 least similar nouns obtained
with this approach. As can be seen, a concrete-
abstract polarity is apparently learned in training.

This factor was amply noted and even used in
some feature-based metaphor classifiers, as we
discussed in the beginning: the advantage of using
continuous semantic spaces probably relies on the
possibility of having a more nuanced and complex
polarization of nouns along the concrete/abstract
axes than using hand-annotated resources.

1 2 3 4 5 6 7 8 9 10

0.92
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Flipped-CV

Figure 1: Accuracies for each fold over two com-
plementary approaches: cross-validation (CV) and
flipped cross-validation (“flipped-CV”). Flipped
cross-validation takes 90% of our dataset for train-
ing. The graph shows that both methods yield
good results: in other words training on just 10%
of the dataset yields results that are just few points
lower than normal cross-validation.
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Figure 2: Accuracy training on different categories
of adjectives. In this experiment, we train on
just one category of the dataset and test on all
the others. In general, training on just one cate-
gory (e.g.temperature) and testing on all other cat-
egories still yields high accuracy. While the power
of generalization of our model is still unclear, we
can see that it can detect similar semantic mecha-
nisms even without any vocabulary overlap. The
category taste is a partial exception: this category
seems to be a relative “outlier”.

5 Discussion and future work

In this paper we have presented an approach
for detecting metaphoricity in AN pairs that out-
performs the state of the art without using human
annotated data or external resources beyond pre-
trained word embeddings. We treasured the infor-
mation captured by Word2Vec vectors through a
fully connected neural network able to filter out
the ”noise” of the original semantic space. We
have presented a series of alternative variations
of this approach and evaluated its performance
under several conditions - different word embed-
dings, different training data and different training
sizes - showing that our model can generalize ef-
ficiently and obtain solid results over scarce train-
ing data. We think that this is one of the central
findings in this paper, since many semantic phe-
nomena similar to metaphor (for example other
figures of speech) are under-represented in current
NLP resources and their study through supervised
classifiers would require systems able to work on
small datasets.

The possibility of detecting metaphors and as-
signing a degree of “metaphoricity” to a snippet
of text is essential to automatic stylistic programs
designed to go beyond “shallow features” such
as sentence length, functional word counting etc.
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Figure 3: Accuracy on different kinds of embeddings, both training on 100 phrases and 4000 phrases.

Top ten reluctance, reprisal, resignation,
response, rivalry, satisfaction,
storytelling, supporter, surveil-
lance, vigilance

Bottom ten saucepan, flour, skillet, chimney,
jar, tub, fuselage, pellet, pouch,
cupboard

Table 4: 10 most similar and 10 least simi-
lar terms with respect to the “metaphoricity vec-
tor”, concatenated using an all-zeros vector for the
adjective. In practice, this is a way to explore
which semantic dimensions are particularly use-
ful to the classifier. A concrete/abstract polarity
on the nouns was apparently derived

While such metrics have already allowed powerful
studies, the lack of tools to quantify more com-
plex stylistic phenomena is evident (Hughes et al.,
2012; Gibbs Jr, 2017). Naturally, this work is in-
tended as a first step: the “metaphoricity” degree
our system is learning would mirror the kinds of
combination present in this specific dataset, which
represents a very specific type of metaphor.

It can be argued that we are not really learn-
ing the defining ambiguities of an adjective (e.g.
the double meaning of “bright”) but that we are
probably side-learning nouns’ degree of abstrac-
tion. This would be in harmony with psycholin-
guistic findings, since detecting nouns’ abstraction
seems to be one of the main mechanisms we re-
cur to, when we have to judge the metaphoricity
of an expression (Forgács et al., 2015) and is used
as a main feature in traditional Machine Learning
approaches to this problem. In other terms, our
system seems to detect when the same adjective is
used with different categories of words (abstract

or concrete) and generalize over this distinction; a
behavior that might not be too far from the way a
human learns to distinguish different senses of a
word.

An issue that we would like to further test in
the future is metaphoricity detection on different
datasets, to explore the ability of generalization
of our models. Researching on different datasets
could also help us gaining a better insight about
the model’s learning.

An obvious option is to test verb-adverb pairs
(VA, e.g. think deeply) using the same approach
discussed in this paper. It would then be inter-
esting to see whether having a common training
set for both the AN and the VA pairs will allow
the model to generalize for both cases or differ-
ent training on two training sets, one for AN and
one for VA, will be needed. Other cases to test
include N-N compounds or proposition/sentence
level pairs.

Another way such an approach can be extended,
is to investigate whether reasoning tasks typically
associated with different classes of adjectives can
be performed. One task might be to distinguish
adjectives that are intersective, subsective or none
of the two. In the first case, from A N x one should
infer that x is both an A and an N (something that
is a black table is both black and a table), in the
second case one should infer that x is N only (for
example someone who is a skillful surgeon is only
a surgeon but we do not know if s/he is skillful
in general), and in the third case neither of the
two should be inferred. However, this task is not
as simple as giving a training set with instances
of AN pairs, to recognize where novel instances
of AN pairs belong to. Going beyond logical ap-
proaches by having the ability to recognize differ-
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ent uses of an adjective requires a richer notion of
context which extends way beyond the AN-pairs.

A further idea we want to pursue in the future
is the development of more fine grained datasets,
where metaphoricity is not represented as a binary
feature but as a gradient property. This means that
a classifier should have the ability to predict a de-
gree of metaphoricity and thus allow more fine-
grained distinctions to be captured. This is a theo-
retically interesting side and definitely something
that has to be tested since not much literature is
available (if at all) on gradient metaphoricity. It
seems to us that similar approaches, quantifying a
text’s metaphoricity and framing it as a supervised
learning task, could help having a clear view on
the influence of metaphor on style.
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Abstract

We use a convolutional neural network to
perform authorship identification on a very
homogeneous dataset of scientific publica-
tions. In order to investigate the effect of
domain biases, we obscure words below a
certain frequency threshold, retaining only
their POS-tags. This procedure improves
test performance due to better generaliza-
tion on unseen data. Using our method,
we are able to predict the authors of scien-
tific publications in the same discipline at
levels well above chance.

1 Introduction

Computational authorship identification is a task
of great interest for many historical and forensic
applications. In order to judge the applicability of
current and future authorship identification tech-
niques, they need to have been tested in a vari-
ety of realistic settings. As it stands, the accu-
racy of procedures for automatic authorship attri-
bution varies widely with the setting of the task.
Among the variables affecting the accuracy of au-
thorship attribution systems identified by Koppel
et al. (2013) are the number of target authors a text
is to be attributed to, the presence of an other-class
in the test set (containing texts not written by any
of the authors in the training set), the length of the
text segments to be classified, and the amount of
training data available.

Another important variable which is frequently
unaddressed in the computational authorship attri-
bution literature but which deserves closer atten-
tion is the monotonicity or diversity of genres and
domains in the data, as well as the domain- and
genre-specificity of the writings of individual au-
thors. This work introduces a task setting for au-
thorship attribution that is highly invariant with re-

spect to genre and domain, as well as design ideas
for systems adapted to this challenging setting.

We conducted a controlled study on the effects
of domain and genre bias on authorship attribution
by means of an ablation analysis where words in
a text, but not their automatically predicted POS-
tag, are obscured at various frequency cutoffs. The
aim is the design of a system which can perform
authorship attribution of texts which are extremely
similar in terms of genre and domain among a
large class of target authors, based solely on fea-
tures extracted from POS-tags and a small core
vocabulary. The central research question is how
well computational authorship attribution works
when based on purely stylometric (as opposed to
content) features. In doing so, we shed light on
the effect that thematic biases have on results in
the area of computational authorship attribution.

2 Related Work

Early work on authorship attribution using statis-
tical methods began as early as the first half of the
20th century (Yule, 1938; Zipf, 1932).1 Modern
authorship attribution was strongly influenced by
the work of Mosteller and Wallace (1964) who
tried to determine the authors of the Federalist
Papers, given a small set of probable candidates.
Mosteller and Wallace developed a method based
on stylometric features in the texts, such as sen-
tence length, word length, or the distribution of
high-frequency function words. For a long time,
work on authorship attribution has followed this
approach and modeled the task as a closed-set
classification problem, assuming that we have ac-
cess to training data for all the authors in the set.

This setting, however, is highly unrealistic, as
has been pointed out by Koppel et al. (2013).

1For an overview on modern authorship attribution meth-
ods, see (Stamatatos, 2009).
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In most realistic scenarios, there will not be a
known set of authors to choose from, but an in-
definite number of candidates, most of them un-
known writers. This means that the closed-set as-
sumption might lead to invalid conclusions, i.e. to
consider features as discriminants that are able to
model authorship on the closed set, but will not
perform well on the large, unseen data that should
be our test set. In this work, we assume a closed
set of authors, however, the set of candidates is
large (>800).

Other problems for authorship attribution con-
cern the confusion of author style with genre
(Byrnes and Sprang, 2004) and topic (Mikros and
Argiri, 2007). The same effects are also relevant
for related tasks, e.g. for Native Language Iden-
tification (NLI). As shown by Brooke and Hirst
(2011), the topic of a document can often bias
classification results in an NLI task, even when
abstracting away from the context words by using
character ngrams. Golcher and Reznicek (2011)
reported a similar effect, showing how topic works
as a confounding variable when investigating L1
influences in learner language. To assess the real
potential of authorship attribution techniques, we
need methods that are able to generalize to unseen
data, and that are robust against the impact of topic
and genre.

Stamatatos (2017) addresses the problem of
topic-sensitivity using text distortion. Before ex-
tracting token or character ngram features, he
masks all tokens that occur below a certain fre-
quency threshold by replacing either the whole to-
ken or each character in the token by an aster-
isk. He tests his approach in an authorship attri-
bution task on texts from different topics and gen-
res (<15 authors), and in an author verification
task on data from the PAN 2014 evaluation cam-
paign (Stamatatos et al., 2014). Stamatatos shows
that SVMs trained on the features extracted from
the distorted texts outperform previous models in
a cross-topic scenario. For topic-specific settings,
however, where each author is strongly correlated
with a specific topic, his approach yields results
below the baseline.2

So far, only few studies have employed deep
neural networks (NN) for authorship attribution.
Ge et al. (2016) used a feed-forward NN lan-

2The reason for this most probably lies in the closed-class
assumption of the setting, and we expect different results for
a more realistic test set where the strong correlation between
author and topic does not hold.

guage model to classify short transcripts from
18 coursera lectures that are controlled for topic.
Rhodes (2015) trained a convolutional neural net-
work (CNN) on word representations to classify
medium-sized texts, and Shrestha et al. (2017) ap-
plied a CNN to identify the authors of tweets,
based on character ngrams. Bagnall (2015) used a
multi-headed recurrent neural network (RNN) lan-
guage model to estimate character probabilities for
each author in the PAN 2015 authorship identifica-
tion task and outperformed all other models. Their
results show the promise of deep NN for improv-
ing authorship attribution.

Our approach is similar in spirit to that of Sta-
matatos (2017). We also obscure words that occur
below a certain frequency threshold. In contrast
to Stamatatos, however, we use a CNN to classify
the texts. We test our approach in a more realistic
setting where the author has to be chosen from a
much larger set of candidates (>800). To disen-
tangle the influence of topic and genre from au-
thor style, we test our method on a highly homo-
geneous set of scientific articles from the areas of
computational linguistics and NLP.

3 Datasets and Tools

In our experiments, we used single-author papers
from the ACL Anthology Reference Corpus (Bird
et al., 2008). The corpus contains scientific pa-
pers published in the proceedings of various con-
ferences and workshops in the areas of computa-
tional linguistics and natural language processing.
The earliest data is from 1965, the latest data is
from 2007. We designated all papers published
in the year 2006 as development data and all pa-
pers published in 2007 as test data, with the re-
maining data used for training. New authors with-
out publications before this date were not treated
any differently from those which were represented
in the training data. We only retained publica-
tions from authors with at least two single-author
papers, although we do not require both or even
one of them to be part of the training data. Our
dataset contained 808 distinct authors. We dis-
carded the first 10 lines of each document in or-
der to strip publications of author names, email
addresses and workplace information. We also re-
moved any lines containing the author’s last name
(for example, as part of a self-citation or email ad-
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Figure 1: Architecture overview of the convolutional neural network.

dress).3 We partitioned training, development and
test data into segments of 1,500 words each, dis-
carding any segments shorter than 1,500 words at
the end of a publication. Authorship prediction is
performed on the level of these segments. Table 1
gives an overview of corpus statistics.

Publications Segments

Training 1583 5360
Development 210 620
Test 117 323

Table 1: Corpus statistics for the ACL Anthology
dataset.

For POS-tagging, we used the Stanford POS-
tagger (Toutanova et al., 2003).4 In addition
to POS-tags, we use the pre-trained word em-
beddings available from Google5 trained using
the skip-gram objective (Mikolov et al., 2013) as
input features for our convolutional neural net-
work. Word frequencies were computed on the
News Commentary and News Discussions English
datasets provided by the WMT15 workshop.6

4 Experiments

For authorship prediction, we used a convolu-
tional neural network (CNN) similar to that of
Kim (2014). Each sentence is represented as a

3As will become apparent, our procedures of obscuring
low-frequency words would eliminate most author names
anyway, this step is mainly taken to ensure fair comparison
with the full-vocabulary baseline.

4Among the available models for English, we chose
english-left3words-distsim.tagger.

5Available for download at https://code.google.
com/archive/p/word2vec/

6Available for download at http://www.statmt.
org/wmt15/translation-task.html

padded concatenation of word embedding vec-
tors and POS-tag one-hot encodings. The net-
work then applies a single layer of convolving fil-
ters with varying window sizes, and a max-over-
time pooling layer which retains only the maxi-
mum value. The resulting features are passed to
a fully-connected softmax layer to obtain a prob-
ability distribution over labels. Figure 1 gives an
overview of the model architecture.

We used the implementation of Kim (2014),7

which we modified in a number of ways. We
used static channels only and did not modify the
pre-trained word embeddings. Our input feature
map contained not only the 300-dimensional word
embeddings, but also a one-hot representation of
POS-tags. We used 100 convolution filters of
length 1, 2 and 3 words each and a batch size of
20 sentences. Like that of Kim (2014), our fully
connected layer was trained with dropout. The
dropout rate was set to 0.5 during training.

The network scans the entire input text of a seg-
ment using a sliding-window approach before ap-
plying max-pooling over time and making a pre-
diction of authorship based on the prediction of the
softmax layer. We tested the following frequency-
cutoff settings:

1. Retain only the 1,000 most frequent words in
our large, out-of-domain corpus of English,
use their word embeddings as input features
alongside a one-hot encoding of their POS-
tags as predicted by the Stanford POS-tagger.
Replace all other words with an unknown to-
ken. Generate a separate random embedding
for each combination of the unknown token
with a particular POS-tag and, in addition, re-
tain the one-hot encoding of the POS-tags of

7Available for download at https://github.com/
yoonkim/CNN_sentence
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all unknown tokens.

2-4. Same as (1), but retain the 5,000, 10,000 and
50,000 most frequent words, respectively.

5. Retain all words and use their embeddings
as input features, including a 1-hot encoding
of their POS-tag. Generate a random word
embedding for unknown words, as in Kim
(2014).

Training was run for a maximum of 50 epochs.
After each epoch, we measured the prediction ac-
curacy on the development data. After training
was complete, we tested the model parameters
with the best development accuracy on the test
data.

In addition to evaluating the authorship predic-
tions of the model, we evaluate rank accuracies as
well in order to investigate whether the models are
able to reduce the list of possible authors for a seg-
ment to a short candidate list which contains the
correct author. This can be achieved in a straight-
forward manner by simply sorting the activations
of the softmax layer of the convolutional network
for a test segment in order to obtain a ranked can-
didate list.

Our initial research hypothesis was that (1 - 4)
would perform significantly worse than (5), while
strongly outperforming a random baseline. This
would demonstrate that authorship attribution (in
a probabilistic sense) is possible based on stylo-
metric features alone, but not to the same level of
accuracy as when content clues are used as well.

5 Results

Table 2 gives an overview of the results for out-
right prediction of authorship. We find that at a
frequency cutoff of 50,000 words, our system out-
performs a setting in which the full vocabulary
is used, while at lower frequency cutoffs perfor-
mance is slightly reduced. It should be noted that
all of our systems far outperform a random assign-
ment of authors, which would be correct in ap-
proximately 1

808 (0.12%) of cases. Performance in
terms of accuracy for our best system is thus two
orders of magnitude above random assignment.

Frequency Cutoff Accuracy on DEV Accuracy on TEST

1, 000 11.94% 10.22%
5, 000 16.61% 10.53%
10, 000 16.45% 9.29%
50, 000 15.00% 13.31%
None (Full Vocabulary) 15.16% 10.84%

Table 2: Prediction accuracies for the five fre-
quency cutoffs on development as test data (ACL).
The best result is marked in boldface.

Freq. Cutoff r = 1 r = 5 r = 10 r = 20 r = 50

1, 000 10.22% 17.34% 19.50% 26.32% 39.32%
5, 000 10.53% 20.43% 26.93% 34.37% 46.75%
10, 000 9.29% 20.12% 26.01% 32.20% 49.23%
50, 000 13.31% 24.46% 30.65% 39.32% 49.85%
None 10.84% 19.20% 25.70% 32.82% 44.58%

Table 3: Rank accuracies for different ranks r
on holdout test data (ACL). For example, a re-
sult of 24.46% at r = 5 means that for 24.46%
of segments in the test data, the correct author was
among the top-5 predicted authors of the model.
Best results are marked in boldface.

For ranked prediction, a similar picture
emerges. Table 3 gives an overview of results
in this setting. At a frequency cutoff of 50,000
words, our model always outperforms the full-
vocabulary baseline and lower frequency cutoffs.
However, at higher ranks, there is a tendency for
lower frequency cutoffs to outperform the full-
vocabulary baseline as well, particularly at a cutoff
level of 10,000.

6 Evaluation on Benchmark Dataset

In order to enable meaningful comparison of our
models to other work, we additionally tested our
approach on a commonly used benchmark dataset.
We chose Task I of the PAN 2012 authorship at-
tribution shared task,8 which involves authorship
attribution among a closed class of 14 novelists.
The training data was again partitioned into seg-
ments of 1,500 words. The training procedure was
identical to the one employed on the ACL Anthol-
ogy dataset. We set aside 200 segments as devel-
opment data, which left 1,694 segments for train-
ing. The test data comprised 14 novel-length texts.
Prediction on the test data was performed on seg-
ments of a maximum length of 1,500 words, al-
though we allowed for shorter segments at the end

8http://pan.webis.de/clef12/pan12-web/
author-identification.html
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of texts. For prediction on the text level, we simply
aggregated segment-level predictions by majority
vote. Results are summarized in table 4. Overall,
we observed a similar effect as on the ACL An-
thology dataset: The full vocabulary model per-
formed much worse than models with a frequency
cutoff. In contrast to the ACL Anthology dataset,
the best results were achieved at a frequency cutoff
of 1,000.

Frequency Cutoff Acc. (Segments) Acc. (Texts)

1, 000 52.73% 78.57% 11/14
5, 000 50.91% 78.57% 11/14
10, 000 49.90% 71.43% 10/14
50, 000 51.82% 78.57% 11/14
None (Full Vocabulary) 48.08% 64.29% 9/14

Table 4: Prediction accuracies on PAN 2012, task
I on segment and text levels for different frequency
cutoffs. Best results are marked in boldface.

7 Discussion and Conclusions

While perhaps initially surprising, the fact that
obscuring infrequent words helps system perfor-
mance can be explained very well by better gen-
eralization: The absence of detailed content infor-
mation may force the system to focus on stylistic
features. All of our models achieved performances
above 95% on the training data, demonstrating
their large modeling capacity and thus their po-
tential for over-fitting. At a frequency cutoff of
50,000 words, performance was improved on the
test data, indicating that the model generalized
better to unseen data.

In future work, we would like to include an
other-class in order to make our setting even more
challenging and realistic. We would also like to in-
vestigate which, if any, (automatic or manual) ob-
fuscation techniques can be employed by authors
to avoid de-anonymization with techniques simi-
lar to ours. Furthermore, we would like to investi-
gate the relationship of authorship and native lan-
guage identification on the ACL Anthology Ref-
erence Corpus, as many scientific publications are
written by non-native speakers, which can be ex-
pected to influence the ease of authorship attribu-
tion on datasets of scientific publications.

8 Ethical Considerations

Our work demonstrates that convolutional neu-
ral networks have the potential to assign the cor-
rect author to very similar documents with some-

what remarkable accuracy well above chance. Al-
though the performance of our particular system
does not justify a use in legal or forensic settings,
as more than 85% of predictions were still incor-
rect, the public should be made aware that stylistic
features, in combination with modern natural lan-
guage processing methods such as convolutional
neural networks have significant potential to de-
anonymize text, even when authors write about
similar or related topics, and in an ostensibly fac-
tual, impersonal register. Since many people value
their anonymity as authors, particularly when pub-
lishing text online, they should be made aware of
the risk that current and future language technol-
ogy holds for their ability to publish texts anony-
mously.

For the use of computational authorship attri-
bution as part of historical research, reliable data
about the accuracy of such methods is important to
good scientific practice. Our work should thus be
of interest to historians using such methodologies.
In the future, as more powerful techniques are de-
veloped, more forensic uses of authorship identi-
fication may be justified. Policymakers, legal pro-
fessionals and the public should have a realistic
appraisal of the reliability of authorship identifi-
cation as a technology in order to make informed
judgments about if and when its use could be ap-
propriate. Testing authorship identification tech-
nology in difficult, realistic settings such as the
one of this work is important to tracking techno-
logical progress in this area and giving the pub-
lic a realistic appraisal of the potential for use and
abuse of computational authorship attribution.
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Abstract

Sociolinguistic research suggests that
speakers modulate their language style in
response to their audience. Similar ef-
fects have recently been claimed to occur
in the informal written context of Twit-
ter, with users choosing less region-specific
and non-standard vocabulary when address-
ing larger audiences. However, these stud-
ies have not carefully controlled for the
possible confound of topic: that is, tweets
addressed to a broad audience might also
tend towards topics that engender a more
formal style. In addition, it is not clear to
what extent previous results generalize to
different samples of users. Using mixed-
effects models, we show that audience and
topic have independent effects on the rate
of distinctively Scottish usage in two demo-
graphically distinct Twitter user samples.
However, not all effects are consistent be-
tween the two groups,underscoring the im-
portance of replicating studies on distinct
user samples before drawing strong conclu-
sions from social media data.

1 Introduction

Linguistic variation in social media is a growing
research area, with interest stemming both from the
engineering goal of developing tools that work well
across different styles and dialects (Hovy, 2015;
Stoop and van den Bosch, 2014; Vyas et al., 2014;
Huang and Yates, 2014), and from the social sci-
ence goal of studying user behaviour (Bamman
et al., 2014; Eisenstein, 2015; Huang et al., 2016;
Nguyen et al., 2015). However, this type of re-
search is often complicated by the messy nature of
social media data, which can make it hard to con-
trol for different explanatory factors and to know

whether results obtained on a particular user sample
generalize to another sample.

For example, previous studies have suggested
that Twitter users modulate their use of regional and
non-standard language depending on the expected
size of the audience (operationalized as whether a
Tweet contains hashtags, @-mentions, or neither)
(Pavalanathan and Eisenstein, 2015a; Shoemark
et al., 2017). However, these studies did not suffi-
ciently control for possible effects of topic, which
may be confounded with audience size: e.g., users
may use more hashtags when discussing political
events than when discussing daily routines. These
studies also did not look at the degree to which
their results generalize across different populations
of users.

In this work we study two largely disjoint groups
of (mainly) Scottish Twitter users: one group sent
tweets geotagged within Scotland, while the other
used hashtags related to the 2014 Scottish indepen-
dence referendum. We use mixed-effects models
to tease apart the effects of audience and topic on
their choice of Scottish-specific terms. We find
that in both user groups, topic and audience have
independent effects on the rate of Scottish usage,
providing stronger evidence than in previous work
that users are indeed sensitive to their audience.

Nevertheless, our study does not confirm all as-
pects of previous work. When comparing our two
user groups, the effect of topic is qualitatively sim-
ilar: tweets about lifestyle or politics have lower
rates of Scottish usage than “chitchat” tweets. How-
ever, the effects of audience differ between the two
groups. For the geotagged users, rates of Scot-
tish usage follow the pattern predicted by previous
research: lowest among tweets with the largest
expected audience, and rising as the expected au-
dience size shrinks. In contrast, the independence
referendum group showed a less consistent and less
pronounced pattern which does not align cleanly
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with audience size. We were unable to find a clear
explanation of this difference. Nevertheless, it
highlights the difficulty of sampling representative
groups from social media data and the need to in-
terpret results with caution until they are shown to
generalize across several different populations.

2 Background

Bell’s (1984) Audience Design theory posits that
intra-speaker stylistic variation is primarily condi-
tioned by the audience of the interaction. Bell
argues that stylistic variation across topics de-
rives from so-called ‘reference groups’ whom the
speaker associates with the topics in question, and
predicts that effects of topic on style variation will
be weaker than direct effects of audience. However,
later studies of spoken conversation (e.g. Rickford
and McNair-Knox, 1994) have suggested that both
topic and audience affect a speaker’s style, and that
topic may even have a greater effect. Topic also
appears to influence stylistic variation in computer-
mediated communication—for example, statistical
associations between lexical features and author
attributes such as gender are often mediated by
the topic of discourse (Herring and Paolillo, 2006;
Bamman et al., 2014).

Our work is primarily inspired by two previous
studies of Twitter users and how their use of re-
gional lexical variants is influenced by either au-
dience (Pavalanathan and Eisenstein, 2015a) or
topic (Shoemark et al., 2017). In the first of these,
Pavalanathan and Eisenstein (2015a) studied lexi-
cal items that were strongly associated with tweets
from specific regions of the US, as determined by
a data-driven approach (Eisenstein et al., 2011).
They found that users were less likely to use these
regional terms, as well as other nonstandard terms,
in tweets containing hashtags, and more likely to
do so in tweets containing @-mentions (i.e., other
users’ IDs). They attributed these findings to style-
shifting in relation to audience size, since tweets
with hashtags are more likely to be viewed by users
outside of the author’s follower group, while by de-
fault tweets which begin with a mention are shown
only to the author, the mentioned user, and their
mutual followers.

While suggestive, there are alternative explana-
tions for this finding. For example, in their study of
Scottish tweets, Shoemark et al. (2017) pointed out
that if users use the word ‘masel’ (a Scottish vari-
ant of standard English ‘myself’) less frequently in

tweets with hashtags, it could be simply because
people talk about themselves less in tweets with
hashtags, not because they are modulating the use
of a regionally specific variant.

Shoemark et al. (2017) focused mainly on ef-
fects of topic rather than audience, but to avoid
similar confounds, they measured the frequencies
of regional variants of lexical variables1 relative to
their standard variants. They found that, amongst
users who tweeted about the Scottish indepen-
dence referendum, both pro- and anti-independence
users decreased their use of Scottish-specific terms
in tweets containing referendum-related hashtags,
compared to other tweets. A follow-up analysis
suggested that this effect might be due to the larger
audience obtained by using referendum-related
hashtags, but the evidence was indirect as the origi-
nal study was not designed to test that hypothesis.

Our work extends these two previous studies by
building models that include factors for both topic
and audience. We follow Shoemark et al. (2017) in
focusing on variables that alternate between Scot-
tish English and Standard English variants, but use
a wider range of topics identified with a topic model
rather than just hashtags. We use mixed-effects
logistic regression in order to establish whether
there are independent effects of audience and topic,
whilst controlling for variation in the base rate of
Scottish-variant usage across different users and
variables. In addition, we explicitly examine how
different methods of sampling users might affect
results, by performing the same study on two user
groups gathered in different ways.

3 Data

3.1 Lexical variables
We use 50 of the 51 lexical variables identified by
Shoemark et al. (2017). Each variable consists of
one or more distinctively Scottish variants and one
or more Standard English variants, all of which are
referentially and syntactically equivalent; examples
are shown in Table 1. From the original 51 vari-
ables, we discard SHIT, since the variant identified
as Scottish-specifc, SHITE, is used at a higher rate
than the Scottish-specific forms of the other vari-
ables (e.g. 27% of SHIT occurences in Shoemark et
al.’s Indyref-Tweets dataset are realized as SHITE;
more than twice the rate of Scottish variant use for
any other variable), and for many users SHIT is the

1A variable is any linguistic item than can be produced in
different ways; the variants are the different realizations.
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Variable Scottish variants Std variants

DONT DEH, DINI , DINNY DONT, DO NOT
FOOTBALL FITBA FOOTBALL
MYSELF MASEL, MASELF MYSELF
SOMETHING SUHIN SOMETHING
TO TAE TO, TOO

Table 1: Examples of lexical variables.

only variable for which any Scottish variant use is
observed. This suggests that SHITE is less marked
as ‘distinctively Scottish’ than the Scottish-specific
variants of the other 50 variables.

3.2 Dataset construction

We aim to study Scottish language use, but only
a small proportion of Twitter users disclose their
location, either by including it in their user profile
or by opting to automatically tag their tweets with
geographic coordinates when using a GPS-enabled
device. Moreover, studies have indicated that those
who do share their location are not representative
of the wider Twitter user base (Pavalanathan and
Eisenstein, 2015b; Sloan and Morgan, 2015).

To help assess the generalizability of our find-
ings, we therefore consider two datasets, both
covering the same time period but sampled from
distinct (though slightly overlapping) populations:
‘Scottish Geotag Users’, who have tagged their
tweets with locations in Scotland; and ‘Indyref
Hashtag Users’, who have used hashtags relating to
the 2014 Scottish Independence Referendum. As
we will demonstrate, users in the two samples do
differ in some aspects of their behaviour, empha-
sizing how biases implicit in the construction of
datasets can affect results.

Our two groups of users are taken from the
Geotagged-Scotland (GS) and Indyref-Tweets (IT)
datasets collected by Shoemark et al. (2017). Both
of these datasets were drawn from an archive of
Twitter’s ‘Spritzer’ stream, which provides a 1%
sample of the public data flowing through Twit-
ter, covering the period from September 2013 to
September 2014. The GS dataset consists of tweets
by users for whom the archive contained at least
one tweet which was geotagged with a location in
Scotland, while the IT dataset consists of users for
whom it contained at least one tweet with a hashtag
relating to the 2014 Scottish Independence referen-
dum (see Table 3 in Shoemark et al. (2017) for a
list of hashtags).

As a heuristic to filter out bots and spammers,

IH Users SG Users

(a) N Users 14,572 17,942
N Tweets 4,703,040 1,750,343
N Variables 10,482,683 3,733,133
% Scottish 0.5 1.8

(b) N Users 12,101 11,307
N Tweets 4,674,251 1,678,498
N Variables 10,424,067 3,594,659
% Scottish 0.5 1.8

(c) N Users 10,786 10,103
N Tweets 3,456,277 1,371,694
N Variables 7,689,621 2,878,352
% Scottish 0.7 2.3

(d) N Users 10,784 10,103
N Tweets 2,165,320 1,112,931
N Variables 4,934,186 2,365,496
% Scottish 0.8 2.3

Table 2: Dataset statistics for Indyref Hashtag
Users and Scottish Geotag Users (a) after basic pre-
processing, (b) after discarding users with<50 vari-
able instances, (c) after discarding users for which
there is strong evidence of non-use of Scottish vari-
ants and (d) after labelling audience & topic. ‘%
Scottish’ is the percentage of variables realized as
the Scottish variant.

we computed the proportion of tweets for each user
in the GS and IT datasets which contained URLs,
and discarded users for whom this proportion was
in the 90th percentile. For the remaining users, we
then retrieved a more complete set of their tweets:
for each user we attempted to retrieve all the tweets
they posted in August, September, or October 2014
(excluding retweets), using Twitter’s REST API.
The API allows us to retrieve up to 3200 of a user’s
most recent tweets, so if a user had posted more
than 3200 tweets since autumn 2014, we were un-
able to retrieve their tweet histories for this period.
We obtained complete histories for at least one of
the three months for a total of 18,370 Scottish Geo-
tag (SG) Users, and 14,832 Indyref Hashtag (IH)
Users. We then applied some simple ad-hoc text
filters to remove tweets produced by apps which au-
tomatically share user’s horoscopes or track users’
follower counts, as well as some particularly preva-
lent types of marketing tweets. See Table 2a for
summary statistics after this filtering step. Note
that there are 363 users who are in both datasets.

Next, we removed all users for whom the total
number of observed variable instances was less
than 50 (see Table 2b), as with so few observations
it would be difficult to make reliable inferences
about these users’ usage rates of distinctively Scot-
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tish variants.
Finally, since our population of interest is those

who vary between Scottish and standard variants,
we discard individuals for whom we had enough
observed variable instances to conclude that they
probably never used distinctively Scottish variants
of any of our variables. For SG Users, we chose the
threshold of ‘enough observed variable instances’
to be 298, since this is the smallest value n such
that the cumulative binomial probability of seeing
at least one Scottish variant in n variable instances
is ≥ 0.99 (assuming a constant usage rate of Scot-
tish variants of 0.0184, as listed in Table 2b). That
is, if we assume that any user who does use Scot-
tish variants will do so 1.84% of the time, then in
99% of cases where we have observed at least 298
variable instances from such a user, we would ex-
pect a Scottish variant to have been used in at least
one of those instances. For IH Users, we assumed
a constant usage rate of distinctively-Scottish vari-
ants of 0.05, and discarded all those for whom we
had observed at least 870 variable instances and
no Scottish variants. Table 2c provides summary
statistics for the two resulting datasets.

When considering the differences in average
rates of Scottish variant usage across the two
groups, it is important to note that Shoemark et al.
(2017) identified these Scottish variants using the
GS dataset, i.e. the same dataset from which we
drew our Scottish Geotag Users. It is therefore
to be expected that that the Scottish Geotag Users
would use these variants at a higher rate, and it is
important to bear in mind that the Indyref Hashtag
Users may be more frequent users of other distinc-
tively Scottish variants.

4 Topic & Audience

4.1 Audience labelling

We follow Pavalanathan and Eisenstein (2015a)
in assuming that tweets containing hashtags (any
token prepended with the ‘#’ character) typically
have a wider audience than other tweets, since any-
one interested in a particular topic or event can
browse the stream of Tweets which contain associ-
ated hashtags. Conversely, tweets beginning with
@-mentions typically have a narrow audience since
by default they only appear in the feeds of the au-
thor, the mentionee, and users who follow both the
author and the mentionee. Any user @-mentioned
in a tweet (whether at the beginning, or elsewhere
within the tweet) will by default receive a special

Broadcast @-Init @-Internal Hashtag Multiple
0
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Figure 1: Distribution of tweets with each audience
label in the two datasets.

notification drawing their attention to it.
Pavalanathan and Eisenstein hypothesise that

both kinds of mention serve to narrow the intended
audience, whilst hashtags serve to widen it, relative
to broadcast tweets (i.e., those without hashtags or
mentions, which appear on the feeds of all the au-
thor’s followers). The grounds for hypothesising a
narrowing function for tweet-internal mentions are
less evident than those for tweet-initial mentions,
since tweets which do not begin with a mention are
not limited by default to the feeds of the author and
mentionee’s mutual followers.

We label each variable instance in our two
datasets with three binary variables indicating
whether or not they contain hashtags, initial men-
tions, and/or internal mentions. We then discard
any tweets for which two or more of these indica-
tors are activated, since we do not have intuitive a
priori hypotheses about how combining more than
one of these variables within a single tweet would
affect its intended audience.

Figure 1 shows the proportion of tweets in each
dataset which have each audience label (or which
had multiple labels and were subsequently dis-
carded), and reveals qualitative differences in the
two groups’ behaviour: SG Users post relatively
more ‘broadcast’ tweets, whilst IH Users use rela-
tively more hashtags (which is unsurprising given
that they were selected on the basis of their hashtag
use).

4.2 Topic labelling

We assign topics to tweets using a Latent Dirichlet
Allocation (LDA) topic model (Blei et al., 2003)
estimated with collapsed Gibbs sampling (Griffiths
and Steyvers, 2004) from both datasets combined.
Following Hong and Davison (2010) and others,
we create ‘documents’ by concatenating together
tweets by the same author. To account for possible
topic drift within individuals over time, we group
each user’s tweets by month and model each per-
user-per-month document as a distinct mixture of
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topics. We use the inferred topic model parameters
to label each tweet with a topic, as described below.

The corpus was preprocessed as follows: tweets
were tokenised using the Twokenize program2, a
tokeniser designed specifically for Twitter text, and
all non-alphabetic tokens, except for those which
begin with hashtags, were discarded. The vocabu-
lary was then pruned to the 100,000 most frequent
terms across the two datasets. We set the number
of topics, T , to 30, and used symmetric Dirichlet
priors of α = 50

T and β = 0.01 on the multinomial
distributions over topics and terms, respectively3.
The Gibbs sampler was run for 750 iterations.

Upon inspection of the most probable words and
documents for each topic, we deemed that twenty
of the topics could be grouped into three broader
themes, which we describe as ‘chatter’ , ‘lifestyle’ ,
and ‘politics’ . Later, we consider a different group-
ing, where we split off a ‘sports’ theme from the
‘lifestyle’ theme, and an ‘indyref’ theme from the
‘politics’ theme. Table 3 shows the most probable
words (excluding stopwords) for each topic within
these three/five themes. Of the ten topics that we
did not assign to these themes, four could be de-
scribed as spam topics, four as foreign language,
and two as relating to purely stylistic dimensions
as opposed to any particular topic of discussion:
one for distinctively Scottish terms, and the other
for ‘netspeak’-style spellings and abbreviations.

To assign topic labels to individual tweets, we
take a Gibbs sample and then for a given tweet,
each topic t is assigned a weight, defined as

weightt =
∑
w∈w

p̂(t|w)

where w is the bag of words which occur in the
tweet (excluding stopwords and any variant of any
of our variables of interest), and p̂(t|w) is obtained
by maximum likelihood estimation from the Gibbs-
sampled topic-token assignments. Finally, we take
the topic with the highest weight, and label the
tweet with its broader theme. If the topic with the
highest weight is one of the two ‘stylistic’ topics,
we defer to the topic with the next highest weight.
We discard tweets labelled as ‘spam’ or ‘foreign
language’, as well as those for which the highest
weight is not unique, if the topics which share this
weight belong to different themes.

2https://github.com/myleott/ark-twokenize-py
3During development we experimented with values for T

between 10 and 100, and α between 0.015 and 1.5, and saw
little qualitative difference in the themes that emerged, based
on manual inspection of topic keywords.

Chatter Lifestyle Sport Politics Indyref Other Ambiguous
0
5

10
15
20
25
30
35
40
45

%

SG
IH

Figure 2: Distribution of tweets with each topic
label in the two datasets.

Using this method, we obtain 2.3m broad-topic-
labeled variable instances from SG Users, and 4.9m
from IH Users. Figure 2 shows the distribution of
topics in each data set, and Table 4 gives a break-
down of variable instances by audience-type and
broad-topic-label. IH Users have a much larger pro-
portion of tweets with ‘indyref’ or ‘politics’ labels
than SG Users, which once again is unsurprising,
given how these users were sampled.

5 Method

We use the glmer() function from the lme4 package
(Bates et al., 2015) for R (R Core Team, 2013) to
estimate mixed effects logistic regression models,
predicting Scottish variant usage (yes = 1, no = 0)
from the intended audience size and topic of the
tweet in which a lexical variable occurs. Our four-
level categorical audience factor (initial mention,
internal mention, broadcast, hashtag) is dummy
coded into three binary variables, with broadcasts
as the reference level. Our tweet topic labels are
also dummy coded, taking the ‘chatter’ topic as the
reference level. By specifying random effects for
users and variables, we control for the influence
of different baseline rates of Scottish variant usage
across different users and variables. Hence our
models are of the form

logit{E(y)} = Xβ + Zu,y ∼ Bernoulli

where y is the n × 1 vector of responses from a
Bernoulli distribution, X is an n× p design matrix
for the fixed effects β, and Z is an n × q design
matrix for the random effects u. We do not include
random slopes in our models, since we do not have
enough observations per group to provide stable
estimates of the variances. Our models are fit by
Laplacian approximation to Maximum Likelihood
estimation.
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Topic theme Keywords

Chatter

love feel life fucking fuck people shit actually hate omg school gonna time excited oh

time yeah bit oh probably actually maybe seen lot pretty hope haha bad getting stuff

lol love thank xx thanks hope day oh happy lovely xxx ha haha morning beautiful

night happy birthday haha day wait tonight tomorrow hahaha bed getting wee weekend days week

Lifestyle

love song music album world amazing god top white black girl watch band ice looks baby life listen
guy boys

photo watching #xfactor #cbb day #scotland loving posted #gbbo life #glasgow #bbuk #love #edinburgh
love

video #auspol liked game awesome watch time apple iphone play app games phone buy facebook

oh bit news ha twitter story brilliant bbc read book called tv look dear wonder

day time morning night car run food bit nice week train getting tea eat days

tonight day week time tomorrow night glasgow morning looking edinburgh forward coming weeks
hear live

Sports cup win ireland #glasgow2014 irish time team final match scottish round top games race live

game celtic team football season league fans mate goal win play players club player haha

Politics

people read agree question thanks issue debate political article course mean change indeed etc politics

news police pm russia minister russian via eu report ukraine president ebola court uk #ukraine #russia

#ferguson rt obama #ukraine police #cdnpoli ukraine video via mt people news american time america

labour uk ukip cameron party tory ed tax vote tories english mps miliband boris david

people lol look tell money time stop wrong please believe mean job care saying talking

israel #gaza war via isis gaza #isis world people children israeli #israel police hamas support

Indyref #indyref scotland #voteyes #yes vote scottish independence #scotdecides #indyrefpic #bettertogether
salmond #bbcindyref #the45 campaign debate

scotland vote uk labour scottish snp scots union oil party wm country westminster voters voting

Table 3: Topic themes and the top 15 keywords for each topic within each theme

Audience
Topic

Chatter Lifestyle Politics All

(a) Broadcast 598,673 (2.7) 334,143 (2.3) 295,981 (1.8) 1,228,797 (2.4)
Initial Mention 352,981 (3.0) 164,909 (2.9) 188,191 (1.9) 706,081 (2.7)
Internal Mention 92,682 (1.8) 63,242 (1.5) 56,727 (1.2) 212,651 (1.6)
Hashtag 67,630 (1.8) 69,833 (1.4) 80,504 (1.2) 217,967 (1.4)
All 1,111,966 (2.7) 632,127 (2.3) 621,403 (1.7) 2,365,496 (2.3)

(b) Broadcast 308,797 (1.3) 341,592 (0.9) 658,520 (0.8) 1,308,909 (1.0)
Initial Mention 644,459 (1.1) 394,036 (1.0) 1,026,634 (0.6) 2,065,129 (0.8)
Internal Mention 76,403 (0.6) 96,123 (0.5) 203,275 (0.4) 375,801 (0.5)
Hashtag 124,333 (0.7) 197,925 (0.5) 862,089 (0.5) 1,184,347 (0.5)
All 1,153,992 (1.1) 1,029,676 (0.8) 2,750,518 (0.6) 4,934,186 (0.8)

Table 4: Counts of variable instances in the (a) SG Users and (b) IH Users datasets, broken down by
Topic and Audience. In each cell, the percentage of variable instances that are Scottish variants is given in
parentheses.
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Figure 3: Barplots of by-variable BLUPs for SG Users (black bars) and for IH Users (white bars).
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Figure 4: Histograms of by-user BLUPs.

6 Results and Discussion

6.1 Random Intercepts
We begin by constructing null models that predict
the log odds of choosing a Scottish variant using
only intercepts, which we allow to vary randomly
by each user and by each lexical variable. The
estimated variances of the by-user and by-variable
adjustments to the intercept are given in Table 5a,
for SG and IH Users, respectively.

The Best Linear Unbiased Predictors (BLUPs)
of the by-variable random intercerpts (i.e. the poste-
rior estimates, given the data and model parameters,
of the adjustment to the intercept for each variable)
are shown in Figure 3. In both datasets, open class
variables (e.g. GRANDAD, BALLS, DOGS) tend to
have higher rates of Scottish variant usage than
closed class variables (e.g. WAS, OF, YOU).

Figure 4 shows the distributions of by-user
BLUPs. Although the models assume a normal
distribution over the by-user intercepts, the BLUPs
are positively skewed. We suspect the BLUPs re-
flect the fact that our datasets contain a mixture of
two populations: Scottish speakers, who use Scot-
tish variants at a range of rates, and non-Scottish
speakers, who rarely if ever use Scottish variants.
The non-Scottish speakers are responsible for the
large number of users with slightly negative inter-
cepts. Unfortunately there is no straightforward
way to separate these groups (especially for users

with a relatively small number of observations).
However, users with a constant near-zero rate of
Scottish variant usage should, at worst, dilute any
true effects of topic or audience on rates of usage,
but should not change the direction of those effects.

6.2 Random Intercepts + Audience Effects
We now check whether Pavalanathan and Eisen-
stein’s (2015a) reported effects of hashtags and
mentions on the odds of using regional variants in
US tweets, are replicated for distinctively Scottish
variants in our two datasets.

We augment our null models with our dummy-
coded audience factors as fixed effects. For each
dataset, we assess the goodness-of-fit using chi-
square tests on the log-likelihoods. Compared to
the null models with only random effects, including
fixed effects for audience significantly improves
the fit on both datasets (SG: χ2(3) = 643.05, p =
<2.2e-16; IH: χ2(3) = 232.69, p = <2.2e-16).

Parameters of the models with Audience effects
are in Table 5b. Our results for SG Users largely
accord with those of Pavalanathan and Eisenstein
(2015a): Scottish variants are positively associated
with tweet-initial mentions, and negatively associ-
ated with hashtags. Relative to broadcast tweets,
the odds of seeing Scottish variants are about 28%
higher in tweets with initial mentions, and about
17% lower in tweets with hashtags. However, while
Pavalanathan and Eisenstein also found an associa-
tion between the use of tweet-internal mentions and
local/non-standard words in their data, our model
does not show such a relationship in the SG dataset.

In the IH dataset, the audience effects in our
model do not follow the pattern that Pavalanathan
and Eisenstein observed in US tweets. Unlike for
SG Users, there is no association between hash-
tags and Scottish variants, and the effects of men-
tions are in the opposite direction to those found
by Pavalanathan and Eisenstein (2015a). Amongst

65



IH Users, initial mentions are negatively associated
with Scottish variants, though the effect size is very
small. Internal mentions are also negatively asso-
ciated with Scottish variants, and in this case the
effect is relatively large (in contrast with SG Users,
for whom we found no effect). We discuss possible
reasons for this result in Section 6.4.

6.3 Random Intercepts + Topic Effects
Next, we test for a relationship between the topic of
a tweet and the odds of Scottish variant usage. For
both datasets, models with fixed effects for topic
significantly improve the fit over random-effects-
only models (SG: χ2(2) = 570.48, p = <2.2e-16;
IH: χ2(2) = 1241, p = <2.2e-16).

Parameters of the models are in Table 5c. The ef-
fects of tweet topic are qualitatively similar in each
dataset: relative to ‘chatter’ tweets, tweeting about
the ‘lifestyle’ topic reduces the odds of choosing
Scottish variants by 11% for SG Users and 5% for
IH Users, while tweeting about politics reduces
them by 27% for SG Users, and 39% for IH Users.

6.4 Full Models
For each dataset, including fixed effects for audi-
ence and topic together significantly improves the
model fit, both over the models with fixed effects
for audience only (SG Users: χ2(2) = 508.67, p =
<2.2e-16; IH Users: χ2(2) = 1298.9, p = <2.2e-
16), and over the models with fixed effects for topic
only (SG: χ2(3) = 581.25, p = <2.2e-16; IH: χ2(3)
= 290.6, p = <2.2e-16).

Parameters of the full models are in Table 5d.
When fixed effects for audience and topic are in-
cluded together in the SG model, their effect sizes
barely change. These results suggest that for SG
Users, audience and topic have independent effects
on Scottish usage, and that even after accounting
for topic, the effects of audience size are as pre-
dicted by Pavalanathan and Eisenstein (2015a).

In the full IH model, while most of the fixed
effect sizes are relatively unchanged, a positive as-
sociation between the use of hashtags and Scottish
variants emerges. Thus, the model reveals that the
qualitative behavior of these users is very different
from that of the SG Users. Although topic and au-
dience are both significant factors in the models for
each group, initial mentions and hashtags have the
opposite effects for IH Users as for SG Users (and
for Pavalanathan and Eisenstein’s user sample).

Although they primarily interpret their findings
in terms of audience size, Pavalanathan and Eisen-

stein acknowledge that mentions and hashtags can
affect the composition of the audience in more nu-
anced ways than just its size. As an alternative
explanation for the positive associations they found
between mentions and local/non-standard words,
they suggest that authors may use such words to
express particular identities or stake claims to local
authenticity, specifically when addressing users for
whom such claims are meaningful.

In theory, this account could also apply to the
positive association we find in the IH dataset be-
tween hashtags and local variants: while on the
one hand, the indexing function of hashtags can
be conceived of as broadening the audience of a
tweet, on the other hand it could serve to narrow
the tweet’s intended audience, by explicitly target-
ing it at a circumscribed community. Hence, when
using hashtags associated with communities for
whom the notion of Scottish identity has strong
currency (e.g. people with strong views on indyref,
or supporters of a particular sports team), IH Users
may use Scottish variants initiatively, in order to
emphasise that part of their identity.

Suppose that authors tended to decrease their
use of Scottish variants when discussing most po-
litical issues, but increase it when discussing Scot-
tish independence—either to emphasise their own
Scottish identity, or to accommodate towards an
audience which is likely to contain many Scottish
people. If this were the case, our models would be
unable to account for this variation directly, since
we have grouped indyref and other political issues
together. However, since a large proportion (55%)
of IH Users hashtag tweets are actually about in-
dyref, one way the IH model could account for a
difference between indyref and general politics is
to increase the weight for hashtags. If this were
the case, then including ‘indyref’ as a distinct topic
should improve the model fit and alleviate the im-
pact on the audience weights. To test this hypothe-
sis, we performed a follow-up study where we split
the topics into finer-grained categories.

6.5 Finer-grained topics

We added two topic categories, ‘sport’ and ‘in-
dyref’, which we split off from the ‘lifestyle’ and
‘politics’ categories, respectively (see Table 3).
Contrary to our hypothesis, re-defining the topic
categories in this way made little difference to
the model fit: the log-likelihoods for the new full
model are -174169.4 for SG Users, and -121447.8
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Scottish Geotag Users Indyref Hashtag Users

(a) Log-likelihood: -174758.0 Log-likelihood: -122240.2
σ2 users: 2.769 σ2 variables: 2.477 σ2 users: 3.058 σ2 variables: 3.444

(b) Log-likelihood: -174436.4 Log-likelihood: -122123.9
σ2 users: 2.750 σ2 variables: 2.503 σ2 users: 3.039 σ2 variables: 3.443

Fixed Ef. OR 95% CI z Pr (>|z|) OR 95% CI z Pr (>|z|)
@init 1.28 (1.25, 1.31) 21.2 <2e-16 0.96 (0.93, 0.99) -2.8 0.005
@intrnl 0.96 (0.92, 1.00) -1.9 0.052 0.62 (0.59, 0.67) -15.4 <2e-16
hashtag 0.83 (0.80, 0.86) -8.9 <2e-16 0.97 (0.93, 1.01) -1.6 0.111

(c) Log-likelihood: -174472.7 Log-likelihood: -121619.7
σ2 users: 2.758 σ2 variables: 2.472 σ2 users: 3.069 σ2 variables: 3.427

Fixed Ef. OR 95% CI z Pr (>|z|) OR 95% CI z Pr (>|z|)
lifestyle 0.89 (0.87, 0.91) -9.9 <2e-16 0.95 (0.92, 0.98) -3.2 0.001
politics 0.73 (0.71, 0.75) -24.2 <2e-16 0.61 (0.59, 0.63) -33.6 <2e-16

(d) Log-likelihood: -174182.1 Log-likelihood: -121474.4
σ2 users: 2.742 σ2 variables: 2.496 σ2 users: 3.063 σ2 variables: 3.416

Fixed Ef. OR 95% CI z Pr (>|z|) OR 95% CI z Pr (>|z|)
@init 1.27 (1.24, 1.29) 20.6 <2e-16 0.93 (0.90, 0.95) -5.04 <5e-07
@intrnl 0.96 (0.92, 1.00) -1.9 0.052 0.63 (0.60, 0.67) -15.3 <2e-16
hashtag 0.85 (0.82, 0.89) -7.6 <3e-14 1.08 (1.04, 1.12) 3.9 <1e-04
lifestyle 0.90 (0.88, 0.92) -8.7 <2e-16 0.95 (0.91, 0.98) -3.4 <0.001
politics 0.74 (0.72, 0.76) -22.9 <2e-16 0.60 (0.58, 0.61) -34.3 <2e-16

Table 5: Summary of model parameters for the two datasets: (a) random intercepts only, (b) random
intercepts + audience effects, (c) random intercepts + topic effects, (d) full model. σ2 users and σ2

variables are variance estimates for the random intercepts. Fixed Ef. tables show odds ratios (OR) derived
from logit coefficients, with roughly estimated confidence intervals (using approximate standard errors),
and results of Wald’s z-tests.

for IH Users (c.f. Table 5d).
In general, the effect sizes and directions of the

newly defined subtopics are similar to those of the
broad topics from which they were isolated, and
more importantly, changing the topic definitions
has no effect on the audience coefficients for either
user group. This provides some evidence that our
results are not highly sensitive to the precise choice
of topics.

7 Conclusion

This study examined how Twitter users shift their
use of Scottish variants depending on the topic and
audience. We looked at two groups of users with
different overall rates of Scottish usage and found
that both topic and audience affect usage in both
groups. The qualitative effects of topic were sim-
ilar across the two groups, demonstrating a clear

relationship between the topic or genre of discus-
sion and the odds of choosing Scottish variants.
However, the sizes and directions of the audience
affects are inconsistent across the two groups: for
Scottish Geotag Users we found (as in a previous
study) that local variants are used more in tweets
with initial mentions and less in tweets with hash-
tags, but for Indyref Hashtag Users we found the
opposite. The demographics and usage patterns
of these two groups are very different, and one
interesting possibility is that they might be using
the affordances of mentions and hashtags in differ-
ent ways and focusing on different aspects of how
these affect their potential audience. In any case,
our results underscore the need for caution when
drawing broad conclusions from studies of social
media data, until the results of those studies are
shown to hold across a variety of user samples.
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Abstract 

The differences in the frequencies of 

some parts of speech (POS), particu-

larly function words, and lexical diver-

sity in male and female speech have 

been pointed out in a number of pa-

pers. The classifiers using exclusively 

context-independent parameters have 

proved to be highly effective. Howev-

er, there are still issues that have to be 

addressed as a lot of studies are per-

formed for English and the genre and 

topic of texts is sometimes neglected. 

The aim of this paper is to investigate 

the association between context-

independent parameters of Russian 

written texts and the gender of their 

authors and to design predictive re-

gression models. A number of correla-

tions were found. The obtained data is 

in good agreement with the results ob-

tained for other languages. The model 

based on 5 parameters with the highest 

correlation coefficients was designed. 

1 Introduction 

Differences in male and female speech have 

long been of linguists’ interest. However, they 

used to be investigated by means of the qualitative 

methods and were largely descriptive, whereas 

these days the quantitative analysis methods are 

being employed and the goal of the ongoing paper 

to identify the gender of text authors using numer-

ical values of text parameters. The fundamental 

paper in the field is the one called “Automatically 

Categorizing Written Texts by Author Gender” 

(Koppel et al., 2002). The text parameters were 

morphological, i.e. context-independent (405 

common function words, i.e. pronouns, articles, 

prepositions, and conjunctions, POS n-grams, 

n=1,2,3). It was found that even if the number of 

parameters is reduced to 8 most frequent function 

words (FW), the classifier shows the accuracy of 

80 %. Usefulness of morphological features in 

gender identification was shown in studies for dif-

ferent European languages (Argamon et al., 2003; 

Bortolato, 2016; Mikros, 2013; Newman et al., 

2008; Rangel and Rosso, 2013; Sarawgi et al., 

2011; Schler et al., 2006). 

As NLP tools are being employed a lot these 

days, the list of the text parameters used to identi-

fy the gender of text authors has been largely ex-

panded (see Rangel et al. (2016) for review). 

However, as correctly noted by Company and 

Wanner (2014), «nearly all state-of-the-art works 

in the area still very much depend on the datasets 

they were trained and tested on, since they heavily 

draw on content feature». We think that in order 

to continue improving the gender profiling meth-

ods, especially those ones which can be applied in 

for forensic settings, it is necessary to further ex-

plore the associations between text author gender 

and context independent parameters in different 

languages, not only Western European ones.  

Slavic languages have been underrepresented in 

authorship profiling studies until now, but recently 

the problem of gender identification in Slavic lan-

guages has been raised. For example, in a recent 

paper by Sboev et al. (2016) it was shown that us-

ing topic independent features gives 86 % accura-

cy of gender identification, however the paper 

presents no analysis of the differences between 

male and female texts.  

The aim of this paper is to study the association 

between topic independent parameters of Russian 

written texts and the gender of the authors and to 

design predictive regression models. It should be 

noted that we deliberately avoid parameters di-

rectly indicating author gender (some forms of 

verbs, etc.) since they are easily imitated. 
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2 Methods 

2.1 Corpus 

This study utilised a specially designed corpus 

designed for authorship profiling studies, RusPer-

sonality, which contained, aside from the texts 

themselves, metadata with information about the 

authors (gender, age, education, psychological 

testing data, etc.). All of the texts in the corpus 

were written in the presence of the researchers in 

order to prevent borrowings. The texts were man-

ually written and then converted into the digital 

format preserving the original style. These are all 

samples of what is called natural written speech. 

All of the texts contained an average of 130-160 

words. The texts are short, which makes the task 

more daunting, since most stylometric features 

exhibit authorship quantitative patterns in larger 

texts (Mikros, 2013) but makes it more similar to 

those in forensic settings. 

Each author was instructed to write one or two 

texts choosing among topics “A Letter to a 

Friend”, “Description of a Picture”, “How I Spent 

Yesterday”, “Why I Am Perfect for this Position 

(any)”, etc. We selected only those authors who 

chose to write two texts.  

All the authors are students of Russia’s largest 

universities and they are all native speakers of 

Russian. So, it is assumed that participants have 

similar social and educational background. 

Each text from a male author with specific top-

ic and genre should be matched by a text in the 

same topic and genre from a female author. The 

total number of texts was 1112 with 112 chosen 

for testing the models and 1000 for designing 

them. Then 1000 texts were used to design two 

subcorpora. In the first one (“joined”) made up by 

texts written by the same author, they were both 

joined into one and processed as one text (500 

texts in total).  In the second subcorpus (“sepa-

rate”) each text was processed individually (1000 

texts in total). Both subcorpora were processed 

individually. 

2.2 Text processing 

All of the texts were processed using morphologi-

cal analyzer for the Russian language pymorphy2 

(https://pymorphy2.readthedocs.org/en/latest/) 

able to normalize, decline and conjugate words, 

provide analyses or give predictions for unknown 

word. Also all of the texts were processed using 

an online service istio.com. The text parameters 

were only those that were not consciously con-

trolled: indicators of lexical diversity of a text, 

POS (17 broad categories, see 

https://pymorphy2.readthedocs.io/en/latest/user/gr

ammemes.html for tagset), different ratios of POS 

(a total of 78 parameters). While choosing the pa-

rameters we stuck to the criteria set forth by Oak-

es (2014) Firstly, the parameter should be frequent 

enough so that the results are statistically reliable 

(we chose only the parameters with the frequency 

more than 0 in no less than 50 % of the texts). 

Secondly, the parameter needs to be objectively 

countable. 

2.3 Mathematical analysis 

To estimate the association between gender and 

text parameters, we calculated Pearson's correla-

tion coefficient r (t-tailed) using SPSS Statistics 

software. 

3 Results 

A large number of the parameters of the texts 

were correlated with the gender of their authors 

with r in the range 0.25-0.39 (р  0.05; they are 

not presented due to lack of space). We have cho-

sen only the parameters that were shown to corre-

late with the gender of authors in the joined and 

separate subcorpora and then 5 of them that had 

the highest averaged r were selected. 

1. Type-token ratio (TTR). This is the most 

commonly used index of lexical diversity of a text 

(Hardie and McEnery, 2006). Given a text t, let Nt 

be the number of tokens in t and Vt be the number 

of types in t, then the simplest measure for the 

TTR of the text t is: 

  /TTRt Vt Nt   (1) 

Note that the measure in eq. (1) is a number de-

fined in [0, 1], since for any text results 1 ≤ Vt ≤ 

Nt. 

Since the texts in subcorpora were of a different 

length, we calculated TTR in the first one hundred 

words of each text. Indeed, TTR-value is known 

to depend on the length of the analysed text and 

therefore the comparison of values makes sense at 

the same number of tokens (Caruso et al., 2014: 

139). 

The index was calculated using istio.com. The 

averaged correlation coefficient r = 0.39. 

2. Percentage of the 100 most frequent Rus-

sian words divided by text length in words (aver-
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aged r = -0.322). The list of the words was taken 

from Lyashevskaya, Sharov, 2009. 

3. The index of formality. It was calculated 

using the following formula (Nini, 2014): 

F = (noun + adjective + preposition – pronoun – verbs 

– participles – adverbs – interjections + 100)/2  (2) 

Averaged r = 0.315. 

4. The index of the lexical density. It was cal-

culated as a ratio of function words to content 

words multiplied by 100 % in a text. It is also 

known as an index of functional density (Nini, 

2014), averaged r= -0.295. 

5. Percentage of prepositions and modifiers 

(so called pronoun-like adjectives, i.e. такой 

“such”, какой “what”, всякий “any”, мой “my”, 

наш “our”, ваш “your”, тот “that”, этот “this”, 

etc.) (averaged r = 0.243). 

For each text parameter a linear regression 

model was designed. In order to properly estimate 

the obtained result, let us determine the average 

arithmetic values from the solution of the five 

equations:  
5

1

5

ii
GENDER

GENDER 
   (3) 

Let us assume that a design value in the range 

[0; 0.499] indicates that the author of a text is fe-

male and in the range [0.500; 1] shows that they 

are male. According to our experiments, this ap-

proach proved to be more accurate than using sin-

gle linear regression model over all of the features 

in combination. 

Let us determine the accuracy of the model. Ac-

curacy, in this context, is the ratio of the number of 

texts that were correctly classified according to the 

author gender to the total number of texts. The cal-

culations suggest that gender was correctly identi-

fied in 65% of women and 63% of men. Thus, the 

accuracy of the approach was 64% (averaged accu-

racy for “joined” and “separate” subcorpora). 

4 Discussion 

The analysis showed that in Russian written 

texts by men compared to those by women, the 

index of lexical diversity and the proportion of 

prepositions and modifiers are higher; their texts 

are more formal (see Figure 1 for details). 

Overall, the data are in good agreement with 

the results obtained for other languages.  

A high degree of lexical diversity in male texts 

was pointed out by Argamon et al. (2003) as well 

as significantly higher mean word lengths, which 

was also identified in the study performed by 

Oschepkova (2003) using Russian texts by differ-

ent social groups (students and prisoners). Fewer 

clichés were also found in Russian male speech. 

We argue that a higher index of lexical diversity 

in texts by men is due to the above differences: in 

“male” texts there are fewer most frequent words, 

the majority of which are function words. 

  

  

 

Figure 1: Graphs illustrat-

ing the differences in 

mean values and SD of 

the selected parameters 

for texts by women and 

men 

Argamon et al. (2003) found that males use the 

informational features attributive adjectives and 

prepositions significantly more often and had sig-

nificantly higher mean word lengths in nonfiction 

texts. In fiction texts, men used significantly more 

nouns and prepositions. 

Rangel and Rosso (2013) also observed male 

preference for prepositions and female preference 

for pronouns and interjections. A high level of 

“formality” in male texts was also reported in a 

large number of studies (see a detailed review in 

Nini, 2014). According to the literature, this is in-

dicative of profound cognitive differences in the 

linguistic profiles of men and women: reporting is 

more important for men while rapport is more 

significant for women; therefore, texts by men 

seem more “formal” and those by women more 

“contextual” (see Heylighen and Dewaele (2002) 

for more detail). It is interesting to compare this 

with the paper by Säily et al. (2011), which shows 

that the prevalence of nouns in texts by men as 

opposed to pronouns in those by women was 

common in personal letters written in English 

from 1415 to 1681. Indeed, this shows that the 

above gender differences seem to be universal 

(see also Johannsen et. al., 2015). 

In a paper by Nini (2014) it was shown that 

“the more personal a text becomes the less likely 
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it is to show a gender pattern of the rapport/report 

type. In other words, in a register in which indi-

viduals are already pressed to be Involved and 

person-centred then there is no room for variation 

between rapport and report discourse, thus block-

ing the gender pattern from emerging” (p. 132). 

However, this effect is retained in Russian per-

sonal texts such as letters to a friend. 

As for the ratio of function and content words, 

it is not commonly employed in studies related to 

gender identification but is used in other sorts of 

analysis (García and Martín, 2007). E.g., it was 

shown to be significant in distinguishing Alz-

heimer’s patients and healthy individuals, i.e. it is 

indicative of some personal cognitive features 

(Kernot et al., 2017). As far as gender identifica-

tion is concerned, using Italian literary texts 

Bortolato (2016) showed that this parameter is 

more informative than frequencies of function 

words (particularly, conjunctions and pronouns) 

individually. 

5 Conclusions 

In this paper we have proved that there are dif-

ferences between male and female texts in a num-

ber of morphological indices and TTR level. 

Some of these differences are in agreement with 

the previous findings for other languages, which 

suggests that they are universal. We argue that it 

is necessary that a list of context-independent text 

parameters is expanded and Russian texts of other 

genres are explored. 

There are currently plans to account for the re-

lations between the text parameters selected for 

analysis as well as to apply other methods of sta-

tistical analysis. 

It is also essential that the parameters that are 

easily to imitate while pretending to be someone 

of the opposite sex are investigated. Therefore we 

have collected a text corpus named Russian Gen-

der Imitation Corpus. Each author was instructed 

to write three texts on the same topic (out of a list 

of five) in their natural style, as someone of the 

opposite sex, someone else of the same sex. Stud-

ies of the corpus would enable us to identify 

which parameters changed while taking on the 

role of the other gender and which ones persist 

even during conscious imitation.  

In addition, it is essential to analyse the gender 

characteristics of authors of texts with respect to 

their personality traits and femininity/masculinity, 

laterality, etc. As correctly pointed out by Nini 

(2014, p. 34), it can be assumed that “the real dif-

ferences in the linguistic patterns adopted by peo-

ple depend on their personality and/or hormone 

levels and that genders are different to the extent 

that on average different genders are prone to dif-

ferent personality orientations and/or hormone 

levels”. Taking this into account, in future it will 

be useful to treat gender as non-binary category.  

This analysis to be conducted during further re-

search would allow one to develop a more current 

and deeper insight into the way gender is mani-

fested in written texts and to develop more accu-

rate methods of identifying the gender of indi-

viduals based on the quantitative parameters of 

their texts for forensic settings. 
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Abstract

While there is wide acknowledgement in
NLP of the utility of document charac-
terization by genre, it is quite difficult to
determine a definitive set of features or
even a comprehensive list of genres. This
paper addresses both issues. First, with
prototype semantics, we develop a hier-
archical taxonomy of discourse functions.
We implement the taxonomy by develop-
ing a new text genre corpus of contempo-
rary German to perform a text based com-
parative register analysis. Second, we ex-
tract a host of style features, both deep and
shallow, aiming beyond linguistically mo-
tivated features at situational correlates in
texts. The feature sets are used for super-
vised text genre classification, on which
our models achieve high accuracy. The
combination of the corpus typology and
feature sets allows us to characterize types
of communicative purpose in a compara-
tive setup, by qualitative interpretation of
style feature loadings of a regularized dis-
criminant analysis. Finally, to determine
the dependence of genre on topics (which
are arguably the distinguishing factor of
sub-genre), we compare and combine our
style models with Latent Dirichlet Allo-
cation features across different corpus set-
tings with unstable topics.

1 Introduction

Language users exhibit a high degree of variability
at all levels of the linguistic system and language
use. In this paper, we focus on variation at the
level of text (or discourse). Texts vary along nu-
merous parameters such as medium (spoken, writ-
ten), topic / domain (e.g. art, science, religion,

government), rhetorical mode (e.g. narration, ar-
gumentation, description, exposition), or commu-
nicative purpose (e.g. persuade, report, entertain,
edify, instruct, express opinion).

Such variational aspects, captured under the
terms register and genre, have been central to pre-
vious investigations of discourse and textual vari-
ation. Both terms have been used to refer to lan-
guage variety associated with particular situations
of use and, lacking a clear differentiation between
the two terms, many studies simply adopt one and
disregard the other (cf. Biber et al., 2007, 1.4).

For Biber and Conrad (2009), though, genre,
register and style are different perspectives on a
single text. Each dimension can describe the oth-
ers, e.g. a commentary voices an opinion that is in-
clusive, angry and aloof – it refers to non-specific
entities, but avoids deixis and possession.

The cornerstone of our approach is to model
textual variation via stylistic features, which we
argue is the level at which both genre and register
variation can be convincingly modeled.

Following Lee (2001), we consider register as
variation according to use in broad societal sit-
uations. It describes a functional adaptation to
the immediate situational parameters of contex-
tual use, as different situations ‘require’ appropri-
ate configurations of language. Genre views text
by consensus within a culture, as artifacts cate-
gorized by purposive goals, distinguished by con-
ventionally recognized criteria and hence subject
to change as conventions are challenged and re-
vised over time. In short (see table 1): genre is
described by a conventional label, while regis-
ter is described through its pervasive features (cf.
Biber and Conrad, 2009).

A comprehensive typology of texts at the same
level of generality is a research prerequisite for
any comparative register analysis. Because cur-
rent multi-genre text corpora do not easily ad-
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Genre Purpose / Function

scientific texts inform
advertising persuade
legal texts instruct
. . . . . .

Table 1: Sample genres, with dominant purpose.

mit to functional analysis of types (Section 2),
we turn instead to the theoretical framework of
Steen (1999), which promises a general taxon-
omy of discourse. We operationalize the core of
Steen’s theory for corpus design, modeling regis-
ter variation top-down with prototype semantics
to develop a comparative genre taxonomy (Sec-
tion 3.1). The taxonomy is then implemented in
a general genre/register corpus of contemporary
German. (Section 3.2).

We employ a wide range of stylistic features
for the classification of text, (Section 3.3), going
beyond previous computational stylometric genre
analysis, that has often relied on shallow lexico-
syntactic patterns such as function words, surface
forms, character / part-of-speech n-grams, etc.,
(Karlgren and Cutting, 1994; Stamatatos et al.,
2000a,b; Koppel et al., 2003; Gries and Shaoul,
2011; Sharoff, 2007; Kanaris and Stamatatos,
2007), extending beyond linguistically motivated
features (Biber and Conrad, 2009; Santini, 2005)
with a fine-grained morphology, psycholinguistic
word norms, and topic models. With these feature
sets and corpus, we perform supervised genre clas-
sification (Section 4), showing that results remain
high and stable across shifting sets of categories.

A major problem with relying on surface level
features - particularly lexical features - is that
they tend to capture topical information. Petrenz
and Webber (2011) make a strong case that a
genre classification system should not be suscep-
tible to changes in topic/domain. We therefore
test topic distributions learned with Latent Dirich-
let Allocation (LDA) (Blei et al., 2003) against
lexico-syntactic features in such a scenario (Sec-
tion 4.4). Finally, we identify functional dimen-
sions for characterizing communicative function
(register) by examining the features most promi-
nently associated with different communicative
purposes. (Section 5).

2 Selected related work

There are a number of genre-aware corpora for En-
glish, but none for contemporary German that go

beyond web-genre, or are freely available. Early
examples for English include the Brown corpus
(Francis and Kučera, 1964/79) and the Lancaster-
Oslo/Bergen (LOB) corpus (Johansson et al.,
1978). Both were sampled according to library
classification systems and contain relatively small
numbers of samples distributed over various genre
classes of different granularity. MASC1 (Ide,
2008) also balances genre classes over number of
tokens. To analyze the variety across texts, one
needs to arbitrarily split its documents (to 2000 to-
kens, as done by Passonneau (2014)). There is an
extensive collection of web-genre corpora (San-
tini, 2007; Meyer zu Eißen and Stein, 2004; Rehm
et al., 2008; Santini et al., 2010). See Sharoff
and Markert (2010) for an overview and the suc-
cess of Char-4-bin features (later found to be un-
stable by Petrenz and Webber (2011)). GECCo
is a bilingual (English-German) corpus for in-
vestigating cohesion across register (Lapshinova-
Koltunski et al., 2012). It is not freely available.
The DWDS ’Kernkorpus’ for super-genre of 20th
century texts is also not available.2

The Hierarchical Genre Corpus (HGC) (Stubbe
and Ringlstetter, 2007) and the British National
Corpus (BNC) 3 are designed to offer representa-
tive samples across different genres in a hierarchi-
cal fashion. However, the categories of HGC are
not clear-cut and focus on web-genre. The BNC is
highly imbalanced.

Some additional related work uses features
from systemic functional grammar in the tradition
of Halliday for text genre classification (Argamon
and Koppel, 2010; Argamon et al., 2003; Argamon
and Koppel, 2012; Argamon et al., 2007).

3 Method

We present a methodology for corpus driven anal-
ysis of situated language use. We achieve this
by: 1) building a corpus, and 2) classifying
and characterizing situationally-defined text cate-
gories, aiming at a comparative register analysis.

3.1 A taxonomy for discourse
Genre follows a categorical paradigm, such that it
assigns labels to text. A problem with genre labels
is that they can have many different levels of gen-
erality, e.g. the genre "academic discourse" is very

1Manually Annotated Sub-Corpus of American English
2http://194.95.188.16/ressourcen/

kernkorpus/
3http://www.natcorp.ox.ac.uk/
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broad, and texts within such a high-level genre cat-
egory will show considerable internal variation in
their use of language, as Biber (1989) has shown.
On a lower level, different genres can be based
on many different criteria (domain, topic, partic-
ipants, setting, form, etc.), e.g. ‘Western’ vs. ‘Ro-
mance’ novels4 or ‘Elegy’ vs. ‘Ballad’.5

Steen (1999) develops a solution for this by ap-
plying prototype theory (Rosch, 1973) to the con-
ceptualization of genre (and hence to the formal-
isation of a taxonomy of discourse). A prototype
is the most typical instance of a more encompass-
ing and varied, fuzzy conceptual category – some
instances are more central than others – e.g. the
basic-level concept chair is a prototypical instance
of the superordinate concept furniture. Function-
ally, basic-level concepts are maximally informa-
tive (easily recognized, remembered, and learned),
whereas subordinate concepts are less richly dif-
ferentiated from their respective alternatives (e.g.
dentist chair vs. recliner).6 Taylor (1995) finds
that "terms above the basic level are sometimes
deviant in some way (e.g. furniture is morphosyn-
tactically unusual in that it is uncountable, i.e. one
cannot say ‘a furniture’ or ‘furnitures’)".

Steen proposes that we can recognize genres by
their cognitive basic-level status: True genres, be-
ing basic-level, are maximally distinct from one
another. He analyzes the distance of genres in
terms of specific attributes (parameters). Biber
(1993, table 1) introduces situational parameters
as sampling strata for corpora, which we combine
with the parameters of Steen (1999).

For our corpus design, we use the following pa-
rameters, that our features aim to cover, to distin-
guish genre: medium / discourse channel (writ-
ten, spoken, scripted), factuality (imaginative),
purpose / discourse function (persuade, enter-
tain, report, edify, inform, instruct, explain, keep
records, reveal self, express attitudes, opinions,
etc.), rhetorical mode / discourse type (narra-
tion, argumentation, description, exposition), par-
ticipants (plurality, interactiveness, shared knowl-
edge, demographic), topic / domain (art, sci-
ence, religion, government, etc.), content (topics,
themes, keywords). We do not use setting, for-
mality, format, form.

4Distinguised by topic, protagonists, and purpose.
5Distinguished by topic, form, and purpose.
6Steen (1999) also claims superordinates to be less differ-

entiated.

3.2 Corpus Design

Genre corpora are faced with the problem of
finding an operationalizable definition for each
genre and avoiding meaningless miscellaneous
categories, i.e. choosing the right granularity of
classes. The multitude of possible genre cate-
gories makes it impractical to determine a fixed
set of classes for a corpus that is representative for
all genre. However, for a corpus to be useful for
analysis, it needs to include a representative range
of classes. We focus on written language that al-
lows us to model types of communicative function
through genre.

We design our genre corpus in a top-down hi-
erarchical fashion as a taxonomy, where super-
genre categories are based on the broad so-
cial embedding of text. The four super-level
categories for written language are taken from
the DTA (Deutsches Textarchiv) (Geyken et al.,
2011): Wissenschaft (science), Belletristik (liter-
ature), Zeitung (press) and Gebrauchstext (opera-
tive text). We add a Gesprochen (spoken) variety
to also test our model on a different medium of
communication.

We subdivide each super-category into func-
tionally dichotomous basic-categories, i.e. maxi-
mally distinct prototypical instances, mainly rely-
ing on communicative purpose/function as the dis-
tinctive attribute for written language. Then we as-
sign a basic level-genre to each function, as found
in DeReKo7 (Kupietz et al., 2010). The genre
annotation in DeReKo was delivered by the pub-
lishers and is not evaluated on annotators, conse-
quently only being a ‘silver standard’. Table 2 il-
lustrates our taxonomy.

To measure human agreement on assigning
these categories, we randomly selected 20% of the
test set of our 8-way typology for written basic-
genre (10 documents per class) for manual an-
notation. The three raters were (under)graduate
students, native speakers of German, with back-
grounds in linguistics (R1,R3) and psychology
(R1,R2), employed at the MPIEA8. They were
given minimal instruction on text genre, commu-
nicative functions and the purpose of the study.
The first eight texts covered all types to make them
familiar with the variety.

Inter-rater agreement is measured with Cohens
κ and shown in table 4. We compare each rater to

7Deutscher Referenzkorpus: German Reference Corpus
8Max Planck Institute for Empirical Aesthetics
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Super-Genre Genre Dominant purpose Ger. label Comment

Science Academic research Wissensch. Linguistik Online crawl
Popular science educate Pop. Wiss. Spektrum d. Wiss.

Literature
Novel (epic) narrate Roman
Drama perform Drama

Press
Report report Bericht
Commentary opinion Kommentar
Reportage coverage Reportage

Operative Text Advertising persuade Anzeigen From newspapers
Pharma leaflets instruct Pack.beilage Rote Liste crawl

Spoken Speech asymmetric Rede German Bundestag
Interview symmetric Interview

Table 2: DeGeKo Genre Taxonomy translated to English

advertising report novel commentary leaflets pop.sci. reportage academic
document_length 486.7 736.6 1404.4∗ 788.4 2689.4 933.4 2042.4 3631.6∗∗

avg_sentence_length 12.70 18.77 27.25 19.22 19.04 21.41 17.80 15.83
avg_word_length 5.25 5.38 4.98 5.29 5.66 5.48 4.91 5.24
type_token_ratio 0.317 0.265 0.230 0.270 0.269 0.240 0.219 0.294

Table 3: DeGeKo written document stats

R1 R2 R3 Silver
R1 - .79 .62 .84
R2 - .58 .78
R3 - .61

Table 4: Inter-rater agreement, 8-way typology (κ)

the others, and to the silver standard. R1 and R2
show a high level of agreement with each other (κ
of .79) and with the silver standard (κ of .84 and
.78, respectively). R3 shows lower agreement, of-
ten confusing academic writing with popular sci-
ence.9 A common difficulty for all raters was to
distinguish among the press varieties (report, com-
mentary, coverage), as we will also encounter in
our experiments.

We propose that a fine-grained topic annotation
at document level acts as viable proxy for sub-
genre distinction, e.g. advertising text can be sub-
categorized to Leisure_Entertainment:Travel ads
or Economy_Finance:Banking ads. Topic anno-
tation in DeReKo was assigned by a Naive-Bayes
classifier trained on the opendirectory10 taxonomy
as described by Weiß (2005). Where this annota-
tion is not consistent, we use the existing domain
annotation to examine genre-internal variation.11

In the press genres, some topics were overly
represented in the original population (e.g. re-

9R3 complained of having had a stressful day.
10http://dmoztools.net/
11Domain here is equivalent to the newspaper section in

which the text originally appeared (ger.: ressort).

ports on sports clubs). While it can be argued that
those are the most prototypical instances of a given
genre, we balance those topics in the population to
achieve a more ’natural’ topic distribution through
sampling, so there is no bias towards certain con-
tent. The target is the mean size of topic classes
plus one standard deviation.

Table 2 illustrates our taxonomy. For classes
with insufficient material in DeReKo to satisfy
our sampling criteria (below), we crawl the web
(academic & leaflets). Where we still did not re-
trieve enough documents (academic & drama), we
employ an upsampling technique: we chop doc-
uments evenly by three-sentence chunks and dis-
perse them according to their original position in
the document (i.e., beginning, middle and end are
still intact). Due to this upsampling, we cannot use
document length as a feature for classification.

Genre collections are often relatively small and
/ or imbalanced. We implement a modular cor-
pus balancer tool able to fine tune the selection
of documents. In line with our focus on ’reg-
ister by genre’, we balance the corpus by docu-
ments, attaining 500 documents for each of the
eleven genre classes, randomly split to 400 docs
for training, 50 for development and 50 for test-
ing. With synchronic analysis in mind, we take no
documents published before 1950. To retrieve a
prototypical size of the documents, we restricted
the max_doc_size to one standard deviation over
the mean. For min_doc_size, we used mean_size

2 or
120 tokens, as they would be too small for stylistic
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analysis otherwise. Biber (1989, 1993) argues that
a text ‘sample’ should be 2000 tokens large. This
is not an issue in our setup, as each class is itself
as large as the whole LOB corpus.

As you can see in table 3, on average, advertise-
ments are the shortest documents and academic ar-
ticles (wissenschaft) are the longest. Superscript
** documents have been upsampled. Also * signi-
fies that the size for novels is not entirely trustwor-
thy, because this category includes both shortened
novels and short stories, skewing the document
length distribution. Still, novels have the longest
sentences by far. Reports (berichte) dominate in
average word length. Advertising (anzeigen) has
the highest type-token ratio.

3.3 Feature Design

We model style features that are (a) able to dis-
tinguish particular usage situations, and (b) based
on sufficiently robust linguistic annotation tools.
Therefore, we focus on the engineering of fine
grained morpho-syntactic features, linguistic lex-
icons, word norms and surface forms. To test the
topic sensitivity of genre, we also generate topic
distributions for documents with Latent Dirichlet
Allocation (LDA). Our feature-groups are orga-
nized as a nested hierarchy, shown in Table 5. In-
dividual features are described below. We imple-
mented our feature extraction pipeline in python.
Each feature is normalized relative to its own indi-
vidual group (e.g. pos with pos) per text. Before
classification, we use the sklearn StandardScaler.

Preprocessing for feature extraction. We use
the Julie Lab Segmenter (Tokenization, Sentences)
(Hahn et al., 2016) and the RF-Tagger (Lemma-
tization, STTS pos-tags, SMOR morphological
tags) (Schmid and Laws, 2008).

Part-of-Speech Tags We use the Stuttgart-
Tübingen Tagset (STTS)12 with 47 tags.

Verb Classes German verb classes are retrieved
from GermaNet (Hamp et al., 1997; Henrich and
Hinrichs, 2010). The GermaNet scheme contains
9,382 unique verbs (including particles and af-
fixes) across 15 groups, where a verb can be a
member of several groups, totaling 15,327 tokens.
For each verb token that we detect, we count every
relevant class with equal weight.

12http://www.ims.uni-stuttgart.de/
forschung/ressourcen/lexika/TagSets/
stts-table.html

Surface Cues This is a heterogenous feature-
group of linguistic surface cues.

1. Avg. word length in # of characters.
2. Avg. sentence length in # of words.
3. Type-Token-ratio: The ratio of unique types

and tokens thereof. Always between 0 and 1.
4. Alliteration: Two subsequent words share the

same first character (bitter butter).
5. Assonance: Two subsequent words share the

same first vowel (loose goose).
6. Repetition: Minimum four character words

recur within a 20 word context. + vari-
ant without proper names to exclude speaker
roles in drama.

We do not use document length, as we want to
learn linguistic information only.

Morphology RF-Tagger (Schmid and Laws,
2008) annotates very fine-grained (767) mor-
phological tags according to SMOR (Schmid
et al., 2004). One such feature would be
“VFIN.Full.2.Pl.Pres.Ind” for a full finite verb in
second person plural present indicative.

WWN word norms Lahl et al. (2009) crowd-
sourced ratings for concreteness, valency and
arousal for 2,654 German nouns. We draw the
mean for each dimension (0 - 10) per document.

LIWC - word norms The English Linguis-
tic Inquiry and Word Count (Tausczik and Pen-
nebaker, 2010; Pennebaker et al., 2015) contains
6400 words and stems (and select emoticons). The
German version (Wolf et al., 2008) includes 7510
entries. It provides a hierarchical annotation of 68
linguistic and psychological categories, e.g. the
word cried is part of five categories: sadness, neg-
ative emotion, overall affect, verbs and past focus.
Hence, all five will be counted for the document.

Connectives The HDK list of 312 discourse
connectives is described in (Versley, 2010). We
match connectives by iterating over word n-grams.
For connectives with a gap ("entweder ... oder"),
we look ahead 20 words. If the right side element
returns a match, we include the whole (gapped)
connective, otherwise we only count the left side.

Stopwords Our German stopword list is by so-
lariz,13 containing 996 inflected wordforms (of
which 4 do not occur in the corpus).

13https://solariz.de/de/deutsche_
stopwords.htm
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Feat.set Features

POS Part-of-speech tags (47)
BASIC POS + verb classes (15), surface cues (7)
SELECT BASIC + SMOR morphology (767), LIWC (62), WWN (3), connectives (231)
FULL SELECT + POS-bigrams (1822), morph-single (81), stopwords (992), punctuation (13)
POS3 POS-trigrams (51473)
LDA200 LDA topics (200), trained on whole corpus

- CONTENT: only content words - STOP: only stopwords

Table 5: Nested hierarchy of feature sets; numbers quantify individual features.

Latent Dirichlet Allocation - LDA We train
gensim (Řehůřek and Sojka, 2010) LDA (Blei
et al., 2003) models on word lemmas, to model
semantic domain. We train on the whole corpus
(incl. the test set) and derive the topic distribution
for each document (as probabilities). We experi-
mented with 50, 100 and 200 topic dimensions, the
latter giving best results. For feature generation, a
relatively large number of topics is preferred.

3.4 Classification algorithms
For classification, we use Linear Discriminant
Analysis (LinDA), a Naive Bayes Multinomial
classifier, Random Forest ensemble classifiers
(FOREST) and Support Vector Machines (SVM).
We train one SVM on 10 dimensions (ordered by
explained covariance) of a Principal Component
Analysis (PCA), one SVM vanilla version, and
lastly, with a feature selection based on ANOVA,
selecting the (3-20 percentile) best performing
features. All models were optimized for several
parameters with a grid search.14 We used the API
of scikit-learn 0.18 (Pedregosa et al., 2011). The
algorithms were selected based on their success in
the related literature on genre classification. The
use of Random Forests and LDA is novel however.

3.5 Characterization algorithms
For the characterization of communicative func-
tions, we work with a Linear Discriminant Anal-
ysis (LinDA) and a Stochastic Gradient Descent
(SGD). A linear model allows us to easily inter-
pret feature loadings for each class, as each class is
characterized by the linear combination of its fea-
ture weights. Also, it can be easily evaluated with
a F1 score or a confusion matrix. The general form
(1) means that it is easy to see the relative impor-
tance and contribution of each feature and to sanity
check the model. The equation is solved by calcu-
lating a Bayesian objective, i.e. fitting a Gaussian

14Most notably for SVM: C and kernel method. For Forest:
Number of trees and their depth.

density distribution.

Ck = Ck0 +Ck1X1 +Ck2X2 + ...+CknXn (1)

where Ck is the classification score for group k
and Ckn are the coefficients for the features Xn.

The main problem of a linear model is posed by
strongly collinear features from different feature
groups (PTKZU vs. Part.ZU) that consequently
dominate the objective function (they become im-
portant for many classes). So we need to apply
regularization techniques that allow a noise-free
interpretation. But penalizing (e.g. setting vari-
ables to zero) with L1 or L2 makes the model less
interpretable. This may ignore relevant informa-
tion from the dataset. Consequently, we regularize
LinDA with a PCA (with 150 dimensions), so that
we "align" (near) identical features that load into
opposing directions by their covariance. A side-
effect is that this also avoids overfitting.15

4 Experiments

This section presents supervised classification ex-
periments for labeling texts with communicative
function, as construed in our corpus by genre la-
bels. First, we classify basic-level genre for writ-
ten language only (Section 4.1). Second, we add
spoken varieties to the set of genres, changing
the range of variation (Section 4.2). The third
experiment changes the granularity of classifica-
tion, instead targeting super-genre classes (Sec-
tion 4.3). Finally, to ensure that our models learn
genre rather than simply capturing differences in
topics, we create an expanded sub-corpus of press
documents, allowing us to keep the set of topics
present in training data distinct from those repre-
sented in the test data (Section 4.4). Details of
models and settings appear in Sections 3.4 and 3.5.

15SGD with an ElasticNet consistently delivers somewhat
similar results, but due to its nature it only "approximates"
results, making it less preferable. On a small dataset (which
ours arguably is), the closed-form-solution LinDA is to be
preferred, as it delivers more consistent results.
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Featureset POS BASIC FULL POS3 SELECT. LDA200 LDA200 SELECT.+LDA200
STOP CONTENT

F1 score F1 score F1 score F1 score F1 score F1 score F1 score F1 score

LinDA .70 .77 .30 .28 .80 .73 .79 .86
BAY ESmultinom ? .73 .75 .51 .76 .73 .78 .81
FORESTentropy .74 .81 .86 .80 .88 .81 .90 .92
FORESTgini .75 .81 .88 .82 .87 .82 .89 .92
SV MPCA10 .68 .75 .85 .55 .82 .77 .86 time
SV MV ANILLA time .79 .83 .72 .83 time .92 .88
SV MANOV A time .70 .88 .77 .86 . . .

Table 6: Supervised classification on DeGeKo’s eight written classes.

4.1 Written Basic-Level
In our corpus, the basic-level written genres are
academic, popular science, novel, report, com-
mentary, reportage, advertising, and leaflets.

Table 6 shows the classification results for writ-
ten genres. Results shown are for the test set; per-
formance is similar (± 2 points) for the dev set.
’time’ means that the classifier did not finish in a
reasonable time frame (a day).

For all classifiers, SELECTED and
LDA200CONTENT feature sets show the
best results. The FOREST classifiers appear
to be the most robust to changing the feature
set. Overall, the best result is obtained by a
vanilla SVM on LDA200CONTENT, on par with
FOREST on SELECTED+LDA200CONTENT.
Also, the smaller SELECTED set compares
well to the larger FULL set, making it the best
model for a characterization of communicative
function (FULL contains POS2-grams).16 The
main confusion between classes is caused by
the press varieties, mostly because reports and
commentaries are confused for each other, and
commentaries confused with many other classes.

Most strikingly, LDA200CONTENT outper-
forms SELECTED by 2 - 4 points. This raises the
important question of how strongly the genre of a
document is influenced by its topics. Petrenz and
Webber (2011) show that some genre classifica-
tion models suffer heavily when the topics present
in a given genre during testing are different from
those seen in training.

4.2 Including Spoken Classes
Next, we enrich the written basic-genre classes
with the spoken varieties symmetric speech, asym-
metric interviews, and drama, which is written to
be spoken. The main difference is that drama

16The bad performance of LinDA_POS3, LinDA_Full,
Bayes_POS3 and SVMPCA10_POS3 is likely attributable to
a skewed distribution of pos-n-grams.

does not contain spontaneous speech, indicated
by monologues. It is also arguable that political
speeches – as used here – were prepared in written
form to be performed in spoken form.

Experiment Written+Spoken Super-Level
Feature set BASIC SEL. BASIC SEL.

F1: test F1: test F1: test F1: test

LinDA .74 .80 .89 .91
BAY ES .68 .76 .83 .89
FORESTent .78 .85 .91 .96
FORESTgini .77 .86 .91 .95
SV MPCA10 . .82 .86 .94
SV MV AN . .80 .91 .94

Table 7: Written+spoken (L), Super-genres (R).

The left-hand side of Table 7 shows classifica-
tion results for the BASIC and the SELECTED
feature sets. The richer feature set clearly outper-
forms the simpler one. Interestingly, even though
we added three classes of spoken material, we do
not lose any accuracy over the corpus with only
written varieties.

4.3 Written Super-Level

Next, written-language classes are mapped to
four coarse-grained super-genres: Presse, Wis-
senschaft, Belletristik and Gebrauchstext.

The right-hand side of Table 7 shows these re-
sults. We see that basic-level genre classes are
quite robust concerning their super-class. The
score improves somewhat over basic-genre, partly
because the task is simplified from 8 classes to 4.
Prototype theory (and consequently Steen (1999))
would hypothesize that super-genre cannot be
as richly distinguished as basic-genre. How-
ever, given the machine learning context of fewer
classes and more data, the results are what you
would expect. In a production system, this coarse
set of classes can be used to predict text genre with
a fair amount of certainty with most classifiers.
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Topic Class Politik Freizeit_Unterh. Kultur Sport Wirtsch._Finanz. Staat_Gesell. Wissensch.
Bericht train 147 65 88 - - - -
Kommentar train 95 - 180 25 - - -
Reportage train 176 - - - - 118 6
Bericht test - - - 31 19 50 -
Kommentar test - 19 - - 14 67 -
Reportage test - 89 8 3 - - -

Table 8: DeGeKo Presse Topic Distinct Set # of documents

... Featureset Basic Full Selected LDA Cont retrain LDA Stop full LDA Cont full
Classifier F1 score F1 score F1 score F1 score F1 score F1 score

original LinDA .68 .65 .54 .56 .67 .56
FORESTentropy .75 .78 .79 .70 .69 .82
SV Mvanilla time .70 .73 .68 .70 .79

distinct LinDA .63 .61 .48 .37 .63 .65
FORESTentropy .68 .69 .68 .54 .68 .70
SV Mvanilla .63 .65 .65 .61 .66 .69

Table 9: DeGeKo Topic Stability Compared Results

4.4 Topic Distinct Set

Theoretically, a text from any given genre can
be about any given topic, yet it is clear that co-
variances exist between genre and topic, with
some genre/topic combinations more likely than
others. Because both exploit low-level features
to make predictions, a feature indicative of topic
benefits a genre classifier through correlations in
the training corpus. However, if the topics ad-
dressed in a genre can change unpredictably over
time, such correlated features can harm perfor-
mance. Petrenz and Webber (2011) found that
neither character-4-grams nor bag-of-words mod-
els actually learn genre, but drop from 98% F1 to
38% (with char4) on three classes when topic is
not held stable.

To test whether LDA topics are stable over a
changing topic distribution, we create a subcorpus
with the three press genre, where the topic anno-
tations in our corpus are most reliable. Crucially,
the distributions of topics for training data vs. test
data are distinct. This yields two corpora: Orig-
inal & Distinct. See Table 8 for distribution of
documents over topics and genre. See Table 9 for
classification results over changing topics.

We retrain LDA on the subcorpora and com-
pare classification results to LDA trained on the
full corpus, and against our style features. We find
that each model compares unfavorably in the un-
stable topic setting, e.g. the FOREST&SELECTED

model loses 11 F1 points. In the unlikely case that
we have a huge genre corpus available for training
LDA, the model is comparable to the style feature
set (which would be theoretically possible if we

feed new documents to our gensim model). The
retrained LDA model compares badly for all mod-
els. This shows that (a) LDA needs as much train-
ing data as it can get, and (b) LDA is not robust
against changing topics.

5 Characterizing register

A major advantage of our corpus is that we do not
need sophisticated covariance metrics for the anal-
ysis of stylistic variation. In our setup, we can in-
terpret class feature loadings, and we can validate
our linear classifier with a simple F1 metric. We
achieve .81 F1 score. The error stems mostly from
press variety. The details of our register character-
ization approach are described in Section 3.5.

For each class, we retrieve the 80 features with
the largest coefficient (40 negative & 40 positive)
and use them for a qualitative analysis based on
hypotheses formed on prior investigations (Breuer
and Eroms, 2009) and to identify feature agglom-
erations that are apparent in a comparative setup
(e.g. scientific text uses lots of connectives, par-
ticularly contrastive connectives). Figures 1 and
2 show such coefficient plots for advertising and
academic writing. We next discuss, for four rep-
resentative registers, the features most strongly as-
sociated, according to the method just described.

Gebrauchstext / Advertising (persuasion)
Advertising often features repetition, named en-
tities, proper nouns with the according composi-
tional parts and adjectives, plural pronouns of first
and third person, and also attributive possessive
pronouns. We rarely find verbs or articles. So ads
feature object reference and blunt language (nom-
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inal style but rarely articles). We find a simple
syntax, but lexical diversity (high type/token ratio,
short sentences, no sub. conj.) and overt persua-
sion (Positive sentiment, Certainty).

Presse / Bericht (report) Reports feature most
prominently present tense, passive voice, indirect
speech (subjunctive), facts (indicative) and infor-
mation (num., art., NN, NE, ADJ). Also, by a
positive loading of prepositions, adverbs, reflex-
ive pronouns and negative loading of sub. conj.,
we conjecture a balanced, compact style.

Literature / Novel (storytelling) Storytelling
stands out through the use of the past tense and
the third person (V.3.past, ’damals’). We also
find quite long sentences (almost 30 words on av-
erage), consequently many commas, and an aes-
thetic feature: alliteration.

Wissenschaft / Academic texts (Linguistik

Figure 1: Feature loading for advertising

Figure 2: Feature loading for academic text

online) Academic writing (unsurprisingly) shows
complex exposition and argumentation with many
(contrastive) connectives (dass, sowohl, einer-
seits, hinsichtlich, bzw., also), diverse punctua-
tion (parentheses, slashes) and the LIWC classes
insight, causation, communication. Furthermore,
this text genre uses fairly abstract language, as we
find no concreteness and no arousal. We find a lot
of foreign material (we use linguistics papers), and
a prominent focus on the future (liwc). Apparently,
academic writing is assonant.

6 Conclusion

We have developed a genre taxonomy (for Ger-
man) based on prototype semantics that can be
used for a comparative register analysis, mod-
elling a central aspect of situative text use: com-
municative purpose of text.

We find that fine grained morphology, surface
cues and psycholinguistic word norms allow us to
reason about situational text embedding, while –
given enough training data – Latent Dirichlet Allo-
cation can approximate genre distinctions, seeing
that certain topics are prevalent in most genre cate-
gories. However, LDA is not stable over changing
topic distributions under constant genre.

Future work should look at the communica-
tive/situative function of constituency tree fea-
tures, as they have proven to be useful e.g. for au-
thorship attribution or deception detection. Also,
the dimension of aesthetic style features (fore-
grounding) has typically been ignored in register
research, as those are not necessarily functional.
Given the abundance of material, we should look
at press variety only. We have seen that report,
commentary and reportage are prone to be con-
fused, particularly by linear models. As humans
also have a problem here, we have to conclude
that they are not as clearly distinguished as other
genre. Furthermore, press includes genre cate-
gories that are not as prototypical as the ones se-
lected here (Dossier, Portrait, Feuilleton, Leitar-
tikel). There are promising results (Sharoff, 2016)
to view genre as topology, not as typology.

Finally, future research might benefit from word
embeddings and particularly morphological em-
beddings to model stylistic variation.
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Manual of information to accompany a standard
corpus of present-day edited American English, for
use with digital computers. Brown University, De-
partment of Lingustics.

Alexander Geyken, Susanne Haaf, Bryan Jurish,
Matthias Schulz, Jakob Steinmann, Christian
Thomas, and Frank Wiegand. 2011. Das deutsche
textarchiv: Vom historischen korpus zum aktiven

archiv. Digitale Wissenschaft. Stand und Entwick-
lung digital vernetzter Forschung in Deutschland,
20./21. September 2010, Köln. Beiträge der Tagung,
2., ergänzte Fassung pages 157–161.

Stefan Th John Newman Gries and Cyrus Shaoul.
2011. N-grams and the clustering of registers. Em-
pirical Language Research Journal 5.1 .

Udo Hahn, Franz Matthies, Erik Faessler, and Johannes
Hellrich. 2016. Uima-based jcore 2.0 goes github
and maven central — state-of-the-art software re-
source engineering and distribution of nlp pipelines.

Birgit Hamp, Helmut Feldweg, et al. 1997. Germanet-
a lexical-semantic net for german. In Proceedings
of ACL workshop Automatic Information Extraction
and Building of Lexical Semantic Resources for NLP
Applications. pages 9–15.

Verena Henrich and Erhard W Hinrichs. 2010.
Gernedit-the germanet editing tool. In ACL (System
Demonstrations). Citeseer, pages 19–24.

Nancy et al. Ide. 2008. Masc: The manually annotated
sub-corpus of american english. In In Proceedings
of the Sixth International Conference on Language
Resources and Evaluation (LREC).

S Johansson, G Leech, and H Goodluck. 1978. Man-
ual of information to accompany the lancaster-
olso/bergen corpus of british english, for use with
digital computers .

Ioannis Kanaris and Efstathios Stamatatos. 2007. Web-
page genre identification using variable-length char-
acter n-grams. In Tools with Artificial Intelligence,
2007. ICTAI 2007. 19th IEEE International Confer-
ence on. Vol. 2. IEEE.

J. Karlgren and D. Cutting. 1994. Recognizing text
genres with simple metrics using discriminant analy-
sis. In In Proc. of the 15th. International Conference
on Computational Linguistics (COLING 94). Kyoto,
Japan, page 1071 – 1075.

Moshe Koppel, Navot Akiva, and Ido Dagan. 2003. A
corpus-independent feature set for style-based text
categorization. In IJCAI-2003 Workshop on Com-
putational Approaches to Text Style and Synthesis,
Acapulco, Mexico.

Marc Kupietz, Cyril Belica, Holger Keibel, and An-
dreas Witt. 2010. The german reference corpus
dereko: A primordial sample for linguistic research.
In LREC.

Olaf Lahl, Anja S Göritz, Reinhard Pietrowsky, and
Jessica Rosenberg. 2009. Using the world-wide web
to obtain large-scale word norms: 190,212 ratings
on a set of 2,654 german nouns. Behavior Research
Methods 41(1):13–19.

Ekaterina Lapshinova-Koltunski, Kerstin Kunz, and
Marilisa Amoia. 2012. Compiling a multilingual
spoken corpus. In Proceedings of the VIIth GSCP

83



International Conference: Speech and Corpora.
Firenze: Firenze University Press.

D. Lee. 2001. Genres, registers, text types, domains,
and styles: clarifying the concepts and navigating a
path through the bnc jungle. In Language Learning
and Technology, page 5(3):37–72.

Sven Meyer zu Eißen and Benno Stein. 2004. Genre
Classification of Web Pages: User Study and Fea-
sibility Analysis. In Susanne Biundo, Thom Früh-
wirth, and Günther Palm, editors, Advances in Ar-
tificial Intelligence. 27th Annual German Confer-
ence on AI (KI 04). Springer, Berlin Heidelberg New
York, volume 3228 LNAI of Lecture Notes in Artifi-
cial Intelligence, pages 256–269.

R. J. Ide N. Su S. an Stuart J. Passonneau. 2014. Biber
redux: Reconsidering dimensions of variation in
american english. In COLING, pages (pp. 565–
576).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

James W Pennebaker, Ryan L Boyd, Kayla Jordan,
and Kate Blackburn. 2015. The development and
psychometric properties of liwc2015. UT Fac-
ulty/Researcher Works .

Philipp Petrenz and Bonnie Webber. 2011. Stable clas-
sification of text genres. In Computational Linguis-
tics 37.2. pages 385–393.

Georg Rehm, Marina Santini, Alexander Mehler, Pavel
Braslavski, Rüdiger Gleim, Andrea Stubbe, Svetlana
Symonenko, Mirko Tavosanis, and Vedrana Vidulin.
2008. Towards a reference corpus of web genres
for the evaluation of genre identification systems. In
LREC.
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Abstract

Conversation is a critical component of
storytelling, where key information is of-
ten revealed by what/how a character says
it. We focus on the issue of character voice
and build stylistic models with linguistic
features related to natural language gen-
eration decisions. Using a dialogue cor-
pus of the television series, The Big Bang
Theory, we apply content analysis to ex-
tract relevant linguistic features to build
character-based stylistic models, and we
test the model-fit through an user percep-
tual experiment with Amazon’s Mechani-
cal Turk. The results are encouraging in
that human subjects tend to perceive the
generated utterances as being more simi-
lar to the character they are modeled on,
than to another random character.

1 Introduction

Conversation is an essential component of social
behavior, one of the primary means by which hu-
mans express emotions, moods, attitudes, and per-
sonality. Conversation is also critical to story-
telling, where key information is often revealed by
what a character says, how s/he says it, and how
s/he reacts to what other characters say. Here we
focus on the issue of character voice. One way to
produce believable, dramatic dialogue is to build
stylistic models with linguistic features related
to natural language generation (NLG) decisions.
Television dialogue are exemplars of many differ-
ent linguistic styles that were designed to express
dramatic characters. Thus we construct a corpus of
television character dialogue from The Big Bang
Theory (BBT) and apply content analysis and lan-
guage modeling techniques to extract relevant lin-
guistic features to build character-based stylistic

models. We test the model-fit of character models
through a generation experiment to test user per-
ceptions of characters.

Our work can be applied to storytelling appli-
cations such as video games, interactive narra-
tive, chatbots, or education systems where dia-
logue with personalities may improve user expe-
rience.

2 Related Work

Research from corpus linguistics include
Bednarek’s work on using Gilmore Girls to
compare the genre dramedy to other types
(Bednarek, 2011a), and Quaglio’s work on using
Friends with unscripted conversations (Quaglio,
2009). Other related research focuses on charac-
terization through dialogue. For example, Bubel
explored the friendship among characters in the
Sex and the City (Bubel, 2005), and Bednarek
analyzed linguistic stylistics shifts from characters
from the Gilmore Girls (Bednarek, 2011b) and
The Big Bang Theory (Bednarek, 2012).

Research from computational stylistics (or sty-
lometry) focuses on the use of quantitative meth-
ods to study writing styles to characterize authors,
which can be applied to many applications such
as classical literary text, modern forensic text, and
online reviews, just to name a few (Stamatatos,
2009). Principal component analysis is used to
analyze the variations in words, focusing on the
challenge of relating features and meanings in
text, which is not fixed depending on the context
(Schreibman et al., 2008).

There is an extensive amount of research in
story generation (narrative content), which tends
to focus on plots and character development to
achieve narrative goals. One source of creating
stories comes from crowd participants writing de-
tailed descriptions for events, going into details
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with characters’ intentions, facial expressions, and
actions (Li et al., 2014). In addition, they used
the Google N-Gram Corpus and Project Guten-
berg to help select different types of sentences
(most/least probable, most fictional, most interest-
ing details) and different sentiments (most posi-
tive/negative). Our work is also related to charac-
ter modeling from film dialogue for NLG (Lin and
Walker, 2011; Walker et al., 2011), except that we
focused on TV series because they offered more
dialogue.

Despite overlaps, our work differs in that we:
1) extract linguistic stylistic features based on per-
sonality studies from psychology; 2) focus on fea-
tures that can be generated given our current sys-
tem; 3) find significant features and use them as
building blocks to 4) create models using tech-
niques such as standard scores and classification;
and 5) apply the models to applications such as
natural language generation.

Natural Language Generation Engine

PYPER (Bowden et al., 2016) is a spin-off imple-
mentation of PERSONAGE (Mairesse and Walker,
2007) in Python that provides new controls for
expressive NLG. It is currently part of the M2D
Monolog-to-Dialogue generation (Bowden et al.,
2016) framework, which we briefly describe the
architecture below (Figure 1).

The EST framework (Rishes et al., 2013)
produces a story annotated by SCHEHERAZADE

(Elson and McKeown, 2009) as a list of sen-
tences represented as Deep Syntactic Structures
(DsyntS). DSyntS is therefore a dependency-tree
structure with nodes containing lexical informa-
tion about words. This is the input format for
the surface realizer RealPro (). M2D converts the
story (list of DsyntS) into two-speaker dialogue by
accepting input parameters that control the alloca-
tion of content, pragmatic markers, etc.

Scheherazade
ES-Translator

M2D: Monolog 
to Dialog RealPro

Corpus of Personal Narratives/Stories

Monolog 
Input

Dialog 
Output

DsyntS Altered DsyntS

Figure 1: M2D Monolog-to-Dialogue Generation
(Bowden et al., 2016)

3 Corpus

We parsed fan-transcribed BBT scripts, seasons 1-
4 and partial season 5, to obtain scenes, speakers,
and utterances. The series centers around 5 char-
acters, 4 of them (all male) are scientists/engineers
working at Caltech, and 1 (Penny) is a waitress.
The comedy’s theme focuses on the contrast be-
tween the geekiness of the male characters and
Penny’s social skills. Two additional female char-
acters, both scientists, were introduced as love in-
terests to two main male characters, and have since
became main characters themselves.

4 Stylistic Features Extraction

After extracting dialogic utterances from tran-
scripts, we extract features reflecting particular
linguistic behaviors for each character. Table 1
describes major feature sets, which include sen-
timent polarity, dialogue act, passive voice, word
categories from LIWC (Pennebaker et al., 2001),
tag questions, etc.

Character Stylistic Models
We calculate a standard score (z-value) for each
feature to measure the differences between main
characters: Leonard, Sheldon, Penny, Howard,
Raj, Bernadette, and Amy. A better measurement
could be used due to the small population and nor-
mal assumption, however we reviewed the results
and they seem to capture enough relative differ-
ences among characters. Character models are
composed of significant features with |z| ≥ 1.
While using features with |z| ≥ 2 might be a bet-
ter choice, our NLG engine can manipulate many
features under |z| ≥ 1.

The number and examples of significant fea-
tures for each character are shown in Table 2. We
see that for |z| ≥ 1, Sheldon, Penny, Bernadette
and Amy have over 200 significant features. Shel-
don, more specifically, has close to 400 significant
features. When we narrow them down to z ≥ 2,
significant features for Bernadette and Amy de-
creased by over 85%, Leonard, Penny, Howard,
and Raj decreased by 70%, and Sheldon decreased
by 54%.

5 Generating Expressive Utterances

The workflow for generation is to 1) annotate
stories using SCHEHERAZADE; 2) use EST to
automatically translate annotated stories to deep
syntactic structures (DSyntS); 3) PYPER reads
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Table 1: Automatically Annotated Linguistic Features for TV Dialogue
Feature Set and Description
1. Basic. Tokens per sentence, tokens per utterance, etc., plus words from different types of emotion and other psycho-
logical categories from the Nodebox English Linguistics library.
2. Sentiment Polarity. Overall polarity, polarity of sentences, etc., using SENTIWORDNET1 to calculate positive,
negative, and neutral score.
3. Dialogue Act. Train Naive Bayes classifier with NPS Chat Corpus’ 15 dialogue act types using simple features. We
also determine “First Dialogue Act”, where we look at the dialogue act of the first sentence of each turn.
4. Merge Ratio. Use regular expression to detect the merging of subject and verb of two propositions.
5. Passive Voice. Using a third party software (see text) to detect passive sentences.
6. Concession Polarity. Look for concession cues, then calculate polarity of concession portion.
7. LIWC Categories. Word categories from the Linguistic Inquiry and Word Count (LIWC) text analysis software.
8. Markers - PERSONAGE. collect words used in PERSONAGE for generation, which where selected based on psycho-
logical studies to identify pragmatic markers of personality that affect the utterance.
9. Tag Questions. Use regular expression to capture tag questions.
10. Verb Strength. Averaged sentiment values of verbs.
11. Content Words Length. Find the average length of content words.
12. Markers - Others. Inspired by PERSONAGE words. Extended set.
13. Hedges. Collect words from a list of pre-defined hedges and their categories. LACKOFF hedges.
14. Repeating Verbs. Find verbs that are repeated used in a turn.
15. BIGRAMs. Top 10 bigrams.
16. Part-of-Speech BIGRAMs. Top 10 POS bigrams.

Table 2: Number and Examples of Significant Features for The Big Bang Theory Characters
Speaker |z| ≥ 1 |z| ≥ 2 Example Features for z ≥ 1 (i.e., positive z-values only)
Leonard 172 54 words:[even if, nevertheless, whereas, even though], Dialogue Act–{Greet, Bye},

LIWC-{Causation, Impersonal Pronouns}, hedges per sentence, connect words,
concept words

Sheldon 394 180 words: [all the same, although, despite, however, nevertheless, on the other
hand, whereas, more or less, though, all, yet], passive-ratio, important words
per utt/sent, LIWC–{Inhibition, Prepositions, Number, Quantifiers}

Penny 232 68 words:[nevertheless, even if, while, even though, on the other hand, yet], connect
words, emotional words, Dialogue Act–{Greet, Bye}, swear/near swear words,
LIWC–{Adverbs, Present Tense, Dictionary Words}

Howard 133 41 words:[although, even if, whereas], LIWC–{Hear, See, Third Person Singular},
concept words, in-group words, hedges-per-sent

Raj 179 51 words:[on the other hand, however, despite, though, also, even though, but], in-
group words, LIWC–{Conjunctions, Third Person Plural, See}, hedges per sen-
tence

Bernadette 283 43 persuasive words, emotional words, conceptual words, words:[even though, yet,
while], Dialogue Act–emphasis, LIWC–{Personal Pronouns, Second person,
Auxiliary Verbs, Function Words, Past Tense}

Amy 246 43 LIWC–{Quantifiers, UniqueWords, FutureTense, Causation}, RID Emotion
words, Dialogue Act - Continuer, opinion words, words:[though, but]

and manipulates DSyntS to add expressive ele-
ments, and 4) send “expressive” DSyntS to Real-
Pro (Lavoie and Rambow, 1997) (a sentence re-
alizer) for generation. We focus on operation 3
where we use our learned character stylistic mod-
els to add expressive elements to generic sen-
tences.

5.1 Mapping Stylistic Features to NLG
Decisions

The re-written and better-controlled PYPER al-
lows for more useful mapping of character models
for NLG. For example, hedge insertion patterns
are kept in a library where new additions can be

easily added. As an example, a partial mapping
for LIWC categories are shown in Table 3. For
multiple features mapped to the same PYPER pa-
rameter, we calculate a weighted average of the
features.

5.2 Narrative Content

Our narrative content comes from fables and sto-
ries: 1 fable (The Fox and the Crow) and 6 blog
stories about garden, protest, squirrel, bug, em-
ployer, and storm (Gordon et al., 2007). We use
The Fox and the Crow fable as an example to de-
scribe our process shown in Figure 2.

Some phrases are highlighted to show how they
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Table 3: Partial Mapping of LIWC Categories to Expressive NLG Parameters
PYPER Parameter LIWC Category PYPER Parameter LIWC Category
near-expletives swear, anger low-expletives swear, anger
emph-actually certain emph-exclamation excl
emph-really certain emph-great assent
emph-you-know filler emph-particularly certain
emph-technically certain emph-literally certain
emph-quintessential certain emph-essentially certain, i
emph-somewhat tentat emph-very certain
emph-especially certain emph-roughly tentat
in-group-marker family, friends, we, incl init-reject tentat

were annotated and translated. Many complicated
sentences have been broken down into shorter
ones. Note that some additional descriptions (ad-
jectives) were added in order to provide enough
search space for PYPER to exercise enough ex-
pressive parameters, so that characters’ personal-
ities will come through in different variations of
the story.

The final, expressive version of the story shows
different stylistic features such as converting a
statement to a question and adding character di-
alogue inspired expressions such as Typical.

6 Evaluation with User Perceptual
Experiment

We used Mechanical Turk to get user feedback
on the generated dialogue. The PYPER generated
output dialogue were post-processed to get rid of
typos and minor grammatical issues. Referring to
the MTurk survey (one HIT) in Figure 3, we first
show some information about the character in in-
terest (Sheldon, in this case), followed by two sets
of dialogue: one by Sheldon and the other by a
different random character. The worker does not
know which one was modeled by Sheldon. S/he
was asked to pick the dialogue that sounded most
similar to Sheldon, along with providing reasons.

Referring to results in Table 5, we used three
participants per pair of characters comparison per
story. The character on the left-most column in-
dicates the modeled character, and the compared-
to character was the “other random character” in
the survey. Each circle (empty or filled) indicates
a worker’s choice. A filled circle (•) means the
worker picked the “matched” generated dialogue
to the intended character, otherwise an empty cir-
cle (◦) is shown.

The probability that at least two out of three par-
ticipants agree on the right character is > 50%
(Table 4), while all three participants agree on
the right character is 31.3%, which is higher than

chance (12.5%).

Table 4: Participants Agreement
Choose the right character # HITs (out of 294) %
• • • (3 out of 3) 92 31.3
• • ◦ (2 out of 3) 57 20.4
• ◦ ◦ (1 out of 3) 122 41.5
◦ ◦ ◦ (0 out of 3) 23 7.8

Overall the 7 characters over all 7 stories were
recognized about 65.5% of the time (out of 882
ratings). Per character-wise over all 7 stories,
Penny was recognized the most with 82.5% of the
time, followed by Leonard (78.6%), Bernadette
(66.7%), Amy and Sheldon (both 61.9%), Howard
(57.9%), and finally Raj, who was recognized the
least with 49.2% of the time.

Certain character pairs were easier to dis-
tinguish than others. For example, Leonard-
Penny and vise-versa (95.2%), Sheldon-Penny and
vise-versa (85.7%, 90.5%), and Amy-Bernadette
and vise-versa (85.7%). On the other hand,
these were among the pairs harder to distinguish:
Amy-Leonard and vise-versa (47.6%, 57.1%),
Bernadette-Penny and vise-versa (33.3%, 57.1%),
and Sheldon-Howard and vise-versa (47.6%,
57.1%).

7 Character Analysis

In this section we provide some insights to the re-
sults, including with participants’ comments about
their perception of characters through the gener-
ated dialogue.

We found the following pairs of characters
most distinguishable from each other (Table 6):
Amy vs. Bernadette, Bernadette vs. Howard,
Howard, Leonard, Sheldon vs. Penny, Penny vs.
Leonard, and Raj vs. Sheldon. On the other
hand, we found the most similar pairs of characters
to be Amy-Leonard, Bernadette-Penny, Howard-
Leonard, Leonard-amy, Penny-Bernadette, Raj-
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The Fox and the Crow Partial (Original)

A Crow was sitting on a branch of a tree with a piece of cheese in her beak when a Fox observed her and set his wits to
work to discover some way of getting the cheese.

SCHEHERAZADE & EST

The crow sat on the tall tree’s branch. The crow has elegant talons. The crow has a good beak. The crow has ugly wings.
The crow has bad eyes. The delicious cheese was in the crow’s beak. The hungry fox observed the crow. The fox has
good claws. The fox has bad teeth. The fox tried to discover for the fox to get the cheese.

PYPER: Monologue to Dialogue

Speaker 1: The crow sat on the tall tree’s branch. The crow has elegant talons, and a good beak. The crow has ugly
wings, and bad eyes.
Speaker 2: The delicious cheese was in the crow’s beak. The hungry fox observed the crow. The fox has good claws, but
bad teeth.
Speaker 1: The fox tried to discover for the fox to get the cheese. The fox came and stood under the tall tree. The fox
looked toward the crow.
Speaker 2: The fox said the fox saw the crow. The fox said the crow’s beauty was incomparable. The fox said the crow’s
plumage’s hue was exquisite.

PYPER: M2D + Stylistic Parameters

Speaker 1: She sat on the tall tree’s branch. She has elegant talons, and a good beak. She has ugly wings, and bad eyes.
Speaker 2: He has good claws, but bad teeth.
Speaker 1: What was in her beak?
Speaker 2: The delicious cheese was, i see, in her beak. Typical. Really ok, I do not remember what happened next? Do
you want to know more about that?

Figure 2: The Fox and the Crow Story Transformation

Leonard, and Sheldon-Howard/Leonard. Note that
the comparison is not symmetrical because in the
survey we gave a “known” (reference) character,
which is the first column in the table.

It is not surprising to see Penny being differ-
ent from most of the male characters, as it is the
premise of BBT. Raj is an exception, mainly due
to his lack of (expressive) dialogue, though he is
definitely different from Sheldon. It is also believ-
able that Leonard is similar to many characters, as
he is the most “normal” character out of the group.

We further explore a few characters below.

7.1 Penny

7.1.1 Perception of Penny in comparison to
Leonard (most distinguishable)

Penny is one of the best expressed character in
the experiment, missing only by one selection in
comparison to Leonard (95.2%), and missing by
two in comparison to Sheldon (90.5%). Here we
take a look at the comparison with Leonard, where
20 (out of 21) Penny-modeled generated dialogue
were rated more similar to Penny, and only 1 (out
of 21) Leonard-modeled generated dialogue were
rated more similar to Penny.

Overall, participants’ perception of Penny-
modeled generated dialogue seem to agree with
Penny’s personality, capturing her “bubbly, cheer-
fulness”, as mentioned by one worker. Some no-

table descriptions include:

- talkative, randomness, random pauses, better wording, more personality
- seek feedback from others, lots of questions, not always sure of what
she’s saying, hesitation
- good mix of colloquialisms and Penny-like filler, some brief, fairly sim-
ple statements
- stand-out word choices: magic, huh?, mhmm, let’s see, that..., the crow
needed what?, oh gosh, I mean, damn yeah

Participants perceived Leonard-modeled gen-
erated dialogue as not suitable for Penny, mostly
because of his bland language. Here are some no-
table descriptions:

- too simple, monotone, boring, direct, bare, straightforward, matter-of-
fact, boxy, bland, not enough questioning for Penny
- too much adverb usage on precision or intellect for Penny
- not like Penny to use complex words and phrases
- not like Penny to use: technically, darn
- too rude for her to use, since she wants people to like her: everybody
knows that, obviously

The MTurk worker of the one missed selection
cited Penny being a very simple speaker, implying
that her dialogue would contain brief and simple
statements. While this is true, she also uses quite
a bit of fillers and questions around her “simple”
dialogue to sound chatty.

7.1.2 Perception of Penny in comparison to
Bernadette (least distinguishable)

It is not surprising to see Penny being the least dis-
tinguishable with Bernadette (57.1%). Bernadette
was introduced in the series as Penny’s friend and
coworker working as a waitress. Her role on the
show seemed to be more similar to Penny (friendly
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Figure 3: Amazon Mechanical Turk Survey (One HIT) Example

and sociable) than everyone else (nerdy and so-
cially awkward), despite that she became a scien-
tist eventually.

While the Bernadette-model contain chatty
word choices (similar to Penny’s), it also con-
tains “intellect” word choices. However due to
the randomness of the generated dialogue, where
not all features are expressed/activated, some di-
alogue/story might not show enough of her nerdy
side. For example, precise adverbs such as essen-
tially, particularly are more likely to be used by a

scientist/engineer (Bernadette) but not by Penny.
In terms of stories, Bug and Garden did the

best at distinguished the character pair, while Em-
ployer and Storm did the worst (none of the Penny-
modeled dialogue sounded like Penny).

7.2 Sheldon

7.2.1 Perception of Sheldon in comparison to
Penny (most distinguishable)

With Sheldon differs the most with Penny
(85.7%), we focus on comments by participants
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Table 5: Characters and Stories MTurk Results by HITs
Each HIT had 3 participants, each indicated by a circle (◦).

A solid circle (•) indicates the worker picked the “matched” generated dialogue to the original character.
Characters are listed in alphabetical order; circles are sorted by • then ◦

blue: best result; red: worst result
Character Story #/% similar

compared-to Bug Employer FoxCrow Garden Protest Squirrel Storm (out of 21)

A
m

y

Bernadette • • • • • • • • ◦ • • • • • • • • • • ◦ ◦ 18 / 85.7
Howard • ◦ ◦ • • ◦ • • ◦ • • ◦ • • ◦ • • ◦ • ◦ ◦ 12 / 57.1
Leonard ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • • • ◦ • • ◦ • ◦ ◦ 10 / 47.6

Penny • ◦ ◦ • • ◦ • • ◦ • • ◦ • • ◦ • • ◦ • • ◦ 13 / 61.9
Raj • ◦ ◦ • • • ◦ ◦ ◦ • • ◦ • • ◦ • • ◦ • • ◦ 12 / 57.1

Sheldon • • ◦ • • ◦ • • • • • • • ◦ ◦ • • ◦ ◦ ◦ ◦ 13 / 61.9
# / % similar 8 / 44.4 14 / 77.8 9 / 50.0 15 / 83.3 12 / 66.7 13 / 72.2 7 / 38.9 78 / 61.9

(out of 18) (out of 126)

B
er

na
de

tt
e

Amy • • • • • • • • • • • ◦ • • ◦ • • ◦ • • • 18 / 85.7
Howard • • • • • • • • ◦ • • • • • ◦ • • ◦ • • • 18 / 85.7
Leonard • • ◦ • • ◦ • ◦ ◦ • • • • ◦ ◦ • • ◦ • • ◦ 13 / 61.9

Penny • • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ 7 / 33.3
Raj • • ◦ • • • • • • ◦ ◦ ◦ • • ◦ • ◦ ◦ • • • 14 / 66.7

Sheldon • • ◦ • • ◦ • ◦ ◦ • • ◦ • • ◦ • • ◦ • • • 14 / 66.7
# / % similar 14 / 77.8 14 / 77.8 10 / 55.6 11 / 61.1 12 / 66.7 9 / 50.0 14 / 77.8 84 / 66.7

H
ow

ar
d

Amy • • ◦ • • ◦ • ◦ ◦ • • ◦ • ◦ ◦ • • ◦ • • ◦ 12 / 57.1
Bernadette • • ◦ • • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • • ◦ • • ◦ 11 / 52.4

Leonard • • ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ • • ◦ 10 / 47.6
Penny • • • • ◦ ◦ • • ◦ • ◦ ◦ • • • • • ◦ • • • 15 / 71.4

Raj • • ◦ • • • • ◦ ◦ • ◦ ◦ • • ◦ • • • • ◦ ◦ 13 / 61.9
Sheldon • • ◦ • • ◦ • • • • ◦ ◦ • ◦ ◦ • • ◦ • ◦ ◦ 12 / 57.1

# / % similar 13 / 72.2 12 / 66.7 8 / 44.4 7 / 38.9 9 / 50.0 13 / 72.2 11 / 61.1 73 / 57.9

L
eo

na
rd

Amy • • ◦ • • ◦ • • ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ • • • 12 / 57.1
Bernadette • ◦ ◦ • • ◦ • • • • • • • ◦ ◦ • • ◦ • • • 15 / 71.4

Howard • • ◦ • • • • • • • • • • • • • • ◦ • • • 19 / 90.5
Penny • • ◦ • • • • • • • • • • • • • • • • • • 20 / 95.2

Raj • ◦ ◦ • • • • • ◦ • • • • • ◦ • • • • • ◦ 16 / 76.2
Sheldon • • • • • • • • ◦ • • ◦ • • ◦ • • ◦ • • • 17 / 81.0

# / % similar 11 / 61.1 16 / 88.9 15 / 83.3 16 / 88.9 12 / 66.7 12 / 66.7 17 / 94.4 99 / 78.6

Pe
nn

y

Amy • • • • • • • • • • • • • • • • • • ◦ ◦ ◦ 18 / 85.7
Bernadette • • • ◦ ◦ ◦ • • ◦ • • • • • ◦ • • ◦ ◦ ◦ ◦ 12 / 57.1

Howard • • • • • • • • ◦ • • • • • • • ◦ ◦ • • ◦ 17 / 81.0
Leonard • • • • • • • • ◦ • • • • • • • • • • • • 20 / 95.2

Raj • • • • • • • • ◦ • • • • • • • • ◦ • • ◦ 18 / 85.7
Sheldon • • • • • • • • ◦ • • • • • • • • • • • ◦ 19 / 90.5

# / % similar 18 / 100 15 / 83.3 13 / 72.2 18 / 100 17 / 94.4 14 / 77.8 9 / 50.0 104 / 82.5

R
aj

Amy • • ◦ • ◦ ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ 9 / 42.9
Bernadette • • ◦ • ◦ ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ 10 / 47.6

Howard • ◦ ◦ • ◦ ◦ • • ◦ • • • • • • • ◦ ◦ • • ◦ 13 / 61.9
Leonard ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ 6 / 28.6

Penny • ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • • • 10 / 47.6
Sheldon • • • • • ◦ • • ◦ • • • • ◦ ◦ • • ◦ • ◦ ◦ 14 / 66.7

# / % similar 9 / 50.0 7 / 38.9 11 / 61.1 10 / 55.6 9 / 50.0 6 / 33.3 10 / 55.6 62 / 49.2

Sh
el

do
n

Amy • • • • ◦ ◦ ◦ ◦ ◦ • • • • ◦ ◦ • • ◦ • • • 13 / 61.9
Bernadette • • ◦ • • ◦ • • ◦ • • • • • • • • ◦ • • ◦ 16 / 76.2

Howard • • ◦ • ◦ ◦ • • ◦ • • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ 10 / 47.6
Leonard • • ◦ • ◦ ◦ • ◦ ◦ • • • • • ◦ • ◦ ◦ ◦ ◦ ◦ 10 / 47.6

Penny • • ◦ • • ◦ • • • • • • • • • • • ◦ • • • 18 / 85.7
Raj • • • • • ◦ • • ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ 11 / 52.4

# / % similar 14 / 77.8 9 / 50.0 10 / 55.6 17 / 94.4 10 / 55.6 10 / 55.6 8 / 44.4 78 / 61.9
# / % similar 87 / 69.0 87 / 69.0 76 / 60.3 94 / 74.6 81 / 64.3 77 / 61.1 76 / 60.3 578 / 65.5

(out of 126) (out of 882)

Table 6: Most/Least Distinguishable Characters
Ref. Char Most distinguishable with Least distinguishable with
Amy Bernadette (85.7%) Leonard (47.6%)
Bernadette Amy, Howard (85.7%) Penny (33.3%)
Howard Penny (71.4%) Leonard (47.6%)
Leonard Penny (95.2%) Amy (57.1%)
Penny Leonard (95.2%) Bernadette (57.1%)
Raj Sheldon (66.7%) Leonard (28.6%)
Sheldon Penny (85.7%) Howard, Leonard (47.6%)

who confused the two characters. It turns out that
certain phrases intended for Penny were perceived
as “arrogant” when spoken by Sheldon. Here are
the actual comments by participants:

- “mmhm...” I can picture coming from Sheldon in an irritated manner.
“...you are kidding, right” would be said by Sheldon in an arrogant and
condescending manner.
- “You might be interested in knowing...” sounds like an arrogant Sheldon
line, followed by the “Oh God...” I can actually picture Sheldon saying
this line.
- “You might be interested in knowing...” is used twice in Dialogue 2,
and would be something Sheldon might say to make another person feel
inferior.
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7.2.2 Perception of Sheldon in comparison to
Leonard (least distinguishable)

As roommates and colleague at work, their sim-
ilarity is understandable. Here are summarized
comments by participants describing the dialogue:

- matter-of-fact, straightforward
- clear, unhesitant
- shorter, more direct sentences; to the point
- use “technically”
- do not use a long string of adjectives

7.3 Leonard
For Leonard, Penny is considered the most distin-
guishable. Even though Leonard is considered less
nerdy than other male characters, his language is
still very different from Penny’s.

Amy being the least distinguishable for Leonard
is also believable. Amy, despite her language
closely resembles Sheldon, is also interested in re-
lationships and friendship (e.g., with Penny and
Bernadette).

Here are some participants’ comments on per-
ceiving Amy’s dialogue as Leonard’s dialogue:

- intelligently spoken but also have a natural tone to them
- quick and to the point without over complicating things
- “I mean...” sounds like Leonard in his somewhat whiny manner
- Leonard sometimes smooths things over for Sheldon so he doesn’t get
upset. I think he would soften some things he says when he uses “I
think” or “I mean”
- intelligent yet normal way of speaking
- both dialogue work okay really

7.4 Other Observations
Leonard and Penny represent the opposite-attracts
couple. The biggest differentiating factor is that
Penny’s dialogue are perceived as being more
emotional than Leonard’s.

A general theme for Leonard’s dialogue is that
his speech pattern is “normal”, implying that ev-
eryone else has a more stylized dialogue. This is
an interesting observation because Leonard is not
“normal” relative to the general population; he is
being characterized as a typical nerd. Yet he is
“normal” relative to his friends and therefore eas-
ier to identify on many cases.

According to (Brooks and Hébert, 2006), in-
dividual’s social identities are largely shaped by
the popular media: what it means to be white,
black, male, female, heterosexual, homosexual,
etc. Since characters are expressed through lan-
guage and therefore connected to characters’ iden-
tity as an individual and as part of a community
(Hurst, 2011), the media such as television often
provides the first (and sometimes the only) impres-
sion of certain groups of people.

In the context of BBT and the significant fea-
tures we used to represent characters, it seems that

Penny’s language represents the typical female as
identified by Lackoff (Lakoff, 1973): hedging,
emotional emphasis, adjectives, etc. This is in
contrast with the male characters as scientists, who
tend to be more matter-of-fact.

Do scientists talk differently from the general
population? Our results answer with a “yes” in
that Penny’s language is mostly in contrast with
male scientists’ language. Such contrast is also re-
flected in the real world (e.g., % of scientists ver-
sus. U.S. population believe in climate change).

What makes the show interesting is the ”in-
between” characters: female scientists Amy and
Bernadette. The perception of the dialogue
showed that the Penny-Bernadette, and Leonard-
Amy pairs shared some similar language. With
the right intention and scripts, the media can help
narrow the perception and narrative gap between
scientists and the general public.

8 Conclusion and Future Work

We explored character voice from the TV show
BBT by building stylistic models relating char-
acter dialogue’s linguistic features to natural lan-
guage generation decisions. These models are
then used to manipulate an expressive NLG to
transform regular sentences into an expressive ver-
sion. The generated, expressive dialogue are then
used in a perceptual experiment to see how users
perceive expressed personalities. Our results were
encouraging in that people were able to perceive
differences among characters, though some better
than others. For the ones that were hard to distin-
guish, participants’ comments provided great in-
sight into how to better express the extracted fea-
tures through NLG.

One possible future work is to use people’s
blogs as a source to create speaker-specific mod-
els. Another possible future work is to use char-
acter models to drive the monologue-to-dialogue
process that created the stories used in our experi-
ment. For example, if the character sounds mostly
negative, the process can try to allocate all nega-
tive sentences to a story character’s dialogue.

We believe our work can be applied to story-
telling applications, such as video games, inter-
active narrative, chatbots, or education systems
where dialogue with personalities may improve
user experience, in a more controllable way (than
using a neural network for generation, for exam-
ple).
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Abstract

Most work on neural natural language
generation (NNLG) focus on controlling
the content of the generated text. We ex-
periment with controlling several stylistic
aspects of the generated text, in addition
to its content. The method is based on
conditioned RNN language model, where
the desired content as well as the stylis-
tic parameters serve as conditioning con-
texts. We demonstrate the approach on
the movie reviews domain and show that
it is successful in generating coherent sen-
tences corresponding to the required lin-
guistic style and content.

1 Introduction

The same message (e.g. expressing a positive sen-
timent towards the plot of a movie) can be con-
veyed in different ways. It can be long or short,
written in a professional or colloquial style, writ-
ten in a personal or impersonal voice, and can
make use of many adjectives or only few.

Consider for example the following to sen-
tences:

(1) “A genuinely unique, full-on sensory experi-
ence that treads its own path between narrative
clarity and pure visual expression.”
(2) “OMG... This movie actually made me cry a
little bit because I laughed so hard at some parts
lol.”

They are both of medium length, but the first
appears to be written by a professional critic, and
uses impersonal voice and many adjectives; while
the second is written in a colloquial style, using a
personal voice and few adjectives.

In a text generation system, it is desirable to
have control over such stylistic aspects of the

text: style variations are used to express the so-
cial meanings of a message, and controlling the
style of a text is necessary for appropriately con-
veying a message in a way that is adequate to the
social context (Biber and Conrad, 2009; Nieder-
hoffer and Pennebaker, 2002). This work focuses
on generating text while allowing control of its
stylistic properties.

The recent introduction of recurrent neural lan-
guage models and recurrent sequence-to-sequence
architectures to NLP brought with it a surge of
work on natural language generation. Most of
these research efforts focus on controlling the con-
tent of the generated text (Lipton et al., 2015; Kid-
don et al., 2016; Lebret et al., 2016; Kiddon et al.,
2016; Tang et al., 2016; Radford et al., 2017),
while a few model more stylistic aspects of the
generated text such as the identity of the speaker in
a dialog setting (Li et al., 2016); the politeness of
the generated text or the text length in a machine-
translation setting (Sennrich et al., 2016; Kikuchi
et al., 2016); or the tense in generated movie re-
views (Hu et al., 2017). Each of these works tar-
gets a single, focused stylistic aspect of the text.
Can we achieve finer-grained control over the gen-
erated outcome, controlling several stylistic as-
pects simultaneously?

We explore a simple neural natural-language
generation (NNLG) framework that allows for
high-level control on the generated content (sim-
ilar to previous work) as well as control over mul-
tiple stylistic properties of the generated text. We
show that we can indeed achieve control over each
of the individual properties.

As most recent efforts, our model (section 3) is
based on a conditioned language model, in which
the generated text is conditioned on a context vec-
tor.1 In our case, the context vector encodes a set

1 See (Hoang et al., 2016) for other conditioning models.
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of desired properties that we want to be present in
the generated text.2 At training time, we work in
a fully supervised setup, in which each sentence is
labeled with a set of linguistic properties we want
to condition on. These are encoded into the con-
text vector, and the model is trained to generate the
sentence based on them. At test time, we can set
the values of the individual properties to get the
desired response. As we show in section 6.3, the
model generalizes fairly well, allowing the gener-
ation of text with property combinations that were
not seen during training.

The main challenge we face is thus obtaining
the needed annotations for training time. In sec-
tion 4 we show how such annotations can be ob-
tained from meta-data or using specialized text-
based heuristics.

Recent work (Hu et al., 2017) tackles a sim-
ilar goal to ours. They propose a novel gener-
ative model combining variational auto-encoders
and holistic attribute discriminators, in order to
achieve individual control on different aspects of
the generated text. Their experiments condition on
two aspects of the text (sentiment and tense), and
train and evaluate on sentences of up to 16 words.
In contrast, we propose a much simpler model
and focus on its application in a realistic setting:
we use all naturally occurring sentence lengths,
and generate text according to two content-based
parameters (sentiment score and topic) and four
stylistic parameters (the length of the text, whether
it is descriptive, whether it is written in a personal
voice, and whether it is written in professional
style). Our model is based on a well-established
technology - conditioned language models that
are based on Long Short-Term Memory (LSTM),
which was proven as strong and effective sequence
model.

We perform an extensive evaluation, and verify
that the model indeed learns to associate the dif-
ferent parameters with the correct aspects of the
text, and is in many cases able to generate sen-
tences that correspond to the requested parame-
ter values. We also show that conditioning on the
given properties in a conditioned language model
indeed achieve better perplexity scores compared
to an unconditioned language model trained on the
entire dataset, and also compared to unconditioned
models that are trained on subsets of the data that

2Another view is that of an encoder-decoder model, in
which the encoder component encodes the set of desired
properties.

correspond to a particular conditioning set. Fi-
nally, we show that the model is able to gener-
alize, i.e., to generate sentences for combinations
that were not observed in training.

2 Task Description and Definition

Our goal is to generate natural language text that
conforms to a set of content-based and stylistic
properties. The generated text should convey the
information requested by the content properties,
while conforming to the style requirements posed
by the style properties.

For example in the movie reviews domain,
theme is a content parameter indicating the top-
ical aspect which the review refers to (i.e. the
plot, the acting, and so on); and descriptive
is a style parameter that indicates whether the re-
view text uses many adjectives. The sentence
“A wholly original, well-acted, romantic comedy
that’s elevated by the modest talents of a lesser
known cast.” corresponds to theme:acting
and descriptive:true, as it includes many
descriptions and refers to the acting, while the sen-
tence “In the end, there are some holes in the story,
but it’s an exciting and tender film.” corresponds to
theme:plot and descriptive:false.

More formally, we assume a set of k parameters
{p1, . . . , pk}, each parameter pi with a set of pos-
sible values {v1, . . . , vpi}. Then, given a specific
assignment to these values our goal is to generate a
text that is compatible with the parameters values.
Table 1 lists the full set of parameters and values
we consider in this work, all in the movie reviews
domain. In section 4 we discuss in detail the dif-
ferent parameters and how we obtain their values
for the texts in our reviews corpus.

To give a taste of the complete task, we provide
two examples of possible value assignments and
sentences corresponding to them:

Type Parameter Value (1) Value (2)
Content Theme Acting Other
Content Sentiment Positive Negative
Style Professional True False
Style Personal False True
Style Length 21-40 words 11-20 words
Style Descriptive False True

Sentences for value set 1:
• “This movie is excellent, the actors aren’t all over

the place ,but the movie has a lot of fun, exploring
the lesson in a way that they can hold their own
lives.”
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Parameter Description Source Possible values Examples
St

yl
e

Professional
Whether the review is written in
the style of a professional critic
or not

meta-data
False “So glad to see this movie !!”

True “This is a breath of fresh air, it’s a welcome re-
turn to the franchise’s brand of satirical humor.”

Personal
Whether the review describes
subjective experience (written in
personal voice) or not

content
derived

False “Very similar to the book.”

True “I could see the movie again, “The Kid With Me”
is a very good film.”

Length Number of words content
derived

≤ 10 words / 11-20 words / 21-40 words / > 40 words

Descriptive Whether the review is in descrip-
tive style or not

content
derived

True “Such a hilarious and funny romantic comedy.”

False “A definite must see for fans of anime fans, pop
culture references and animation with a good
laugh too.”

C
on

te
nt

Sentiment The score that the reviewer gave
the movie

meta-data

Positive “In other words: “The Four” is so much to keep
you on the edge of your seat.”

Neutral “While the film doesn’t quite reach the level of
sugar fluctuations, it’s beautifully animated.”

Negative “At its core ,it’s a very low-budget movie that just
seems to be a bunch of fluff.”

Theme
Whether the sentence’s con-
tent is about the Plot, Acting,
Production, Effects or none of
these (Other)

content
derived

Plot “The characters were great and the storyline had
me laughing out loud at the beginning of the
movie.”

Acting “The only saving grace is that the rest of the cast
are all excellent and the pacing is absolutely flaw-
less.”

Production “If you’re a Yorkshire fan, you won’t be disap-
pointed, and the director’s magical.”

Effects “Only saving grace is the sound effects.”

Other “I’m afraid that the movie is aimed at kids and
adults weren’t sure what to say about it.”

Table 1: Parameters and possible values in the movie-reviews domain.

• “It’s a realistic and deeply committed perfor-
mance from the opening shot, the movie gives an
excellent showcase for the final act, and the visu-
als are bold and daring.”

Sentences for value set 2:
• “My biggest gripe is that the whole movie is

pretty absurd and I thought it was a little too pre-
dictable.”
• “The first half is pretty good and I was hoping for

a few funny moments but not funny at all.”

3 Conditioned Language Model

Like in previous neural language-generation work
(Lipton et al., 2015; Tang et al., 2016), our model
is also a conditioned language model. In a regu-
lar language model (LM), each token wt is condi-
tioned on the previous tokens, and the probability
of a sentence w1, ..., wn is given by:

P (w1, ..., wn) = Πn
t=1P (wt|w1, . . . wt−1) (1)

In a conditioned language model, we add an addi-
tional conditioning context, c:

P (w1, ..., wn|c) = Πn
t=1P (wt|w1, . . . wt−1, c)

(2)
Each token in the sentence is conditioned on the
previous ones, as well the additional context c.

A conditioned language model can be imple-
mented using an recurrent neural network lan-
guage model (RNN-LM, (Mikolov et al., 2010)),
where the context c is a vector that is concatenated
to the input vector at each time step.

Conditioned language models were shown to be
effective for natural language generation. We dif-
fer from previous work by the choice of condition-
ing contexts, and by conditioning on many param-
eters simultaneously.

In our case, the condition vector c encodes the
desired textual properties. Each parameter value
is associated with an embedding vector, and c is
a concatenation of these embedding vectors. The
vector c is fed into the RNN at each step, concate-
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nated to the previous word in the sequence.

Technical Details We use an LSTM-based
language model (Hochreiter and Schmidhuber,
1997), and encode the vocabulary using Byte Pair
Encoding (BPE), which allows representation of
an open vocabulary through a fixed-size vocabu-
lary by splitting rare words into subword units,
providing a convenient way of dealing with rare
words. Further details regarding layer sizes, train-
ing regime, vocabulary size and so on are provided
in the supplementary material.

4 Data-set Collection and Annotation

For training the model, we need a dataset of re-
view texts, each annotated with a value assign-
ment to each of the style and the content parame-
ters. We obtain these values from two sources: (1)
We derive it from meta-data associated with the
review, when available. (2) We extract it from the
review text using a heuristic. We use three kinds
of heuristics: based on lists of content-words;
based on the existence of certain function words;
and based on the distribution on part-of-speech
tags. These annotations may contain noise, and
indeed some of our heuristics are not very tight.
We demonstrate that we can achieve good perfor-
mance despite the noise. Naturally, improving the
heuristics is likely to results in improved perfor-
mance.

Our reviews corpus is based on the Rotten-
Tomatoes website.3 We collected 1,002,625
movie reviews for 7,500 movies and split
them into sentences. Each sentence is then
annotated according to four style parameters
(professional, personal, descriptive
and length) and two content parameters
(sentiment and theme). The meanings of
these properties and how we obtain values for
them are described below.

4.1 Annotations Based on Meta-data
Professional indicates whether the review is
written in a professional (true) or a collo-
quial (false) style. We label sentences as
professional:true if it is written by either
(1) a reviewer that is a professional critic; (2) a re-
viewer that is marked as a “super-reviewer” on the
RottenTomatoes website (a title given to reviewers
who write high-quality reviews). Other sentences
are labeled as professional:false.

3http://www.rottentomatoes.com

Sentiment reflects the grade that was given by
the review writer. Possible values for grade are:
positive, neutral, negative or none. In
audience reviews the movies are rated by the re-
viewer on a scale of 0 to 5 stars. In critic re-
views, the score was taken from the original re-
view (which is external to the rotten-tomatoes
website). We normalized the critics scores to be
on 0-5 scale. We then consider reviews with grade
0-2 as negative, 3 as neutral and 4-5 as
positive. Cases where no score information
was available are labeled as none.4

4.2 Annotations Derived from Text

Length We count the number of tokens in the
sentence and associate each sentence to one of
four bins: ≤10, 11-20, 21-40, >40.

Personal whether the sentence is written in
a personal voice, indicating a subjective point
of view (“I thought it was a good movie.”,
“Just not my cup of tea.”) or not (“Overall,
it is definitely worth watching.”, “The movie
doesn’t bring anything new.”), We label sentences
that include the personal pronoun or possessive
(“I”, “my”) as personal:true and others as
personal:false.

Theme the aspect of the movie that the sentence
refers to. The possible values are plot, acting,
production and effects. We assign a cate-
gory to a sentence using word lists. We went over
the frequent words in the corpus, and looked for
words that we believe are indicative of the dif-
ferent aspects (i.e., for plot this includes words
such as sciprt, story, subplots. The complete word
lists are available in the supplementary material).
Each sentence was labeled with the category that
has the most words in the sentence. Sentences that
do not include any words from our lists are labeled
as other.

Descriptive whether the sentence is descriptive
(“A warm and sweet, funny movie.”) or not (“It’s
one of the worst movies of the year, but it’s not a
total waste of time.”), Our (somewhat simplistic)
heuristic is based on the premise that descriptive
texts make heavy use of adjectives. We labeled
a sentence as descriptive:true if at least

4Note that while the sentiment scores are assigned to a
complete review, we associate them here with individual sen-
tences. This is a deficiency in the heuristic, which may ex-
plain some of the failures observed in section 6.1.
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Figure 1: Movie reviews data-set statistics.

35% of its part-of-speech sequence tags are adjec-
tives (JJ). All other sentences were considered as
non-descriptive.

4.3 Dataset Statistics
Our final data-set includes 2,773,435 sentences
where each sentence is labeled with the 6 param-
eters. We randomly divided the data-set to train-
ing (#2,769,138), development (#2,139) and test
(#2,158) sets. Figure 1 shows the distribution of
the different properties in the dataset.

5 Evaluating Language Model Quality

In our first set of experiments, we measure the
quality of the conditioned language model in terms
of test-set perplexity.

5.1 Conditioned vs. Unconditioned
Our model is a language model that is conditioned
on various parameters. As a sanity check, we ver-
ify that knowing the parameters indeed helps in
achieving better language modeling results. We
compare the dev-set and test-set perplexities of our
conditioned language model to an unconditioned
(regular) language model trained on the same data.
The results, summarized in the following table,
show that knowing the correct parameter values
indeed results in better perplexity.

dev test
Not-conditioned 25.8 24.4
Conditioned 24.8 23.3

Table 2: Conditioned and not-conditioned lan-
guage model perplexities on the development and
test sets.

5.2 Conditioned vs. Dedicated LMs

A second natural baseline to the conditioned LM
is to train a separate unconditioned LM on a
subset of the data. For example, if we are in-
terested in generating sentences with the prop-
erties personal:false, sentiment:pos,
professional:false, theme:other and
length:≤10, we will train a dedicated LM on
just the sentences that fit these characteristics.

We hypothesize that the conditioned LM trained
on all the data will be more effective than a ded-
icated LM, as it will be able to generalize across
properties-combinations, and share data between
the different settings. In this set of experiment, we
verify this hypothesis.

For a set of parameters and values
{p1, p2, · · · pn}, we train n sub-models where
each sub-model mi is trained on the subset of
sentences that match parameters {p1, p2, · · · pi}.
For example, given the set of parameters val-
ues as above, we train 5 sub-models: the first
on data with personal:false only, the
second on data with persoal:false and
sentiment:positive, etc. As we add
parameters, the size of the training set of the
sub-model decreases.

For each dedicated sub-model, we measure its
perplexity on the test-set sentences that match the
criteria, and compare it to a conditioned LM with
these criteria, and to an unconditioned language
model. We do this for 4 different parameter-sets.
Figure 2 presents the results.

The results indicate that when only few condi-
tioning parameters are needed, and if the coverage
of the parameter combination in the training set
is large enough, the dedicated LM approach in-
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Figure 2: Perplexities of conditioned, unconditioned and dedicated language models for various param-
eter combinations. The numbers on the dedicated-model line indicates the number of sentences that the
sub-model was trained on.

deed outperforms the conditioned LM. This is the
case in the first three sub-models in 2a, and the
first two sub-models in 2c. With few condition-
ing criteria, the dedicated LM approach is effec-
tive. However, it is not scalable. As we increase
the number of conditioning factors, the amount
of available training data to the dedicated model
drops, and so does the modeling quality. In con-
trast, the conditioned model manages to generalize
from sentences with different sets of properties,
and is effective also with large number of condi-
tioning factors. We thus conclude that for our use
case, in which we need to condition on many dif-
ferent aspects of the generated sentence, the condi-
tioned LM is far more suitable than the dedicated
LM.

5.3 Conditioned vs. Flipped Conditioning
The previous experiments show that a condi-
tioned model outperforms an unconditioned one.
Here, we focus on the effect of the individual
conditioning parameters. We compare the per-
plexity when using the correct conditioning val-
ues to the perplexity achieved when flipping the
parameter value to an incorrect one. We do
that for parameters that have opposing values:
personal, professional, sentiment and
descriptive. The following table summarizes
the results:

Correct Value 23.3
Replacing Descriptive with non-Descriptive 27.2
Replacing Personal 27.5
Replacing Professional 25
Replacing Sentiment Pos with Neg 24.3

Table 3: Test-set perplexities when supplying the
correct parameter values and when supplying the
opposite values.

There is a substantial drop in quality (increase
in perplexity) when flipping the parameter values.
The drop is smallest for sentiment, and largest for
descriptiveness and personal voice. We conclude
that the model distinguishes descriptive text and
personal voice better than it distinguishes senti-
ment and professional text.

6 Evaluating the Generated Sentences

In section 5.3 we verified the effectiveness of the
conditioned model by showing that flipping a con-
ditioning parameter value results in worse perplex-
ity. However, we still need to verify that the model
indeed associates each parameter with the correct
behavior. In this set of experiments, we use the
model to generate random sentences with differ-
ent conditioning properties, and measure how well
they match the requested behavior.

We generated 3,285 sentences according to
the following protocol: for each property-
combination attested in the development set, we
generated 1,000 random sentences conditioned on
these properties. We then sorted the generated sen-
tences according to their probability, and chose the
top k = (cf/mf ) ∗ 100 sentences, where cf is the
frequency of the property-combination in the dev
set and mf is the frequency of the most frequent
property-combination in the dev set.

This process resulted in 3,285 high-scoring but
diverse sentences, with properties that are dis-
tributed according to the properties distribution in
the development set.

6.1 Capturing Individual Properties

Length We measure the average, minimum and
maximum lengths, and deviation of the sentences
that were generated for a requested length value.
The following table summarizes the results:
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Requested Length Avg Min Max Deviationm=2

<=10 7.6 1 21 0.2 %
11-20 20.6 5 25 2.6 %
21-40 34 7 49 0.6 %

Table 4: Average, minimum and maximum
lengths of the sentences generated according to the
correspond length value; as well as deviation per-
centage with margin (m) of 2.

The average length fits the required range for
each of the values and the percentage of sentences
that exceed the limits with margin 2 is between
0.2% to 2.6%.

Descriptive We measure the percentage of
sentences that are considered as descriptive
(containing >35% adjectives) when requesting
descriptive:true, and when requesting
descriptive:false. When requesting de-
scriptive text, 85.7% of the generated sentences fit
the descriptiveness criteria. When requesting non-
descriptive text, 96% of the generated sentences
are non-descriptive according to our criteria.

Personal Voice We measure the percentage of
sentences that are considered as personal voice
(containing the pronouns I or my) when re-
questing personal:true, and when request-
ing personal:false. 100% of the sentence
for which we requested personal voice were in-
deed in personal voice. When requesting non-
personal text, 99.85% of the sentences are indeed
non-personal.

Theme For each of the possible theme values,
we compute the proportion of the sentences that
were generated with the corresponding value. The
confusion matrix in the following table

shows that the vast majority of sentences are
generated according to the requested theme.

Requested value % Plot % Acting % Prod % Effects % Other
Plot 98.7 0.8 0 0.2 0.3
Acting 2.5 95.3 0 0.6 1.6
Production 0 0 97.4 2.6 0
Effects 0 5.9 0 91.7 2.4
Other 0.04 0.03 0 0.03 99.9

Table 5: Percentage of generated sentences from
each theme, when requesting a given theme value.

Professional The professional property of
the generated sentences could not be evaluated au-

tomatically, and we thus performed manual eval-
uation using Mechanical Turk. We randomly cre-
ated 1000 sentence-pairs where one is generated
with professional:true and the other with
professional:false (the rest of the prop-
erty values were chosen randomly). For example
in the following sentence-pair the first is gener-
ated with professional:true and the sec-
ond with professional:false:

(t) “This film has a certain sense of imagination
and a sobering look at the clandestine indictment.”
(f) “I know it’s a little bit too long, but it’s a great
movie to watch !!!!”

The annotators were asked to determine which of
the sentences was written by a professional critic.
Each of the pairs was annotated by 5 different an-
notators. When taking a majority vote among the
annotators, they were able to tell apart the profes-
sional from non-professional sentences generated
sentences in 72.1% of the cases.

When examining the cases where the annotators
failed to recognise the desired writing style, we
saw that in a few cases the sentence that was gener-
ated for professional:true was indeed not
professional enough (e.g. “Looking forward to the
trailer.”, and that in many cases, both sentences
could indeed be considered as either professional
or not, as in the following examples:

(t) “This is a cute movie with some funny moments,
and some of the jokes are funny and entertaining.”
(f) “Absolutely amazing story of bravery and ded-
ication.”

(t) “A good film for those who have no idea what’s
going on, but it’s a fun adventure.”
(f) “An insult to the audience’s intelligence.”

Sentiment To measure sentiment genera-
tion quality, we again perform manual an-
notations using Mechanical Turk. We ran-
domly created 300 pairs of generated sen-
tences for each of the following settings:
positive/negative, positive/neutral
and negative/neutral. The annotators were
asked to mark which of the reviewers liked the
movie more than the other. Each of the pairs
was annotated by 5 different annotators and we
choose by a majority vote. The annotators cor-
rectly identified 86.3% of the sentence in the Pos-
itive/Negative case, 63% of the sentences in the
Positive/Neutral case, and 69.7% of the sentences
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in the negative/neutral case.
Below are some examples for cases where the

annotators failed to recognize the intended senti-
ment:

(Pos) “It’s a shame that this film is not as good as
the previous film, but it still delivers.”
(Neg) “The premise is great, the acting is not bad,
but the special effects are so bad.”

(Pos) “The story line is a bit predictable but it’s a
nice one, sweet and hilarious in its own right.”
(Neg) “It’s a welcome return to form an episode
of Snow White, and it turns in a great way.”

6.2 Examples of Generated Sentences

All of the examples throughout the paper were
generated by the conditioned LM. Additional ex-
amples are available in the supplementary mate-
rial.

6.3 Generalization Ability

Finally, we test the ability of the model to gen-
eralize: can it generate sentences for parameter
combinations it has not seen in training? To this
end, we removed from the training set the 75,421
sentences which were labeled as theme:plot
and personal:true, and re-trained a condi-
tioned LM. The trained model did see 336,567 ex-
amples of theme:plot and 477,738 examples
of personal:true, but has never seen exam-
ples where both conditions hold together. We then
asked the trained model to generate sentences with
these parameter values. 100% of the generated
sentences indeed contained personal pronouns,
and 82.4% of them fit the theme:plot criteria
(in comparison, a conditioned model trained on all
the training data managed to fit the theme:plot
criteria in 97.8% of the cases). Some generated
sentence examples are:

“Some parts weren’t as good as I thought it would
be and the acting and script were amazing.”

“I had a few laughs and the plot was great, but the
movie was very predictable.”

“I really liked the story and the performances were
likable and the chemistry between the two leads is
great.”

“I’ve never been a fan of the story, but this movie
is a great film that is a solid performance from Brie
Larson and Jacob Tremblay.

7 Related Work
In neural-network based models for language
generation, most work focus on content that need
to be conveyed in the generated text. Similar
to our modeling approach, (Lipton et al., 2015;
Tang et al., 2016) generates reviews conditioned
on parameters such as category, and numeric rat-
ing scores. Some work in neural generation for
dialog (Wen et al., 2015; Dušek and Jurcicek,
2016b,a) condition on a dialog act (“request”,
“inform”) and a set of key,value pairs of infor-
mation to be conveyed (“price=low, food=italian,
near=citycenter”). The conditioning context is en-
coded either similarly to our approach, or by en-
coding the desired information as a string and
using sequence-to-seqeunce modeling with atten-
tion. Mei et al. (2016) condition the content on
a set of key,value pairs using an encoder-decoder
architecture with a coarse-to-fine attention mech-
anism. Kiddon et al. (2016) attempt to generate
a recipe given a list of ingredients that should be
mentioned in the text, tracking the ingredients that
were already mentioned to avoid repetitions. Le-
bret et al. (2016) condition on structured informa-
tion in Wikipedia infoboxes for generating textual
biographies. 5 These work attempt to control the
content of the generated text, but not its style.

In other works, the conditioning context corre-
spond to a specific writer or a group of writers.
In generation of conversational dialog, Li et al.
(2016) condition the text on the speaker’s identity.
While the conditioning is meant for improving the
factual consistency of the utterances (i.e., keeping
track of age, gender, location), it can be consid-
ered as conditioning on stylistic factors (capturing
personal style and dialect). A recent work that ex-
plicitly controls the style of the generated text was
introduced by Sennrich et al. (2016) in the context
of Machine Translation. Their model translates
English to German with a feature that encodes
whether the generated text (in German) should ex-
press politeness. All these works, with the excep-
tion of Sennrich et al condition on parameters that
were extracted from meta-data or some database,
while Sennrich et al heuristically extracts the po-
liteness information from the training data. Our

5Recent work by Radford et al. (2017) trained an uncondi-
tioned LSTM language model on movie reviews, and found
in a post-hoc analysis a single hidden-layer dimension that
allows controling the sentiment of the generated reviews by
fixing its value. While intriguuing, it is not a reliable method
of deriving controllable generation models.
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work is similar to the approach of Sennrich et al
but extends it by departing from machine transla-
tion, conditioning on numerous stylistic aspects of
the generated text, and incorporating both meta-
data and heuristically derived properties.

The work of Hu et al. (2017) features a VAE
based method coupled with a discriminator net-
work that tackles the same problem as ours: condi-
tioning on multiple aspects of the generated text.
The Variational component allows for easy sam-
pling of examples from the resulting model, and
the discriminator network directs the training pro-
cess to associate the desired behavior with the con-
ditioning parameters. Compared to our work, the
VAE component is indeed a more elegant solution
to generating a diverse set of sentences. How-
ever, the approach does not seem to be scalable:
Hu et al. (2017) restrict themselves to sentences
of up to length 16, and only two conditioning as-
pects (sentiment and tense). We demonstrate that
our conditioned LSTM-LM appraoch easily scales
to naturally-occuring sentence lengths, and allows
control of 6 individual aspects of the generated
text, without requiring a dedicated discriminator
network. The incorporation of a variational com-
ponent is an interesting avenue for future work.

In Pre-neural Text Generation The incorpo-
ration of stylistic aspects was discussed from
very early on (McDonald and Pustejovsky, 1985).
Some works tackling stylistic control of text pro-
duced in a rule-based generation system include
the works of Power et al. (2003); Reiter and
Williams (2010); Hovy (1987); Bateman and Paris
(1989) (see (Mairesse and Walker, 2011) for a
comprehensive review). Among these, the work
of Power et al. (2003), like ours, allows the user
to control various stylistic aspects of the gener-
ated text. This works by introducing soft and hard
constraints in a rule-based system. The work of
Mairesse and Walker (2011) introduce statistics
into the stylistic generation process, resulting in
a system that allows a user to specify 5 personality
traits that influence the generated language.

More recent statistical generation works tack-
ling style include Xu et al. (2012) who attempt
to paraphrase text into a different style. They
learn to paraphrase text in Shakespeare’s style to
modern English using MT techniques, relying on
the modern translations of William Shakespeare
plays. Abu Sheikha and Inkpen (2011) generate
texts with different formality levels by using lists

of formal and informal words.
Finally, our work relies on heuristically extract-
ing stylistic properties from text. Computational
modeling of stylistic properties has been the fo-
cus of several lines of study, i.e. (Pavlick and
Tetreault, 2016; Yang and Nenkova, 2014; Pavlick
and Nenkova, 2015). Such methods are natural
companions for our conditioned generation ap-
proach.

8 Conclusions
We proposed a framework for NNLG allowing for
relatively fine-grained control on different stylis-
tic aspects of the generated sentence, and demon-
strated its effectiveness with an initial case study
in the movie-reviews domain. A remaining chal-
lenge is providing finer-grained control on the
generated content (allowing the user to specify ei-
ther almost complete sentences or a set of struc-
tured facts) while still allowing the model to con-
trol the style of the generated sentence.
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Abstract

The concept of style is much debated
in theoretical as well as empirical terms.
From an empirical perspective, the key
question is how to operationalize style and
thus make it accessible for annotation and
quantification. In authorship attribution,
many different approaches have success-
fully resolved this issue at the cost of lin-
guistic interpretability: The resulting al-
gorithms may be able to distinguish one
language variety from the other, but do
not give us much information on their dis-
tinctive linguistic properties. We approach
the issue of interpreting stylistic features
by extracting linear and syntactic n-grams
that are distinctive for a language variety.
We present a study that exemplifies this
process by a comparison of the German
academic languages of linguistics and lit-
erary studies. Overall, our findings show
that distinctive n-grams can be related to
linguistic categories. The results suggest
that the style of German literary studies
is characterized by nominal structures and
the style of linguistics by verbal ones.

1 Introduction

The concept of style is hotly debated in theoretical
as well as empirical terms. From an empirical per-
spective, the key question is how to operational-
ize style and thus make it accessible for annota-
tion and quantification. Many recent definitions of
style focus on this aspect, resulting in very general
definitions:

Style is a property of texts constituted
by an ensemble of formal features which
can be observed quantitatively or quali-
tatively. (Herrmann et al., 2015)

This is a good starting point and for many stud-
ies focusing on applications such as authorship at-
tribution or author profiling, this concept of style
is perfectly sufficient. However, when the aim of
investigation is interpretation rather than applica-
tion, these ‘formal features’ need to meet addi-
tional requirements.

Most importantly, the features need to be inter-
pretable by human readers, which is not strictly
true for features like character-n-grams. Also
token-based n-grams can be difficult to interpret,
as they do not necessarily correspond to an actual
phrase. To give a meaningful description of a lan-
guage variety’s style, we need to map the features
to linguistic categories and, if possible, also of-
fer independent, non-linguistic explanations. For
the former purpose, we suggest an annotation task
with multiple annotators that ensures a certain de-
gree of intersubjectivity.

In the present study, this process is exempli-
fied by a comparison of the German academic lan-
guages of linguistics and literary studies. It is part
of a bigger research project that aims at describ-
ing the stylistic differences between the two disci-
plines. We consider this research question relevant
because the two disciplines are often subsumed
under one study program (e. g. German Studies).
While this suggests a very close relationship be-
tween linguistics and literary studies, they differ
in many respects.

Our analysis is based on features that are not
initially linguistically motivated, but widely used:
n-grams based on tokens and part-of-speech (pos)
annotation. We complement them by more lin-
guistically informed syntactic n-grams (Sidorov
et al., 2012; Goldberg and Orwant, 2013). The
core of our study is the following annotation ex-
periment: After determining distinctive n-grams
automatically based on frequencies, we give the
most distinctive 260 token n-grams and 160 pos
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n-grams to three annotators. They annotated
whether they found the n-grams to be interpretable
and, if yes, what kind of linguistic category they
could derive from the n-grams.

The paper is structured as follows: Section 2
gives an overview of work in computational stylis-
tics relevant to our study. Section 3 gives a short
overview of linguistic as well as non-linguistic
properties of linguistics and literary studies to
which we will relate our results. We present the
study’s setup in section 4 by describing our data
and how n-grams were generated (section 4.1) and
ranked (section 4.2). Section 4.3 gives a detailed
account of the annotation scheme and process. In
section 5, we present the results of the annotation
experiment and relate them to non-linguistic prop-
erties of the two disciplines. Section 6 discusses
our study’s implications.

2 Related Work

In this section we give an overview of studies in
computational stylistics, focusing on those inter-
ested in linguistically interpretable features.

Boukhaled et al. (2015) differentiate between
two methodological types of computational stylis-
tics: 1) the classification approach that uses lin-
guistic features to confirm or question a grouping
of texts based on non-linguistic features, e. g. au-
thor or genre, and 2) the hermeneutic approach1

identifying relevant linguistic features that serve
as a data-driven starting point for human interpre-
tation.

Most work has been done adopting the first ap-
proach, dominated by studies on the task of au-
thorship attribution as described in the survey by
Stamatatos (2009). The huge variety of features
presented here refers to all kinds of language as-
pects that are meaningful to a greater or lesser
extent, seen from a linguistic point of view. The
use of a character-based data compression model
is an extreme case of a linguistically uninforma-
tive method. Especially syntactic features, on the
other hand, potentially contain valuable stylistic
information. Hirst and Feiguina (2007) is an ex-
ample of such a study that is based on bigrams of
syntactic labels.

Among the linguistically motivated features
used in authorship attribution, syntactic n-grams

1This approach relates to hermeneutics, the distinctive
methodology of interpretation in the humanities, cf. Mantza-
vinos (2016).

Ich mag grüne Bananen .

I like green bananas .

syntactic n-gram

linear n-gram

Figure 1: Example of linear and syntactic n-
grams: This sentence includes the linear trigram
mag grüne Bananen and the syntactic trigram
mag>Bananen>grüne.

are the most promising for our research. Sidorov
et al. (2012) suggest a simple concept of syntactic
n-grams: Instead of linearly following the text sur-
face as regular n-grams do, syntactic n-grams fol-
low the dependency path in the sentence from head
to dependent. Figure 1 shows an example of a lin-
ear vs. a syntactic n-gram, spanning the same set
of tokens. In contrast to linear n-grams, syntactic
n-grams encode syntactically meaningful relations
in the sentence. Sidorov et al. (2012) achieve good
results in a (non-competitive) authorship attribu-
tion task with a model based on syntactic n-grams.
Goldberg and Orwant (2013) and Sidorov (2013)
augment the concept to n-ary branching subtrees.

The hermeneutic approach is much less promi-
nent than the classification approach and it is
dominated by the stylistic investigation of literary
works and academic language.

The features used here are primarily token-
derived and lexical in nature. A widespread use
of this type of analysis working with sequences of
words followed upon Biber et al. (1999)’s defini-
tion of ‘lexical bundles’2. This was mainly (but
not only) applied to the study of academic lan-
guage (e. g. Biber et al. (2004); Hyland (2008);
Chen and Baker (2010)). Durrant (2015) analy-
ses academic writing by students. By looking at
token 4-grams he creates a disciplinary cluster of
student writers. Additionally, Durrant interprets
the instances found by grouping them into func-
tional categories based on Hyland (2008).

The second field where this type of analysis
has proved productive is literary stylistics. Ram-
say (2007) bases his analysis of Virginia Woolf on
the character-specific frequency of single words.

2We will not adopt this terminology as we see in section 5
that not all phenomena discovered by this method are lexical
in nature.
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Mahlberg (2007) looks at frequent token n-grams
(using the term ‘clusters’) that function as a type of
signature of characters in Charles Dickens’ Bleak
House. Mahlberg (2013) discusses this in more
detail and gives a more comprehensive account of
Dickens’ fiction. She also gives an overview of the
varying terminology (e. g. n-grams, clusters, lexi-
cal bundles) and different attempts of using these
features for stylistics (Mahlberg, 2013, 48-51).

Far fewer studies use more linguistically en-
riched features and annotations. Boukhaled et al.
(2015) include pos annotations in their investiga-
tion of classic French novels. Their features are se-
quences of pos tags that allow for gaps (so-called
skipgrams, Guthrie et al. (2006)). Scharloth et al.
(2012) use a similar approach that additionally in-
cludes combinations of token, lemma and part of
speech to compare the style of two social environ-
ments in the late sixties in Germany and success-
fully relate the resulting linguistic features to so-
cial features of these two groups.

We consider our study as following the
hermeneutic approach. In contrast to most stud-
ies, we include the token and pos level as well
as syntactic annotation following Sidorov et al.
(2012)’s concept of syntactic n-grams. Addition-
ally, we systematically assess the interpretability
of n-gram-based features. For measuring the reli-
ability of the interpretations (Krippendorff, 2013,
267-270), we base this judgment on more than one
person and give the task to three annotators, as de-
scribed in section 4.3.

3 Linguistics and literary studies:
Linguistic and non-linguistic
differences

In this section, we will briefly describe established
linguistic and non-linguistic differences between
the two disciplines under investigation. We will
refer back to these in the interpretation of our own
results in section 5.

Academic disciplines are commonly subdivided
into hard and soft sciences, which is regarded as a
continuum (Biglan, 1973; Hyland, 2004). While
linguistics as well as literary studies can clearly be
considered disciplines of the soft sciences, most
subdisciplines of linguistics tend more to the hard
sciences than literary studies does.

Many differences between linguistics and liter-
ary studies therefore correspond to the differences
between soft and hard sciences, just on a smaller

scale. The soft sciences are characterized as being
more interpretative, work hermeneutically, show
several subjective perspectives and feature plural-
ity of possible objects of study and methods. The
hard sciences on the other hand are more analyt-
ical, work empirically, have a high agreement on
object of study and methods and rely on quantifi-
cation (e. g. Biglan (1973); Durrant (2015)).

More specifically referring to the two disci-
plines under examination, Gardt (2007) describes
literary studies as focusing on the exemplary anal-
ysis of individual objects of study (typically texts)
and linguistics as focusing rather on patterns and
generalizations. We will come back to these fea-
tures in the interpretation of linguistic features in
section 5.

These non-linguistic features naturally lead to
stylistic differences between disciplines, which
have been extensively researched so that our
overview has to remain illustrative. For instance,
Hyland (2004) looks at disciplinary differences
along the hard sciences vs. soft sciences contin-
uum. He describes, among other results, that the
disciplines vary in their citation practices: The
soft fields use more citations than the hard fields
and use different types of reporting verbs (Hyland,
2004, 24-29). An analysis of evaluation practices
in reviews shows that while the hard fields use
more praise, the soft fields use more criticism (Hy-
land, 2004, 49).

Biber and Gray (2016) investigate academic En-
glish in contrast to other registers and with regard
to disciplinary differences. They make a distinc-
tion between phrasal (e. g. complex noun phrases)
and clausal (e. g. subordination) complexity and
find that the natural sciences rely more heavily on
the former while the soft sciences prefer the latter.

Afros and Schryer (2009) investigate promo-
tional metadiscourse in linguistics and literary
studies and find that the style of literary studies
sometimes resembles literary texts and addresses
aesthetic values of the research community.

When referring to these previously found dif-
ferences, we have to bear in mind that almost
all studies are based on the English language.
While many aspects can be expected to be cross-
linguistically valid, we know that different (aca-
demic) languages have different properties. For
instance, Siepmann (2006) gives a summarizing
account of differences between the academic writ-
ing of English, French and German.
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4 Study

We proceed by presenting our data and the way we
generated n-grams in section 4.1, our ranking pro-
cedure in section 4.2 and the annotation scheme
and setup in section 4.3.

4.1 Data and n-gram generation
The present study is based on a corpus of 60 PhD
theses. The choice of this text type was motivated
by the fact that it serves as a ‘gateway genre’ (De-
marest and Sugimoto, 2014, 3), granting access to
the academic world, and is therefore expected to
highly conform to the disciplinary norms. Addi-
tionally, it is a text type that has about the same
status in all disciplines. However, we have to be
careful about generalizing the results to academic
language in general. We created two subcorpora:

• subcorpus of linguistics: 30 PhD theses
comprising 1,427,758 tokens,

• subcorpus of literary studies: 30 PhD the-
ses comprising 2,151,679 tokens.

Sections that do not belong to the register under
investigation or that interrupt the text were ex-
tracted semi-automatically: footnotes, citations,
examples, tables, figures, title page, table of con-
tents, reference section etc. This preprocessing
followed rather simple heuristics and while the re-
sults are not perfect, they are sufficient for a quan-
titative analysis based on this amount of data.

We processed the data using the following
tools: the system Punkt (Kiss and Strunk, 2006)3

for tokenization and an off-the-shelf version of
MATE dependency parser (Bohnet, 2010) trained
on the TIGER Corpus (Seeker and Kuhn, 2012)
for lemma, pos and dependency annotation. We
evaluated the parser’s annotations against a gold
standard consensually created by two annotators
for a sample of 22 sentences (600 tokens). Given
that it is applied to out-of-domain data, the parser
performance is good (UAS: 0.95, LAS: 0.93).

We extracted the following data sets from the
resulting corpus:

• linear n-grams of sizes 2-5 using tokens and
pos tags, respectively,

• syntactic n-grams of sizes 2-5 using tokens
and pos tags, respectively, generated by tak-
ing every word of the sentence as a start-
ing point and following the dependency path

3http://www.nltk.org/api/nltk.tokenize.html, 19.05.2017

backwards by n-1 steps (following the con-
cept of Sidorov et al. (2012)).

4.2 Distinctiveness and collocational
strength: n-gram ranking

For further analysis, only n-grams with a total fre-
quency of more than 10 are included. For these
n-grams we calculate their relative frequencies in
all 60 texts.

In order to rank the n-grams in a way that is
meaningful for later interpretation, two measures
are of interest: distinctiveness and collocational
strength.

First, we want to identify n-grams with a high
difference in frequency between the two subcor-
pora and thus corresponding to major differences
between the disciplines. To achieve this, we use
the t-test as suggested by Paquot and Bestgen
(2009) and Lijffijt et al. (2014). One of the ben-
efits of the t-test is that it takes variation within the
corpora into account. Consequently, a single text
cannot dominate the overall result.

Second, we include a measure for collocational
strength between the elements of the n-gram. This
is necessary because the t-test results disregard the
influence of significant substructures of an n-gram.
Consider, for instance, that the pos tag CARD4 is
much more frequent in linguistics. Also, the bi-
gram CARD ADJA5 is much more frequent in lin-
guistics. The latter observation does not necessar-
ily mean that this combination is characteristic of
linguistics but can be caused by the high difference
in frequency of CARD alone.

A measure for collocational strength tells us
whether the bigram is more frequent than we
would expect given the corresponding unigram
frequencies. Evert (2008) gives a comprehensive
overview of different measures and their proper-
ties. We use the log-likelihood measure described
by Dunning (1993).

While this computation is very straightforward
for bigrams, the situation becomes more compli-
cated with higher n. We follow the approach of
Zinsmeister and Heid (2003), who break down
triples of verb, adjective and noun into nested bi-
nary tuples ((adjective, noun), verb) to maintain a
binary structure.

Our approach comprises the following steps:

4Cardinal number. The tagset used here is Schiller et al.
(1999).

5Adjective in attributive position
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1. For each n-gram that is found to be distinctive
by the t-test, we generate all possible sub-n-
grams contained in the n-gram. For instance,
for a distinctive 4-gram, all trigrams, bigrams
and unigrams contained are generated.

2. Each list of sub-n-grams is reduced to those
sub-n-grams which show a significant differ-
ence between the subcorpora themselves and
thus are possible candidates for causing the
significance of the original n-gram alone.

3. For each of these distinctive sub-n-grams, we
calculate the collocational strength between
this sub-n-gram and the rest of the original
n-gram.

A low log-likelihood ratio indicates that the com-
bination of the two elements does not occur more
often than expected. Consequently, it is just one
of the elements that causes the distinctive effect.
We exclude n-grams from the ranking that contain
a combination of elements with a log-likelihood
ratio below a threshold of 50.

4.3 Annotating n-grams
The n-gram generation and ranking can be auto-
mated to a high extent and is consequently highly
replicable. For the following step of interpretation
this is much less the case.

Our annotation process aims at objectifying the
interpretation of n-grams as far as possible. To this
end, the resulting n-grams are annotated by three
annotators according to an annotation scheme that
was developed in the process of annotating the
data (Pustejovsky and Stubbs, 2012, 109).

The n-grams we include in the annotation tasks
vary in three dimensions: They are either linear
or syntactic n-grams, they are of a size between 2
and 5 and they are either based on tokens or on pos
labels.

The sample of token n-grams was taken as Ta-
ble 1 summarizes: For the n-gram sizes 2-5, we
chose at least the 20 highest-scoring linear and
syntactic n-grams. If more than 20 instances
crossed the significance threshold of p=0.01 in the
t-test, the sample size for that group was raised
to 40 instances, giving a total sample size of 260
items.

The sample for pos n-grams comprises again the
20 highest-scoring items in our ranking of linear
and syntactic n-grams for n=2-5, resulting in 160
items in total. One difference to token n-grams

n-gram type
linear syntactic

n-gram size

2 40 40
3 40 40
4 40 20
5 20 20

Table 1: Number of instances per category in the
sample of token n-grams

is the fact that pos n-grams are more abstract and
consequently more difficult to interpret for human
annotators. The annotators are therefore provided
with five token realizations of the pos n-gram at
hand for illustration. These are randomly chosen
from the subcorpus of the discipline in which the
n-gram is more frequent. In all annotation tasks,
the annotators are not provided with any contexts
the n-grams appear in as these can be quite divers
and our objective was to judge the interpretability
of n-grams as such.

We present two annotation tasks: One classify-
ing the structures in the n-gram as nominal, verbal
or clausal and a second classifying them as carry-
ing lexical or grammatical information (for token
n-grams only).

First, we want to know whether the n-grams
capture linguistically interpretable structures and
if yes, what kind of structures we find for the
two disciplines. Our first annotation scheme is
roughly based on Biber et al. (2004, 381)’s ‘struc-
tural types of lexical bundles’ and comprises the
following categories:

1. This n-gram contains a verbal structure (V).

2. This n-gram contains a nominal structure (N).

3. This n-gram contains a clausal structure (sub-
ordination) (C).

4. This n-gram contains a verbal structure that
also indicates a clausal structure (subordina-
tion) (V C).

5. This n-gram does not contain any of the
above-mentioned structures (other).

By this annotation scheme we hope to achieve a
high degree of abstraction that leads us to a very
general characterization of the disciplinary writing
styles.
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Figure 2: Annotation of structural types of token
n-grams dependent on discipline, n=260 (note that
the category V C did not occur here)

Figure 3: Annotation of structural types of pos n-
grams dependent on discipline, n=160

For the sample of token n-grams, we made an
additional distinction between lexical and gram-
matical information. This distinction allows for a
general assessment of the nature of the differences
between the disciplines. These two types of infor-
mation contribute to style in different ways. For
lexical items, it remains to be seen whether they
sometimes reflect topic rather than style. The an-
notation follows these categories:

1. This n-gram contains a (complex) lexical unit
(LEX) or overlaps with one (LEX-P).

2. This n-gram contains a grammatical structure
(GRAM) or overlaps with one (GRAM-P).

3. This n-gram contains a structure that is am-
biguous between lexical unit and grammati-
cal structure (LEX-P GRAM-P).

4. This n-gram does not contain a (com-
plex) lexical unit or grammatical structure
(NONE).

For categories 1 to 3, the annotators were asked to
additionally provide the lexical unit or grammat-
ical structure they were thinking of (e. g. relative
clause). This results in very concrete phenomena
and can be considered the most fine-grained an-
notation category. At the same time, a general-
izing, quantified evaluation of the results is more
difficult due to the diversity of phenomena. For
the annotation of pos n-grams the differentiation
between lexical units and grammatical structures
does not apply, as pos tags do not directly refer
to the lexical level. Therefore, the annotators are

only asked for a label for the grammatical struc-
ture represented in the n-gram.

5 Results and Discussion

We will first present the results of the first annota-
tion task about nominal and verbal structures (sec-
tion 5.1). This is followed by the results related
to lexical and grammatical phenomena in token n-
grams (section 5.2), and finally by the analysis of
these phenomena based on pos tags (section 5.3).

5.1 Nominal vs. verbal style

For the first annotation scheme differentiating
nominal, verbal and clausal structures, the three
annotators reached an inter-annotator agreement
of 0.83 for the annotation of 260 token n-grams,
measured by Fleiss’ Kappa (Fleiss, 1971). Fig-
ure 2 displays the results. In the horizontal di-
mension we can see the two disciplines. The bars’
widths show how many of the distinctive n-grams
are more frequent in linguistics and literary stud-
ies, respectively. We can see that about two thirds
of the n-grams in the sample are more frequent in
literary studies than in linguistics. In the vertical
dimension, the proportion of the annotation cat-
egories is displayed. The distinctive n-grams for
the style of literary studies are dominated by nom-
inal structures (in light gray) while verbal struc-
tures (in black) are more characteristic of linguis-
tics. The data reveal a significant difference be-
tween the disciplines (Fisher’s test, p<0.001).

For the annotation of pos n-grams, the annota-
tors reached a slightly lower inter-annotator agree-
ment of 0.69. This could be expected as pos n-
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grams require more interpretation. When compar-
ing the disciplines, we get a result similar to the
token level: In Figure 3 we can see the distribution
of nominal, verbal and clausal structures in pos n-
grams across the disciplines. Even though the dif-
ference is less pronounced than in Figure 2, the
difference between the disciplines is also highly
significant (Fisher’s test, p<0.001).

In the pos n-grams of both disciplines, verbal
structures account for a higher proportion than on
the token level. This shift emerges as many token
instances belong to the same pos pattern, and are
mapped to only one pos instance when abstracting
from token to part of speech.

To summarize, we found that verbal structures
are more characteristic of linguistics and nominal
structures of literary studies. Assuming that our
nominal structures correspond to Biber and Gray
(2016)’s phrasal complexity, this result is in op-
position to their observation that the hard sciences
rely more on phrasal complexity than the soft sci-
ences. We surmise that this might be due to the
fact that the latter study is based on English data
only. German literary studies is firmly rooted in
the German academic tradition, which might re-
sult in this deviation from the English-based ex-
pectations.

Furthermore, we can see that among the sam-
ple of most distinctive structures in both figures,
about two thirds are more frequent in literary stud-
ies than in linguistics. The interpretation of this
fact is not straightforward and requires a careful
review of the underlying patterns (e. g. their abso-
lute frequencies and textual functions) that is be-
yond the scope of the current paper.

When interpreting these frequencies, we have
to keep in mind that (slightly less than) half of
the structures under investigation are syntactic n-
grams. The dependency path through a sentence
always starts with a finite verb and is relatively
short in total. Consequently, most of the larger
syntactic n-grams include the finite verb at the
root, leading to the classification of the structure
as verbal. Consequently, verbal structures are
much more frequent among syntactic than linear
n-grams (Fisher’s test, p<0.001). However, this
applies to both disciplines and token as well as pos
n-grams in the same way. For a more comprehen-
sive comparison of linear and syntactic n-grams,
see Andresen and Zinsmeister (2017).

Figure 4: Annotation of information in token n-
grams dependent on n-gram size, n=260

5.2 Lexical and grammatical structures in
token features

The application of the second annotation scheme,
labeling structures as being mainly characterized
by grammatical or lexical properties, was more
controversial. The inter-annotator agreement is
0.48 and shows that the data is rather ambiguous
in terms of the annotated categories. At the same
time it indicates the limits of n-gram interpretabil-
ity: n-grams can invite multiple interpretations
that have to be verified carefully. In these anno-
tations, there initially were 20 instances where all
three annotators chose different categories. These
instances were discussed by two annotators who
then agreed on one category. The results presented
in the following are based on a majority vote.

In Figure 4, we present the results grouped by
n-gram size. The bars’ widths reflect the subsam-
ple sizes presented in Table 1. For the lexical cat-
egories, we can see that with increasing n-gram
size the label LEX (in the lightest gray) tends to
decrease while LEX-P (directly below) is increas-
ing. This is understandable as LEX-P also cov-
ers structures that comprise more than the lexical
item itself. With an increase in size, we are more
likely to include more than the lexical unit in the n-
gram. Also, the proportion of grammatical struc-
tures (darkest gray and black) drops slightly for
larger n-grams. Ususally grammatical structures
are signaled by only few items on the language
surface, such as a comma and a subordinating con-
junction for an embedded clause, whereas lexical
units tend to extend over many words. The cat-
egory NONE (in white) is most frequent among
n-grams of size 2, indicating that this size is too
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Figure 5: Annotation of information in token n-
grams dependent on discipline, n=260

small to fully capture many phenomena.
Figure 5 shows the distribution across the two

disciplines. We can see that, even when only
taking the rather coarse-grained annotation labels
(LEX, GRAM etc.) into account, we find signifi-
cant differences between the disciplines (Fisher’s
test, p<0.001). Generally speaking, there are
more grammatical patterns distinctive for linguis-
tics and more lexical patterns distinctive for liter-
ary studies. When assessing this difference, we
have to keep in mind that many of the linguis-
tic phenomena are binary in nature, with one of
the variants being more easily detectable by an n-
gram analysis. For instance, the grammatical phe-
nomenon ‘passive voice’ is more frequent in lin-
guistics. The logical consequence is that active
voice is more frequent in literary studies. How-
ever, only the high frequency of passive voice is
visible in the data, as it is realized by a rather sta-
ble pattern of auxiliary verbs. This problem of de-
tectability is especially pervasive for grammatical
phenomena as they often require the realization of
one of a set of options.

In addition to assigning these categories, the an-
notators provided the lexical or grammatical struc-
ture they derived from the n-gram. Here, the an-
notation is increasingly interpretative. At the same
time, clearer differences between the disciplines
emerge.

Among the lexical patterns we found to be more
frequent in linguistics “in der Regel” (‘as a rule,
usually’) is very prominent. This corresponds to
the initial assumption that in linguistics, general-
ization plays a bigger role than in literary stud-
ies. Patterns like “können zurückgeführt werden

auf” (‘can be traced back to’) show an attempt to
give causal explanations. Other words like “Anal-
yse” (‘analysis’) and “Auswahl” (‘selection’) mir-
ror the empirical methodology of the discipline.
For literary studies, on the other hand, we find
many items referring to the temporal dimension:
“in dem Moment” (‘at that moment’), “in einer
Zeit” (‘at a time’), “das Ende” (‘the end’), “in der
ersten Hälfte des” (‘in the first half of the’). This
characterizes the discipline as being more narra-
tive when referring to the (e. g. temporal) dimen-
sions of the literary object.

Among the grammatical structures literary stud-
ies shows a higher frequency of personal pro-
nouns, which is also related to narrative structures
and individual objects of study. However, gram-
matical structures are by far dominated by several
patterns introducing relative clauses. This indi-
cates a rather nominal style already found in sec-
tion 5.1. Interestingly, the relatively few relative
clauses more frequent in linguistics all use the rel-
ative pronoun “die”, which can be feminine but is
more likely to be plural. This corresponds to the
idea that literary studies rather deals with individ-
uals (mostly male individuals, as the frequencies
show) while linguistics deals with groups of phe-
nomena. Other grammatical structures character-
istic for linguistics are passive constructions and
modal verbs as well as generally more indications
of sub- and coordination (structures with “dass”,
‘that’ and “und”, ‘and’).

5.3 Lexical and grammatical structures in
pos features

For the pos n-grams, the annotation of lexical vs.
grammatical phenomena is less meaningful. But
again, the annotators were asked to name or de-
scribe the linguistic phenomenon they see repre-
sented in the n-gram. This proved to be more dif-
ficult than for the token annotation. Often the n-
grams were annotated with phenomena that could
be derived from a single pos tag in the sequence,
e. g. all n-grams including the pos tag PRELS6

were annotated as relative clause, independent of
the other tags in the sequence.

However, the following results can be found:
Generally speaking, the phenomena mirror the dif-
ferences between verbal and nominal structures
found in section 5.1. More specifically, passives
as well as modals and predicatives are more fre-

6Relative pronoun
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quent in linguistics. For literary studies, complex
noun (and prepositional) phrases are more com-
mon. In contrast to the results based on the token
level, patterns with relative clauses occur in liter-
ary studies only. Here, the token level offers an
informative differentiation. Many of these noun
phrases include possessive pronouns, which are
hardly found in linguistics, cf. personal pronouns
discussed in the previous section.

6 Conclusion and future work

Our study had the aim of determining the poten-
tial of n-grams for linguistically describing style.
We illustrated this by a study comparing the Ger-
man academic languages of linguistics and liter-
ary studies. By means of an annotation experi-
ment, we could show that most n-grams are in-
terpretable in the sense that they could be related
to some linguistic category. However, interpreta-
tions become more challenging with increasing n-
gram length and abstractness, e. g. when interpret-
ing parts of speech instead of tokens. Additionally,
the results we found can clearly be related to non-
linguistic properties of the disciplines: e. g. ref-
erences to empirical methodology in linguistics,
narrative structures in literary studies. Overall,
the distinctive structures more frequent in literary
studies are for the most part nominal. Linguistics,
on the other hand, exhibits more verbal and clausal
patterns.

These specific results might help scholars and
especially students of the disciplines to reflect
on and adapt to disciplinary writing conventions.
More generally, we hope to have contributed to a
better understanding of how n-gram analysis can
add to the linguistic description of style. Last but
not least, n-grams can serve as a starting point
for subsequent in-depth analyses of language and
style.

In the future, we intend to refine our method
of dealing with the influence of significant sub-
structures. Between some parts of speech there
is a general collocation tendency in languages,
e. g., in German a determiner and an adjective
generally cooccur more often than expected by
their unigram frequencies. Our current approach
of using a measure of collocational strength, the
log-likelihood measure, does not include this in-
formation. It requires a more detailed composi-
tional analysis of n-grams to determine to what ex-
tend substructures can serve as a proxy of larger

n-grams. In addition, it is necessary to decide
whether some of the n-grams are related to topic
rather than style. This depends on the specific def-
inition of style and the analysis’ objective.

In our opinion, the mathematical decisions be-
hind the ranking of n-grams are especially impor-
tant when an interpretation by humans is intended.
When given an n-gram with the information that it
is more frequent in one language variety than in
another, humans will usually come up with some
kind of interpretation of this fact. If the n-gram’s
rank is more of a mathematical artifact, this can
lead to a highly skewed interpretation of the data.
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Abstract

Recent applications of neural language
models have led to an increased interest
in the automatic generation of natural lan-
guage. However impressive, the evalua-
tion of neurally generated text has so far
remained rather informal and anecdotal.
Here, we present an attempt at the system-
atic assessment of one aspect of the quality
of neurally generated text. We focus on a
specific aspect of neural language genera-
tion: its ability to reproduce authorial writ-
ing styles. Using established models for
authorship attribution, we empirically as-
sess the stylistic qualities of neurally gen-
erated text. In comparison to conventional
language models, neural models generate
fuzzier text that is relatively harder to at-
tribute correctly. Nevertheless, our results
also suggest that neurally generated text
offers more valuable perspectives for the
augmentation of training data.

1 Introduction

In his landmark paper ‘Computing Machinery and
Intelligence‘, Turing (1950) quoted Jefferson’s
‘The Mind of Mechanical Man’ (1949): ‘Not until
a machine can write a sonnet or compose a con-
certo because of thoughts and emotions felt, and
not by the chance fall of symbols, could we agree
that machine equals brain’. Strikingly, these early
pioneers of modern AI considered the conscious
creation of literature as a significant milestone on
the long road towards general AI. In recent years,
the automated generation of text, such as litera-
ture, has received a significant impetus from re-
search in the field of neural language modeling.
A variety of recent studies have demonstrated that
neural language models can be used to synthesize
new (literary) text, even at the character-level.

To a surprising extent, neurally generated text
seems to make an authentic impression on read-
ers, due to its ability to mimic certain properties
of the text on which it was trained, without it de-
grading into in a mere reproduction or patchwork
of verbatim passages in it. In one particularly visi-
ble blog post, Karpathy (2015) demonstrated how
a relatively simple character-level recurrent neural
network, when trained on Shakespeare’s oeuvre,
was able to generate new, artificial text which, cer-
tainly in the eyes of non-experts, undeniably dis-
played some Shakespearean qualities. This blog
has inspired a wide array of other applications –
ranging from cooking recipes (Brewe, 2015) to
Bach’s sonatas (Feynman et al., 2016).

Much of this work has so far been published
in the online blogosphere and the assessment of
the quality of neurally generated text has often re-
mained fairly informal and anecdotal, apart from
a number of more empirically oriented studies,
for instance in the field of hiphop lyric generation
(Potash et al., 2015; Malmi et al., 2015). In this
paper, we report an attempt at a systematic assess-
ment of the properties of neurally generated text
in the context of style-based authorship attribution
in stylometry (Stamatatos, 2009). We address the
following research questions: (1) To which extent
is the text, neurally generated on the basis of a sin-
gle author’s oeuvre, still attributable to the origi-
nal input author? and (2) To which extent is the
neural generation of text useful for training data
augmentation in stylometry, e.g. for authors for
whom little reference data is available?

Below, we first present the model architectures
underlying our text generation, comparing a mod-
ern neural architecture to a more conventional
ngram-based language model. Next, we describe
the Latin data set which we will use (Patrologia
Latina) and discuss our experimental set-up (au-
thorship attribution). We go on to present our at-
tribution results; in the discussion section, we in-
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terpret and visualize these results. We conclude by
pointing out viable future improvements.

2 Character-Level Text Generation

We approach the task of text generation with
character-level Language Models (LM). In short,
a LM is a probabilistic model of linguistic se-
quences that, at each step in a sequence, assigns
a probability distribution over the vocabulary con-
ditioned on the prefix sequence. More formally, a
LM is defined by Equation 1,

LM(wt) = P (wt|wt−n, wt−(n−1), ..., wt−1) (1)

where n refers to the scope of the model —i.e. the
length of the prefix sequence taken into account to
condition the output distribution at step t. By ex-
tension, a LM defines a generative model of sen-
tences where the probability of a sentence is de-
fined by the following equation:

P (w1, w2, ..., wn) =
n∏
i

P (wt|w1, ..., wt−1) (2)

Given its generative nature, a LM can easily be
used for text generation. We start by sampling
from the output distribution at step t and, then,
we recursively feed back the sampled symbol, to-
gether with any other previous output, to condition
the generative distribution at step t + 1. Equation
3 shows formally the text generation process for a
symbol at step t where w′t−1 is the generated sym-
bol at step t−1 and S refers to any given sampling
method.

w′t = S[P (wt|w′t−n, w
′
t−(n−1), ..., w

′
t−1)] (3)

An obvious approach towards sampling is to se-
lect the symbol that maximizes the probability
of the entire generated sequence (argmax decod-
ing). For a large vocabulary (e.g. in the case of a
word-level LM), the search quickly becomes im-
practical and is usually approximated by means of
beam search (including the extreme case of using
a beamsize equal to 1, which corresponds to pick-
ing the most probable symbol at each step). How-
ever, when used for generation, the argmax decod-
ing approach tends to yield repetitive and dull sen-
tences, and eventually runs into dead-end loops.
Therefore, we instead sample from the LM’s out-
put distribution at each step.

The sampling approaches discussed so far at-
tempt to strike a trade-off between variability and

correctness – in the sense of departure from regu-
larities observed in the training data. Beam-search
decoding will tend to generate sentences that are
more formally correct (e.g. more similar to the
sentences observed in the training corpus), while
generating very similar and monotonous output
in the presence of similar histories. Conversely,
multinomial sampling will make the output di-
verge more from the original training data, and
therefore produce a more varied output, but with
a tendency towards more grammatically incorrect
sentences. Focusing on multinomial sampling, the
described trade-off can be operationalized in form
of a parameter τ , mostly referred to as “tempera-
ture", that is in charge of modifying the skewness
of the parameters of the multinomial distribution
to encourage more or less variability in exchange
for potentially less or more formally correct out-
put.1

A further aspect of our LM approach to text
generation is topical variation. In order to ensure
that during generation the LM explores the top-
ical distribution present in the training data, we
implement the following procedure. After having
generated a fixed number of sentences s, a sen-
tence from the LM’s training data is sampled uni-
formly and used to seed the generation of the next
s sentences. Finally, we force the LM to gener-
ate fully terminated sentences by including end-
of-sentence symbols (EOS) during training time
and discarding any output sentence that reaches a
maximum number of characters m without having
generated the EOS symbol – thus, we consider the
generation of a single sentence finished whenever
the EOS symbol is produced and we only gener-
ate sentences with a maximum number of charac-
tersm. This is motivated by the fact that very long
sentences tend to degenerate into poor-quality text.
Our generative system displays a total of 3 genera-
tion hyper-parameters: τ (sampling temperature),
s (reset seed every s sentences) and m (maximum
m characters per sentence).

1Given the multinomial parameters p = {p1, p2, ..., pk}
for a vocabulary size of V , the “freezing” transformation

pτi = p
1
τ
i /

∑V
j p

1
τ
j will flatten the original distribution for

higher values of τ , thereby ensuring more variability in the
output. Conversely, lower values of τ will skew it, thereby
facilitating the outcome of the originally more probable sym-
bol. For τ values approaching 0, we recover the simple
argmax decoding procedure of picking the highest probability
symbol at each step.
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2.1 Ngram-based Language Model

So far, we have kept the definition of the LM
agnostic with respect to its concrete implemen-
tation. In the current study we compare two
widely-used LM architectures – an ngram-based
LM (NGLM) and a Recurrent Neural Network-
based LM (RNNLM). An NGLM is basically a
conditional probability table for Equation 1 that
is estimated on the basis of the count data for
ngrams of a given length n. Typically, NGLMs
suffer from a data sparsity problem since for a
large enough value of n many possible condition-
ing prefixes will not be observed in the training
data and the corresponding probability distribu-
tion will be missing. To alleviate the sparsity
problem, two techniques—smoothing and back-
off models—can be used that either reserve some
probability mass and evenly redistribute it across
unobserved ngrams (smoothing) or resort back to
a lower-order model to provide an approximation
to the conditional distribution of an unobserved
ngram (backoff models). Here, however, we im-
plement an unsmoothed LM since we only use
the LM for generation, where it is not necessary
to compute probabilities for unseen ngrams. An
unsmoothed NGLM only has one model hyper-
parameter—the ngram order.

2.2 RNN-based Language Model

A RNNLM implements a language model using a
Recurrent Neural Network (RNN) to allow left-to-
right information flow during sequence processing
(Mikolov et al., 2010). As shown in (Bengio et
al., 2003), at a given step t, a RNNLM (Elman,
1990) (i) first computes a distributed representa-
tion wt with dimensionality M of the input xt, (ii)
it then feeds the resulting vector into an RNN layer
that computes a hidden activation ht combining
it with the hidden activation at the previous step
ht−1, and (iii) it projects the hidden activation onto
a space of dimensionality equal to the vocabulary
size V , followed by a softmax function that turns
the output vector into a valid probability distribu-
tion. More formally, given a binary column vec-
tor xt representing the input symbol at step t, we
retrieve its corresponding embedding wt through
wt = Wmxt, where Wm is the embedding matrix
with dimensionality RMxV . The hidden state in
the standard RNN is given by

ht = σ(Wihwi +Whhht−1 + bh) (4)

where Wih and Whh are respectively the input-to-
hidden and hidden-to-hidden projection matrices
with dimensionality RMxH and RHxH , bh is a bias
vector and σ is the sigmoid non-linear function.
Finally, the probability assigned to each entry in
the vocabulary at step t is defined by the softmax

Pt,j =
eot,j∑V
k e

ot,k
(5)

where ot,j is the jth entry in the output vector ot =
Whoht and Who is the hidden-to-output projection
with dimensionality RHxV .

In practice, training an RNN is difficult due to
the vanishing gradient problem (Hochreiter, 1998)
that makes it hard to apply the back-propagation
algorithm for parameter tuning over long se-
quences. Therefore, it is common to implement
the recurrent layer using an enhanced RNN like,
e.g. Long Short-term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997). An LSTM-based
RNNLM only differs from the previous RNNLM
in the way the hidden activation ht is com-
puted. An LSTM cell incorporates three learnable
gates—an input, forget and output gate—of shape:

it = σ(W i
ihwt +W i

hh + bih) (6)

ft = σ(W f
ihwt +W f

hh + bfh) (7)

ot = σ(W o
ihwt +W o

hh + boh) (8)

whereW i,W f andW o are, respectively, the gates
parameters, and a writable memory cell ct that is
updated following

ct = ft�ct−1+it�tanh(W c
ihwt+W c

hhht−1+bch)
(9)

(where � is element-wise product and tanh is the
hyperbolic tangent non-linear function). Finally,
the memory cell is combined with the output gate
to yield the hidden activation ht: ht = ot � σ(ct).
As can be seen from the equations, the role of the
gates is to learn to write to and delete from the
memory cell based on the input (Equations 7, 6
and 9), as well as to use the memory cell to com-
pute the hidden activation (Equation 2.2).

A RNNLM has as parameter the embedding
matrix Wm, the hidden-to-output projection Who,
as well as the input-to-hidden and hidden-to-
hidden projections of the RNN/LSTM networks.
Theoretically, what sets a RNNLM apart is that
it consistently displays a much larger context
awareness—because of its ability to carry over in-
formation in the hidden state across very large
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spans—and that it is therefore able to learn syntac-
tic dependencies and structures from the training
material. This is in stark contrast with a NGLM,
which only reasons on the basis of a very local his-
tory and have little abstractive power.

Importantly, however, it should be emphasized
that most approaches to AA operate on very lo-
cal features, such as lower-order character ngrams
(Stamatatos, 2013; Sapkota et al., 2015; Keste-
mont, 2014). Most state-of-the-art models for
AA indeed depend on document vectors contain-
ing normalized character ngram frequencies (typi-
cally in the range of 2-4), which are fed to a stan-
dard classifier, such as a support-vector machine
with a linear kernel. The fact that the RNNLM
might generate more realistic sentences than the
NGLM does not necessarily entail that it would
have an advantage in AA with respect to a conven-
tional NGLM, which will stay closer to the origi-
nal source documents. An important, if only sec-
ondary, question is therefore whether the use of an
RNNLM in the context of AA would outperform
a conventional NGLM, even if only very local fea-
tures, such as character ngrams, are included in the
model.

3 Experimental setup

3.1 Design

The Patrologia Latina (PL) is a corpus contain-
ing texts of Latin ecclesiastical writers in 221 vol-
umes ranging a time span of 10 centuries, from
Late Antiquity to the High Middle Ages (3rd-
13th century). It was first published in two series
halfway the 19th century by Jacques-Paul Migne,
who mainly based the texts off of 17th and 18th-
century prints. Its digitized version is available
since 1993, and it has remained one of the most
sizable Latin corpora online (±113M words).

Performing this experiment on the PL, and not
on an English corpus, for instance, has been a con-
scious decision to raise the bar. It has been ob-
served that state-of-the-art AA on an inflected lan-
guage such as Latin yields poorer results when it
is reliant on most frequent words (Eder and Ry-
bicki, 2011). Moreover, the Latin that has come
down to us from the 1st century AD onwards is
an institutionalized literary language, hardly a nat-
ural language, showing only far resemblance, or
occasionally no resemblance at all, to the writer’s
mother tongue (Maes, 2009). Tracing stylistic
properties within a heavily formalized language,

and attempting to resuscitate these through gener-
ation, is therefore challenging. An additional ob-
stacle for both language generation as AA is that
many of the PL’s authors cite from similar, author-
itative sources such as the Bible or the church fa-
thers’ precursory texts, thereby having in common
an ecclesiastical vocabulary that could complicate
the detection of stable writing style patterns.

Not all authors in the PL have been equally pro-
lific. These circumstances considerably limit the
set of authors for whom our task is suited (Eder,
2015). We set the condition that our text data in-
clude only texts by authors who dispose of at least
20 authentic, individual documents each. As such
we favored document counts over token counts,
and lexical variety over mere word quantity. A
list of the 18 most prolific authors, their number
of documents and the respective average length of
these documents is given in Fig. 1.
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Figure 1: 18 most prolific Patrologia Latina au-
thors ranked by document count. The bars yield
an average of the document length.

It is not trivial to design an experiment that al-
lows us to study the behavior of generated text in
the context of AA. Fig. 2 shows the experimental
setup which we propose, and in which we attempt
to maximize the comparability of both generated
and authentic data. We start by splitting the full
corpus into two equal-size document collections
(stratified at the author level), α and ω. Only α
will be used to train a LM, which then generates a
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third collection of synthetic documents. For each
author in α and ω, we aggregate all documents
into a list of sentences per sub-corpus. From these
collections, we create 20 documents containing at
least 5,000 words to create α and ω, through ran-
domly sampling sentences (without replacement)
from the author’s sentence collection. For the
creation of ᾱ, we would also create 20 artificial
5,000-word documents, but this time through sam-
pling new sentences from the LM. This approach
has its limitations, because we limit and balance
the available data to a considerable extent. Fur-
thermore, the sampling procedure implies an un-
derestimation in attribution performance, since it
strips away all supra-sentential information. Nev-
ertheless, this setup guarantees that the authen-
tic and generated corpora are maximally compa-
rable in terms of number of documents, document
length, topical diversity and style mixture—which
is our focus in the present study.

Subsequently, 5 classification experiments are
defined, where we train and and test on different
2-way combinations of the 3 datasets. In a first
pair of experiments, < α,ω > and < ω,α >, we
train and test a classifier on the authentic datasets
to assess the classifier’s performance under natu-
ral conditions. (Note that we apply the classifier
in both directions to account for any directionality
artifacts.) In a third experiment, we train and test a
classifier on the generated data only (< ᾱ, ᾱ >) to
establish to which extent the generated data pre-
serves the data’s stylistic structure at the author
level (i.e. auto-classification). Fourthly, we con-
duct an experiment where we train on the gener-
ated data in ᾱ and test on the authentic data in ω
(< ᾱ, ω >). This allows us to verify whether the
generated documents retain enough stylistic infor-
mation to correctly attribute authentic documents.
Finally, we train a classifier on the authentic data
in ω and test it on ᾱ: this setup (< ω, ᾱ >) allows
to assess whether a classifier, trained on authentic
data is still able to correctly attribute the generated
materials.

In addition, we conduct a final experiment
which can be characterized from the point of view
of self-learning or co-learning (Mihalcea, 2004)—
a semi-supervised learning technique where a core
of training data is expanded with examples from
a related but unlabeled dataset that can be classi-
fied with high confidence by a classifier trained in
the original labeled dataset. In this experiment we

compare the NGLM and RNNLM models with re-
spect to their capacity to boost attribution perfor-
mance by adding synthetic examples to the origi-
nal training set—which might be a valuable strat-
egy for real-life experiments. Specifically, we per-
form attribution on ω using a combination ofα and
ᾱ as training data (< α+ ᾱ, ω >).

Figure 2: Experimental setup. α and ω refer to
50% splits of the full corpus. ᾱ refers to the gen-
erated dataset (cf. dashed line). Each classifier
symbol refers to a classification experiment using
the data at the arrow’s source (first subscript) for
training and the data at the arrow’s target (second
subscript) for testing (note that training only has
to be performed 3 times, one per dataset).

3.2 Language Model Architectures for Text
Generation

In Section 2, the text-generation and model param-
eters were defined. For the present experiments we
generate 20 documents of 5000 words each using
a τ value of 1 and am value estimated on each au-
thor’s dataset. For the RNNLM we reset the seed
(parameter s) every 10 successfully generated sen-
tences, whereas for the NGLM we do it after every
sentence. This asymmetry is motivated by the fact
that NGLM the output distribution of an NGLM
at each step is much more skewed and therefore
sentences generated from the same seed tend to be
be much less varied. For model fitting we set the
NGLM order at 6, which, on a subjective evalua-
tion, seemed a sufficiently large value for the com-
paratively small size of the datasets.

For the RNNLM models the following param-
eter settings were selected. Embedding dimen-
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sionality M was set to 24, the hidden layer di-
mension was 200 and we stacked up 2 LSTM lay-
ers to encourage the model to learn more abstract
representations. Parameters were chosen based on
common practice and reasonable defaults without
further hyperparameter search. Each model was
trained during 50 epochs using the adaptive variant
of Stochastic Gradient Descent Adam (Kingma
and Ba, 2015) with an initial learning rate of
0.001. We set a small batch size of 50, preferring
stability over speed during training. Moreover, we
clip the gradients before each batch update to a
maximum norm value of 5 to avoid the explod-
ing gradients following (Pascanu et al., 2013) and
truncate the gradient back-propagation after 50 re-
current steps. We also applied 30% dropout af-
ter each recurrent layer following (Zaremba et al.,
2015) to avoid overfitting. For each RNNLM we
held out a validation set using 10% of the data
to monitor and evaluate training. We ensured
that validation perplexity was always lower than
train perplexity. Average validation perplexity was
4.015 with a standard deviation of 0.183.2

3.3 Attribution as Classification
For the AA classification as described in the ex-
perimental setup of section 3, we use a linear
SVM classifier (Diederich, 2003). We extract
shallow linguistic features in the form of Tfidf-
weighted character ngrams (from bigrams to four-
grams) as style markers by which to determine
authorship. Note that the feature extraction of
ngrams in the order of 2 to 4 might have im-
portant repercussions, since NGLM training fully
focuses on capturing that particular distribution,
whereas the more expressive RNNLM models full
sequences. Furthermore, we refrain from using
word-level features such as word ngrams or POS
tags, since this would introduce a further asym-
metry in the comparison given that the RNNLM
can generate unseen words whereas the NGLM
can not. The model accuracy of the SVM is fine-
tuned by searching over different value ranges for
the SVM’s parameters. The number of features is
set to range from 1,000 to 30,000 max features for
each fit, more specifically in the following order:
5,000, 10,000, 15,000 and 30,000 features. For the
C-parameter of the SVM we search over values of
respectively 1, 10, 100 and 1,000.

2All software associated with this paper is avail-
able from https://www.github.com/jedgusse/
project_lorenzo.

Source Experiment F1 P R

Real < α,ω > 0.833 0.818 0.869
< ω,α > 0.811 0.795 0.853

NGLM < α+ ᾱ, ω > 0.814 0.809 0.850
< ᾱ, ω > 0.706 0.744 0.750
< ω, ᾱ > 0.837 0.811 0.881

RNNLM < α+ ᾱ, ω > 0.872 0.878 0.892
< ᾱ, ω > 0.635 0.701 0.658
< ω, ᾱ > 0.724 0.778 0.775

Table 1: Mean F1, Precision (P) and Recall (R)
scores for all classification experiments.

4 Results

4.1 Examples of Generated Language

What follows are two short extracts from the
respective outputs of an NGLM and RNNLM
trained on Augustine (A.H.) (most prolific author
of the dataset, see Table 1), which gives an
anecdotal intuition of how the output of these
language models differs.

Ngram-based LM (ᾱ)

(1) * Sed
Yet

uis
you wish

uenire:
to come

quod
since

postridie,
tomorrow

ascensiones
ascensions

honora
honoured

pastorem,
the shepherd,

nec
and not

sane
completely

reipublicos
republican

idem
the same

testis
witness

et
also

implebitur
will be fulfilled

tamen
nevertheless

mentiendum
to be deceived

sit
it may be

propitiaberis.
you will be enriched.

RNN-based LM (ᾱ)

(2) * Et
And

idam
that same (?)

precepti,
commandment,

siue
be it

ad
towards

sensum
the feeling

noui:
I know:

nonuulde
not enough (?)

sunt
are

enim
after all

Filius
the Son

Domini
of our Lord

substantia,
our substance,

sed
but

non
none

sunt
are there

qui
who

secururum
amongst the untroubled

superbia
through pride

et
also

perrectus
righteous

est,
are,

mortalis
mortal

includendi
by including

estus
fire

que
and

fiumus
we were (?)

propter
because of

illam
this

uideantur.
may they be beheld.
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Figure 3: F1 scores for the different combinations of α, ᾱ, and ω.

The extract of RNNLM-generated text as com-
pared to the NGLM demonstrates how the
RNNLM is better at reproducing a syntactic logic
(which moreover makes translation easier). Note,
for instance, how the nominative of the relative
pronoun qui is maintained towards the end of the
subordinate clause in the participle perfect per-
rectus, and even seems to be carried on in the
next clause as opposed to the awkwardly placed
quod in the ngram-based extract. The RNNLM
is also arguably better at positioning the verbs in
the clauses. Compare, for instance, the NGLM’s
dense verbal sequence implebitur tamen mentien-
dum sit propitiaberis. Finally, the RNNLM is
more apt at generating plausible neologisms. Ex-
amples include idam (cfr. idem and quidam), fiu-
mus (cfr. fiemus), secururum (cfr. securus and the
genitive ending -orum and -arum). To a human
reader, the RNNLM produces superficially more
convincing text.

4.2 Attribution results

The results of the attribution experiments are pre-
sented in Table 1 in terms of recall, precision and
F1-scores and the distributions are visualized in
Fig. 3. We focus on the macro-averaged F1-scores
in our discussion, although one should not forget
that the scores vary considerably over individual
authors (cf. Fig. 3). With respect to the authen-
tic data, classifying α on the basis of ω is slightly
more difficult than the reverse direction, which
seems a negligible directionality artifact. When
we use the generated data as training material to
classify authentic material < ᾱ, ω > , we see that
the F1-scores drop significantly for both LMs, al-
though the NGLM seems more robust in this re-

spect. Interestingly, the drop is much less signifi-
cant for the opposite situation, where we train on
authentic material and classify generated material
< ω, ᾱ >. This suggests that enough stylistic
information is preserved in the generated text to
attribute it to the original author, but that this in-
formation in isolation does not suffice to train a
convincing attribution system on. When used in
isolation, the NGLM outperforms the RNNLM in
both setups. However, the situation is clearly dif-
ferent for the augmentation or self-learning setup
(< α+ ᾱ, ω >)—c.f. Section 3—, where we train
an attributor on the combination of α and ᾱ, and
test it on the authentic ω set. Here, we see that
the RNNLM performs better than the NGLM in
the corresponding experiment – the NGLM in fact
even performs worse in this case than in the nor-
mal < α,ω > setup.

4.3 Discussion

To understand the difference in behavior between
both LMs, it is useful to inspect Fig. 4. Here, we
use a Principal Components Analysis (Binongo
and Smith, 1999) to visualize 2500-word samples
for 3 three most prolific authors (Augustine of
Hippo, Honorius of Autun, and Gregory the Great)
using the 150 most common ngrams. We include
a mixture of authentic ω data and generated ᾱ data
for each author, comparing the NGLM and the
RNNLM. The plots shows that NGLM produces
text samples which lie very close in ngram fre-
quencies to the authentic data, whereas the texts
produced by the RNNLM follow a markedly dif-
ferent distribution than ω – this difference is very
outspoken for Augustine, for instance. As might
be expected on the basis of the observation in sec-

122



tion 3.3, the NGLM thus produces data that stays
very close to the original input, whereas RNNLM
yields fuzzier texts, that follow a slightly different
distribution. This explains why it is, for example,
easier to train an attributor on the data generated
by an NGLM than an RNNLM.
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Figure 4: PCA plots (1st 2 PCs) for 3 authors us-
ing document vectors representing the normalized
frequencies of the 150 most frequent ngrams (or-
der 2-4) in 2500-word sample. We include a mix-
ture of authentic ω data and generated ᾱ data (top:
NGLM; bottom: RNNLM).

Conversely, our results show that the situation
is different in the data augmentation setup, where
we train an attributor on the combination of α
and ᾱ and test it on the authentic ω set. In this
case, the NGLM performs worse than in the cor-
responding the non-augmented setup, whereas the
performance of the RNNLM sensitively increases.
Arguably, the fuzziness of the RNNLM-generated
data adds an interesting complexity to the original

core of authentic data, which can be exploited by
the classifier.
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Figure 5: Mean-normalized Jaccard similarity
scores between 10 most prolific authors using
word (left column) and character (right column)
bigrams to fourgrams, comparing real data (first
row), RNNLM-synthetic data with real data (sec-
ond row) and NGLM-synthetic data with real data
(third row).

While these results indirectly show that the
RNNLM did not simply overfit on α, it is an in-
teresting question to which extent α and ᾱ dis-
play (lexical) overlap in the case of both LMs. If
the overlap would indeed be larger for the NGLM
than the RNNLM, this would support our interpre-
tation. In Fig. 5, we show mean-normalized, pair-
wise Jaccard similarities for the 10 most prolific
authors in both α and ᾱ for each LM. The dark di-
agonals in the second row of the heatmaps visually
support the observation that the NGLM displays a
much more outspoken overlap between α and ᾱ.
Such an effect is much more faint in the case of
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the RNNLM and in this respect it remains more
faithful to the real data (first row for α and ω).

5 Conclusion

Our preliminary results confirm that the texts gen-
erated by a traditional NGLM are relatively ‘dull’
and ‘conservative’ in the sense that they stay rela-
tively close to the local distribution of the source
data on which they were trained. Conceptually,
the RNNLM has a clear advantage in terms of
expressiveness and capacity with respect to the
NGLM. In practice, given the small size of AA
datasets, an underfitted RNNLM yield fuzzier ex-
amples, which explains why the NGLM outper-
forms the RNNLM when the classifier is restricted
to the generated data (< ᾱ, ω > and < ω, ᾱ >).
At the same time, the training data augmentation
setup (< α+ ᾱ, ω >) shows that whereas NGLM-
generated data adds comparatively little to the au-
thentic data—reproducing a subset of the origi-
nal feature distribution, as shown in Fig. 5—,
the RNNLM-generated data presents a valuable
data contribution which does result in an abso-
lute increase in attribution performance with re-
spect to the real classification setup < α,ω >. Al-
though further research into the matter is needed,
this clearly suggests that the complexity of the
RNNLM data is useful for training data augmen-
tation, arguably capturing stylistic nuances which
a simpler LM cannot.

In the future, we will explore the flexibility of
the general RNNLM framework to develop gener-
ative architectures that better capture the style of
the training data. In particular, following (Linzen
et al., 2016) we hypothesize that forcing the RNN
to model more linguistic structure—e.g. jointly
modeling words and POS-tags—, should result in
better language generation and better style preser-
vation. Furthermore, we plan on exhaustively test-
ing the capabilities of author-specific generative
models for self-learning in AA, investigating the
effect of adding different amounts of synthetic
data and selectively adding synthetic data based
on the confidence with which it can be correctly
classified by a classifier trained on real data.

Additionally, we would like to investigate
pre-training in out-of-domain data as well as
more compact ways of modelling author-specific
language—such as conditional language models
(Tang et al., 2016)—as means to alleviate under-
fitting of the RNN models on small datasets.
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A Author names with abbreviations

Abbrv Author

H.S Hieronymus Stridonensis
G.I Gregorius I
A.H Augustinus Hipponensis
A.M Ambrosius Mediolanensis
B Beda
H.C Hildebertus Cenomanensis
H.d.S.V Hugo de S- Victore
R.T Rupertus Tuitiensis
W.S Walafridus Strabo
T Tertullianus
P.D Petrus Damianus
H.A Honorius Augustodunensis
H.R Hincmarus Rhemensis
B.C Bernardus Claraevallensis
A Alcuinus
R.M Rabanus Maurus
A.C Anselmus Cantuariensis
R.S.V Richardus S- Victoris
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