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Abstract

In this paper we present our system in
the DiscoMT 2017 Shared Task on Cross-
lingual Pronoun Prediction. Our entry
builds on our last year’s success, our sys-
tem based on deep recurrent neural net-
works outperformed all the other systems
with a clear margin. This year we inves-
tigate whether different pre-trained word
embeddings can be used to improve the
neural systems, and whether the recently
published Gated Convolutions outperform
the Gated Recurrent Units used last year.

1 Introduction

The DiscoMT 2017 Shared Task on Cross-lingual
Pronoun Prediction (Loáiciga et al., 2017) con-
centrates on the difficult task of translating pro-
nouns between languages. For example differ-
ent gender marking between languages compli-
cates the translation process. This shared task in-
cludes three languages and four translation direc-
tions: English-French, English-German, German-
English and Spanish-English. In the target lan-
guage side selected set of pronouns are substituted
with replace token, and the task is then to pre-
dict the missing pronoun. Furthermore, the tar-
get side language is not given as running text, but
instead in lemma plus part-of-speech tag format,
which makes even harder to model the target lan-
guage. An example of an English-French sentence
pair is given in Figure 1.

In this paper we describe the pronoun predic-
tion system of the Turku NLP Group. Our system
extends the last year’s deep recurrent neural net-
works based system with word-level embeddings,
two layers of Gated Recurrent Units (GRUs) and
a softmax layer on top of it to make the final
prediction (Luotolahti et al., 2016). This year

Source: That ’s how they like to live .
Target: ce|PRON être|VER comme|ADV
cela|PRON que|PRON REPLACE 3 aimer|VER
vivre|VER .|.

Figure 1: An example sentence from the English
to French training data, where the REPLACE 3 is
a placeholder for the word to be predicted.

we investigate whether pre-trained word embed-
dings improve the system performance compared
to the random initialization used in the previous
system. We also study whether the recently pub-
lished Gated Convolution outperforms Gated Re-
current Units.

The network uses both source and target con-
texts to make the prediction, and no additional data
or tools are used beside the data provided by the
organizers. Also our pre-trained word embeddings
are trained on the same data.

2 System Architecture

As in the previous year, our system is a deep neural
network model reading context from both source
and target side sentences around the focus pro-
noun. The most important change are the token-
level embeddings, which are now pre-trained be-
fore training the full system. The system archi-
tecture itself is improved relative to the last year
system by filtering from the data aligned pronouns
that are too long, as these are alignment errors
rather than actual pronouns. We also increase the
size of the last dense neural network layer from
320 to 720 units, to address a possible bottleneck
caused by excessive data compression. We also
experiment with changing the basic network units
from Gated Recurrent Units to Gated Convolu-
tions. Otherwise the network and parameters are
exactly the same, and are only shortly explained
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here. More information is provided in Luotolahti
et al. (2016).

In both source and target side the context is read
separately in left and right directions starting from
the focus pronoun1 or the replace token, so that
the source side pronoun is always included in both
right and left contexts, but the special replace
token in the target side is not, as it does not pro-
vide any useful information. All words in the con-
texts are embedded and pushed through the layers
of either GRU or Gated Convolutions, finally con-
catenating the vectors, along with the embedding
vector for the aligned pronoun, for the last softmax
layer, which makes the final prediction.

The systems tested can be divided into three cat-
egories, those with pre-trained embeddings, those
using GRU as the basic network unit and those
using convolutional neural networks as the basic
unit. All systems were tested on the dev-set and
the best two were chosen for submission. All sys-
tems use the same input data, basic structure of the
system, and features. The context used by the sys-
tems is restricted to a single sentence, as this pro-
vided the best results last year and in preliminary
experiments we were unable to obtain a consistent
gain by expanding the context.

The systems using GRU as the basic network
unit are listed in Table 1 as GRU, GRU dropouts,
GRU Pronoun Context, Mixed Context and
GRU Word2Vec. Of these systems, GRU uses
randomly initialized embeddings and is essen-
tially our last year’s system. GRU dropouts is
identical to the former system, but has dropouts
of 0.5 added after every GRU layer to possibly
improve generalization of the system. The
three latter systems, GRU Pronoun Context,
GRU Mixed Context and GRU Word2Vec, all
have identical architecture to the GRU system, but
use pre-trained embeddings. The architecture of
these systems is depicted in Figure 2.

Systems GatedConv 1, GatedConv 2 and Gat-
edConv Mixed Context use all convolutional neu-
ral networks as their basic unit. Of these the
last, GatedConv Mixed Context, uses the same
pre-trained embeddings as the Mixed Context sys-
tem. All of these systems use stacked gated
convolutional layers as a replacement to stacked
GRUs. Gated convolutional networks have lately
been demonstrated to offer comparable perfor-

1As the training data includes word-level alignments be-
tween the source and target language, we are able to identify
the source language counterpart for the missing pronoun.

mance to recurrent neural networks (Dauphin
et al., 2016). GatedConv 1 uses two layers of
gated linear units and both GatedConv 2 and Gat-
edConv Mixed Context use four layers, all convo-
lutional systems use convolution width of 10 and
90 units. For more details on the gated convolu-
tional architectures, refer to Dauphin et al. (2016).
The architecture of the network for convolutional
systems is identical to the GRU ones, except we
have replaced GRU layers with convolutional lay-
ers. The convolutional layers are gated, in prac-
tice we the output of a gated convolutional layer is
an elementwise product between a linear convolu-
tional layer and a convolutional layer with sigmoid
activation function, both convolutional layers re-
ceiving the same input.

2.1 Word Embeddings

Word embeddings are trained on the official
training data provided by the organizers having
approximately 60 million words per language,
which is relatively small for training regular
word2vec (Mikolov et al., 2013) style word em-
beddings. In addition to the regular word2vec em-
beddings we train two alternative word embedding
models with the training task geared towards this
particular pronoun prediction task. Firstly, instead
of a sliding window of words we define the context
for a source word to be all pronouns in the counter-
part target sentence. In other words, instead of pre-
dicting nearby words, we modify word2vec to pre-
dict target sentence pronouns. This way, similar
embeddings are given to source-side words which
associate with similar pronouns on the target side,
which we expect to be a good pre-training strategy
for pronoun prediction. This pretraining method
we refer to as the pronoun context. Secondly, we
extend the pronoun context method with the stan-
dard skip-gram context, i.e. predicting all target
sentence pronouns as well as words nearby in the
linear order. Since the shared task training data
includes also word alignments, we use a union of
skip-gram contexts on the source side and the tar-
get side. Therefore, in this mixed context method,
for every source word, word2vec is used to pre-
dict the target sentence pronouns, the source sen-
tence context words, and the target sentence con-
text lemmas.

The word embeddings are trained using
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Figure 2: GRU architecture

word2vec2 and word2vecf3 softwares by Mikolov
et al. (2013) and Levy and Goldberg (2014) re-
spectively, the latter supporting arbitrary contexts
for word2vec style embedding learning. All em-
beddings are trained using the full training data,
i.e. also sentences without training examples for
the pronoun prediction task and no other data is
used. All word embeddings use 90-dimensional
vectors, and are trained using the skip-gram archi-
tecture with negative sampling and 10 training it-
erations.

2.2 Data and Training
The training data provided by the organizers is
based on three different datasets, the Europarl
dataset (Koehn, 2005), news commentary corpora
(IWSLT15, NCv9), and the TED corpus4. We
used the whole TED corpus only as development
data, and thus our submitted systems and word
embeddings are trained on the union of Europarl
and news commentary texts, which are randomly
shuffled. The total size of training data for each
source–target pair is approximately 2.2–2.4 mil-
lion sentences, having 590K–800K training exam-
ples depending on the pair.

Since the main metric in the official evaluation
is macro recall, our submission is trained to opti-
mize this metric. This is achieved by weighting
the loss of the training examples inversely pro-

2https://github.com/tmikolov/word2vec
3https://github.com/BIU-NLP/word2vecf
4http://www.ted.com

portional to the frequencies of the classes, so that
misclassifying a rare class is a more serious error
than misclassifying a common class. This scheme
produces outputs with a higher emphasis on rare
classes. This scheme yielded very good results last
year, giving more than 4 percent point improve-
ment on average.

Exactly the same system architecture is used
for all four language pairs, and no language-
dependent optimization was carried out. This
makes our system fully language-agnostic. The
only difference is the number of epochs used in
training, set for each language pair separately us-
ing the prediction performance on the develop-
ment set.

3 Results

Table 1 shows our system variants evaluated on
the test data. In general, the recurrent systems
seem to be performing better than the convolu-
tional systems. However, since due to time re-
strictions we were unable to perform a special-
ized hyper-parameter search on any of the sys-
tems, only tentative conclusions can be made. Fur-
ther, all systems seem to generally benefit from
the pre-trained input vectors, with the excpeption
of plain word2vec. Pre-trained embeddings with
context which includes pronoun information per-
form better than plain word2vec pre-training and
random initialization. Adding dropouts also im-
proved performance on the test set, which was not
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En-De De-En En-Fr Es-En Average Rank
GRU 52.22 56.79 53.65 45.51 52.22 7
GRU_dropouts 49.44 64.25 56.05 54.63 56.09 5
GRU_Pronoun_Context 61.66 69.21 64.74 58.78 63.60 2
GRU_Mixed_Context 68.95 68.88 66.89 58.82 65.89 1
GRU_Word2Vec 42.91 45.98 48.49 49.67 46.76 8
GatedConv_1 43.57 59.22 60.37 52.29 53.86 6
GatedConv_2 45.77 69.35 58.02 52.4 56.39 4
GatedConv_Mixed_Context 46.64 68.91 61.53 58.78 58.97 3

Table 1: Test set results of the variants of the system tested against the test sets.

visible in the development set results.

It is to be noted that the systems performed
worse on the test data than the development data,
indicating overfitting to the development data,
but their relative strength remained roughly the
same with all top three systems utilizing embed-
ding pretraining based on the task, with the only
exception being that system with dropouts per-
formed better than without, which is fitting be-
cause dropouts should reduce overfitting. Also,
surprisingly word2vec embedding initialization
performed worse than random initialization.

Compared to systems submitted for the task, our
system performed fairly well. For language pairs
German − English and English − French our sys-
tems, when measured with macro recall, the of-
ficial task metric, our system received the best
scores among the submitted systems, and for lan-
guage pair Spanish - English second best scores
by 0.05 percent points. This is in contrast to lan-
guage pair English - German in which our system
received second best score, but the difference to
the winning system is almost 10 percent points.

4 Conclusions

In this paper we presented our improved system
for cross-lingual pronoun prediction shared task.
We included pre-trained word embeddings as well
as evaluated the performance of Gated Convolu-
tions compared to Gated Recurrent Units as ba-
sic units of our deep network. On the develop-
ment set, we found that the Gated Recurrent Units
outperform the Gated Convolution and that pre-
training the embeddings in a task-specific fashion
outperforms the vanilla word2vec method.

Our system is openly available at https://
github.com/TurkuNLP/smt-pronouns.
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