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Abstract

We describe the Uppsala system for the
2017 DiscoMT shared task on cross-
lingual pronoun prediction. The system
is based on a lower layer of BiLSTMs
reading the source and target sentences
respectively. Classification is based on
the BILSTM representation of the source
and target positions for the pronouns. In
addition we enrich our system with de-
pendency representations from an external
parser and character representations of the
source sentence. We show that these addi-
tions perform well for German and Span-
ish as source languages. Our system is
competitive and is in first or second place
for all language pairs.

1 Introduction

Cross-lingual pronoun prediction is a classifica-
tion approach to directly estimate the translation
of a pronoun, without generating a full transla-
tion of the segment containing the pronoun. The
task is restricted to pronouns at subject positions
only and it is defined as a “fill-in-the-gap-task™:
given an input text and a translation with place-
holders, replace the placeholders with pronouns.
Word alignment links of the placeholders to the
source sentence are also given. This setting allows
to analyze both the source and the target languages
to create features, potentially providing the means
to understand the different aspects involved in pro-
noun translation.

First formalized by Hardmeier (2014), the ap-
proach was introduced as a shared task at the Dis-
coMT 2015 Workshop (Hardmeier et al., 2015).
In 2016, the shared task included more language
pairs and lemmatized target data (Guillou et al.,
2016). This year’s edition (Lodiciga et al., 2017)
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me ayudan a ser escuchada

STC 1 “me helpg pers.py to be heard”

trg | REPLACE help me to be heard
pos | PRON VERB PRON PART AUX VERB
ref | They help me to be heard

Figure 1: Spanish-English example.

also features lemmatized target data and it in-
cludes the Spanish-English language pair, which
introduces pro-drops or null subjects to the task.
These refer to omitted subject pronouns whose in-
terpretation is recovered through the verb’s mor-
phology, as shown in Figure 1.

Given the success of neural networks for cross-
lingual pronoun classification (Hardmeier et al.,
2013; Luotolahti et al., 2016; Dabre et al., 2016),
we wanted to explore this type of system archi-
tecture. Our system is based on BiLSTMs en-
hanced with information about the source pro-
noun, the pronoun’s syntactic head dependency
and character-level representations of the source
words. Our system ranked first for English—
German, with 10 percentage points of macro re-
call ahead of the second best team. For the other
three language pairs, the system obtained the sec-
ond best macro recall. In addition, our system
reached the highest accuracy for three out of the
four language pairs.

2 Related Work

Our system architecture draws inspiration from
several sources, most prominently from the pro-
noun prediction system by Luotolahti et al. (2016)
and the parser architecture by Kiperwasser and
Goldberg (2016).

Luotolahti et al. (2016) built the winning sys-
tem for the 2016 edition of this shared task. The
system is based on two stack levels of GRU units
and it relies almost uniquely on context. Other
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than representations of the source pronouns, its in-
put contains up to 50 tokens of context, reading
away from the pronoun to be predicted, to the left
and the right, both for the source and the target
language. It uses a weighted loss which penal-
izes classification errors on low frequency classes.
Our system mainly differs from this in that we use
BiLSTM units reading from the sentence bound-
aries towards the pronoun and we rely on sampling
strategies instead of weighting the losses.

Kiperwasser and Goldberg (2016) describe a
dependency parser based on a BiLSTM layer rep-
resenting the input sentence. The input to the BiL-
STMs are word and POS-tag embeddings. Each
word is then represented by the BILSTM represen-
tation at this position, which forms a basis for both
a graph-based and a transition-based parser. We
use the same underlying BiLSTM layer for word
representations, but in our case, we feed the repre-
sentation of selected words to a pronoun classifier.
de Lhoneux et al. (2017) describe several additions
to this parser, including character embeddings as
part of the word representation. Given their value
to capture morphological information, we include
character embeddings for the source language in
our system.

Lodiciga (2015) reports that pronoun predic-
tion benefits from syntactic features when using
a Maximum Entropy classifier. Similarly, but us-
ing an SVM classifier, Stymne (2016) provides
evidence in favor of including information about
dependency heads for pronoun classification, es-
pecially for the source languages German and
French. We followed these findings and included
head dependency information into our current sys-
tem.

3 Data and Evaluation

We use only the training data provided by the
shared task (Lodiciga et al., 2017)." For devel-
opment data, we concatenate all available devel-
opment data for each language pair. Test data is
the official shared task test data. For training data
we either concatenate all available training data, or
use only the in-domain IWSLT data, which con-
tains TED talks. In addition, we perform experi-
ments with a very simple domain adaptation tech-
nique in the spirit of Zoph et al. (2016), but apply-
ing it to different domains instead of to different

See also https://www.idiap.ch/workshop/
DiscoMT/shared-task.
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languages. We first train models on all available
data, then continue training these models for addi-
tional epochs using only in-domain IWSLT data.
While the source side sentences are regular in-
flected words, the target side sentences are given
as lemmas with POS-tags. In order to utilize
richer representations for the source side we tag
and parse the source data. For English and Ger-
man we use Mate Tools (Bohnet and Nivre, 2012)
and for Spanish we use UD-Pipe (Straka et al.,
2016). To achieve a flat representation, we rep-
resent each source word by its word form, POS-
tag and the dependency label for its head (e.g.
woman|NOUN|SBJ, false|JJINMOD). After pars-
ing, all input words and lemmas are lowercased,
and all numerals are replaced by a single token.

3.1 Sampling

One of the inherent difficulties of the task is the
imbalance in the distribution of the classes. Ev-
ery language pair is different, but in general the
OTHER class is large in comparison to all other
classes, and masculine pronouns are more frequent
than feminine pronouns. The feminine plural pro-
nouns is one of the most extreme cases, since they
are only used whenever their referent points to a
group containing exclusively feminine members.
During training, we sample the sentences to use
in each epoch, in order to handle the imbalance
in the data, which in addition also reduces the
memory needed to handle all training data. For
each epoch we use a small proportion of the train-
ing data that we randomly sample by selecting
each sentence based on a different probability for
each pronoun class. In case a sentence has sev-
eral pronoun instances, we use the probability of
the rarest class in the sentence.”> We use several
sampling schemes. Equal sampling optimizes
macro-recall, it accommodates an equal number
of instances for each pronoun class per sample. In
case a class has fewer instances than required, all
available instances for that class are used. Propor-
tional sampling optimizes accuracy by sampling
based on the class proportions in the development
data. We also investigated an offline sampling
scheme, which is similar to proportional sampling.
In this case the sample has the same distribution
of classes as the development data and also the
same size. Because the sample size is small, this

2Using all pronoun instances of a sentence improves train-
ing efficiency, but at the cost of making the sample propor-
tions less precise.
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Figure 2: System architecture overview.

sampling method requires training for many more
epochs. In order to have exact sample proportions,
rather than the inexact proportions from choosing
each example with a specified probability, we pre-
compute and store the samples in this scheme.

3.2 Evaluation

We give results on two metrics, macro-recall
(macro-R) and accuracy. Macro-R is the official
shared task metric. It gives the average recall for
each pronoun class, thus giving the same impor-
tance to rare classes as to common classes. We
also give unofficial accuracy scores, to give a more
balanced view of system performance. All scores
are given on both the official test data and dev data.

4 System Description

Our system is a neural network architecture with a
multi-layer perceptron (MLP) classifier fed with
BiLSTM (Hochreiter and Schmidhuber, 1997)
representations of tokens, which in turn are based
on embeddings for word forms, lemmas, POS-
tags, dependency labels, and character represen-
tations. The system is depicted in Figure 2.

Each token in the target sentence is represented
as the concatenation of an embedding of its lemma
and its POS-tag. Each source token is represented
as the concatenation of embeddings for the input
word, POS-tag, dependency label, and a character
representation based on a separate character Bil-
STM, reading the sequence of characters in the
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Parameter Value
Word embedding dimensions 100
Lemma embedding dimensions 100
POS-tag embedding dimensions 10
Dep label embedding dimensions 15
Character embedding dimensions 12
Character BILSTM dimensions 100
BiLSTM Layers 2
BiLSTM hidden dimensions 200
BiLSTM output dimensions 200
Hidden units in MLP 100
« (for word dropout) 0.25
LSTM dropout 0.33

Table 1: Hyper-parameter values.

token. Character representations were only used
in the source, since we believe that they can cap-
ture morphology, which is not meaningful for the
lemmatized target sentence. All embeddings are
initialized randomly. The source and target token
representations are then fed to a separate two-level
BiLSTM that reads the sentence backwards and
forwards. No cross-sentence information is used.

On top of this architecture we have an MLP, us-
ing tanh for activation, that for each pronoun in-
stance takes as input the BILSTM representation
of the target pronoun, the source pronoun, the de-
pendency head word of the source pronoun, and
in addition takes the token representation of the
source pronoun. For Spanish-English, we did not
use the dependency head word, since the source
pronoun is already encoded in a verb, because
of pro-drop, see Figure 1. The MLP consists of
this input layer, a hidden layer and a softmax out-
put layer, representing all pronoun classes for the
given target language.

We use dropout on all LSTMs. In addition,
we use the word dropout of Iyyer et al. (2015)
for words and lemmas, where we randomly re-
place a word with the UNKNOWN token with a
frequency inversely proportional to the word fre-
quency. Moreover, we replace all words occur-
ing only once in the training data with the UN-
KNOWN token. Table 1 shows the values of the hy-
per parameters used in the system. We did not per-
form any optimization of hyper parameter values.
Our system is implemented using DyNet (Neubig
et al., 2017), and re-uses code from Kiperwasser
and Goldberg (2016) and de Lhoneux et al. (2017).

We train the full model jointly, using a log
loss on the final pronoun classification and Adam
(Kingma and Ba, 2015) as the optimizer. Train-
ing the BiLSTMs as part of the full classification



System de-en en-de en-fr es-en
mac-R  acc mac-R  acc mac-R  acc mac-R  acc
All components 0.67 0.84 0.47 0.73 0.51 0.73 0.72 0.83
No char emb 0.65 0.83 0.47 0.73 0.52 0.73 0.69 0.82
No dep emb 0.67 0.84 0.47 0.74 0.53 0.74 0.70 0.83
No pos+dep emb 0.67 0.82 0.46 0.72 0.51 0.72 0.68 0.82
No dep emb/head 0.57 0.80 0.47 0.74 0.53 0.74 - -
No pron emb (MLP) 0.65 0.81 0.46 0.73 0.53 0.74 0.69 0.82
None of the above 0.49 0.73 0.46 0.72 0.50 0.71 0.67 0.81

Table 2: Development results with different system settings, training with IWSLT data, and proportional

sampling. Scores are Macro-R and accuracy.

System de-en en-de en-fr es-en
mac-R  acc mac-R  acc mac-R  acc mac-R  acc
All components 0.65 0.84 0.48 0.76 0.47 0.65 0.56 0.65
No char emb 0.59 0.77 0.47 0.75 0.48 0.67 0.55 0.66
No dep emb 0.63 0.81 0.48 0.76 0.45 0.66 0.54 0.62
No pos+dep emb 0.62 0.78 0.46 0.73 0.46 0.65 0.48 0.50
No dep emb/head 0.54 0.74 0.50 0.80 0.46 0.66 - -
No pron emb (MLP) 0.63 0.80 0.48 0.76 0.46 0.67 0.56 0.65
None of the above 0.51 0.71 0.46 0.73 0.47 0.64 0.44 0.47

Table 3: Test results with different system settings, training with IWSLT data, and proportional sampling.

Scores are Macro-R and accuracy.

instead of training them separately allows them
to adapt better to the pronoun classification task.
We use no mini-batching, so in order to stabilize
the system to some extent, we follow Kiperwasser
and Goldberg (2016) and only update the parame-
ters after collecting several non-zero losses, in our
case, 25. In all cases we choose the best epoch
based on the average of macro-R and accuracy on
the development data. We believe that using both
metrics for choosing the best epoch will give us a
system that can predict rare classes well, while not
sacrificing the overall accuracy across classes.

5 Experiments and Results

First we performed experiments to evaluate the
different components of our network, using only
IWSLT data. These experiments are run for 100
epochs with proportional sampling and 10% of the
training data in each epoch. Table 2 shows the re-
sults on development data and Table 3 shows the
results on test data. We can note a marked differ-
ence in performance for English as a target lan-
guage on the one hand, and English as a source
language on the other hand, which interestingly
mirrors previous results with an SVM classifier
(Stymne, 2016). With German or Spanish as the
source, nearly all the components are useful, and
discarding them all results in a large performance
drop on both metrics. Using the source pronoun
head in the MLP was highly useful for German,

but not used for Spanish, where the source pro-
noun is already encoded in the verb. When English
is the source language, we see little effect of any
component; some of them even hurt performance
slightly. The all system did give slightly better
scores than the none system even in this direction,
though, so we decided to use the all components
system for all languages in our submission.

For our main experiments, we used all train-
ing data and different sampling schemes. For
the equal and proportional sampling schemes we
used samples containing 10% of the data and ran
the system for 72 hours, which resulted in 36-66
epochs, depending on the language pair and sam-
pling scheme. When domain adaptation is used,
we ran an additional 100 epochs with the same set-
tings but only IWSLT data, as a final step. For of-
fline sampling, we precomputed 500 samples per
training file, and ran 860-1204 epochs.

Tables 4 and 5 shows the results of these exper-
iments for development and test data. Using all
data and proportional sampling improves over us-
ing only IWSLT, but to different degrees for the
different language pairs. Overall we see that for
several language pairs the scores are quite differ-
ent on dev and test data. For English-German,
macro-R on test is higher, which can be explained
by the missing rare class man in the test data. For
German-English macro-R is lower on test, which
can be explained by our system failing to predict
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Sampling DA de-en en-de en-fr es-en
mac-R acc | mac-R acc | mac-R acc | mac-R acc
Equal no 0.80 0.81 0.64 0.72 0.64 0.75 0.75 0.82
Equal yes 0.81 0.86 0.62 0.73 0.66 0.77 0.79 0.82
Proportional no 0.69 0.85 0.48 0.76 0.58 0.75 0.71 0.83
Proportional | yes 0.71 0.87 0.51 0.75 0.60 0.76 0.72 0.84
Offline no 0.67 0.83 049 0.73 0.59 0.76 0.70 0.83

Table 4: Final development results on all training data with different types of sampling, with and without
domain adaptation (DA). Scores are Macro-R and accuracy.

Sampling DA de-en en-de en-fr es-en
mac-R acc | mac-R acc | mac-R acc | mac-R acc
Equal no 0.65 0.78 0.73 0.76 0.64 0.69 0.59 0.64
Equal yes 0.69 0.85 0.78 0.79 0.64 0.70 0.59 0.68
Proportional no 0.66 0.85 0.62 0.79 0.53  0.65 0.58 0.66
Proportional yes 0.67 0.85 0.62 0.79 0.50 0.65 0.56 0.62
Offline no 0.66 0.83 0.59 0.74 0.48 0.65 0.51 0.65
Shared task baseline - 038 0.54 0.54 0.55 0.37 048 034 0.37

Table 5: Final test results on all training data with different types of sampling, with and without domain
adaptation (DA). The last line shows the official shared task baseline scores. Scores are Macro-R and

accuracy.

the very few instances of two rare classes. For
Spanish—English, the scores on both metrics are
overall lower for all classes in test, for which we
can see no clear explanation.

We expected to see a trade-off between macro-
R and accuracy for the equal sampling compared
with the other sampling methods, like for Luoto-
lahti et al. (2016) who used weighted loss. For the
dev data we see clearly higher macro-R with equal
sampling, but, less of a difference for accuracy.
For the test data with domain adaption, though,
scores on both metrics are either better or similar
with equal sampling compared to the other sam-
pling methods. This means that the system with
equal sampling performs strongly on both metrics,
contrary to our expectations, making it clearly the
best choice for this task. We believe that one par-
tial reason for this could be that we choose the best
epoch based on the average of the two metrics.

Domain adaptation improved the results slightly
in most cases on dev data. On the test data, we
also saw improvements or stable results in most
cases, the exceptions being proportional sampling
for English-French and Spanish-English, where
we saw a small drop in results. We also note that
all of our systems are considerably better than the
shared task LM-based baseline (Lodiciga et al.,
2017), shown in Table 5, on both metrics.

For our shared task submission we used the sys-
tem with equal sampling and domain adaptation as
our primary system, bold in Table 4, since it had
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the best macro-R scores on the development set.
We used the system with proportional sampling
with domain adaptation as our secondary system,
italic in Table 4. Our systems perform well in the
shared task, achieving first and second places for
both macro-R and accuracy in all cases. Our pri-
mary systems have high scores on both macro-R
and accuracy, in contrast to most other systems in
the shared task.

6 Conclusions

We have presented the Uppsala system for the
2017 DiscoMT shared task on cross-lingual pro-
noun prediction. It is a neural network with Bil-
STMs as backbone representations of words and
lemmas. We show that for German and Spanish
as source languages it is useful to add informa-
tion from characters, POS-tags and dependencies,
whereas this has little effect for English as a source
language. We define effective sampling schemes
to optimize macro-R and accuracy. Our primary
systems have high scores on both macro-R and ac-
curacy, when we use sampling schemes with an
equal distribution of classes, and choose the best
epoch based on the average of macro-R and accu-
racy. We also show that simple domain adaptation
where we train on only in-domain data in the last
epochs can improve results. Our system has the
highest or second highest score for both macro-R
and accuracy for all language pairs in the official
evaluation.
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