
Proceedings of the Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 680–686
Copenhagen, Denmark, September 711, 2017. c©2017 Association for Computational Linguistics

Variable Mini-Batch Sizing and Pre-Trained Embeddings

Mostafa Abdou and Vladan Glončák and Ondřej Bojar
Charles University, Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics
mostafahany56@gmail.com, {gloncak,bojar}@ufal.mff.cuni.cz

Abstract

This paper describes our submission to
the WMT 2017 Neural MT Training Task.
We modified the provided NMT system in
order to allow for interrupting and con-
tinuing the training of models. This al-
lowed mid-training batch size decremen-
tation and incrementation at variable rates.
In addition to the models with variable
batch size, we tried different setups with
pre-trained word2vec embeddings. Aside
from batch size incrementation, all our ex-
periments performed below the baseline.

1 Introduction

We participated in the WMT 2017 NMT Training
Task, experimenting with pre-trained word em-
beddings and mini-batch sizing. The underly-
ing NMT system (Neural Monkey, Helcl and Li-
bovický, 2017) was provided by the task organiz-
ers (Bojar et al., 2017), including the training data
for English to Czech translation. The goal of the
task was to find training criteria and training data
layout which leads to the best translation quality.
The provided NMT system is based on an atten-
tional encoder-decoder (Bahdanau, Cho, and Ben-
gio, 2014) and utilizes BPE for vocabulary size re-
duction to allow handling open vocabulary (Sen-
nrich, Haddow, and Birch, 2016).

We modified the provided NMT system in order
to allow for interruption and continuation of the
training process by saving and reloading variable
files. This did not result in any noticeable change
in the learning. Furthermore, it allowed for mid-
training mini-batch size decrementation and incre-
mentation at variable rates.

As our main experiment, we tried to employ
pre-trained word embeddings to initialize embed-
dings in the model on the source side (monolin-

gually trained embeddings) and on both source
and target sides (bilingually trained embeddings).

Section 1.1 describes our baseline system. Sec-
tion 2 examines the pre-trained embeddings and
Section 3 the effect of batch size modifications.
Further work and conclusion (Sections 4 and 5)
close the paper.

1.1 The Baseline System

Our baseline model was trained using the provided
NMT system and the provided data, including the
given word splits of BPE (Sennrich, Haddow, and
Birch, 2016). Of the two available configurations,
we selected the 4GB one for most experiments to
fit the limits of GPU cards available at MetaCen-
trum.1 This configuration uses a maximum sen-
tence length of 50, word embeddings of size 300,
hidden layers of size 350, and clips the gradient
norm to 1.0. We used a mini-batch size of 60 for
this model.

Due to resource limitations at MetaCentrum,
the training had to be interrupted after a week
of training. We modified Neural Monkey to en-
able training continuation by saving and loading
the model and we always submitted the continued
training as a new job. When tested with restarts ev-
ery few hours, we saw no effect on the training. In
total, our baseline ran for two weeks (one restart),
reaching BLEU of 15.24.

2 Pre-trained Word Embeddings

One of the goals of NMT Training Task is to re-
duce the training time. The baseline model needed
two weeks and it was still not fully converged.
Due to the nature of back-propagation, variables
closer to the expected output (i.e. the decoder) are
trained faster while it takes a much higher number
of iterations to propagate corrections to early parts

1https://metavo.metacentrum.cz/

680



0

5

10

0 2 4 6 8 10 12 14 16 18 20

B
L

E
U

Steps (in millions examples)

Baseline
Both Sides

Source-Only
Larger Source-Only

Figure 1: Results of pre-trained embeddings initialized models as compared to baseline model.

Baseline Source-Only Both Sides Larger Source-Only
Config for 4GB 4GB 4GB 8GB
Mini-batch size 60 60 60 150
Aux. symbols init. N (0, 0.012) U(0, 1) N (0, 0.012) N (0, 0.012)
Pre-trained embeddings none source source and target source

Embeddings model – CBOW Skip-gram CBOW
Pre-trained with – gensim bivec gensim

Table 1: The different setups of models initialized with pre-trained embeddings.

of the network. The very first step in NMT is to en-
code input tokens into their high-dimensional vec-
tor embeddings. At the same time, word embed-
dings have been thoroughly studied on their own
(Mikolov et al., 2013b) and efficient implementa-
tions are available to train embeddings outside of
the context of NMT.

One reason for using such pre-trained embed-
dings could lie in increased training data size (us-
ing larger monolingual data), another reason could
be the faster training: if the NMT system starts
with good word embeddings (for either language
but perhaps more importantly for the source side),
a lower number of training updates might be nec-
essary to specialize the embeddings for the trans-
lation task. We were not allowed to use additional
training data for the task, so we motivate our work
with the hope for a faster convergence.

2.1 Obtaining Embeddings

We trained monolingual word2vec CBOW embed-
dings (continuous bag of words model, Mikolov
et al., 2013a) of size 300 on the English side of the
corpus after BPE was applied to it, i.e. on the very
same units that the encoder in Neural Monkey will
be then processing. The training was done using
Gensim2 (Řehůřek and Sojka, 2010).

We started with CBOW embeddings because
they are significantly faster to train. However, as

2https://radimrehurek.com/gensim/

they did not lead to an improvement, we decided
to switch to the Skip-gram model which is slower
to train but works better for smaller amounts of
training data, according to T. Mikolov.3

Bilingual Skip-gram word embeddings were
trained on the parallel corpus after applying BPE
on both sides. The embeddings were trained using
the bivec tool4 based on the work of Luong, Pham,
and Manning (2015).

In all setups, the pre-trained word embeddings
were used only to initialize the embedding ma-
trix of the encoder (monolingual embeddings) or
both encoder and decoder (bilingual embeddings).
These initial parameters were trained with the rest
of the model.

The embeddings of the four symbols which are
added to the vocabulary for start, end, padding,
and unknown tokens were initialized randomly
with uniform and normal distributions.

2.2 Experiments with Embeddings

The tested setups are summarized in Table 1 and
the learning curves are plotted in Figure 1. The
line “Config for” indicates which of the provided
model sizes was used (the 4GB and 8GB setups
differ in embeddings and RNN sizes, otherwise,
the network and training are the same).

3https://groups.google.com/d/
msg/word2vec-toolkit/NLvYXU99cAM/
E5ld8LcDxlAJ

4https://github.com/lmthang/bivec

681



Embeddings from Monolingual Training NMT Training
CBOW (no BPE) CBOW (BPE) Baseline Source-Only

Vocabulary Full Common subset (265 words)
WordSim-353 (ρ) 0.320 0.610 0.571 0.621 0.527
MEN (ρ) 0.300 0.610 0.621 0.583 0.591
SimLex-999 (ρ) 0.064 0.173 0.171 0.519 0.267

Table 2: Pairwise cosine distances between embeddings correlated with standard human judgments for
the common subset of the vocabularies. Best result in each row in bold.

We used uniform distribution from 0 to 1 in the
first experiment with embeddings and returned to
the baseline normal distribution in subsequent ex-
periments.

The best results we were able to obtain are
from a third experiment “Larger Source-Only”
with batch size increased to 150 but also with dif-
ferences in other model parameters. (We ran this
setup on a K80 card at Amazon EC2.) This run is
therefore not comparable with any of the remain-
ing runs, but we nevertheless submitted it as our
secondary submission for the WMT 2017 training
task (i.e. not to be evaluated manually).

2.3 Discussion

Due to lack of resources, we were not able to
run pairs of directly comparable setups. As Fig-
ure 1 however suggests, all our experiments with
pre-trained embeddings performed well below the
baseline of the 4GB model. This holds even for
the larger model size.

2.3.1 Analysis of Embeddings

In search for understanding the failure of pre-
trained embeddings,5 we tried to analyze the em-
beddings we are feeding and getting from our sys-
tem.

Recent work by Hill et al. (2017) has demon-
strated that embeddings created by monolingual
models tend to model non-specific relatedness of
words (e.g. teacher being related to student) while
those created from NMT models are more ori-
ented towards conceptual similarity (teacher ≈
professor) and lexical-syntactic information (the
Mikolov-style arithmetic with embedding vectors
for morphosyntactic relations like pluralization
but not for “semantic” relations like France-Paris).
It is therefore conceivable, that embeddings pre-
trained with the monolingual methods are not suit-
able for NMT.

5This negative result actually contradicts another set of
experiments using the Google News dataset embeddings cur-
rently carried out at our department.

We performed a series of tests to diagnose four
sets of embeddings: the baseline for the compar-
ison are embeddings trained monolingually with
the CBOW model without BPE processing. BPE
may have affected the quality of embeddings, so
we also evaluate CBOW trained on the training
corpus after applying BPE. These embeddings
were used to initialize the Source-Only setup. Fi-
nally two sets of embeddings are obtained from
Neural Monkey after the NMT training: from the
Baseline run (random initialization) and Source-
Only (i.e. the CBOW model used in initialization
and modified through NMT training).

The tests check the capability of the respective
embeddings to predict similar words, as manually
annotated in three different datasets: WordSim-
353, MEN and Simlex-999. WordSim-353 and
MEN contain a set of 353 and 3000 word pairs,
respectively, rated by human subjects according
to their relatedness (any relation between the two
words). Simlex-999, on the other hand, is made
up of 999 word pairs which were explicitly rated
according to their similarity. Similarity is a spe-
cial case of relatedness where the words are re-
lated by synonymy, hyponymy, or hypernymy (i.e.
an “is a” relation). For example, car is related to
but not similar to road, however it is similar to
automobile or to vehicle. Spearman’s rank cor-
relation (ρ) is then computed between the ratings
of each word pair (v, w) from the given dataset
and the cosine distance of their word embeddings,
cos(emb(v), emb(w)) over the entire set of word
pairs. The results of the tests are shown in Table 2.

The tests were performed for the intersecting
subset of all four vocabularies, i.e. the words not
broken by BPE and known to all three datasets.
(265 words). For the CBOW embeddings which
were trained without BPE being applied, the
scores of the full vocabulary (which has a much
higher coverage of the testing dataset pairs) is also
included.

As expected from Hill et al. (2017) results,
on SimLex-999 the Baseline embeddings com-

682



0

5

10

0 2 4 6 8 10 12 14 16 18 20

Decrease every 12h
Decrease every 24h

B
L

E
U

Steps (in millions examples)

Baseline
Decrease every 12h
Decrease every 24h
Decrease every 48h

Figure 2: Results of mini-batch decrementation compared to baseline model.

Baseline Decrease every 12h Decrease every 24h Decrease every 48h*
Starting mini-batch Size 60 100 100 150
Lowest mini-batch Size 60 5 5 20
Decreased every — 12 hours 24 hours 48 hours

Table 3: The different setups with mini-batch size decrementation. The run reducing every 48h was our
primary submission (*).

ing from NMT perform markedly better (0.519)
than other embeddings. The embeddings extracted
from the Source-Only model which was initialized
with the CBOW embeddings score somewhere in
the middle (0.267), which indicates that the NMT
model is learning word similarity and it moves to-
wards similarity from the general relatedness.

To a little extent, this is apparent even in the
values of the embedding vectors of the individual
words: we measured the cosine distance between
the embedding attributed to a word by the Base-
line NMT training and the embedding attributed
to it by “CBOW (BPE)”. The average cosine dis-
tance across all words in the common subset of
vocabularies was 1.003. After the training from
“CBOW (BPE)” to “Source-only”, the model has
moved closer to the Baseline, having an average
cosine distance of 0.995 (cosine of “Baseline” vs.
“Source-only” averaged over all words in the com-
mon subset). In other words, the training tried to
“unlearn” something from the pre-trained CBOW
(BPE).

For MEN, the general relatedness test set,
CBOW (BPE) embeddings perform best (0.621)
but Baseline NMT is also capable of learning these
relations quite well (0.583). The Source-Only
setup again moves somewhat to the middle in the
performance.

The poor performance of the CBOW embed-
dings on the full vocabulary (cf. columns 1 and 2
in Table 2) can be attributed to a lack of sufficient
coverage of less frequent words in the training cor-

pus. When “CBOW (no BPE)” is tested on the
common subset of vocabulary, it performs much
better. Our explanation is that words not broken
by BPE are likely to be frequent words. If the
corpus was not big enough to provide enough con-
text for all the words which were tested against the
human judgment datasets, suitable embeddings
would only be learned for the more frequent ones
(including those that were not broken by BPE). In-
deed, 263 words out of the set of 265 are among
the 10000 most frequent words in the full vocabu-
lary (of size 350881).

3 Mini-Batch Sizing

The effect of mini-batch sizing is primarily com-
putational. Theoretically speaking, mini-batch
size should affect training time, benefiting from
GPU parallelization, and not so much the final test
performance. It is common practice to choose the
largest mini-batch size possible, due to its com-
putational efficiency. Balles, Romero, and Hen-
nig (2016) have suggested that dynamic adapta-
tion of mini-batch size can lead to faster conver-
gence. What we experiment with in this set of ex-
periments is a much naiver concept based on in-
crementation and decrementation heuristics.

3.1 Decrementation

The idea of reducing mini-batch size during train-
ing is to help prevent over-fitting to the training
data. Smaller mini-batch sizes results in a nosier

683



0

5

10

15

0 5 10 15 20 25 30 35 40 45 50 55

B
L

E
U

Steps (in millions examples)

Increase every 12h
Baseline

0

5

10

15

0 50 100 150 200 250 300

B
L

E
U

Time (in hours)

Increase every 12h
Baseline

Figure 3: Results of the setup with increasing mini-batch size.

approximation of the gradient of the entire train-
ing set. Previous work by Keskar et al. (2016) has
shown that models trained with smaller mini-batch
size consistently converge to flat minima which re-
sults in an improved ability to generalize (as op-
posed to larger mini-batch size which tends to con-
verge to sharp minima of the training function).
By starting with a large mini-batch size, we aim
to benefit from larger steps early in the training
process (which means the optimization algorithm
will proceed faster) and then to reduce the risk
of over-fitting in a sharp minimum by gradually
decrementing mini-batch size.

In the first experiment, our primary submission,
we begin with the mini-batch size of 100 and de-
crease it by 20 every 48 hours down to mini-batch
size of 20. This was chosen heuristically.

In another two experiments, the mini-batch size
was decremented every 12 hours and every 24
hours starting from 100 and reaching down to the
size of 5. For these, the mini-batch size was re-
duced by 20 at each interval till it reached 20, then
it was halved twice and fixed at 5. A summary of
the different mini-batch size decrementation set-
tings tried can be seen in Table 3.

The performance of the setups when reducing
mini-batch is displayed in Figure 2. We see that
the more often we reduce the size, the sooner the

model starts losing its performance.
The plots are the performance on a held-out

dataset (as provided by the task organizers), so
what we are be seeing is actually over-fitting, the
opposite of what we wanted to achieve and what
one would expect from better generalization.

3.2 Incrementation
Due to time and resource restrictions, we managed
to complete the set of experiments with batch size
increasing only after the deadline for the training
task submissions. Interestingly, it is the only ex-
periment which managed to outperform our base-
line.

The model was trained for a week with mini-
batch size 65 and then for another week with mini-
batch size increased to 100. Although both the
baseline and this run are yet to converge, the in-
creased mini-batch size resulted in a very small
gain in terms of learning speed (measured in time),
as seen in the lower part of Figure 3. In terms of
training steps, there is no observable difference.

4 Further Work

4.1 Mini-Batch Size
In one of our experiments, have demonstrated that
variable mini-batch sizing could be possibly bene-
ficial. We suggest using different, smoother, incre-

684



mentation and decrementation functions or trying
some method online mini-batch size adaptation,
e.g. based on the dissimilarity of the current sec-
tion of the corpus with the rest. This could be par-
ticularly useful in the common technique of model
fine-tuning when adapting to new domains.

Contrary to our expectations, reducing mini-
batch size during training leads to a loss on both
the heldout dataset and the training dataset. It is
therefore not a simple overfitting but rather gen-
uine loss in ability to learn. We assume that the
larger mini-batch size plays an important role in
model regularization and reducing it makes the
model susceptible to keep falling into very local
optima. Our not yet published experiments how-
ever suggest that if we used the smaller mini-batch
from the beginning, the model would not perform
badly, which is worth further investigation.

4.2 Pre-Trained Embeddings

The word2vec embeddings were not suitable for
the model. Scaling the whole embedding vector
space so that the euclidean distances are very small
but the cosine dissimilarities are preserved could
make it easier for the translation model to adjust
the embeddings but so far we did not manage to
obtain any positive results in this respect.

We can also speculate that since NMT models
produce embeddings which are best suited to the
translation task, initializing word embeddings us-
ing embeddings from previously trained models
could be a promising method of speeding up train-
ing.

5 Conclusion

In our submission to the WMT17 Training Task,
we tried two approaches: varying the mini-batch
size on the fly and initializing the models with
pre-trained word2vec embeddings. None of these
techniques resulted in any improvement, except
for a setup with mini-batch incrementation where
at least the training speed in wallclock time in-
creased (thanks to better use of GPU).

When analyzing the failure of the embeddings,
we confirmed the observation by Hill et al. (2017)
than NMT learns direct word similarity while
monolingual embeddings (CBOW) learn general
word relatedness.

Acknowledgments

We would like to thank Jindřich Helcl and Jindřich
Libovický for their advice and their previous work
that we were able to use.

This work has been supported by the EU grant
no. H2020-ICT-2014-1-645452 (QT21), as well
as by the Ministry of Education, Youth and Sports
of the Czech Republic SVV project no. 260 453.

Computational resources were in part supplied
by the Ministry of Education, Youth and Sports
of the Czech Republic under the Projects CES-
NET (Project No. LM2015042), CERIT-Scientific
Cloud (Project No. LM2015085) provided within
the program Projects of Large Research, Develop-
ment and Innovations Infrastructures. We are also
grateful for Amazon EC2 vouchers we obtained at
MT Marathon 2016.

References
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Ben-

gio. (2014). Neural Machine Translation by Jointly
Learning to Align and Translate. CoRR. arXiv:
1409.0473v7.

Balles, Lukas, Javier Romero, and Philipp Hennig.
(2016). Coupling adaptive batch sizes with learning
rates. Computing Research Repository. arXiv:
1508.07909v1.

Bojar, Ondřej, Jindřich Helcl, Tom Kocmi, Jindřich Li-
bovický, and Tomáš Musil. (2017). Results of the
WMT17 Neural MT Training Task. In Proceedings
of the Second Conference on Machine Translation
(WMT17), Copenhagen, Denmark.

Helcl, Jindřich and Jindřich Libovický. (2017). Neural
Monkey: An open-source tool for sequence learn-
ing. The Prague Bulletin of Mathematical Linguis-
tics. doi:10.1515/pralin-2017-0001.

Hill, Felix, Kyunghyun Cho, Sébastien Jean, and
Yoshua Bengio. (2017). The representational geom-
etry of word meanings acquired by neural machine
translation models. Machine Translation. doi:
10.1007/s10590-017-9194-2.

Keskar, Nitish Shirish, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. (2016). On large-batch training for deep
learning: Generalization gap and sharp minima.
arXiv:1609.04836v2.

Luong, Minh-Thang, Hieu Pham, and Christopher D.
Manning. (2015). Bilingual word representations
with monolingual quality in mind. In North
American Association for Computational Linguis-
tics (NAACL) Workshop on Vector Space Modeling
for NLP, Denver, United States.

685



Mikolov, Tomáš, Kai Chen, Greg Corrado, and Jeffrey
Dean. (2013)a. Efficient Estimation of Word Rep-
resentations in Vector Space. Computing Research
Repository. arXiv:1301.3781v3.

Mikolov, Tomáš, Ilya Sutskever, Kai Chen, and Greg
Corrado. (2013)b. Distributed Representations
of Words and Phrases and their Compositionality.
arXiv:1310.4546v1.

Řehůřek, Radim and Petr Sojka. (2010). Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta. ELRA.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
(2016). Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

686


