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Abstract

We describe the University of Mary-
land machine translation systems submit-
ted to the WMT17 German-English Ban-
dit Learning Task. The task is to adapt a
translation system to a new domain, using
only bandit feedback: the system receives
a German sentence to translate, produces
an English sentence, and only gets a scalar
score as feedback. Targeting these two
challenges (adaptation and bandit learn-
ing), we built a standard neural machine
translation system and extended it in two
ways: (1) robust reinforcement learning
techniques to learn effectively from the
bandit feedback, and (2) domain adapta-
tion using data selection from a large cor-
pus of parallel data.

1 Introduction

We describe the University of Maryland systems
for bandit machine translation. For the shared
translation task of the EMNLP 2017’s second
conference on machine translation (WMT17), we
focused on the task of bandit machine transla-
tion. This shared task was set up, consistent with
(Kreutzer et al., 2017), simultaneously as a bandit
learning problem and a domain adaptation prob-
lem. This raises the natural question: can we com-
bine these potentially complementary information
sources?

To investigate this question, we started from a
standard neural machine translation (NMT) setup
§21, and then we:

1. applied domain adaptation techniques by data
selection (Moore and Lewis, 2010) to the out-
of-domain data, with the goals of filtering out

1Our implementation is based on OpenNMT (Klein et al.,
2017), an open-source toolkit for neural MT.

harmful data and fine-tuning the training pro-
cess to focus only on relevant sentences (§4).

2. trained robust reinforcement learning algo-
rithms that can effectively learn from bandit
feedback (§3); this allows our model to “test”
proposed generalizations and adapt from the
provided feedback signals.

Tackling the problem of learning with ban-
dit feedback is important because neural machine
translation systems, like other natural language
processing technology, currently learn almost ex-
clusively from labeled data for a specific domain.
While this approach is useful, it cannot scale to a
broad variety of language and domains, as linguis-
tic systems often cannot generalize well beyond
their training data. Machine translation systems
need to be able to learn to improve their perfor-
mance from naturalistic interaction with users in
addition to labeled data.

Bandit feedback (Robbins, 1985) offers systems
the opportunity to “test” proposed generalizations
and receive feedback on their performance; par-
ticularly interesting are contextual bandit systems,
which make predictions based on a given input
context (Auer et al., 2002; Langford and Zhang,
2008; Beygelzimer et al., 2010; Dudik et al.,
2011). For example, a neural translation system
trained on parliament proceedings often performs
quite poorly at translating anything else. How-
ever, a translation system that is deployed to fa-
cilitate conversations between users might receive
either explicit feedback (e.g. thumbs up/down) on
its translations, or even implicit feedback, for ex-
ample, the conversation partner asking for clar-
ifications. There has recently been a flurry of
work specifically addressing the bandit structured
prediction problem (Chang et al., 2015; Sokolov
et al., 2016a,b), of which machine translation is a
special case.
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Because this task is—at it’s core—a domain
adaptation problem (for which a bandit learning
signal is available to “help”), we also explored the
use of standard domain adaptation techniques. We
make a strong assumption that a sizable amount
of monolingual, source language data is available
before bandit feedback begins.2 We believe that in
many realistic settings, one can at least get some
amount of unlabeled data to begin with (we con-
sider 40k sentences). Using this monolingual data,
we use data selection on a large corpus of parallel
out-of-domain data (Europarl, NewsCommentary,
CommonCrawl, Rapid) to seed an initial transla-
tion model.

Overall, the results support the following con-
clusions (§5), based on the limited setting of one
new domain and one language pair:

1. data selection for domain adaptation alone
improves translation quality by about 1.5
BLEU points.

2. on top of the domain adaptation, reinforce-
ment learning (which requires exploration)
leads to an initial degradation of about 3
BLEU points, which is recovered (on devel-
opment data) after approximately 40k sen-
tences of bandit feedback.3

One limitation of our current setup is that we
used bandit feedback on development data to train
a “critic” function for our reinforcement learning
implementation, which, in the worst case, means
that our results over-estimate performance on the
first 120k examples (more details in §5.3).

2 Neural MT architecture

We closely follow Luong et al. (2015) for the
structure of our neural machine translation (NMT)
systems. Our NMT model consists of an encoder
and a decoder, each of which is a recurrent neural
network (RNN). We use a bi-directionaral RNN
as the encoder and a uni-directional RNN as the
decoder. The model directly estimates the poste-
rior distribution Pθ(y | x) of translating a source
sentence x = (x1, · · · , xn) to a target sentence

2This raises a natural question: in the cases where this
assumption is unreasonable, could we do adaptation online?

3Unfortunately, due to our implementation bug, our eval-
uation of the test server is incomplete for the reinforcement
learning setting; see §5.3 for a discussion.

y = (y1, · · · , ym):

Pθ(y | x) =

m∏

t=1

Pθ(yt | y<t,x) (1)

where y<t are all tokens in the target sentence
prior to yt.

Each local distribution Pθ(y | y<t,x) is mod-
eled as a multinomial distribution over the target
language vocabulary. We represent this as a linear
transformation followed by a softmax function on
the decoder’s output vector h̃

dec
t :

Pθ(y | y<t,x) = softmax(W s h̃
dec
t ; τ) (2)

h̃
dec
t = tanh(W o[h

dec
t ; ct]) (3)

ct = attend(henc1:n ,h
dec
t ) (4)

where [.; .] is the concatenation of two vectors,
attend(., .) is an attention mechanism, 4, τ is the
temperature hyperparameter of the softmax func-
tion, henc and hdec are the hidden vectors gener-
ated by the encoder and the decoder, respectively.

During training, the encoder first encodes x to
a continuous vector Φ(x), which is used as the
initial hidden vector for the decoder. The decoder
performs RNN updates to produce a sequence of
hidden vectors:

hdec0 = Φ(x)

hdect = fθ

(
hdect−1,

[
h̃
dec
t−1; e(yt)

]) (5)

where e(.) is a word embedding lookup operation,
fθ is an LSTM cell. 5

At prediction time, the ground-truth token yt in
Eq. 5 is replaced by the model’s own prediction
ŷt:

ŷt = arg max
y
Pθ(y | ŷ<t,x) (6)

In a supervised learning framework, an NMT
model is typically trained under the maximum log-
likelihood objective:

Lsup(θ) = E(x,y)∼Dtr [logPθ (y | x)] (7)

where Dtr is the training set.
However, this learning framework is not appli-

cable to our problem since reference translations
are not available.

4We use the “concat” mechanism in (Luong et al., 2015).
5Feeding h̃

dec

t to the next step is “input feeding.”
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3 Reinforcement Learning

The translation process of an NMT model can be
viewed as a Markov decision process operating on
a continuous state space. The states are the hidden
vectors hdect generated by the decoder. The action
space is the target language’s vocabulary.

3.1 Markov decision process formulation
To generate a translation from a source sentence x,
an NMT model commences at an initial state hdec0 ,
which is a representation of x computed by the en-
coder. At time step t > 0, the model decides the
next action to take by defining a stochastic policy
Pθ(yt | y<t,x), which is directly parametrized by
the parameters θ of the model. This policy takes
the previous state hdect−1 as input and produces a
probability distribution over all actions (words in
the target vocabulary). The next action ŷt is cho-
sen either by taking arg max or sampling from this
policy. The encoder computes the current state
hdect by applying an RNN update on the previous
state hdect−1 and the next action taken ŷt (Eq. 5).

The objective of bandit NMT is to find a policy
that maximizes the expected quality of translations
sampled from the model’s policy:

Lpg(θ) = E x∼Dtr
ŷ∼Pθ(y|x)

[
R(ŷ,x)

]
(8)

whereR is a reward function that returns a score in
[0, 1] reflecting the quality of the input translation.

We optimize this objective function by policy
gradient methods. The gradient of the objective in
Eq. 8 with respect to θ is: 6

∇θLpg(θ) = Eŷ∼P (·) [R(ŷ)∇θ logPθ(ŷ)] (9)

=
m∑

t=1

E ŷt∼
P (·|ŷ<t)

[
R(ŷ)∇θ logPθ(ŷt | ŷ<t)

]

3.2 Advantage Actor-Critic

Algorithm 1 The A2C algorithm for NMT.
1: for k = 0 · · ·K do
2: receive a source sentence x
3: sample a translation: ŷ ∼ Pθ(y | x)
4: receive reward R(ŷ,x)
5: update the NMT model using the gradient in Eq. 9
6: update the critic model using the gradient in Eq. 12
7: end for

We follow the approach of the advantage actor-
critic (A2C) algorithm (Mnih et al., 2016), which

6For notation brevity, we omit x from this equation. The
expectations are also taken over all given x.

combines the REINFORCE algorithm (Williams,
1992) with actor-critic. The algorithm approxi-
mates the gradient in Eq. 9 by a single-point sam-
ple and normalize the rewards by V values to re-
duce variance:

∇θLpg(θ) ≈
m∑

t=1

∇θ logPθ(ŷt | ŷ<t,x)R̄t(ŷ<t,x)

with R̄t(ŷ<t,x) ≡ R(ŷ,x)− V (ŷ<t,x)
(10)

where ŷt ∼ P (· | ŷ<t,x) and V (ŷ<t,x) =
E [R(ŷ,x) | ŷ<t,x] is a baseline that estimates
the expected future reward given x and ŷ<t.

We train a critic model Vω to estimate the V
values. This model is an attention-based encoder-
decoder model that encodes a source sentence x
and decodes a predicted translation ŷ. At time step
t, it computes Vω(ŷ<t,x) = W o h̃

dec
t where h̃

dec
t

is the hidden state of the RNN decoder, and W o is
a matrix that transforms a vector into a scalar. 7

The critic model is trained to minimize the MSE
between its estimates and the true values:

Lcrt(ω) = Ex∼Dtr

[
m∑

t=1

‖R(ŷ,x)− Vω(ŷ<t,x)‖2
]

(11)
Given a fixed x, the gradient with respect to ω

of this objective is:

∇ωLcrt(ω) =
m∑

t=1

[R(ŷ)− Vω(ŷ<t)]∇ωVω(ŷ<t)

(12)
Algorithm 1 describes our algorithm. For each

x, we draw a single sample ŷ from the NMT
model, which is used for both estimating the gra-
dient of the NMT model (Eq. 10) and the gradient
of the critic model (Eq. 12). We update the NMT
model and the critic model simultaneously.

4 Domain Adaptation

We performed domain adaptation by choosing the
best out-of-domain parallel data for training us-
ing Moore and Lewis (2010) cross-entropy based
data selection technique.

Cross-Entropy Difference
The Moore and Lewis method uses the cross-
entropy difference HI(s) - HO(s) for scoring a

7We abuse the notation h̃
dec

to denote the decoder output.
But since the translation model and the critic model do not
share parameters, their decoder outputs are distinct.
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given sentence s, based on an in-domain language
modelLMI and an out-of-domain language model
LMO (Moore and Lewis, 2010). We trained LMO

using the German-English Europarl, NewsCom-
mentary, CommonCrawl and Rapid (i.e. out-of-
domain) data sets and LMI using the e-commerce
domain data provided by Amazon. After train-
ing both language models, we follow Moore and
Lewis method by applying the cross-entropy dif-
ference to score each sentence in the out-of-
domain data. The cross-entropy is mathematically
defined as:

H(W ) = − 1

n

n∑

i=1

logPLM (wi|w1, · · · , wi−1)

where PLM is the probability of a LM for the
word sequence W and w1, · · · , wi−1 represents
the history of the word wi.

Sentences with the lowest cross-entropy differ-
ence scores are the most relevant because they are
the more similar to the in-domain data and less
similar to the average of the out-of-domain data.
Using this criteria, the top n out-of-domain sen-
tences are used to create the training set Dtr. In
this work we consider various n sizes, selecting
the n that provides the best performance on the
validation set.

5 Experiments

This section describes the experiments we con-
ducted in attempt to assess the challenges posed
by bandit machine translation and our exploration
of efficient algorithms to improve machine trans-
lation systems using bandit feedback.

As explained in previous sections, this task re-
quires performing domain adaptation for machine
translation through bandit feedback. With this in
mind, we experimented with two types of mod-
els: simple domain adaptation without using the
feedbacks, and reinforcement learning models that
leverage the feedbacks. In the following sections,
we explain how we train the regular NMT model,
how we select training data for domain adaptation,
and how we use reinforcement learning to leverage
the bandit feedbacks.

We trained our systems using the out-of-domain
parallel data restricted by the shared task. The
entire out-of-domain dataset contains 4.5 mil-
lions parallel German-English sentences from Eu-
roparl, NewsCommentary, CommonCrawl and

Word embedding size 500
Hidden vector size 500
Number of LSTM layers 2
Batch size 64
Epochs 13
Optimizer SGD
Initial learning rate 1
Dropout 0.3
BPE size 20000
Vocab size ∼25k (*)

Table 1: NMT model’s training hyperparameters.
(*) with BPE we no longer need to prune the vo-
cabulary, and the exact size depends on the train-
ing data.

Rapid data for the News Translation (constrained)
task. Our NMT model is based on OpenNMT’s
(Klein et al., 2017) PyTorch implementation of
attention-based encoder-decoder model. We ex-
tended their implementation and added our imple-
mentation of the A2C algorithm. Details of the
model configuration and training hyperparameters
are listed in Table 1.

5.1 Subword Unit for Neural Machine
Translation

Neural machine translation (NMT) relies on first
mapping each word into the vector space, and tra-
ditionally we have a word vector corresponding to
each word in a fixed vocabulary. Due to the data
scarcity, it’s hard for the system to learn high qual-
ity representations for rare words. To address this
problem, with the goal of open vocabulary NMT,
Sennrich et al. (2015) proposed to learn subword
units and perform translation on a subword level.
We incorporated this approach in our system as
a preprocessing step. We generate the so-called
byte-pair encoding (BPE), which is a mapping
from words to subword units, on the whole train-
ing set (WMT15), for both the source and target
languages. The same mapping is used for all the
training sets in our system. After the translation,
we do an extra post-processing step to convert the
target language subword units back to words. With
BPE, the vocabulary size is reduced dramatically
and we no longer need to prune the vocabularies.
We find this approach to be very helpful and use it
for all our systems.
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5.2 Domain Adaptation

As explained in Section 4, we use the data
selection method of (Moore and Lewis, 2010)
for domain adaptation. We use the kenlm
toolkit (Heafield, 2011) to build all the lan-
guage models used for the data selection. We
train 4-gram language models. For computing
the cross-entropy similarity scores, we use the
XenC (Rousseau, 2013) open source data selec-
tion tool. We use the mono-lingual data selec-
tion mode of XenC on the in-domain and out-of-
domain source sentences.

We have two parameters in this data selection
process: the size of in-domain dataset that is used
for training the in-domain language model, and
the size of the out-of-domain training data that we
select. We experimented with different configu-
rations and the results on the development server
are listed in Table 2. For obtaining the in-domain
data, we pre-fetch the source sentences from de-
velopment and training servers. For the training
server, we do not have enough keys to test all
combinations, so we picked several configurations
and for each sentence, we select randomly a sys-
tem to translate it. In addition, we also compare
with and without beam search. The purpose for
this is to provide another comparable baseline for
the later reinforcement learning model, for which
beam search cannot be used. Thus, the domain
adaptation system that we submit to the training
server is the uniformly random combination of 6
systems, and their individual average BLEU scores
are listed in Table 3.

It can be seen from these results that most con-
figurations of data selection improve the over-
all BLEU score. The model without data selec-
tion achieves 18.70 BLEU on the development
server, while the best data selection configurations
achieves 20.16, while on the training server the
scores are 18.65 without data selection and 20.13
with. It can also be seen from Table 3 that beam
search does help with improving the BLEU score.

5.3 Reinforcement Learning Results

While translating with the domain adaptation
models to the development server, we collect
320,000 triples of (source sentence, translation,
feedback) from 8 submitted systems. We use these
triples to pre-train the critic in the A2C algorithm.
We use the same pre-trained critic for all A2C-
trained systems. The critic for each model is then

in-domain size
o.o.d.% 40k 200k 800k

10% 18.50 18.57 18.85
20% 19.56 19.41 19.23
30% 19.54 20.16 19.11
40% 19.58 19.37 19.36
60% 18.88 18.81 19.59
85% 19.12 18.69 18.26

(*) 100% 18.70 18.70 18.70

Table 2: average BLEU scores of domain adapta-
tion systems on the development server with dif-
ferent combinations of in-domain size (x-axis) and
the percentage of out-of-domain data selected (y-
axis). (*) we show the BLEU score of using all the
out-of-domain data, do data selection performed
for this row.

i.d. size o.o.d. % beam=1 beam=5

0 100% 18.07 18.65 (+0.58)
40k 40% 18.77 19.51 (+0.74)

200k 30% 19.67 20.13 (+0.46)

Table 3: Average BLEU scores of domain adap-
tation systems on the training server with dif-
ferent combinations of in-domain size, out-of-
domain percentage, beam size, and the corre-
sponding BLEU scores.

updated jointly with the actor respectively. We use
Adam (Kingma and Ba, 2014) with learning rate
of 10−4 to update the both the translation model
and the critic model. We do not use dropout (Sri-
vastava et al., 2014) during training with A2C as it
makes learning less stable.

We note that there are some drawbacks when
using the A2C algorithm when it comes to gen-
erating translations. Normally we generate trans-
lations by greedy decoding, which means at each
time step we pick the word with the highest proba-
bility from the distribution produced by the model.
But with A2C, we need to sample from the distri-
bution of words to ensure exploration. As a direct
consequence, it is not clear how to apply beam
search for A2C (and for policy gradient methods
in general). To control the trade-off between ex-
ploration and exploitation, we use the temperature
hyperparameter τ in the softmax function. In our
experiments τ is set to 2

3 , which produces a more
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Figure 1: Comparing sampling, greedy decoding,
and the A2C algorithm on the development data.
Lines show average BLEU scores of every 2000
consecutive sentences.

peaky distribution and makes the model explore
less.

It is best to have batching during bandit training
for stability. Due to the limitation of the submis-
sion servers, that is, we only get the single reward
feedback each time, we had to devise a method
for batching for the feedback from the server. We
cache the rewards until we reach the batch size,
then do a batch update. However, due to some
bugs in the implementation of this method, some
sentences are not submitted in the correct order.
And at some test points on the training server the
scores are near or equal to zero.

In Figure 1 we present some results from the de-
velopment server. We use a data selection model
(200k in-domain data, 30% out-of-domain train-
ing data) as the baseline translation model, upon
which we use the A2C algorithm to improve fur-
ther. From this model, we generate translations
with both sampling and greedy decoding to see
how much the exploration required by the A2C al-
gorithm hurts the performance. Figure 1 shows
the average BLEU score of every 2000 sentences
from the development server. A2C loses at the be-
ginning because of exploration, and catches up as
it sees more examples. Using sampling instead of
greedy decoding, but exploration eventually im-
proves the model.

6 Conclusion

We present the University of Maryland neural ma-
chine translation systems for the WMT17 ban-
dit MT shared task. We employ two approaches:
out-of-domain data selection and reinforcement

learning. Experiments show that the best per-
formance is achieved with a model pre-trained
with only one-third of the available out-of-domain
data. When applying reinforcement learning to
further improve this model with bandit feedback,
the model performance degrades initially due to
exploration but gradually improves over time. Fu-
ture work is to determine if reinforcement learn-
ing is more effective on a larger bandit learning
dataset.
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