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Abstract

We present a new model for text re-
gression that seamlessly combine engi-
neered features and character-level infor-
mation through deep parallel convolution
stacks, multi-layer perceptrons and multi-
task learning. We use these models to
create the SHEF/CNN systems for the
sentence-level Quality Estimation task of
WMT 2017 and Emotion Intensity Analy-
sis task of WASSA 2017. Our experiments
reveal that combining character-level clues
and engineered features offers notice-
able performance improvements over us-
ing only one of these sources of informa-
tion in isolation.

1 Introduction

Text regression consists in estimating a numeric
label based on information available from the text.
The label can represent any abstract property of
said text: its appropriateness, sentiment, fluency,
simplicity, quality, etc. Due to their wide ap-
plicability in both research and industry, some
of these tasks have been gaining a lot of atten-
tion. These include Quality Estimation and Emo-
tion Intensity Analysis, which are the subjects of
shared tasks held at the WMT 2017 conference1

and WASSA 2017 workshop2 (Mohammad and
Bravo-Marquez, 2017), respectively.

In Quality Estimation (QE), one attempts to es-
timate the quality of a machine translated text
based on the information that can be extracted
from the original sentence and its translation. The
task has many variants, given that the quality of
a translation can be estimated at word, phrase,

1http://www.statmt.org/wmt17
2http://optima.jrc.it/wassa2017

sentence or even document level. Quality esti-
mates can be incorporated in Machine Transla-
tion (MT) decoding or used for re-ranking of top
candidates, for example, allowing for a more in-
telligently guided translation process (Avramidis,
2012), or they can be used to help human transla-
tors decide which automatic translations are worth
post-editing, and which should be re-translated
from scratch (Turchi et al., 2015). Sentence-level
QE is the most popular variant, mostly due the
fact that most modern statistical and neural MT
systems translate one sentence at a time. In this
task, the input is the original-translated sentence
pair and the output is some numeric label that rep-
resents quality. The most commonly used label
is HTER, which measures the human post-editing
effort required to fix the translation in question
(Snover et al., 2006).

As shown in (Bojar et al., 2016), the perfor-
mance of QE approaches submitted to the WMT
shared tasks have steadily improved in recent
years. However, the nature of these approaches
have not changed much: most of the top rank-
ing systems employ well-known regression meth-
ods and extensive feature engineering. Some of
the most notable examples are the RTM systems
of WMT 2014 and 15, which managed to reach
the top of the ranks by employing Referential
Translation Machines trained with SVMs for re-
gression (Bicici, 2016). The LORIA (Langlois,
2015) and YSDA (Kozlova et al., 2016) systems of
WMT 2015 and 2016, respectively, achieved sim-
ilar performance by also pairing SVMs with many
resource-heavy features.

Neural Networks for sentence-level QE were
introduced in WMT 2016 with the SimpleNets
(Paetzold and Specia, 2016) and POSTECH (Kim
and Lee, 2016) systems. While the SimpleNets
system uses sequence-to-label LSTMs to predict
the quality of a translation’s n-grams and then
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combines them, the POSTECH system learns
quality labels at word-level using a sequence-to-
sequence model, and then combines them with
a sequence-to-label model to predict quality at
sentence-level. Though very interesting and dis-
tinct strategies, neither of them managed to out-
perform the best scoring SVM-based approach of
WMT 2016.

In the task of Emotion Intensity Analysis (EIA),
Neural Networks have not yet been successfully
employed. Unlike typical Sentiment Analysis
tasks, which are set up as either binary or multi-
class classification problems that require one to
determine the opinion or sentiment in a given text,
EIA aims at quantifying a certain emotion in a text,
such as fear, anger, joy, sadness, etc. In the Emo-
tion Intensity shared task of SemEval 2016 (Kir-
itchenko et al., 2016), which is the first of its kind,
none of the five systems submitted employ neural
regressors. We were also unable to find any other
contributions outside the SemEval 2016 task that
explore neural approaches to EIA.

Given the volume of opportunities available
when it comes to neural solutions for text re-
gression, we introduce a new neural approach for
the task. We innovate by using deep convolu-
tional networks and multi-task learning to com-
bine character-level information from the texts at
hand with engineered features. Using this ap-
proach, we create the SHEF/CNN systems for the
sentence-level QE task of WMT 2017 and the
Emotion Intensity Analysis task of WASSA 2017.
In what follows, we describe our approach in de-
tail.

2 Overview of Tasks

As previously mentioned, we address two text re-
gression tasks in this paper: the sentence-level
Quality Estimation task of WMT 2017 and Emo-
tion Intensity Analysis task of WASSA 2017. The
next Sections describe each of those tasks.

2.1 Quality Estimation at WMT 2017

In the sentence-level QE task of WMT 2017 par-
ticipants were asked to create systems that pre-
dict the human post-editing effort required to cor-
rect an automatically translated sentence. Train-
ing, development and test sets were provided
for two language pairs: English-German and
German-English. The training and development
sets for both language pairs are composed of

23,000/25,000 and 1,000/1,000 instances, respec-
tively. Each instance is composed of a source
(original) and target (translated) sentence pair, as
well as the target’s manually post-edited version
and an HTER label between 0 and 1 calculated
based on the post-edit. The test set is composed
of 2,000 instances without post-edits nor HTER
labels. For training, development and test sets the
organizers made available a set of 17 baseline fea-
tures.

The task is divided in two sub-tasks: scoring
and ranking. In the scoring task, systems had to
estimate HTER scores and were evaluated through
Pearson correlation. In the ranking task, sys-
tems had to rank the translations in the test set
from highest to lowest quality, and were evaluated
through Spearman correlation. The main differ-
ence between the data provided for the WMT 2017
QE tasks and the data of previous editions is that,
for the first time, the tasks of all QE levels (sen-
tence, word and phrase) contain annotations for
the same set of translations. Because of that, one
can very intuitively employ any variety of multi-
task learning approaches.

2.2 Emotion Intensity at WASSA 2017

Systems submitted to the Emotion Intensity Anal-
ysis task of WASSA 2017 were asked to estimate
the intensity of various emotions felt by authors
while writing tweets. Training, development and
test sets were made available containing four emo-
tions: anger, fear, joy and sadness. The size of the
datasets is illustrated in Table 1.

Emotion Train Dev Test
Anger 857 84 760
Fear 1,147 110 995
Joy 823 79 714
Sadness 786 74 673

Table 1: Dataset sizes for the Emotion Intensity
Analysis task of WASSA 2017

Each instance is composed of a tweet and an in-
tensity label between 0 and 1 of the emotion in
question. Labels were collected through crowd-
sourcing. Systems were evaluated through Pear-
son correlation.

3 Model Architecture

Figure 1 illustrates the neural model architecture
of the SHEF/CNN systems for the QE task of
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WMT 2017. As it can be noticed, the model takes
as input a one-hot character-level representation of
the source and target, as well as a set of engineered
features. As output, our model produces the nu-
meric labels desired.

The model is divided in three main sections:
a pair of deep convolution layer stacks for the
source (original) and target (translated) sentences,
a multi-layer perceptron for the engineered fea-
tures, and a final multi-layer perceptron to com-
bine all this information. The model used for the
EIA task of WASSA 2017 is identical, except that
it only has one set of convolution stacks for the
tweet being analysed.

3.1 Extracting Character-Level Clues

In order to exploit the information at character-
level from the text, we use a convolution archi-
tecture similar to the one introduced by (Kim
et al., 2016), who successfully employ character-
level information for language modelling. First
we transform the one-hot character-level represen-
tation of the sentence into a sequence of charac-
ter embeddings. We then feed them to a series
of parallel one-dimensional convolutions of dif-
ferent window sizes. Each of these convolutions
captures the information of character n-grams of
a given length: a convolution of window size one
addresses unigrams, one with size two addresses
bigrams, and so on. Finally, the resulting values
produced by the convolution filters are passed on
to a one-dimensional max-pooling layer.

In order to capture information at different ab-
straction levels, we stack various convolution and
max-pooling layers for each window size, thus
creating a deep architecture. This deep architec-
ture differs from the one used by (Kim et al., 2016)
in the sense that they apply only one stack of
convolution/max-pooling layers for each window
size. The values produced by the last max-pooling
layer of each window size are then flattened so that
they can be easily concatenated.

The intuition behind using such an architecture
lies in the assumption that sequences of charac-
ters hold important clues with respect to the text’s
properties, such as quality and emotion. In QE,
these clues could be sequences containing mor-
phological errors in words from the source or tar-
get sentences, or sequences in-between tokens of
the target that suggest an ungrammatical segment,
for example. In EIA, these clues can be emo-

tionally charged emojis, curse words, exclamation
marks, etc.

3.2 Incorporating Engineered Features
We complement character-level information with
engineered features, given that the most effective
QE and EIA methods in previous work heavily ex-
ploit them (Kim and Lee, 2016; Kozlova et al.,
2016; Refaee and Rieser, 2016; Wang et al., 2016).
To do so, we apply a simple multi-layer percep-
tron (MLP) over a set of input engineered fea-
tures. This allows to capture abstract relations be-
tween the features provided. The output of the
outermost layer is then concatenated with the flat-
tened character-level information provided by the
remainder of the network.

Finally, we pass the concatenated features and
character-level information to another MLP in or-
der for our model to be able to capture any re-
lations between them. At the very edge of our
model, we include output nodes for as many tasks
as we wish to train our model over.

4 SHEF/CNN Model for QE

As illustrated in Figure 1, the sentence-level QE
model employs one convolution stack for each of
the source and target sides of the translation pair.
We configure the model as follows:

• Embedding size: We train character embed-
dings with 50 dimensions.

• Window range: We use 4 parallel stacks of
convolutions with window sizes from 1 to 4.

• Convolution depth: Each stack contains 4
pairs of convolution/max-pooling layers with 50
convolution filters each and a pool length of 4.

• Feature MLP depth: We stack 2 dense layers
with 50 hidden units over engineered features.

• Final MLP depth: The MLP that combines
convolutions and features is composed of 2
stacked dense layers with 50 hidden units each.

• Engineered feature set: We use the 17 baseline
features provided by the task organizers.

This architecture was selected through experi-
mentation. The output nodes of our multi-task QE
setup predict three values:

• HTER from the sentence-level dataset;
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Figure 1: Architecture of the SHEF/CNN+BASE systems
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• The number of BAD labels from the word-level
dataset; and

• The number of BAD labels from the phrase-
level dataset.

Note that the data from the word and phrase-
level datasets are used as a mere complement to
HTER prediction. It is important to mention that
we also tried predicting the full label sequences
for word and phrase-level, but the results obtained
were not as promising. We train our model until
convergence with Stochastic Gradient Descent and
Mean Squared Error over all outputs jointly.

5 SHEF/CNN Model for EIA

The model used for the EIA task of WASSA 2017
applies only one convolution stack over the tweet
being analysed, given that the task is not charac-
terized by a sentence pair. The window range,
convolution depth, as well as feature and final
MLP depths are identical to the model used for
the WMT 2017 task. We train one model for each
emotion targeted in the shared task: anger, fear,
joy and sadness.

Since the organizers did not provide a set of
baseline features, we produced our own features
using the Stanford Sentiment Treebank (Socher
et al., 2013), which is composed of 239,232 text
segments annotated with respect to their positiv-
ity probability i.e. how likely they are to convey
a positive emotion. The positivity values range
from 0.0 (absolutely negative) to 1.0 (absolutely
positive). Using this data, we extract nine features
from each tweet:

• Minimum, maximum and average positivity of
single words in the tweet;

• Minimum, maximum and average positivity of
bigrams in the tweet; and

• Minimum, maximum and average positivity of
trigrams in the tweet.

Our multi-task learning setup is composed of
two output layers that predict:

• The tweets’ emotion intensity; and

• The tweets’ positivity value.

We first train our models over the sentiment
positivity values from the Stanford Sentiment

Treebank until convergence, then train them over
the emotion intensity training sets of WASSA
2017 until convergence. The training algorithm
and metric used are Stochastic Gradient Descent
and Mean Squared Error, respectively.

6 WMT 2017 Results

We evaluate the performance of four variants of
the SHEF/CNN model:

• SHEF/CNN-F: Uses only the MLP over the en-
gineered features trained over HTER.

• SHEF/CNN-C: Uses only the character-level
convolution stacks trained over HTER.

• SHEF/CNN-C+F: Uses both engineered fea-
tures and character-level information trained
over HTER.

• SHEF/CNN-C+F+M: Uses the same archi-
tecture of SHEF/CNN-C+F, but the model is
trained through multi-task learning over the val-
ues listed in Section 4.

Table 2 illustrates the Pearson, Root Mean
Squared Error (RMSE) and Mean Absolute Er-
ror (MAE) scores for the scoring task, and Spear-
man correlation scores for the ranking task of each
language pair. Boldface values represent the best
scores obtained across SHEF/CNN models. We
also include the results from the official baseline
and from the top performing team (POSTECH).

The results reveal that, although we outper-
form the task baseline for English-German, the
SHEF/CNN models do not offer competitive per-
formance to state-of-the-art QE systems that rely
on resource-heavy strategies. Nonetheless, some
valuable observations can be drawn from the
results. Combining engineered features with
character-level clues yields a more reliable model
than simply using either of them alone, which
suggests that character-level clues can be a valu-
able source of complementary information to en-
gineered features. Our multi-task learning setup
did not improve on the results of our model. We
hypothesize that the secondary output labels could
not offer a significant volume of complementary
information to the model.

7 WASSA 2017 Results

Table 3 illustrates the Pearson and Spearman cor-
relation scores for each emotion. We compare the
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English-German German-English
p MAE RMSE r p MAE RMSE r

POSTECH/MultiLevel 0.714 0.096 0.134 0.710 0.728 0.091 0.133 0.470
POSTECH/SingleLevel 0.686 0.101 0.139 0.690 0.715 0.094 0.136 0.440

Baseline 0.397 0.136 0.175 0.425 0.441 0.128 0.175 0.450

SHEF/CNN-F 0.384 0.176 0.137 0.412 0.092 0.208 0.145 0.034
SHEF/CNN-C 0.374 0.181 0.146 0.393 0.379 0.184 0.148 0.408
SHEF/CNN-C+F 0.416 0.174 0.135 0.441 0.390 0.179 0.136 0.382
SHEF/CNN-C+F+M 0.402 0.178 0.135 0.448 0.350 0.202 0.162 0.380

Table 2: Results for the sentence-level QE task of WMT 2017

Fear Joy Anger Sadness
p r p r p r p r

Prayas 0.732 0.729 0.732 0.710 0.762 0.743 0.765 0.761
Emkay 0.690 0.690 0.705 0.692 0.726 0.703 0.767 0.764
venkatesh-1729 0.728 0.728 0.678 0.654 0.705 0.684 0.749 0.744

Baseline 0.652 0.635 0.654 0.662 0.639 0.615 0.648 0.651

SHEF/CNN-F 0.166 0.153 0.271 0.313 0.222 0.212 0.241 0.240
SHEF/CNN-C 0.217 0.221 0.328 0.302 0.120 0.142 0.259 0.253
SHEF/CNN-C+F 0.293 0.284 0.517 0.510 0.279 0.260 0.323 0.326
SHEF/CNN-C+F+M 0.109 0.096 0.407 0.392 0.311 0.276 0.233 0.228

Table 3: Results for the EIA task of WASSA 2017

performance of all SHEF/CNN variants described
in the previous sections and also include the offi-
cial task baseline and the three top performing ap-
proaches in the EIA task: the Prayas, Emkay and
venkatesh-1729 systems.

The SHEF/CNN models are outperformed by a
noticeable margin by strategies that heavily em-
ploy engineered features and external resources,
such as large databases of emotion intensity la-
bels. Nonetheless, our results reveal the same phe-
nomenon highlighted in our experiments with QE:
for all emotions, combining engineered features
with character-level information yields better per-
formance scores than using only one of these in-
formation sources. This serves as further evidence
that character-level convolutions can be effectively
used as a complement to engineered features.

Our multi-task learning approach only managed
to obtain performance improvements for anger.
We believe this is due to fact that the positivity val-
ues present in the Stanford Sentiment Treebank,
which is used in our multi-task setup, accurately
quantify only the degree with which the reviewer
is pleased, and hence happy, or displeased, and
hence angry. Because the other emotions in the
WASSA 2017 task do not commonly permeate
the act of writing a product review, the multi-task

setup was not able to help the model trained for
them.

8 Conclusions

We introduced a text regression model that uses
deep convolution neural networks and multi-layer
perceptrons to combine the character-level infor-
mation present in texts with the information from
engineered features.

We tested several variants of our model in two
text regression shared tasks: the sentence-level
Quality Estimation task of WMT 2017 and the
Emotion Intensity Analysis task of WASSA 2017.
We found that, although our model is not able
to outperform classic resource-heavy strategies,
combining character-level data with engineered
features results in noticeable performance gains
for both tasks. We also found that, although multi-
task learning can in principle help our model, the
setup must be carefully crafted, otherwise it com-
promises its performance.

We plan to further test with other tasks the hy-
pothesis that character-level convolutions consti-
tute an intuitive way of complementing the per-
formance of typical feature-based text regression
models. We will also test more elaborate convolu-
tion architectures, such as using stacked LSTMs.

580



Acknowledgments

This work was supported by the QT21 project
(H2020 No. 645452).

References
Eleftherios Avramidis. 2012. Comparative quality esti-

mation: Automatic sentence-level ranking of mul-
tiple machine translation outputs. In Proceedings
of 24th COLING. The COLING 2012 Organizing
Committee, pages 115–132.

Ergun Bicici. 2016. Referential translation machines
for predicting translation performance. In Proceed-
ings of the First Conference on Machine Translation.
Association for Computational Linguistics, Berlin,
Germany, pages 777–781.
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