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Abstract

This paper describes the Neural Machine
Translation systems of Xiamen University
for the translation tasks of WMT 17. Our
systems are based on the Encoder-Decoder
framework with attention. We partici-
pated in three directions of shared news
translation tasks: English→German and
Chinese↔English. We experimented with
deep architectures, different segmentation
models, synthetic training data and target-
bidirectional translation models. Experi-
ments show that all methods can give sub-
stantial improvements.

1 Introduction

Neural Machine Translation (NMT) (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al.,
2015) has achieved great success in recent years
and obtained state-of-the-art results on various
language pairs (Zhou et al., 2016; Sennrich
et al., 2016a; Wu et al., 2016). This paper de-
scribes the NMT systems of Xiamen University
(XMU) for the WMT 17. We participated in
three directions of shared news translation tasks:
English→German and Chinese↔English. We use
two different NMTs for shared news translation
tasks:

• MININMT: A deep NMT system (Zhou
et al., 2016; Wu et al., 2016; Wang et al.,
2017) with a simple architecture. The de-
coder is a stacked Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber,
1997) with 8 layers. The encoder has two
variants. For English-German translation,
we use an interleaved bidirectional encoder
with 2 columns. Each column consists of
4 LSTMs. For Chinese-English translation,

we use a stacked bidirectional encoder with 8
layers.

• DL4MT: Our reimplementation of dl4mt-
tutorial1 with minor changes. We also use a
modified version of AmuNMT C++ decoder2

for decoding. This system is used in the
English-Chinese translation task.

We use both Byte Pair Encoding (BPE) (Sennrich
et al., 2016c) and mixed word/character segmenta-
tion (Wu et al., 2016) to achieve open-vocabulary
translation. Back-translation method (Sennrich
et al., 2016b) is applied to make use of monolin-
gual data. We also use target-bidiretional trans-
lation models to alleviate the label bias prob-
lem (Lafferty et al., 2001).

The remainder of this paper is organized as fol-
lows: Section 2 describes the architecture of MIN-
INMT. Section 3 describes all experimental fea-
tures used in WMT 17 shared translation tasks.
Section 4 shows the results of our experiments.
Section 5 shows the results of shared translation
task. Finally, we conclude in section 6.

2 Model Description

Deep architectures have recently shown promis-
ing results on various language pairs (Zhou et al.,
2016; Wu et al., 2016; Wang et al., 2017). We also
experimented with a deep architecture as depicted
in Figure 1. We use LSTM as the main recurrent
unit and residual connections (He et al., 2016) to
help training.

Given a source sentence x = {x1, . . . , xS} and
a target sentence y = {y1, . . . , yT }, the encoder
maps the source sentence x into a sequence of
annotation vectors {xi}. The decoder produces

1https://github.com/nyu-dl/
dl4mt-tutorial

2https://github.com/emjotde/amunmt
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Figure 1: The architecture of our deep NMT system, which is inspired by Deep-Att (Zhou et al., 2016)
and GNMT (Wu et al., 2016). Both the encoder and decoder adopt LSTM as its main recurrent unit. We
also use residual connections (He et al., 2016) to help training, but here we omit it for clarity. We use
black lines to denote input connections while use blue lines to denote recurrent connections.

translation yt given the source annotation vectors
{xi} and target history y<t.

2.1 Encoder

2.1.1 Interleaved Bidirectional Encoder

The interleaved bidirectional encoder was intro-
duced by (Zhou et al., 2016), which is also used
in (Wang et al., 2017). Like (Zhou et al., 2016),
our interleaved bidirectional encoder consists of
two columns. In interleaved bidirectional encoder,
the LSTMs in adjacent layers run in opposite di-
rections:

−→x i
t = LSTMf

i (
−→x i−1

t ,−→s i
t+(−1)i) (1)

←−x i
t = LSTMb

i(
←−x i−1

t ,←−s i
t+(−1)i+1) (2)

Here x0
t ∈ Re is the word embedding of word xt,

xi
t ∈ Rh is the output of LSTM unit and sit =

(cit,m
i
t) denotes the memory and hidden state of

LSTM. We set both e and h to 512 in all our ex-
periments. The annotation vectors xi ∈ R2h are
obtained by concatenating the final output −→x Lenc

and←−x Lenc of two encoder columns. In our experi-
ments, we set Lenc = 4.

2.1.2 Stacked Bidirectional Encoder

To better exploit source representation, we adopt a
stacked bidirectional encoder. As shown in Figure
1, all layers in the encoder are bidirectional. The

calculation is described as follows:

−→x i = LSTMf
i (x

i−1
t ,−→s i

t−1) (3)
←−x i = LSTMb

i(x
i−1
t ,←−s i

t+1) (4)

xi = [−→x iT ;←−x iT ]T (5)

To reduce parameters, we reduce the dimension of
hidden units from h to h/2 so that xi ∈ Rh. The
annotation vectors are taken from the output xLenc

of top LSTM layer. In our experiments, Lenc is set
to 8.

2.2 Decoder
The decoder network is similar to GNMT (Wu
et al., 2016). At each time-step t, let y0

t−1 ∈ Re

denotes the word embedding of yt−1 and y1
t−1 ∈

Rh denotes the output of bottom LSTM from pre-
vious time-step. The attention network calcu-
lates the context vector at as the weighted sum of
source annotation vectors:

at =

S∑

i=1

αt,i · xi (6)

Different from GNMT (Wu et al., 2016), we use
the concatenation of y0

t−1 and y1
t−1 as the query

vector for attention network, as described follows:

ht = [y0
t−1

T
;y1

t−1
T
]T (7)

et,i = vT
a tanh(Waht +Uaxi) (8)

αt,i =
exp(et,i)∑S
j=1 exp(et,j)

(9)
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This approach is also used in (Wang et al., 2017).
The context vector at is then fed to all decoder
LSTMs.

The probability of the next word yt is simply
modeled using a softmax layer on the output of
top LSTM:

p(yt|x,y<t) = softmax(yt,y
Ldec
t ) (10)

We set Ldec to 8 in all our experiments.

3 Experimental Features

3.1 Segmentation Approaches

To enable open-vocabulary, we use two ap-
proaches: BPE and mixed word/character segmen-
tation.

In most of our experiments, we use BPE3 (Sen-
nrich et al., 2016c) with 50K operations. In
our preliminary experiments, we found that BPE
works better than UNK replacement techniques.

For English-Chinese translation task, we apply
mixed word/character model (Wu et al., 2016) to
Chinese sentences. We keep the most frequent
50K words and split other words into characters.
Unlike (Wu et al., 2016), we do not add any pre-
fixes or suffixes to the segmented Chinese charac-
ters. In post-processing step, we simply remove
all the spaces.

3.2 Synthetic Training Data

We apply back-translation (Sennrich et al., 2016b)
method to use monolingual data. For English-
German and Chinese-English translation, we sam-
ple monolingual data from the NewsCrawl2016
corpora. For English-Chinese translation, we sam-
ple monolingual data from the XinhuaNet2011
corpus.

3.3 Target-bidirectional Translation

For Chinese-English translation, we also use a
target-bidirectional model (Liu et al., 2016; Sen-
nrich et al., 2016a) to rescore the hypotheses.

To train a target-bidirectional model, we reverse
the target side of bilingual pairs from left-to-right
(L2R) to right-to-left (R2L). We first output 50
candidates from the ensemble of 4 L2R models.
Then we rescore candidates by interpolating L2R
score and R2L score with uniform weights.

3https://github.com/rsennrich/
subword-nmt

3.4 Training
For all our models, we adopt Adam (Kingma and
Ba, 2015) (β1 = 0.9, β2 = 0.999 and ε = 1×
10−8) as the optimizer. The learning rate is set
to 5 × 10−4. We gradually halve the learning rate
during the training process. As a common way to
train RNNs, we clip the norm of gradient to a pre-
defined value 5.0. The batch size is 128. We use
dropout (Srivastava et al., 2014) to avoid overfit-
ting with a keep probability of 0.8.

4 Results

4.1 Results on English-German Translation

System Test (BLEU)
Baseline 25.7

+Synthetic 26.1
+Ensemble 26.7

Table 1: English-German translation results on
newstest2017.

Table 1 show the results of English-German
Translation. The baseline system is trained on
preprocessed parallel data4. For synthetic data,
we randomly sample 10M German sentences from
NewsCrawl2016 and translate them back to En-
glish using an German-English model. However,
we found random sampling do not work well. As
a result, for Chinese-English translation, we se-
lect monolingual data according to development
set. We first train one baseline model and continue
to train 4 models on synthetic data with different
shuffles. Next we ensemble 4 models and get the
final results. We found this approach do not lead
to substantial improvements.

4.2 Results on Chinese-English Translation

System Test (BLEU)
Baseline 23.1

+Synthetic 23.7
+Ensemble 25.3

+R2L reranking 26.0

Table 2: Chinese-English translation results on
newstest2017.

We use all training data (CWMT Corpus, UN
Parallel Corpus and News Commentary) to train a

4http://data.statmt.org/wmt17/
translation-task/preprocessed/de-en/
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baseline system. The Chinese sentences are seg-
mented using Stanford Segmenter5. For English
sentences, we use the moses tokenizer6. We filter
bad sentences according to the alignment score ob-
tained by fast-align toolkit7 and remove du-
plications in the training data. The preprocessed
training data consists of 19M bilingual pairs. As
noted earlier, the monolingual data is selected us-
ing newsdev2017. We first train 4 L2R models
and one R2L model on training data, then we fine-
tune our model on a mixture of 2.5M synthetic
bilingual pairs and 2.5M bilingual pairs sampled
from CWMT corpus. As shown in Table 2, we ob-
tained +1.6 BLEU score when ensembling 4 mod-
els. When rescoring with one R2L model, we fur-
ther gain +0.7 BLEU score.

4.3 Results on English-Chinese Translation

System Test (BLEU)
Baseline 30.4

+Synthetic 34.3
+Ensemble 35.8

Table 3: English-Chinese translation results on
newstest2017.

Table 3 show the results of English-Chinese
Translation. We use our reimplementation of
DL4MT to train English-Chinese models on
CWMT and UN parallel corpus. The preprocess-
ing steps, including word segmentation, tokeniza-
tion, and sentence filtering, are almost the same
as Section 4.2, except that we limited the vocab-
ulary size to 50K and split all target side OOVs
into characters. For synthetic parallel data, we use
SRILM8 to train a 5-gram KN language model on
XinhuaNet2011 and select 2.5M sentences from
XinhuaNet2011 according to their perplexities.
We obtained +3.9 BLEU score when tuning the
single best model on a mixture of 2.5M synthetic
bilingual pairs and 2.5M bilingual pairs selected
from CWMT parallel data randomly. We further
gain +1.5 BLEU score when ensembling 4 mod-
els.

5https://nlp.stanford.edu/software/
segmenter.shtml

6http://statmt.org/moses/
7https://github.com/clab/fast_align
8http://www.speech.sri.com/projects/

srilm/

5 Shared Task Results

Table 4 shows the ranking of our submitted sys-
tems at the WMT17 shared news translation task.
Our submissions are ranked (tied) first for 2 out of
3 translation directions in which we participated:
EN↔ZH.

Direction BLEU Rank Human Rank
EN→DE 4 2-9 of 16
ZH→EN 2 1-3 of 16
EN→ZH 2 1-3 of 11

Table 4: Automatic (BLEU) and human ranking
of our submitted systems at WMT17 shared news
translation task.

6 Conclusion

We describe XMU’s neural machine translation
systems for the WMT 17 shared news translation
tasks. All our models perform quite well on all
tasks we participated. Experiments also show the
effectiveness of all features we used.
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