
Proceedings of the Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 310–314
Copenhagen, Denmark, September 711, 2017. c©2017 Association for Computational Linguistics

University of Rochester WMT 2017 NMT System Submission

Chester Holtz, Chuyang Ke, and Daniel Gildea
University of Rochester

choltz2@u.rochester.edu

Abstract

We describe the neural machine trans-
lation system submitted by the Univer-
sity of Rochester to the Chinese-English
language pair for the WMT 2017 news
translation task. We applied unsuper-
vised word and subword segmentation
techniques and deep learning in order to
address (i) the word segmentation prob-
lem caused by the lack of delimiters be-
tween words and phrases in Chinese and
(ii) the morphological and syntactic differ-
ences between Chinese and English. We
integrated promising recent developments
in NMT, including back-translations, lan-
guage model reranking, subword splitting
and minimum risk tuning.

1 Introduction

This paper presents the machine translation (MT)
systems submitted by University of Rochester to
the WMT 2017 news translation task. We partic-
ipated in the Chinese-to-English and Latvian-to-
English news translation tasks, but will focus on
describing the system submitted for the Chinese-
to-English task.

Chinese-to-English is a particularly challenging
language pair for corpus-based MT systems due
to the task of finding an optimal word segmenta-
tion for Chinese sentences as well as other linguis-
tic differences between Chinese and English sen-
tences. For example the fact that there may exist
multiple possible meanings for characters depend-
ing on their context and that individual characters
can be joined together to build compound words
exacerbate the aforementioned segmentation prob-
lem. Additionally, translation performance is also
affected by the frequent dropping of subjects and

infrequent use of function words in Chinese sen-
tences.

We used both word-level and morphological
feature-based representations of Chinese to deal
with data sparsity and reduce the size of the Chi-
nese vocabulary. We experimented with both sub-
phrase-based and character-based systems. Both
RNN-based and 5-gram language models were
trained with data extracted from the English news
corpora provided and are used to rerank hypothe-
ses proposed by the decoder.

The paper is organized as follows: in Section 2
we introduce our system and preprocessing meth-
ods for the Chinese language. Our main learning
framework training settings are explained in Sec-
tion 3. Our NMT, SMT, and submission results are
presented in Section 4. The paper ends with some
concluding remarks.

2 System Description

In this section we briefly introduce our prepro-
cessing methods and the general encoder-decoder
framework with attention (Sutskever et al., 2014;
Cho et al., 2014; Bahdanau et al., 2014) used in
our system. We closely followed the neural ma-
chine translation model proposed by Chorowski
et al. (2015).

A neural machine translation model (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014;
Sutskever et al., 2014) aims at building an end-
to-end neural network framework, which takes as
input a source sentence X = (x1, ...,xTX

) with
length of TX , and outputs its translation Y =
(y1, ...,yTY

) with length of TY , where xt and yt

are the source and target language tokens, respec-
tively. The framework is constructed as a compos-
ite of an encoder network and a decoder network.
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Figure 1: Illustration of the encoder-decoder
framework from Bahdanau et al. (2014).

2.1 Morphological Analyzer

Word segmentation is considered an important
first step for Chinese natural language processing
tasks since individual Chinese words can be com-
posed of multiple characters with no space appear-
ing between words.

We employed the Jieba morphological analyzer
(Junyi, 2013) to segment the source Chinese sen-
tences into words. Jieba decomposes Chinese sen-
tences into sequences of words by constructing a
graph for all possible word combinations and finds
the most probable sequence based on statistics de-
rived from training data. For unknown words, an
HMM-based model is used with the Viterbi algo-
rithm.

2.2 Rare-Morpheme (BPE) Algorithm

If we simply apply the Chinese morphological an-
alyzer to segment Chinese sentences into individ-
ual words and feed the words into our encoder,
overfitting will occur; some words are so rare, that
they only appear altogether with others. Thus, we
enforced a thresholded on frequent words and ap-
plied the byte-pair-encoding (BPE) algorithm pro-
posed by Gage (1994) and applied by Sennrich
et al. (2016b) to NMT to further reduce the spar-
sity of our language data and to reduce the number
of rare and out-of-vocabulary tokens.

2.3 Encoder

The encoder reads a sequence of source language
tokens X = (x1, . . . ,xTX

), and outputs a se-
quence of hidden states H = (h1, . . . , hTX

). A
bidirectional recurrent neural network (BiRNN)
(Bahdanau et al., 2014) consisting of a forward
recurrent neural network (RNN) and a backward

RNN, is used to give additional positional repre-
sentational power to the encoder. The lower part
of Figure 1 illustrates the BiRNN structure.

The forward network reads the input sentence in
a forward direction

−→
ht =

−→
φx(ix(xt),

−−→
ht−1) (1)

where for each input token xt, ix(·) : X → Rn

is a continuous embedding, that maps the t-th in-
put token to a vector ix(xt) in a high dimensional
space Rn. A forward recurrent activation function−→
φx updates each forward hidden state

−→
ht , using the

embedded token ix(xt) and the information of the
previous hidden state

−−→
ht−1.

Similarly, the reverse network reads the sen-
tence in a reverse direction (right to left)

←−
ht =

←−
φx(ix(xt),

←−−
ht+1) (2)

and generates a sequence of backward hidden
states.

The encoder utilizes information from both the
forward RNN and the backward RNN to generate
the hidden states H = (h1, . . . , hTX

). For every
input token xt, we concatenate its corresponding
forward hidden state vector and the backward hid-

den state vector, such that ht =




−→
ht

←−
ht


.

2.4 Decoder
The upper part of Figure 1 illustrates the decoder.
The decoder computes the conditional distribution
over all possible translations based on the context
information provided by the encoder (Bahdanau
et al., 2014). More specifically, the decoder RNN
tries to find a sequence of tokens in the target lan-
guage that maximizes the following probability:

log p(Y |X) =

TY∑

t=1

log p(yt|y1, . . . ,yt−1, X) (3)

Each hidden state st in the decoder is updated by

st = φy(iy(yt−1), st−1, ct), (4)

where iy is the continuous embedding of a token
in the target language. ct is a context vector related
to the t-th output token, such that

ct =

TX∑

l=1

hl · atl (5)
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Figure 2: Illustration of Attention Mechanism
from Luong et al. (2015).

and

atl =
exp(etl)∑TX

k=1 exp(etk)
(6)

Here, atl indicates the importance of the hidden
state annotation hl regarding to the previous hid-
den state st−1 in the decoder RNN. etk measures
how “matching” the input at position k and the
output at position t are (Bahdanau et al., 2014;
Chorowski et al., 2015); it is defined by a soft
alignment model falign, such that

etk = falign(st−1, hk). (7)

Finally, each conditional probability in Equation 3
is generated by

p(yt|y1, . . . ,yt−1, X) = g(yt−1, st, ct) (8)

for some nonlinear function g.

2.5 Attention Mechanism
The soft-alignment mechanism falign weighs each
vector in the context set C = (c1, . . . , cTY

) ac-
cording to its relevance given what has been trans-
lated (Bahdanau et al., 2014; Cho et al., 2014;
Sutskever et al., 2014). It is commonly imple-
mented as a feedforward neural network with a
single hidden layer. This procedure can be under-
stood as computing the alignment probability be-
tween the t-th target symbol and k-th source sym-
bol.

The hidden state annotation ht, together with
the previous target symbol yt−1 and the context
vector ct, is fed into a feedforward neural network
to result in the conditional distribution and the
whole network, consisting of the encoder, decoder
and soft-alignment mechanism, is then tuned end-
to-end to minimize the negative log-likelihood us-
ing stochastic gradient descent. In our system, the
source sentenceX is a sequence of sub-phrase and

sub-word tokens extracted by the morphological
analyzer and BPE algorithms, and the target sen-
tence Y is represented as a sequence of sub-words.

2.6 Minimum Risk Tuning

We applied minimum risk training (Shen et al.,
2016) to tune the model parameters post conver-
gence of the cross-entropy loss by minimizing
the expected risk for sentence-level BLEU scores
where the risk is defined to be

R(θ) =

S∑

s=1

Ey|x(s);θ[∆(y,y(s))] (9)

=

S∑

s=1

∑

y∈Y (x(s))

P (y|x(s);θ)∆(y,y(s)) (10)

for candidate translations Y (x(s)) for x(s). De-
tails regarding methods to solve this problem can
be found in Shen et al. (2016).

3 Experimental Settings

In this section, we describe the details of the ex-
perimental settings for our system.

3.1 Corpora and Preprocessing

Our model was trained on all available training
parallel corpora for the ZH-EN language pair. The
training data consists of approximately 2, 000, 000
sentence pairs. We removed sentence pairs from
our data when the source or target side is more
than 50 tokens long. A set of 50, 000, 000 sen-
tences was sampled from the News Crawl 2007-15
data and was used to train our target side (English)
language model. Additionally, we backtranslated
a subset of these sentences and used the result-
ing source-target sentences to augment our train-
ing data.

Our training and development data were lower-
cased and preprocessed using the Moses tokenizer
script (Koehn et al., 2007), Jieba, and BPE. We
set the upper bound on the target vocabulary to
30, 000 sub-words and two additional tokens re-
served for 〈EOS〉 and 〈UNK〉. For the source
vocabulary, we constrained the size of BPE sym-
bol vocabulary to 30, 000 tokens.

3.2 Synthetic Training Data

Sennrich et al. (2016a) introduced the augmen-
tation of a parallel corpus by leveraging target-
side monolingual data and empirically showed
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that treating back-translations as additional train-
ing data reduced overfitting and increased fluency
of the translation model. We sampled monolingual
sentences from the same news data used to con-
struct our language models. Due to computation
and time constraints, we were only able to aug-
ment our training data by an additional 190,000
sentence pairs. We hypothesize that increasing the
number of back-translated sentences in our train-
ing set will further improve our system’s perfor-
mance.

3.3 Neural Baseline

Our NMT baseline is an encoder-decoder model
with attention and dropout implemented with Ne-
matus (Sennrich et al., 2017) and AmuNMT
(Junczys-Dowmunt et al., 2016). This base-
line system without pre-tokenization or lan-
guage model scoring achieves 17.32 uncased
BLEU on news-test2017 and 19.78 after source-
segmentation with the BPE algorithm.

We used beam search with a beam width of
8 to approximately find the most likely transla-
tions given a source sentence before introducing
features proposed by our language models and
reranking with the default Moses (Koehn et al.,
2007) implementation of K-best MIRA (Cherry
and Foster, 2012). Both language models were
trained on the English news data. Our unigram-
pruned 5-gram language model was trained with
KenLM (Heafield, 2011), and our RNN-based lan-
guage model was trained with RNNLM (Mikolov
et al., 2011) with a hidden layer size of 300.

3.4 Statistical Baseline

For our SMT baseline, we trained a standard
phrase-based system on input segmented with
Jieba: Berkeley Aligner (IBM Model 1 and HMM,
both for 5 iterations); phrase table with up to 5
tokens per phrase, 40-best translation options per
source phrase, and Good-Turing smoothing; 4-
gram language model and pruning of singleton n-
grams; and the default K-best MIRA reordering.

This baseline system achieves an uncased
BLEU score of 7.46 on news-test2017.

4 Experimental Results

We compared the performance of our system to
several state-of-the-art algorithms. Our systems
(Character-level BiRNN, Morphological Subword
BiRNN) are marked in a bold font. It can be

System Score
Moses Baseline (word) 7.5
Neural Baseline (word) 17.3
Neural Baseline (subword) 19.8
BiRNN (character) 12.5
BiRNN (word + subword) 21.6

Table 1: Test Results. Uncased BLEU scores of
the trained models computed over all sentences on
the development and test sets.

seen that our system outperformed the baselines,
whether using words or subwords as the input to-
kens. The experiments also showed that the rare-
morpheme algorithm significantly reduced some
potential overfitting, compared to the character-
level BiRNN.

4.1 Error Analysis

Error analysis on the validation set shows that the
two main sources of errors produced by the base-
line are missing and incorrect words. These is-
sues are addressed in our model by applying mor-
phological segmentation in combination with BPE
and adding new backtranslated data to the train-
ing set. Our model’s translation error rate (0.716)
is strictly lower than that of our baseline’s output
(0.743). We attribute this reduction in error rate
to our system being able to more robustly model
multi-character words in Chinese.

5 Conclusion

We describe the University of Rochester neural
machine translation system for WMT’17 Chinese-
English news translation task, which employs
recent developments in the machine translation
field. Our results show that applying word and
morpheme-aware tokenization, minimum risk tun-
ing, and language model reranking to an existing
MT framework help to improve the overall trans-
lation quality of the model.

Machine translation is a dynamic area, and there
are many opportunities for further exploration.

• Other objectives: Modify the encoder-
decoder trainer and add secondary tasks for
multi-task training (e.g. source sentence tag-
ging) for explicit use of linguistic features.

• Sentence reordering: Reorder the training
data in various ways to encourage the model
to learn a more robust translation model.
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• Source-side monolingual data: Leverage
source-side monolingual data to improve
translation performance.
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