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Abstract

This paper describes SYSTRAN’s sys-
tems submitted to the WMT 2017 shared
news translation task for English-German,
in both translation directions. Our sys-
tems are built using OpenNMT!, an open-
source neural machine translation system,
implementing sequence-to-sequence mod-
els with LSTM encoder/decoders and at-
tention. We experimented using mono-
lingual data automatically back-translated.
Our resulting models are further hyper-
specialised with an adaptation technique
that finely tunes models according to the
evaluation test sentences.

1

We participated in the WMT 2017 shared news
translation task on two different translation direc-
tions: English—German and German— English.

The paper is structured as follows: Section 2
overviews our neural MT engine. Section 3 de-
scribes the set of experiments carried out to build
the English—German and German—English neu-
ral translation models. Experiments and results
are detailed in Section 3. Finally, conclusions are
drawn in Section 4.

Introduction

2 Neural MT System

Neural machine translation (NMT) is a new
methodology for machine translation that has led
to remarkable improvements, particularly in terms
of human evaluation, compared to rule-based
and statistical machine translation (SMT) systems
(Crego et al., 2016; Wu et al., 2016). NMT has
now become a widely-applied technique for ma-
chine translation, as well as an effective approach

"http://opennmt .net
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for other related NLP tasks such as dialogue, pars-
ing, and summarisation.

Our NMT system (Klein et al., 2017) follows
the architecture presented in (Bahdanau et al.,
2014). It is implemented as an encoder-decoder
network with multiple layers of a RNN with
Long Short-Term Memory (LSTM) hidden units
(Zaremba et al., 2014). Figure 1 illustrates an
schematic view of the MT network.

Source words are first mapped to word vectors
and then fed into a bidirectional recurrent neu-
ral network (RNN) that reads an input sequence
s = (s1,...,85). Upon seeing the <eos> sym-
bol, the final time step initialises a target RNN.
The decoder is a RNN that predicts a target se-
quence t = (t1,...,ts), being J and I respectively
the source and target sentence lengths. Translation
is finished when the decoder predicts the <eos>
symbol.

The left-hand side of the figure illustrates the
bidirectional encoder, which actually consists of
two independent LSTM encoders: one encoding
the normal sequence (solid lines) that calculates
a forward sequence of hidden states (hy, ..., hy),
the second encoder reads the input sequence in re-
versed order (dotted lines) and calculates the back-
ward sequence (hy, ..., hy). The final encoder out-
puts (h1,...,hy) consist of the sum of both en-
coders final outputs. The right-hand side of the
figure illustrates the RNN decoder. Each word ¢;
is predicted based on a recurrent hidden state h;
and a context vector ¢; that aims at capturing rele-
vant source-side information.

Figure 2 illustrates the attention layer. It imple-
ments the "general" attentional architecture from
(Luong et al., 2015). The idea of a global atten-
tional model is to consider all the hidden states of
the encoder when deriving the context vector c;.
Hence, global alignment weights a; are derived by
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Figure 1: Schematic view of our MT network.

comparing the current target hidden state h; with
each source hidden state hg:

anls) = exp(score(hy, ESZ)
> exp(score(hy, hy))

with the content-based score function:

score(hg, hs) = h?Waﬁs

Given the alignment vector as weights, the con-
text vector ¢; is computed as the weighted average
over all the source hidden states.

Figure 2: Attention layer of the MT network.

Note that for the sake of simplicity figure 1
illustrates a two-layers LSTM encoder/decoder
while any arbitrary number of LSTM layers can

be stacked. More details about our system can be
found in (Crego et al., 2016).

3 Experiments

In this section we detail the corpora and training
experiments used to build our English<>German
neural translation models.

3.1 Corpora

We used the parallel corpora made available for
the shared task: Europarl v7, Common Crawl cor-
pus, News Commentary vi2 and Rapid corpus of
EU press releases. Both English and German
texts were preprocessed with standard tokenisa-
tion tools. German words were further prepro-
cessed to split compounds, following a similar
algorithm as the built-in for Moses. Additional
monolingual data was also used for both German
and English available for the shared task: News
Crawl: articles from 2016. Basic statistics of the
tokenised data are available in Table 1.

We used a byte pair encoding technique’
(BPE) to segment word forms and achieve open-
vocabulary translation with a fixed vocabulary of
30, 000 source and target tokens. BPE was origi-
nally devised as a compression algorithm, adapted
to word segmentation (Sennrich et al., 2016b).
It recursively replaces frequent consecutive bytes
with a symbol that does not occur elsewhere. Each

https://github.com/rsennrich/
subword—nmt
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’ ‘ #sents ‘ #words ‘ vocab. ‘ Liean ‘
Parallel

En | 4.6M | 103.7M | 627k 22.6

De | 4.6M | 104.5M | 836k 22.8

Monolingual

En | 20,6M | 463,6M | 1.18M | 22.5

De | 34,7M | 620,8M | 3.36M | 17.8
Table 1: English-German parallel and monolin-

gual corpus statistics. Lyeqn indicates mean sen-
tence lengths. M stand for millions, k for thou-
sands.

such replacement is called a merge, and the num-
ber of merges is a tuneable parameter. Encodings
were computed over the union of both German and
English training corpora after preprocessing, aim-
ing at improving consistency between source and
target segmentations.

Finally, case information was considered by the
network as an additional feature. It allowed us to
work with a lowercased vocabulary and treat re-
casing as a separate problem (Crego et al., 2016).

3.2 Training Details

All experiments employ the NMT system detailed
in Section 2. The encoder and the decoder con-
sist of a four-layer stacked LSTM with 1, 000 cells
each. We use a bidirectional RNN encoder. Size
of word embedding is 500 cells. We use stochastic
gradient descent, a minibatch size of 64 sentences
and 0.3 for dropout probability. Maximum sen-
tence length is set to 80 tokens. All experiments
are performed on NVidia GeForce GTX 1080 on a
single GPU per optimisation work. Newstest2008
(2008) is employed as validation test set and new-
stest from 2009 to 2016 (2009-16) as internal test
sets.

3.2.1 Training on parallel data

Table 2 outlines training work. All parallel data
(P) is used on each training epoch. Row LR indi-
cates the learning rate value used for each epoch.
Note that learning rate was initially set to 1.0
during several epochs until no or little perplexity
(PPL) reduction is measured on the validation set.
Afterwards, additional epochs are performed with
learning rate decayed by 0.7 at each epoch. BLEU
score (averaged over the eight internal test sets) af-
ter each training epoch is also shown. Note that all
BLEU scores shown in this paper are computed
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using multi-bleu.perl’. Training time per
epoch is also shown in row Time measured in
number of hours.

As expected, a perplexity reduction is ob-
served for the initial epochs, until epochs 9
(German—English) and 8 (English—German)
where little or no improvement is observed. The
decay mode is then started allowing to fur-
ther boost accuracy (between 1.5 and 2.0 BLEU
points) after 5 additional epochs.

3.2.2 Training on parallel and synthetic data

Following (Sennrich et al., 2016a), we selected
a subset of the available target-side in-domain
monolingual corpora, translate it into the source
side (back-translate) of the respective language
pair, and then use this synthetic parallel data for
training. The best performing models for each
translation direction (epoch 13 on Table 2 of both
translation directions) were used to back-translate
monolingual data. (Sennrich et al., 2016a) mo-
tivate the use of monolingual data with domain
adaptation, reducing overfitting, and better mod-
elling of fluency.

Synthetic corpus was then divided into ¢ dif-
ferent splits containing each 4.5 million sentence
pairs (except for the last split that contains less
sentences). Table 3 shows continuation of the
training work using at each epoch the union of
the entire parallel data together with a split of the
monolingual back-translated data (P+M;). Hence,
balancing the amount of reference and synthetic
data, summing up to around 9 million sentence
pairs per epoch. Note that training work described
in Table 3 is built as continuation of the model at
epoch 13 on Table 2. Table 3 shows also BLEU
scores over newstest2017 for the best performing
network.

As for the experiments detailed in Table 2, once
all splits of the synthetic corpus were used to train
our models with learning rate always set to 1.0
(b epochs for German—English and 8 epochs for
English—German), we began a decay mode. In
this case, we decided to reduce the amount of
training examples from 9 to 5 millions due to
time restrictions. To select the training data we
employed the algorithm detailed in (Moore and
Lewis, 2010). It aims at identifying sentences
in a generic corpus that are closer to domain-

‘https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl



| Epoch 1 2 3 4 5 6 7 8 9 10 11 12 13
German—English
Data P P P P P P P P P P P P P
Time (hours) 24 24 24 24 24 24 24 24 24 24 24 24 24
LR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | o7t 07 o7 o7t
PPL (2008) 20.90 17.01 15.38 14.67 14.18 13.75 13.57 13.29 13.00 | 12.47 12.05 11.49 11.40
BLEU (2009-16) 20.07 22.06 23.02 24.17 24.59 24.40 24.99 25.11 25.42 | 25.65 26.14 26.48 26.87
English—German
Data P P P P P P P P P P P P P
Time (hours) 24 24 24 24 24 24 24 24 24 24 24 24 24
LR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 [ o7t 07 o7 07t 07
PPL (2008) 20.85 16.52 14.84 13.89 13.62 13.13 1259 12.66 | 11.72 11.20 10.94 10.75 10.55
BLEU (2009-16) 15.63 17.41 18.85 19.61 19.92 20.38 20.34 20.55 | 21.13 21.63 21.70 22.22 22.50

Table 2: Training on parallel data.

[ Epoch 1 2 3 4 5 6 7 8 9 10 11 12 13 ]
German—English
Data P+M; P+My, P+M3 P+My P+M; | PP+M° P+M’ P+M’ P+M’ P+M’
Time (hours) 45 45 45 45 32 25 25 25 25 25
LR 1.0 1.0 1.0 1.0 1.0 0.7t 0.72 0.73 0.74 0.7°
PPL (2008) 13.33 1323 13.26 1347 1263 | 1225 11.87 11.60 11.40 11.33
BLEU (2009-16) 26.85 27.37 27.37 27.01 27.77 | 27.91 2834 2854 28.75 28.73
BLEU (2017) 32.35
English—German
Data P+M; P+M, P+M; P+My P+M; P+Mg P+M; P+Mg | P+M P+M P+M P+M P+M’
Time (hours) 46 46 46 46 46 46 46 40 25 25 25 25 25
LR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.72 0.73 0.7* 0.7%
PPL (2008) 12.87 1291 1238 12.23 1219 1200 1226 11.65 | 11.51 11.19 10.80 10.70  10.58
BLEU (2009-16) 21.81 2226 22.52 22.65 2259 2275 22.79 2293 | 23.35 23.56 23.79 23.96 24.07
BLEU (2017) 26.41

Table 3: Training on parallel and synthetic data.

specific data. Figure 3 outlines the algorithm. In
our experiments, parallel and monolingual back-
translated corpus are considered as the generic
corpora (P+M) while all available newstest test
sets, from 2009 to 2017, are considered as the
domain-specific data (T). Hence, we aim at select-
ing from P+M the closest 5 million sentences to
the newstest2009-17 data (2.5 from the P and 2.5
from the M subsets).

RANDOM

P+M T
subset 2009-2017 P+M’
P+M X D
LM LM

/
/
!
/
E
;
;’ .
/! out in
;
!
/
/
- score & sort
/
B

Figure 3: Data selection process.

Obviously, we base our selection procedure on

the source-side text of each translation direction as
references for newstest2017 are not available.

Sentences s of the generic corpus are scored
in terms of cross-entropy computed from two
language models: a 3-gram LM trained on the
domain-specific data H;,(s) and a 3-gram LM
trained on a random sample taken from itself
H,u(s). Finally, sentences of the generic corpus
are sorted regarding the computation of the differ-
ence between domain-specific and generic scores
H;p,(s) — Hoyut () (score & sort).

3.2.3 Hyper-specialisation on news test sets

Similar to domain adaptation, we explore a post-
process approach, which hyper-specialises a neu-
ral network to a specific domain by running ad-
ditional training epochs over newly available in-
domain data (Servan et al., 2016). In our context,
we utilise all newstest sets (T) (around 25,000
sentences), as in-domain data and run a single
learning iteration in order to fine tune the result-
ing network. Translations are not available for
newstest2017, instead we use the single best hy-
potheses produced by the best performing system
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in Table 3. In a similar task, (Crego and Senel-
lart, 2016) report translation accuracy gains by
employing a neural system trained over a synthetic
corpus built from source reference sentences and
target translation hypotheses. The authors claim
that text simplification is achieved when translat-
ing with an automatic engine compared to refer-
ence (human) translations, leading to higher accu-
racy results.

Table 4 details the hyper-specialisation training
work. Note that the entire hyper-specialisation
process was performed on approximately 6 min-
utes. We used a learning rate set to 0.7. Fur-
ther experiments need to be conducted for a better
understanding of the learning rate role in hyper-
specialisation work.

| Epoch 1 1]

German—English

Data T T-2017
Time (seconds) 365 305
LR o7t 07!
BLEU (2017) 32,87 32,66
English—German

Data T T-2017
Time (seconds) 372 308
LR o7t o7t
BLEU (2017) 26,98 26,80

Table 4: Hyper-specialisation on news test sets.

Accuracy gains are obtained despite us-
ing automatic (noisy) translation hypotheses to
hyper-specialise: 4-0.52 (German—English) and
+0.57 (English—German). In order to mea-
sure the impact of using newstest2017 as train-
ing data (sefl-training) we repeated the hyper-
specialisation experiment using as training data
newstest sets from 2009 to 2016. This is, ex-
cluding newstest2017 (T-2017). Slightly lower
accuracy results were obtained by this sec-
ond configuration (last column in Table 4) but
still outperforming the systems without hyper-
specialisation: +0.31 (German—English) and
+0.39 (English—German).

4 Conclusions

We described SYSTRAN’s submissions to the
WMT 2017 shared news translation task for
English-German. Our systems are built using
OpenNMT. We experimented using monolingual
data automatically back-translated. Our resulting
models were successfully hyper-specialised with
an adaptation technique that finely tunes models
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according to the evaluation test sentences. Note
that all our submitted systems are single networks.
No ensemble experiments were carried out, what
typically results in higher accuracy results.
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