
Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 80–89
Copenhagen, Denmark, September 711, 2017. c©2017 Association for Computational Linguistics

Exploiting Linguistic Resources for Neural Machine Translation
Using Multi-task Learning

Jan Niehues and Eunah Cho
Institute for Anthropomatics and Robotics

KIT - Karlsruhe Institute of Technology, Germany
firstname.lastname@kit.edu

Abstract

Linguistic resources such as part-of-
speech (POS) tags have been extensively
used in statistical machine translation
(SMT) frameworks and have yielded bet-
ter performances. However, usage of such
linguistic annotations in neural machine
translation (NMT) systems has been left
under-explored.

In this work, we show that multi-task
learning is a successful and a easy ap-
proach to introduce an additional knowl-
edge into an end-to-end neural attentional
model. By jointly training several natu-
ral language processing (NLP) tasks in one
system, we are able to leverage common
information and improve the performance
of the individual task.

We analyze the impact of three design de-
cisions in multi-task learning: the tasks
used in training, the training schedule, and
the degree of parameter sharing across the
tasks, which is defined by the network ar-
chitecture. The experiments are conducted
for an German to English translation task.
As additional linguistic resources, we ex-
ploit POS information and named-entities
(NE). Experiments show that the transla-
tion quality can be improved by up to 1.5
BLEU points under the low-resource con-
dition. The performance of the POS tag-
ger is also improved using the multi-task
learning scheme.

1 Introduction

Recently, there has been a dramatic change in the
state-of-the-art techniques for machine translation
(MT). In a traditional method, often the best per-

formance is achieved by using a complicated com-
bination of several statistical models, which are in-
dividually trained. For example, POS information
was shown to be very helpful to model word re-
ordering between languages, as shown in Niehues
and Kolss (2009). While the recent development
of end-to-end trained neural models (Bahdanau
et al., 2014) showed significant gains over tradi-
tional approaches, they are often trained only on
the parallel data in an end-to-end fashion. In most
cases, therefore, they do not facilitate other knowl-
edge sources.

When parallel data is sparse, exploiting other
knowledge sources can be crucial for perfor-
mance. Two techniques to integrate the additional
resources are well studied. In one technique, we
train a tool on the additional resources (e.g. POS
tagger) and then annotate the parallel data using
this tool. This technique has been applied exten-
sively in SMT systems (e.g. Niehues and Kolss
(2009)) as well as in some NMT systems (e.g.
Sennrich and Haddow (2016)). The second tech-
nique would be to use the annotated data directly
to train the model.

The goal of this work is to integrate the ad-
ditional linguistic resources directly into neural
models, in order to achieve better performance. To
do so, we build a multi-task model and train sev-
eral NLP tasks jointly.

We use an attention-based sequence-to-
sequence model for all tasks. Experiments show
that we are able to improve the performance on
the German to English machine translation task
measured in BLEU, BEER and CharacTER. Fur-
thermore, we analyze three important decisions
when designing multi-task models. First, we in-
vestigated the influence of secondary tasks. Also,
we analyze the influence of training schedule, e.g.
whether we need to adjust it in order to get the
best performance on the target task. And finally,

80



we evaluated the amount of parameter sharing
enforced by different model architectures.

The main contributions of this paper are
(1) that we show multi-task learning is possi-
ble within attention-based sequence-to-sequence
models, which are state-of-the-art in machine
translation and (2) that we analyze the influence
of three main design decisions.

2 Related Work

Motivated by the success of using features learned
from linguistic resources in various NLP tasks,
there have been several approaches including ex-
ternal information into neural network-based sys-
tems.

The POS-based information has been integrated
for language models in Wu et al. (2012); Niehues
et al. (2016). In the neural machine translation,
using additional word factors like POS-tags has
shown to be beneficial (Sennrich and Haddow,
2016).

The initial approach for multi-task learning for
neural networks was presented in Collobert et al.
(2011). The authors used convolutional and feed
forward networks for several tasks such as seman-
tic parsing and POS tagging. This idea was ex-
tended to sequence to sequence models in Luong
et al. (2015).

A special case of multi-task learning for atten-
tion based models has been explored. In multi-
lingual machine translation, for example, the tasks
are still machine translation tasks but they need
to consider different language pairs. In this case,
a system with an individual encoder and decoder
(Firat et al., 2016b) as well as a system with a
shared encoder-decoder (Ha et al., 2016; Johnson
et al., 2016) has been proposed.

2.1 Attention Models

Recently, state-of-the art performance in machine
translation was significantly improved by using
neural machine translation. In this approach, a
recurrent neural network (RNN)-based encoder-
decoder architecture is used to transform the
source sentence into the target sentence.

In the encoder, an RNN is used to encode
the source sentence into a fixed size of continu-
ous space representation by inserting the source
sentence word-by-word into the network. First,
source words are encoded into a one-hot encoding.
Then a linear transformation of this into a con-

tinuous space, referred to as word embeddings, is
learned. An RNN model will learn the source sen-
tence representation over these word embeddings.
In a second step, the decoder is initialized by the
representation of the source sentence and is then
generating the target sequence one word after the
other using the last generated word as input for the
RNN. In order to get the output probability at each
target position, a softmax layer that get the hidden
state of the RNN as input is used (Sutskever et al.,
2014).

The main drawback of this approach is that the
whole source sentence has to be stored in a fixed-
size context vector. To overcome this problem,
Bahdanau et al. (2014) introduced the soft atten-
tion mechanism. Instead of only considering the
last state of the encoder RNN, they use a weighted
sum of all hidden states. Using these weights, the
model is able to put attention on different parts of
the source sentence depending on the current sta-
tus of the decoder RNN. In addition, they extended
the encoder RNN to a bi-directional one to be able
to get information from the whole sentence at ev-
ery position of the encoder RNN. A detailed de-
scription of the NMT framework can be found in
Bahdanau et al. (2014).

3 Multi-task Learning

In a traditional NLP pipeline, a named entity
recognition or machine translation system employ
POS information by using the POS tags as addi-
tional features. For example, the system will learn
that the probability of a word being a named en-
tity is higher if the word is marked as a noun.
First, a POS tagger is used to annotate the input
data. Combining the statistical models used for
POS tagging and named entity recognition might
not be straightforward.

Recent advances in deep learning approaches,
e.g. CNN or RNN-based models (Labeau and
Löser K., 2015), made it straightforward to use
very similar techniques throughout different NLP
tasks. Therefore, there are new methods to com-
bine the tasks. Instead of using the output of a
model as input for another one, for example, we
can build one model for all tasks. The model is
then automatically able to learn to share as much
information across the tasks as necessary.

For building a model that can learn three NLP
tasks, we use the attention-based encoder-decoder
model, which is a standard in state-of-the-art ma-

81



chine translation systems. The two non-MT tasks
can also be modeled by converting them into a
translation problem. Instead of translating the
source words into the target language, we trans-
late the words into labels, either POS-tags or NE-
labels.

In this work, we study several crucial design
aspects when applying attention-based encoder-
decoder model for a multi-task learning scenario.
First, we consider different architectures of the
network in order to assess how much parameter
sharing is useful between the tasks. In general,
sharing more information across the tasks is pre-
ferred. However, if the tasks differ from each other
greatly, it might be helpful to restrict the degree of
sharing. In addition, the training schedule of each
task has to be addressed. While all three tasks are
handled as a form of translation, certain distinc-
tions and special processes needed to be asserted.
In Section 3.3 we address this issue.

3.1 Architecture

The general attentional encoder-decoder model
consists of three main parts: the encoder E, the
attention model A and the decoder D. Figure 1
gives an overview of this layout.

Our baseline considers the scenario where we
have separate models for each task. Therefore,
all three parts (encoder, attention model, and de-
coder) stand separately for each task. We will
have nine components EMT , EPOS , ENE , AMT ,
APOS , ANE , DMT , DPOS , DNE in total.

The one main design decision for a multi-
task learning architecture is the degree of sharing
across the tasks. Motivated by architectures pro-
posed for multi-lingual machine translation (Dong
et al., 2015; Firat et al., 2016a; Ha et al., 2016), we
analyze the impact of different degrees of sharing
in the output quality. When sharing more parame-
ters between the tasks, the models are able to learn
more from the training data of other tasks. If the
tasks are very distant, on the other hand, it might
be harmful to share the parameters.

Shared encoder (shrd Enc) One promising way
is to share components that handle the same type
of data. Since all our tasks share English as input
here is the encoder.

In this architecture, we therefore use one en-
coder for all tasks. This is the minimal degree of
sharing we consider in our experiments. A com-
mon encoder EALL is used for all tasks, but sepa-

rate attention models AMT , APOS , ANE and de-
coders DMT , DPOS , DNE are used.

Shared attention (shrd Att) The next compo-
nent is the attention model which connects the en-
coder and decoder. While the output should be
different for the addressed tasks, the type of input
is the same. Therefore, it might be helpful to share
more information between the models.

In a second architecture, we also share the at-
tention model in addition to the encoder. So in
this setup, we have one encoder EALL, one atten-
tion model AALL and three decoder DMT , DPOS ,
DNE .

Shared decoder (shrd Dec) Finally, we explore
whether it is possible to share all information
across the tasks and let the model learn how to rep-
resent the different tasks. Thus, in this scheme, we
aim to share the decoder partially. The only thing
that is not shared is the final softmax layer.

In this architecture, the decoder RNN has to
model the generation of target words as well as
that of labels. Therefore, we have only one en-
coder EALL, one attention model AALL and one
decoder DALL. In the decoder, however, we have
separated output layers for each task.

Figure 1 depicts which layers are shared de-
pending on the architecture.

3.2 Training Schedule

In this section, we discuss the influence of the
training schedule on the quality of the model.

Throughout our experiments we used a mini-
batch size of 512 tokens. The weight updates were
determined using the Adam algorithm.

The training has to be adapted to the multi-task
scenario. The main decision is how to present the
training examples to the training algorithm. We
only consider one task in each mini-batch. Al-
though the model structure is the same for all
tasks, the models for the individual tasks have dif-
ferent weights. Therefore, parallelization on the
GPU would be less efficient when using different
tasks within one batch. In order to train our model
on all tasks in parallel, we randomly shuffle the
mini-batches from all tasks. This is our default
training schedule. One issue in the multi-task sce-
nario is that the data size might vary. In this case,
the model will mainly concentrate on the task with
the most data and not achieve the best performance
on each task.

82



Figure 1: Overview on the different architectures used for multi-task learning

This challenge is strongly related with the prob-
lem of domain adaptation in machine translation,
where a large out-of-domain data is available but
only a small amount of in-domain data. For this
scenario, first training on all data and then fine-
tuning on the in-domain data was very successful
(Lavergne et al., 2011; Cho et al., 2016). There-
fore, we adapt this approach to the multi-task sce-
nario. In this case, we first trained the model on
all tasks and then continued training only on the
main task. We will refer to this training schedule
as adapted.

3.3 Target Length

While all tasks are modeled as a translation prob-
lem in this work, the nature of each task is largely
different. One main difference between the trans-
lation task and the other two tasks is the length of
the target sequence. While it is unknown in the
translation task, it is known and fixed for the other
two cases. During training this does not matter as
the target sequence is given. For testing the sys-
tem, however, this issue is crucial to address.

In our initial experiment, it was shown that
the POS tagger was able to learn the correct tar-
get length in most of the cases. For some sen-
tences, however, the estimated target length was
not correct. Therefore, the prior knowledge of se-
quence length is used during decoding so that la-
bel sequences are generated with the correct tar-
get length. It is worth to mention that the desired

length of the labels is not exactly the length of the
input to the model itself. Our model uses inputs
with subwords units generated by byte-pair encod-
ing (Sennrich et al., 2016).

4 Experimental Setup

We conduct experiments using the multi-task ap-
proach on three different tasks: machine trans-
lation from German to English, German fine-
grained POS tagging and German NE tagging.
As briefly mentioned in Section 1, multi-task ap-
proach can be helpful when data is sparse. In or-
der to simulate this, we deploy only German to
English TED data for the translation task.

4.1 Data

For the translation task, we used 4M tokens of the
WIT corpus (Cettolo et al., 2012) for German to
English as training data. We used dev2010 for val-
idation and tst2013 and tst2014 for testing, pro-
vided by the IWSLT. We only used training exam-
ples shorter than 60 words per sentence.

The POS tagger was trained on 720K tokens the
Tiger Corpus (Brants et al., 2004). This corpus
contains German newspaper text. Consequently, it
is out-of-domain data for the machine translation
task. The development and the test data are also
from this corpus. The POS tag set consists of 54
tags and the fine-grained POS tags with morpho-
logical annotations has 774 labels.

Finally, we trained the German named-entity

83



tagger on 450K tokens of the GermEval 2014 NER
Shared Task data (Benikova et al., 2014). The cor-
pus is extracted from Wikipedia and the training
data consists of 24K sentences.

We preprocess the parallel data by tokenizing
and true-casing. In addition, we trained a byte-pair
encoding (Sennrich et al., 2016) with 40K sub-
words on the source and target side of the TED
corpus jointly. We then applied the subwords to
all German and English corpora.

4.2 System Architecture

For all our experiments, we use an attentional
encoder-decoder model. The baseline systems use
this architecture as well. The encoder uses word
embeddings of size 256 and a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997) with 256 hidden layers for each di-
rection. For the attention, we use a multi-layer
perceptron with 512 hidden units and tanh activa-
tion function. The decoder uses conditional GRU
units with 512 hidden units. The models are all
trained with Adam, where we restarted the algo-
rithm twice and early stopping is applied using
log-likelihood of the concatenated validation sets
from the considered tasks. For the adapted sched-
ule, Adam is started once again when training only
on the target task. The model is implemented in
lamtram (Neubig, 2015)1.

4.3 Evaluation

The machine translation output is evaluated with
BLEU (Papineni et al., 2002), BEER (Stanojevic
and Sima’an, 2014) and CharacTER (Wang et al.,
2016). For the POS tags, we report error rates on
the small label set as well as on the large label set.

5 Results

In this section, we present the results from our ex-
periments and analysis.

5.1 Initial experiments on the architecture

The results of the initial experiments on the ma-
chine translation tasks are shown in Table 1. The
table displays the performance on the validation
set and on both test sets. For all experiments, we
first show the BLEU score, then the BEER score
and finally the characTER.

1The extension to handle multi-task training can be down-
loaded https://github.com/isl-mt/lamtram

First, we show the results of the baseline neu-
ral MT system trained on the parallel data (single
task). As mentioned in the beginning, we sim-
ulated a low-resource condition in these experi-
ments by only using the data from TED, which are
roughly 185K sentences.

We evaluated models that are trained both on
the translation and POS tagging task. Although
the POS data is out-of-domain and significantly
smaller than the parallel training data for the trans-
lation task (ca. 20% of the size), we see improve-
ments for all three architectures consistently in
three metrics. The BLEU scores is improved by
more than 1 point and the characTER is reduced
by more than 1.5 points. The BEER metric score
is improved by more than a half point on both sets.

In a more detailed look at this task, we see that
the model sharing the most (shrd Dec) performs
better than the baseline, but worse than the other
two. Therefore, we can conclude that it is helpful
to separate the tasks when the components work
on different types of data. Whether it is helpful
to share the attention layer (shrd Att) or not (shrd
Enc) is not clear from this experiment. Therefore,
we concentrate on these two architectures in the
following experiments.

5.2 Impact of design decisions
Following the initial experiment, we address the
following three design questions:

• What kind of influence does the secondary
task have?

• How do the different architectures perform?

• Do we need to adapt the training schedule?

In order to clarify the impact of the three hyper-
parameters (the architectures, the tasks and the
training) we performed experiments based on pos-
sible combinations. We used two most promising
architectures, shrd Enc and shrd Att as discussed
in Section 5.1. We use three task combinations,
POS+MT, NE+MT and NE+POS+MT. Two train-
ing strategies are applied with and without adapta-
tion as described in Section 3.2. These 12 systems
are evaluated on the two test sets using three dif-
ferent metrics. Consequently, in total we have 72
measurements for the 12 systems.

Since a first view on the results did not clearly
reveal a best performing system, we conducted
a more detailed analysis by averaging the results

84



Task(s) Arch. Valid Test
dev 2010 tst2013 tst2014

MT - 29.91/62.16/51.06 30.85/62.27/51.16 26.12/58.73/55.17

POS + MT
shrd Enc 30.62/62.77/48.35 31.97/62.72/49.69 27.08/58.99/54.50
shrd Att 30.51/62.27/49.09 31.76/62.68/49.59 26.86/58.84/53.88
shrd Dec 30.36/62.34/49.28 31.26/62.31/50.35 26.52/58.48/54.00

Adapted NE + POS + MT shrd Enc 30.70/62.96/48.60 32.30/63.25/49.22 27.78/59.74/53.49

Table 1: Results of multi-task learning architectures on the machine translation task
(BLEU/BEER/characTER)

over several configurations. First, we analyze the
influence of adapting the training schedule by fine-
tuning on the MT task. Out of the 12 systems, six
systems used an adapted training schedule.

As shown in the first line of Table 2 (All), when
averaging over the six systems using the adapted
training schedule and tested both test sets, we see
improvements in all considered metrics compare
to the systems using the default training schedule.
The BLEU score improved by 0.4 BLEU points,
BEER by 0.2 and characTER by 0.4. Further-
more, we compared each of the 36 measurements
using the adapted schedule with the correspond-
ing measurement using the default training sched-
ule. Thus, the scores are calculated on same test
set, based on the same metric. The model differs
whether it is trained using the default or adapted
training schedule. How often the system with an
adapted schedule performs better is shown in the
last column of Table 2. When directly comparing
these systems, in 25 out of 36 cases the ones with
the adapted schedule perform better.

We analyzed the influence of the architecture as
well as tasks considered in training in the same
way. The influence of both aspects, however, was
not as clear as the one from the training schedule.
In order to get a deeper understanding, we ana-
lyzed in which cases it is more helpful to adapt the
training schedule. As a first step, we looked at the
correlation between the training schedule and the
two different architectures. The results are shown
in the next lines of Table 2.

Compared to the systems using the shrd Enc
layout, we observe even bigger improvements
when applying the adapted schedule. The av-
eraged BLEU score is improved by 0.7 BLEU
points. Furthermore, the system with the adapted
training schedule performs better, in almost all
cases. For the shrd Att model, in contrast, we gain
nearly no improvements from the adapted sched-

ule. We also observed that the system with the
default schedule performs better in 10 out of 18
cases.

One reason for this can be that the default train-
ing schedule may not perform as well any more
when only a few parameters are observed in every
batch. In this case, continuing and concentrating
on one task seems to be very important.

In addition, we evaluate the correlation between
the tasks involved and the training schedule. The
results are shown in the same table. The adapted
training schedule has no effect when training on
named entities and machine translation. The ef-
fect when training on POS tagging and MT is also
relatively small. When training the three tasks
together, however, the system with an adapted
schedule performs always better than the system
with the default one. The average BLEU is im-
proved by 0.7. The BEER score and characTER
are also improved by 0.5 and 1.2 points.

Inspired by the results, we build the adapted
shrd Enc model trained on all three tasks, as shown
in Table 1. This model improved the performance
by 1.5 BLEU points over the baseline system.
Also the BEER score is improved by 1 and the
characTER score reduced by 1.8 to 2 points.

5.3 POS Tagging Performance

In addition to the results on the task of translation,
we also evaluated the performance on the task of
POS tagging. The results are shown in Table 3.

For the validation and test data, we show the
error rate on the small tag sets as well as the error
rate on the morpho-syntactic tag set. In the table,
we always first show the results for the small test
set.

The baseline system trained only on the Tiger
corpus achieves an error rate of 5.49, for the POS
tags in the validation set. For the morpho-syntactic
tag of the validation set, it achieves 11.36. The

85



Systems Default Schedule Adapted Schedule Adapted better
All 29.48/60.89/52.05 29.89/61.08/51.64 25/36
shrd Enc 29.34/60.85/52.31 30.00/61.25/51.50 17/18
shrd Att 29.62/61.93/51.78 29.78/60.93/51.79 8/18
POS + MT 29.41/60.81/51.92 29.78/61.00/51.90 8/12
NE + MT 29.60/61.00/51.76 29.79/60.96/51.77 5/12
NE + POS + MT 29.42/60.87/52.46 30.09/61.46/51.25 12/12

Table 2: Impact of the training schedule in the machine translation task (BLEU/BEER/characTER)

Task(s) Model Default schedule Adaptation schedule
Valid Test Valid Test

POS - 5.49/11.36 10.13/17.27 - -

POS + MT
shrd Enc 3.99/9.98 7.55/14.98 3.57/8.82 6.24/13.24
shrd Att 3.86/9.55 6.98/14.17 3.16/8.23 5.52/12.25
shrd Dec 3.57/9.28 7.40/14.62 3.53/8.94 5.81/12.56

NE + POS + MT
shrd Enc 3.42/9.00 5.86/12.87 3.00/8.00 5.06/11.62
shrd Att 3.08/8.45 6.23/13.28 2.78/7.87 5.49/12.10

Table 3: Results of different multi-task architectures on the POS task

performance on the test data is 10.13 and 17.27
for both tag sets. In all systems we used one sys-
tem the generate the both tag sets. The small tags
were evaluated by removing the morhpo-syntactic
information from the output

It is clear that all models outperform the base-
line. It seems to be very helpful for the POS task
to jointly train the model along with the translation
task. The MT data is significantly larger than the
POS data, which is beneficial for this task.

A more detailed look shows that model adap-
tation is beneficial for a good performance. In all
cases the performance is improved by adapting the
model to the POS task. Therefore, when the data
of the main task is small compared to the overall
training data, adapting on the main task is even
more important.

Furthermore, we see improvements when using
a third task in all cases. Facilitating this combina-
tion of tasks is also helpful for POS tagging.

As we observed in the MT task, the impact and
differences brought from each architecture are not
huge. The architectures considered in this work
perform similar. Even the system sharing all com-
ponents achieves a comparable performance on
this task.

The best performing model, however, is the
shred Enc model, trained on all three tasks and
adapted to the task. This model achieved an er-
ror of 5.06 on the small tag set. Compared to the

baseline performance of 10.13, we can see that the
error rate is halved. On the fine-grained tag set, we
see an improvement from 17.27 to 11.62, which is
a more than 30% reduction in error rate.

5.4 Analysis and Examples

In order to show the influence of the other tasks,
we show translation examples in Table 4. For the
examples we use the multi-task system trained on
all three tasks with the shrd Enc architecture.

A common problem of many neural MT sys-
tems is that they do not translate parts of the source
sentence, or that parts of the source sentence are
translated twice. The baseline system suffers from
this, as shown in the first two examples. The trans-
lation of the multi-task system is improved com-
pared to the baseline in several aspects. In the first
example, the baseline system is not translating the
German compound Geburtsfehler into birth defect
correctly, but into birth. Although the multi-task
system does not generate the translation that ex-
actly matches the reference the translation is un-
derstandable. In the second example, the phrase of
10 is not repeated. One explanation for this could
be that the additional information from the POS
data leads to a better encoding of the structure of
the source sentence.

The influence of the named-entity training ex-
amples on the translation quality is clearer. In sev-
eral cases, the model is able to handle named enti-

86



German sie ist kein Geburtsfehler.
Reference it’s not a birth defect.
Baseline she’s not born.
Multi-task it’s not a birth error.
German das bedeutet, dass 8 von 10 Entscheidungen...
Reference that means that eight out of 10 of the decisions...
Baseline that means that eight of 10 of 10 choices...
Multi-task that means that eight of 10 decisions...
German ...[“Benjamin Franklin” von Walter Isaacson][“John Adams” von David McCullough]...
Reference ...[“Benjamin Franklin” by Walter Isaacson][“John Adams” by David McCullough]...
Baseline ...[Benjamin Franklin, from Walter Franklin”][The “John Adams”]...
Multi-task ...[“Benjamin Franklin” from Walter Isaacson],[“John Adams” from David McCul-

lough...
German darum habe ich infantile Zerebralparese, ...
Reference as a result, I have cerebral palsy,
Baseline that’s why I have the infantile,
Multi-task I have infantile cerebral palsy,
German Prousts Freunde hätten das Land verlassen müssen, ..
Reference you know, Proust’s boyfriends would have to leave the country ...
Baseline Prolled friends had to have left the country ...
Multi-task Prouless friends have to leave the country ...

Table 4: Translation examples

ties better. As shown in the third and fourth exam-
ple, the NMT system is not able to copy a named
entity from the source to the target, nor to translate
rare words. In the third example, the baseline sys-
tem is not able to generate the correct last name of
the first author Isaacson, but is generating the last
name from the book title. In the second part of the
example, the baseline system completely deletes
the author. In contrast, the multi-task system is
able to generate the correct sequence. In the fourth
example the multi-task example is able to translate
Zerebralparese (cerebral palsy), while the base-
line system is not able to do it.

We would like to note that as shown in the last
example, there are also several cases where the
NMT system is not able to translate names or rare
words correctly.

6 Conclusion

In this paper we proposed the use of multi-
task learning for attention-based encoder-decoder
models in order to exploit linguistic resourced for
NMT. By training the models not only on the
machine translation task, but also on other NLP
tasks, we yielded clear improvements on the trans-
lation performance. Results show that multi-task
learning improves the translation up to 1.5 BLEU

points and 2 characTER points. As a by product,
we were also able to improved the performance of
the POS tagging by 30% to 50% relatively. This is
especially helpful since data annotation for many
NLP tasks is very time-consuming and expensive.
It suggests that multi-task learning is a promising
approach to exploit any linguistic annotated data,
which is especially important if we have a low-
resource condition.

We addressed the influence of three design de-
cisions: the involved tasks, the training schedule
and the architecture of the model. The largest in-
fluence on the final performance was given by the
training schedule . By adapting the system on the
individual tasks, we were able to make most use
of available additional resources. In this case, we
showed that both additional resources, the data for
POS tagging as well as the named entity-annotated
corpus, were beneficial for the translation qual-
ity. It is worth mentioning that this was achieved
using corpora from a different domain, i.g. spo-
ken TED talks versus written style. Furthermore,
these corpora were significantly smaller than the
available parallel data. Finally, the amount of pa-
rameter sharing defined by the architecture of the
model has less influence on the final performance.
Although, the best performance on both tasks was

87



achieved with a model sharing only the encoder
between the tasks.

In this work, the performance of machine trans-
lation task was improved by adopting multi-task
training with other source language NLP tasks. In
future work, we will also investigate methods to
include target-language NLP tasks into the joint
framework.

Acknowledgments

The project leading to this application has received
funding from the European Union’s Horizon 2020
research and innovation programme under grant
agreement n◦ 645452. This work was supported
by the Carl-Zeiss-Stiftung.

References
D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural

machine translation by jointly learning to align and
translate. CoRR abs/1409.0473.

D. Benikova, C. Biemann, M. Kisselew, and S. Pado.
2014. Germeval 2014 named entity recognition
shared task: Companion paper. In Proceedings
of the KONVENS GermEval workshop. Hildesheim,
Germany, pages 104–112.

S. Brants, S. Dipper, P. Eisenberg, S. Hansen-
Schirra, E. König, W. Lezius, C. Rohrer, G. Smith,
and H. Uszkoreit. 2004. Tiger: Linguis-
tic interpretation of a german corpus. Re-
search on Language and Computation 2(4):597–
620. https://doi.org/10.1007/s11168-004-7431-3.

M. Cettolo, C. Girardi, and M. Federico. 2012. Wit:
Web inventory of transcribed and translated talks.
In Proceedings of the 16th Conference of the Euro-
pean Association for Machine Translation (EAMT).
Trento, Italy, pages 261–268.

E. Cho, J. Niehues, T-L Ha, M. Sperber, M. Medi-
ani, and A. Waibel. 2016. Adaptation and combina-
tion of nmt systems: The kit translation systems for
iwslt 2016. In Proceedings of the 13th International
Workshop on Spoken Language Translation (IWSLT
2016). Seattle, USA.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. J. Mach.
Learn. Res. 12:2493–2537.

D. Dong, H. Wu, W. He, D. Yu, and H. Wang. 2015.
Multi-task learning for multiple language transla-
tion. In Proceedings of the 53st Annual Meeting of
the Association for Computational Linguistics (ACL
2015). Beijing, China.

O. Firat, K. Cho, and Y. Bengio. 2016a. Multi-
way, multilingual neural machine translation with a
shared attention mechanism. In Proceedings of the
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT 2016).
San Diego, California, USA, pages 866–875.

O. Firat, B. Sankaran, Y. Al-Onaizan, F. T. Yarman-
Vural, and K. Cho. 2016b. Zero-resource trans-
lation with multi-lingual neural machine transla-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP
2016). Austin, USA, pages 268–277.

T-L Ha, J. Niehues, and A. Waibel. 2016. Toward mul-
tilingual neural machine translation with universal
encoder and decoder. In Proceedings of the 13th In-
ternational Workshop on Spoken Language Transla-
tion (IWSLT 2016). Seattle, USA.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Comput. 9(8):1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

M. Johnson, M. Schuster, Q. V. Le, M. Krikun,
Y. Wu, Z. Chen, N. Thorat, F. B. Viegas, M. Wat-
tenberg, G. Corrado, M. Hughes, and J. Dean.
2016. Google’s multilingual neural machine trans-
lation system: Enabling zero-shot translation. CoRR
abs/1611.04558.

M. Labeau and Allauzen Löser K. 2015. Non-
lexical neural architecture for fine-grained pos tag-
ging. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2015). Lisbonne, Portugal, page 6.

T. Lavergne, H-S Le, A. Allauzen, and F. Yvon.
2011. Limsi’s experiments in domain adaptation for
iwslt11. In M-Y Hwang and S. St??ker, editors,
Proceedings of the Eights International Workshop
on Spoken Language Translation (IWSLT 2011). San
Francisco, CA, pages 62–67.

M-T Luong, Q. V. Le, I. Sutskever, O. Vinyals, and
L. Kaiser. 2015. Multi-task sequence to sequence
learning. CoRR abs/1511.06114.

G. Neubig. 2015. lamtram: A toolkit for language and
translation modeling using neural networks.

J. Niehues, T-L Ha, E. Cho, and A. Waibel. 2016. Us-
ing factored word representation in neural network
language models. In Proceedings of the First Con-
ference on Statistical Machine Translation (WMT
2016). Berlin, Germany.

J. Niehues and M. Kolss. 2009. A pos-based model for
long-range reorderings in smt. In Proceedings of the
Fourth Workshop on Statistical Machine Translation
(WMT 2009). Athens, Greece.

K. Papineni, S. Roukos, T. Ward, and W-J Zhu. 2002.
Bleu: A method for automatic evaluation of machine

88



translation. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2002). Philadelphia, Pennsylvania, pages 311–
318. https://doi.org/10.3115/1073083.1073135.

M. Schuster and K. K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing 45(11):2673–2681.

R. Sennrich and B. Haddow. 2016. Linguistic input
features improve neural machine translation. In Pro-
ceedings of the First Conference on Statistical Ma-
chine Translation (WMT 2016). Berline, Germany,
pages 83–91.

R. Sennrich, B. Haddow, and A. Birch. 2016. Neu-
ral machine translation of rare words with subword
units. In Proceedings of the 54st Annual Meeting of
the Association for Computational Linguistics (ACL
2016). Berlin, Germany.

M. Stanojevic and K. Sima’an. 2014. Fitting sentence
level translation evaluation with many dense fea-
tures. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar, pages 202–206.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Se-
quence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014. Quebec, Canada, pages
3104–3112.

W. Wang, J-T Peter, H. Rosendahl, and H. Ney. 2016.
Character: Translation edit rate on character level.
In Proceedings of the First Conference on Statisti-
cal Machine Translation (WMT 2016). Berlin, Ger-
many, pages 505–510.

Y. Wu, X. Lu, H. Yamamoto, S. Matsuda, C. Hori,
and H. Kashioka. 2012. Factored language model
based on recurrent neural network. In Proceedings
of the 24rd International Conference on Computa-
tional Linguistics (COLING 2012). Bombay, India.

89


