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Abstract

While recent changes in Machine Trans-
lation state-of-the-art brought translation
quality a step further, it is regularly ac-
knowledged that the standard automatic
metrics do not provide enough insights to
fully measure the impact of neural models.
This paper proposes a new type of evalu-
ation focused specifically on the morpho-
logical competence of a system with re-
spect to various grammatical phenomena.
Our approach uses automatically gener-
ated pairs of source sentences, where each
pair tests one morphological contrast. This
methodology is used to compare several
systems submitted at WMT’17 for English
into Czech and Latvian.

1 Introduction

It is nowadays unanimously recognized that Ma-
chine Translation (MT) engines based on the neu-
ral encoder-decoder architecture with attention
(Cho et al., 2014; Bahdanau et al., 2014) constitute
the new state-of-the-art in statistical MT, at least
for open-domain tasks (Sennrich et al., 2016a).
The previous phrase-based (PBMT) architectures
were complex (Koehn, 2010) and hard to diag-
nose, and Neural MT (NMT) systems, which dis-
pense with any sort of symbolic representation of
the learned knowledge, are probably worse in this
respect. Furthermore, the steady progress of MT
engines makes automatic metrics such as BLEU
(Papineni et al., 2002) or METEOR (Banerjee and
Lavie, 2005) less appropriate to evaluate and com-
pare modern NMT systems. To better understand
the strength and weaknesses of these new architec-
tures, it is thus necessary to investigate new, more
focused, evaluation procedures.

Error analysis protocols, as proposed eg. by

Vilar et al. (2006); Popović and Ney (2011) for
PBMT, are obvious candidates for such studies
and have been used eg. in (Bentivogli et al., 2016).
Recently, various new proposals have been put for-
ward to better diagnose neural models, notably by
Linzen et al. (2016); Sennrich (2017), who focus
respectively on the syntactic competence of Neu-
ral Language Models (NLMs) or of NMT; and by
Isabelle et al. (2017); Burchardt et al. (2017), who
resuscitate an old tradition of designing test suites.

Inspired by these (and other) works (see § 4),
we propose in this paper a new evaluation scheme
aimed at specifically assessing the morphologi-
cal competence of MT engines translating from
English into a Morphologically Rich Language
(MRL). Morphology poses two main types of
problems in MT: (a) morphological variation in
the source increases the occurrence of Out-of-
Vocabulary (OOV) source tokens, the translation
of which is difficult to coin; (b) morphological
variation in the target forces the MT to generate
forms that have not been seen in training. Morpho-
logical complexity is alo often associated to more
flexible word orderings, which is mostly a prob-
lem when translating from a MRL (Bisazza and
Federico, 2016). Reducing these issues is a legiti-
mate and important goal for many language pairs.

Our method for measuring the morphological
competence of MT systems (detailed in § 2) is
mainly based on the analysis of minimal pairs,
each representing a contrast that is expressed syn-
tactically in English and morphologically in the
MRL. By comparing the automatic translations of
these pairs, it is then possible to approximately as-
sess whether a given MT system has succeeded
in generating the correct word form, carrying the
proper morphological marks. In § 3, we illus-
trate the potential of our evaluation protocol in
a large-scale comparison of multiple MT engines
having participated to the WMT’17 News Transla-
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tion tasks for the pairs English-Czech and English-
Latvian.1 We finally relate our protocol to conven-
tional metrics (§ 4), and conclude in § 5 by dis-
cussing possible extensions of this methodology,
for instance to other (sets of) language pairs.

2 Evaluation Protocol

2.1 Morphological competence and its
assessment

In traditional linguistics, morphology is “the
branch of the grammar that deals with the inter-
nal structure of words” (Matthews, 1974, p. 9);
the “structure of words” being further subdivided
into inflections, derivations (word formation) and
compounds. Languages exhibit a large variety of
formal processes to express morphological/lexical
relatedness of a set of word forms: alternations
in suffix/prefix are the most common processes in
Indo-European languages, where other language
families recourse to circumfixation, reduplication,
transfixation, or tonal alternations. They also
greatly differ in the phenomena that are expressed
through morphological alternations versus gram-
matical constructions.

Our evaluation protocol is designed to assess the
robustness of MT in the presence of morphologi-
cal variation in the source and target, looking how
source alternations (possibly implying to translate
source OOVs) are reproduced in the target (possi-
bly implying to generate target OOVs).

The general principle is as follows: for each
source test sentence (the base), we generate one
(or several) variant(s) containing exactly one dif-
ference with the base, focusing on a specific target
lexeme of the base; the variant differs on a fea-
ture that is expressed morphologically in the tar-
get, such as the person, number or tense of a verb;
or the number or case of a noun or an adjective.
This configuration is illustrated in Table 1, where
the first pair is an example of the tense contrast and
the second pair an instance of the polarity contrast.

We consider that a system behaves correctly
with respect to a given contrast if the translation
of the base and the variant reproduce the targeted
contrast: for the first example in Table 1, we ex-
pect to see in the translation of (1.a) and (1.b) dif-
ferent word forms accounting for the difference of
verb tense: the translation of the variant should
have a past form and any other case is considered
as an error. Other modifications between the two

1http://statmt.org/wmt17/.

translations, such as the selection of different lem-
mas for both forms or any modification of the con-
text, are considered irrelevant with respect to the
specific morphological feature at study, and are
therefore ignored. In the following sections, we
detail and justify our strategy for generating con-
trastive pairs.

2.2 Sentence selection and morphological
contrasts

We consider the set of contrasts listed in Table 2.
We distinguish three subsets (denoted A, B, and
C), which slightly differ in their generation and
scoring procedures.

Our choice for selecting this particular set of
tests was dictated by a mixture of linguistic and
also more practical reasons. From a linguistic
standpoint, we were looking to cover a large vari-
ety of morphological phenomena in the target lan-
guage, in particular we wished to include test in-
stances for all open domain word classes (noun,
verbs, adjectives). Our first set of tests (set A)
is akin to paradigm completion tasks, adopting
here a rather loose sense of “paradigm” which also
includes simple derivational phenomena such as
the formation of comparative for adjectives and
mostly checks whether the morphological feature
inserted in the source sentence has been translated.
Tests in the set B look at various agreement phe-
nomena, while tests in set C are more focused on
the consistency of morphological choices. These
three categories of tests slightly differ in their gen-
eration and scoring procedures.

For each contrast in the A and B sets, sentence
generation takes the following steps:2

1. collect a sufficiently large number of short
sentences (length < 15) containing a source
word of interest for at least one morphologi-
cal variation;

2. generate a variant as prescribed by the con-
trast (see below);

3. compute an average language model (LM)
score for the pair (base, variant);

4. remove the 33% worst pairs based on their
LM score;

5. randomly select 500 pairs for inclusion into
the final test.

2Examples of test pairs are given as supplementary mate-
rial in the appendix.
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base (1.a) The thing that horrifies me is the forgetfulness.
variant (1.b) The thing that horrified me is the forgetfulness.
base (2.a) Traffic deaths fall as gas prices climb.
variant (2.b) Traffic deaths do not fall as gas prices climb.

Table 1: Generating minimal contrastive pairs

name contrast target description
A-1 number noun base contains a singular noun, variant contains the plural form
A-2 number pronoun base contains a singular pronoun, variant contains the plural

form
A-3 gender pronoun base contains a masculine pronoun, variant contains the femi-

nine form
A-4 tense:future verb base and variant only differ in the tense of the main verb -

present in the base, future in the variant
A-5 tense:past verb base and variant only differ in the tense of the main verb -

present in the base, past in the variant
A-6 comparative adjective base contains the bare adjective, variant the comparative form
A-7 polarity verb base and variant only differ in the polarity of the main verb -

affirmative in the base, negative in the variant
B-1 complex NP pronoun base contains a pronoun, variant contains a complex NP of the

form adj noun
B-2 coordinated noun pronoun base contains a pronoun, variant contains a coordinated NP of

the form noun and noun
B-3 coordinated verbs verbs base contain a simple verb, variant contains a coordinated VP

of the form verb and verb
B-4 prep-case preposition base and variant differ in one preposition which implies a dif-

ferent case in the target (eg. during vs. before, with vs. without)
C-1 hyponyms adjective base contains an adjective, (4) variants with hyponyms
C-2 hyponyms noun base contains a noun, (4) variants with hyponyms
C-3 hyponyms verb base contains a verb, (4) variants with hyponyms

Table 2: A set of morphological contrasts. See text for details.

For set A, the creation of the variant (step 2)
consists in replacing a word according to the mor-
phological phenomenon to evaluate (see examples
Table 1). This word is selected in such a way that
its modification does not require a modification of
any other word in the sentence. For instance, a
singular subject noun is not replaced by its plural
form, since the verb agreeing with it would also
need to be replaced accordingly. Indeed, more
than one modification would go against our initial
idea of generating minimal pairs reflecting exactly
one single contrast.

For B-1 (complex NPs), we spot a personal pro-
noun that we changed into an NP consisting in an
adjective and a noun. Both words are generated
randomly with the only constraint that the noun
should refer to a human subject and the adjective
to a psychological state, yielding NPs such as “the

happy linguist” or “the gloomy philosopher”. In
order to ensure that the context corresponds to a
human subject, we selected pronouns that unam-
biguously refer to humans, such as “him”, “her”,
“we” (avoiding “them”). For B-2 (coordinated
NPs) the pronoun in the base sentence is trans-
formed into a complex NP consisting of two co-
ordinated nouns. Note that adjectives associated
to these nouns, as well as adverbs, have been ran-
domly inserted in order to produce some varia-
tion in the constructions. The B-3 contrasts are
produced in a similar fashion, targeting verbs in-
stead of nouns, with an additional random genera-
tion of a discourse marker that should not interfere
with the translation, yielding variants like “he said
and, as a matter of fact, shouted”.3 Those inser-

3The coordinated verbs are in bold, the discourse marker
is underlined.
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tions were performed in order to increase the dis-
tance between the two verbs, making agreement
between them harder. Finally, the B-4 contrasts
are produced in the same way as for the A-set and
simply consist in modifying a preposition.

The C-set variants select a noun, an adjective
or a verb and replace it with a random hyponym,
producing an arbitrary number of sentences. Sen-
tence selection slightly differs from the description
above: during step 2, we generate as many vari-
ants as possible. Each variant is then scored with a
language model and only the top four variants are
kept, leading to buckets of five sentences. Those
buckets are finally filtered in the same way as for
the A and B sets, removing the 33% worst buckets
based on their LM score (step 3).

All the sentences were selected from the En-
glish News-2008 corpus provided at WMT. The
choice of the news domain was dictated by our in-
tention to evaluate systems submitted at WMT’174

News Translation task. Sentences longer than 15
tokens were removed in order to ensure a bet-
ter focus on a specific part of the sentence in the
MT output. The modifications of English sen-
tences were based on a morpho-syntactic analy-
sis produced with the TreeTagger (Schmid, 1994)
and using the Pymorphy morphological genera-
tor5 to change the inflection of a word. Hy-
ponyms (synonyms and/or antonyms) were gen-
erated with WordNet (Miller, 1995). The 5-gram
language model used for sentence selection was
learned with KenLM (Heafield, 2011) on all En-
glish monolingual data available at WMT’15.

2.3 Scoring Procedures
Regarding the scoring procedure, we again distin-
guish three cases (examples are in Table 3).

• set A: we compare the translations of base
and variant and search for the word(s) in vari-
ant that are not in base. If one of these
words contains the morphological feature as-
sociated with the source sentence modifica-
tion, we report a success. Accuracy of each
morphological feature is averaged over all the
samples. In this set, we thus evaluate mor-
phological information that should be con-
veyed from the source sentence, which leads
to an assessment on the grammatical ade-
quacy of the output towards the source.

4www.statmt.org/wmt17/
5http://pymorphy.readthedocs.io/

• set B: we compare the translations of base
and variant and check that (a) a pronoun in
the former is replaced by a NP in the latter (b)
the adjective and the noun in the NP share the
same gender, number and case. A distinct ac-
curacy rate per feature can then be reported;
note that the situation is different in the com-
plex and coordinated tests, as in the latter
case some agreement properties may differ
in the base and variant (eg. the NP gender
agreement depends on the noun gender that
may be different from the pronoun gender in
base). For the test triggered by prepositions
(B-4), we check whether the first noun on the
right of a preposition carries the required case
mark. Moreover, since we have prepositions
associated to nouns in both base and vari-
ant, we performed this test on both sentences.
This evaluation set checks for agreement and
provides an insight about the morphological
fluency of the produced translations.

• set C : in this set of tests, we wish to as-
sess the consistency of morphological fea-
tures with respect to lexical variation in a
fixed context; accordingly, we measure the
success based on the average normalized en-
tropy of morphological features in the set of
target sentences. Such scores can be com-
puted either globally or on a per feature ba-
sis. The entropy is null when all variants
have the same morphological features, the
highest possible consistency; conversely, the
normalized entropy is 1 when the five sen-
tences contain different morphological fea-
tures. For each set C-1, C-2 and C-3, we re-
port average scores over 500 samples. In this
setup, we measure the degree of certainty to
which a system predicts morphological fea-
tures across small lexical variations.

Our scoring procedure needs access to morpho-
logical information in the target. For A and B sets,
the translated sentences are passed through a mor-
phological analysis, where several PoS can be as-
sociated with a word. This makes the evaluation
less dependent on the tagger’s accuracy. There-
fore, when checking whether a specific morpho-
logical feature appears in the output (eg. negation
of a verb), we look for at least one PoS tag indi-
cating negation, ignoring all the others.

For Czech, we used the Morphodita analyzer
(Straková et al., 2014). We had no such resource
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Base&Variant(s) Output Result
A-set

I am hungry mám hlad
I am not hungry nemám hlad negation found

B-set
I see him vidı́m ho noun and adjective both
I see a crazy researcher vidı́m bláznivého výzkumnı́ka have accusative form

C-set
I agree with the president souhlası́m s prezidentem all nouns bear
I agree with the director souhlası́m s ředitelem the same
I agree with the minister souhlası́m s ministrem intrumental case
I agree with the driver souhlası́m s řidičem
I agree with the painter souhlası́m s malı́řem (Entropy = 0.0)

Table 3: Examples of sentences that pass the tests.

for Latvian and therefore used the LU MII Tagger
(Paikens et al., 2013) to parse all Latvian monolin-
gual data available at WMT’17. We then extracted
a dictionary consisting of words and associated
PoS from the automatic parses. We finally per-
formed a coarse cleaning of this dictionary by re-
moving the PoS that were predicted less than 100
times for a specific word. To run the morpholog-
ical analysis of Latvian, we parsed the translated
sentences with the tagger, then augmented the tag-
ger predictions with our dictionary, producing the
desired ambiguous analysis of the Latvian outputs.

For the C-set, the translated sentence analyses
are disambiguated: each word is mapped to a sin-
gle PoS. This was required to compute the entropy.
Indeed, we need to select only one morphologi-
cal value for each base and variant sentence, given
that the entropy is normalized according the total
number of sentences in the bucket.

3 Experiments

We have run the presented morphological evalua-
tion6 on several systems among which some were
submitted at WMT’17. The description of the lat-
ter can be found in the proceedings of the Second
Conference on Machine Translation (2017a). We
briefly summarize the types of systems included in
the English-to-Czech study:

• Phrase-based systems: The Moses baseline
was trained on WMT’17 data and was not
submitted at WMT’17. UFAL Chimera7

was submitted at WMT’16 and is described
in (Tamchyna et al., 2016).

6The test suite and the scripts used for evaluation can be
downloaded at github.com/franckbrl/morpheval.

7Chimera (Bojar et al., 2013) consists in a phrase-based
factored system (Moses), a deep-syntactic transfer-based sys-
tem (TectoMT) and a rule-based post-processing system.

• Word based NMT: NMT words is a system
trained on WMT’17 parallel data with a tar-
get vocabulary of 80k tokens. It was not sub-
mitted at WMT’17 and is used for contrast.

• BPE-based NMT: LIMSI NMT (Burlot
et al., 2017) is based on NMTPY (Caglayan
et al., 2017), UEDIN NMT (Sennrich et al.,
2017a) on Nematus (Sennrich et al., 2017b)
and UFAL NMT (Bojar et al., 2017b) on
Neural Monkey (Helcl and Libovický, 2017).

• NMT modeling target morphology: LIMSI
FNMT (Burlot et al., 2017) and LIUM
FNMT (Garcı́a-Martı́nez et al., 2017) use a
factored output predicting words and PoS,
and UFAL NMT Chim. (Bojar et al., 2017b)
uses Chimera (Bojar et al., 2013). All these
models also use BPE segmentation.

These systems are representative of different
models across statistical MT history. Phrase-based
systems are a former state of the art that word-
based NMT struggled to improve. The new state
of the art is an NMT setup with an open vocab-
ulary provided by byte pair encoding (BPE) seg-
mentation (Sennrich et al., 2016b). Finally, we
have a set of systems that are optimized in order to
improve target morphology. The automatic scores
of the systems submitted at WMT’178 are in Ta-
ble 4 where we report BLEU, BEER (Stanojević
and Sima’an, 2014) and CharacTER (Wang et al.,
2016).9 We also computed a morphology accu-
racy for these systems. Using output-to-reference
alignments produced by METEOR on lemmas, we

8We were not able to provide such scores for the other
systems, since we did not have access to their translations of
WMT’17 official test sets.

9Outputs were taken from matrix.statmt.org. The
scores are computed on tokenized and truecased outputs.
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System BLEU ↑ BEER ↑ CTER ↓ Acc.
LIMSI NMT 19.81 54.50 58.40 85.59
UFAL NMT 19.78 54.52 57.62 85.31
UEDIN NMT 23.06 56.52 56.04 86.98
LIMSI FNMT 20.45 54.98 58.09 85.42
LIUM FNTM 20.14 54.81 57.91 84.98
UFAL NMT Chim. 21.00 55.04 59.39 85.28

Table 4: Scores of the English-to-Czech WMT’17
submissions on the official test set.

checked whether aligned words shared the same
form. Our assumption is that two different forms
associated to the same lemma correspond to two
different inflections of the same lexeme, which al-
lows us to locate positions that likely correspond
to morphological errors.

Table 5 lists the results for the A-set tests, which
evaluate the morphological adequacy of the out-
put wrt. the source sentence. The last column pro-
vides the mean of all scores for one system. We
can note that all BPE-based NMT systems have
a much higher performance than the phrase-based
systems.10 We explain the poor performance of
the word-based NMT system by the use of a too
small closed vocabulary: over the 18,500 sen-
tences of the test suite, 12,016 unknown words
were produced by this system. However, when
it comes to predicting the morphology of closed
class words, this systems performs much better:
the accuracy computed for pronoun gender and
number is similar to the ones of best BPE-based
systems. As opposed to nouns and verbs (open
classes), the set of pronouns in Czech is quite
small; having observed all their inflections, the
word-based system is in a better position to con-
vey the target form.

Despite important differences in automatic met-
ric scores between UEDIN NMT system and
LIMSI FNMT, we see that the latter always out-
performs the former, except for the feminine pro-
noun prediction. The overall morphological ac-
curacies (Table 4) show that UEDIN NMT pro-
vides more similar word forms with the reference
translation, but these global scores fail to show the
higher adequacy performance of LIMSI FNMT
highlighted in the A-set.

The results of the B-set evaluation for Czech are
in Table 6 and are an estimate of the morpholog-
ical fluency of the output. We observe here again

10The prediction quality of future tense by PBMT systems
is however comparable to that of NMT systems. We assume
that this is due to the possibility to generate an analytic form
of this tense (auxiliary + infinitive) that is easier to form well
than its synthetic form (morphological phenomenon).

that morphological phenomena such as agreement
are better modeled by sequence-to-sequence mod-
els using BPE segmentation than phrase-based or
word-based NMT systems. The overall best per-
formance of UEDIN and UFAL NMT has to be
noted, since both outperform systems that explic-
itly model target morphology.

The results for the C-set for English-to-Czech
are shown in Table 7. We now observe that fac-
tored systems are less sensitive to lexical varia-
tions and make more stable morphological pre-
dictions. The differences with the entropy values
computed for the phrase-based systems are spec-
tacular, especially for verbal morphology. We un-
derstand this poor performance for phrase-based
systems as a consequence of the initial assump-
tion those systems rely on: the concatenation of
phrases to constitute an output sentence does not
help to provide a single morphological prediction
in slightly various contexts.

As an attempt to evaluate the error margin of our
evaluation results, we have run a manual check of
our evaluation measures. For this, we have taken
all 500 sentence pairs reflecting past tense (A-set),
as well as case (pronouns to nouns in B-set), and
took translations from different systems randomly.
We report on cases where the modification of the
source created a “bad” (meaningless or ungram-
matical) variant, as well as sample translations er-
roneously considered successful or unsuccessful.
For past tense, we observe a low quantity of false
positive (1.6%) and false negative (0.4%). The ra-
tio of bad sources is quite low as well (3%), and is
mostly related to cases where a word was given the
wrong analysis in the first place, such as a noun la-
beled by the PoS-tagger as a verb, which was then
turned into a past form. For pronouns to nouns,
there are nearly no bad source sentences (0.2%):
the transformation of pronouns into noun phrases
is quite easy and safe. While false positive la-
bels are lower (0.2%), there is a higher amount of
false positive (4.4%), which was mainly due to our
word-based NMT system that generates many un-
known words and presents important differences
between base and variant: several adjectives and
nouns, not corresponding to the ones we generated
in the source sentence, could then be considered
during the evaluation.

For English-to-Latvian, we have represented
the same types of systems as for Czech, with an
additional hybrid system. The scores and mor-
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verbs pronouns others mean
System past future neg. fem. plur. noun nb. compar.
Moses baseline 61.0% 87.2% 73.8% 91.6% 78.0% 72.6% 70.9% 76.4%
UFAL PBMT 92.2% 88.6% 78.8% 75.6% 79.8% 86.0% 72.2% 81.9%
NMT words 74.6% 60.6% 91.6% 89.2% 71.6% 44.0% 47.8% 68.5%
UFAL NMT 91.0% 90.4% 95.0% 92.4% 80.8% 96.6% 70.6% 88.1%
LIMSI NMT 92.6% 86.2% 96.0% 91.4% 79.2% 94.6% 76.2% 88.0%
UEDIN NMT 92.4% 87.0% 94.2% 93.0% 78.0% 95.8% 73.8% 87.7%
LIMSI FNMT 94.2% 88.0% 95.4% 91.2% 80.0% 96.2% 75.0% 88.6%
LIUM FNTM 93.4% 84.0% 94.6% 91.6% 80.2% 96.2% 73.4% 87.6%
UFAL NMT Chim. 92.6% 86.6% 88.2% 85.4% 80.2% 89.2% 70.6% 84.7%

Table 5: Sentence pair evaluation for English-to-Czech (A-set).

coordinated verbs coord.n pronouns to nouns prep. mean
System number person tense case gender number case case
Moses baseline 53.2% 53.6% 47.6% 92.6% 68.0% 69.4% 69.4% 86.2% 67.5%
UFAL PBMT 67.4% 69.2% 59.2% 93.2% 92.4% 92.4% 91.8% 89.6% 81.9%
NMT words 60.0% 58.8% 51.8% 64.0% 22.8% 23.2% 22.6% 62.2% 45.7%
LIMSI NMT 76.6% 77.0% 69.2% 90.4% 90.8% 92.6% 92.2% 95.3% 85.5%
UFAL NMT 81.4% 80.0% 74.0% 94.2% 94.4% 94.6% 94.8% 97.0% 88.8%
UEDIN NMT 83.6% 84.2% 77.6% 92.8% 93.6% 94.4% 94.0% 95.8% 89.5%
LIMSI FNMT 77.6% 77.4% 70.6% 89.0% 91.4% 90.8% 91.6% 96.1% 85.6%
LIUM FNTM 80.8% 79.6% 71.8% 89.6% 90.6% 90.4% 90.8% 95.8% 86.2%
UFAL NMT Chim. 75.8% 74.6% 68.0% 92.6% 87.8% 87.8% 88.2% 92.9% 83.5%

Table 6: Sentence pair evaluation for English-to-Czech (B-set).

phological accuracies of the systems submitted at
WMT’17 are in Table 8.

• Phrase-based systems: The Moses baseline
was trained on WMT’17 data and TILDE
PBMT was provided by TILDE11 and is de-
scribed in (Peter et al., 2017). These systems
did not take part in the official WMT’17 eval-
uation campaign.

• Word-based NMT: NMT words is a system
trained on WMT’17 parallel data with a 80K
target vocabulary. It was not submitted at
WMT’17 and is used here as a contrast.

• BPE-based NMT: LIMSI NMT (Burlot
et al., 2017) is based on NMTPY and UEDIN
NMT (Sennrich et al., 2017a) on Nematus.

• NMT modeling target morphology: LIMSI
FNMT (Burlot et al., 2017) and LIUM
FNMT (Garcı́a-Martı́nez et al., 2017) use a
factored output predicting words and PoS.

• Hybrid system: TILDE hybrid is an ensem-
ble of NMT models using a PBMT to process
rare and unknown words. It was submitted at
WMT’17 (Pinnis et al., 2017).

11http://www.tilde.com/mt

The results for the A-set evaluation are in Ta-
ble 9. Compared to the previous Czech eval-
uation, there is a less clear difference between
phrase-based and NMT systems based on BPE.
Indeed, TILDE hybrid has the best mean per-
formance and is only 5 points above our Moses
baseline. A possible reason for that situation is
the lower amount of parallel data available for
English-Latvian, compared to English-Czech. We
notice that there is no significant difference be-
tween the two NMT systems and LIMSI FNMT.
With this language pair, word-based NMT per-
forms significantly worse than all other systems
on all morphological features, which is confirmed
by the fluency evaluation in Table 10. Here, the
factored systems tend to have a better verbal flu-
ency, whereas NMT systems perform better on
nominal agreement: LIMSI FNMT has the best
mean score, but is only 0.2 points above UEDIN
NMT. The best system, TILDE hybrid, is now
21.1 points above the Moses baseline, which again
seems to be the main reason for such high overall
morphological accuracy in Table 8.

Table 11 confirms the higher performance of
NMT and factored NMT systems, with a clear ad-
vantage for TILDE hybrid, which has the best ac-
curacy in terms of fluency, like in the previous Ta-
ble 10, which tends to show some correlation be-
tween both types of tests.
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nouns adjectives verbs mean
System case gender number case number person tense negation
Moses baseline .381 .482 .420 .453 .415 .300 .354 .269 .384
UFAL PBMT .272 .376 .331 .376 .198 .134 .150 .105 .243
NMT words .419 .561 .537 .460 .513 .477 .491 .467 .491
UFAL NMT .193 .325 .271 .317 .154 .084 .105 .075 .191
LIMSI NMT .205 .303 .262 .301 .138 .068 .082 .054 .177
UEDIN NMT .217 .302 .276 .300 .124 .065 .086 .054 .178
LIMSI FNMT .197 .287 .255 .292 .110 .062 .081 .056 .168
LIUM FNTM .206 .278 .240 .269 .125 .074 .090 .067 .169
UFAL NMT Chim. .214 .353 .302 .359 .185 .114 .129 .097 .219

Table 7: Sentence group evaluation for English-to-Czech with Entropy (C-set).

System BLEU ↑ BEER ↑ CTER ↓ Acc.
LIMSI NMT 15.91 52.91 61.56 85.36
UEDIN NMT 17.20 53.77 65.60 85.99
LIMSI FNMT 16.93 53.73 60.57 85.57
LIUM FNTM 16.13 52.81 61.90 84.05
TILDE hybrid 20.28 55.46 57.46 87.95

Table 8: Scores of the English-to-Latvian
WMT’17 submissions on the official test
set.

verbs pronouns nouns mean
System past future fem. plur. number
Moses baseline 67.0% 83.2% 68.6% 83.6% 63.6% 73.2%
TILDE PBMT 68.8% 70.4% 56.0% 71.8% 65.0% 66.4%
NMT words 56.8% 64.0% 38.6% 71.4% 59.2% 58.0%
UEDIN NMT 74.6% 83.6% 57.0% 88.6% 69.4% 74.6%
LIMSI NMT 68.8% 84.6% 64.2% 86.8% 73.0% 75.5%
LIMSI FNMT 69.6% 82.8% 62.0% 89.0% 70.6% 74.8%
LIUM FNMT 73.0% 81.2% 76.8% 86.6% 73.2% 78.2%
TILDE hybrid 79.6% 92.0% 49.4% 87.2% 71.2% 75.9%

Table 9: Sentence pair evaluation for English-to-Latvian
(A-set).

When it comes to morphological correction of
the output, our evaluation clearly shows the supe-
riority of BPE-based NMT systems over phrase-
based ones. On the other hand, while we observed
that factored models obtain a higher performance
in terms of adequacy, NMT models are still very
close to them in terms of fluency. Finally, factored
models, as well as TILDE hybrid, clearly showed
more confidence in their predictions through slight
lexical variations.

4 Related work: evaluating morphology

Automatic metrics Despite their well-known
flaws, “general purpose” automatic metrics such
as BLEU (Papineni et al., 2002), TER (Snover
et al., 2006) or METEOR (Banerjee and Lavie,
2005) remain the preferred way to measure
progress in Machine Translation. Evaluation cam-
paigns aimed at comparing systems have long
abandoned these measures and resort to human
judgments, such as ranking (Callison-Burch et al.,
2007) or direct assessment (Bojar et al., 2016). To
compensate for the inability of eg. BLEU to de-
tect improvements targeting specific difficulties of
MT, several problem-specific measures have been
introduced over the years such as the LR-Score
(Birch and Osborne, 2010) to measure the cor-
rectness of reordering decisions, MEANT (Lo and
Wu, 2011) to measure the transfer of entailment
relationships, or CharacTER (Wang et al., 2016)

to better assess the success of translation into a
MRL. Stanojević and Sima’an (2014)’s BEER is
a nice example of a sophisticated metric, based
on a trainable mixture of multiple metrics: for
MRLs, the inclusion of character n-gram matches
and of reordering scores proves critical to reach
good correlation with human judgments. In com-
parison, the proposal of Wang et al. (2016) simply
computes a TER-like score at the character level,
thereby partially crediting a system for predicting
the right lemma with the wrong morphology.

Error typologies Error analysis protocols, as
proposed by Vilar et al. (2006); Popović and Ney
(2011); Stymne (2011) for PBMT systems are ob-
vious candidates for running diagnosis studies and
have been used eg. by Bentivogli et al. (2016);
Toral Ruiz and Sánchez-Cartagena (2017); Costa-
jussà (2017); Klubička et al. (2017). These works
differ in the language pairs and in the error ty-
pology considered. Bentivogli et al. (2016) only
recognizes three main error types which are au-
tomatically recognized based on aligning the hy-
potheses and references – for instance a morpho-
logical error is detected when the word form is
wrong, whereas the lemma is correct; this defini-
tion is also adopted in (Toral Ruiz and Sánchez-
Cartagena, 2017), and decomposed at the level
of morphological features in (Peter et al., 2016);
(Klubička et al., 2017) use a more detailed ty-
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coordinated verbs coord.n pronouns to nouns prep. mean
System number person tense case gender number case case
Moses baseline 50.2% 37.4% 50.6% 42.2% 21.4% 24.0% 14.8% 45.1% 35.7%
TILDE PBMT 49.6% 32.8% 50.2% 47.6% 24.0% 25.4% 19.0% 48.5% 37.1%
NMT words 43.0% 36.0% 43.6% 15.6% 7.8% 8.0% 7.8% 44.1% 25.7%
UEDIN NMT 70.6% 60.8% 72.0% 30.2% 46.4% 44.8% 43.4% 56.7% 53.1%
LIMSI NMT 69.2% 57.6% 70.4% 41.8% 40.0% 40.8% 35.8% 54.6% 51.3%
LIMSI FNMT 72.4% 63.4% 73.2% 34.8% 43.0% 42.2% 41.4% 55.5% 53.2%
LIUM FNMT 78.0% 67.0% 78.6% 37.2% 38.6% 38.0% 35.6% 56.1% 53.6%
TILDE hybrid 69.0% 61.8% 69.4% 35.4% 54.6% 53.0% 53.2% 58.3% 56.8%

Table 10: Sentence pair evaluation for English-to-Latvian (B-set).

nouns adjectives verbs mean
System case gender number case number person tense
Moses baseline .467 .738 .717 .753 .271 .352 .285 .512
TILDE PBMT .436 .755 .735 .768 .254 .337 .258 .506
NMT words .385 .751 .732 .764 .329 .353 .337 .522
UEDIN NMT .234 .598 .596 .628 .115 .190 .114 .354
LIMSI NMT .255 .616 .610 .644 .139 .221 .134 .374
LIMSI FNMT .233 .587 .582 .612 .117 .182 .113 .346
LIUM FNMT .213 .608 .606 .643 .099 .163 .092 .346
TILDE hybrid .198 .587 .581 .608 .088 .123 .090 .325

Table 11: Sentence group evaluation for English-to-Latvian with Entropy (C-set).

pology derived from the MQM proposal12 and
adapted to the English:Croatian pair – morpho-
logical errors mostly correspond to “word form”
errors and are too subtle to be automatically de-
tected. A common finding of these studies is that
NMT generates better agreements than alterna-
tives such as PBMT or Hierarchical MT.

Test suites The work of Isabelle et al. (2017);
Burchardt et al. (2017) resuscitates an old tradi-
tion of using carefully designed test suites King
and Falkedal (1990); Lehmann et al. (1996) to
explore the ability of NMT to handle specific
classes of difficulties. Test suites typically in-
clude a small set of handcrafted sentences for
each targeted type of difficulty. For instance, Is-
abelle et al. (2017) focuses on translating from
English into French and is based on a set of 108
short sentences illustrating situations of morpho-
syntactic, lexico-syntactic and syntactical diver-
gences between these two languages. Assessing
a system’s ability to handle these difficulties re-
quires a human judge to decide whether the au-
tomated translation has successfully “crossed” the
bridge between languages.13 A similar methodol-
ogy is used in the work of Burchardt et al. (2017),
who use a test suite of approximately 800 seg-
ments covering a wide array of translation diffi-

12http://www.qt21.eu/mqm-definition
13Note that this is a local evaluation – a system can produce

a bad overall translation, yet pass the test.

culties for the pair English-German. Test suites
enable to directly evaluate and compare specific
abilities of MT Engines, including morphological
competences: again, both studies found that NMT
is markedly better than PBMT when it comes to
phenomena such as word agreement. The down-
side is the requirement to have expert linguists pre-
pare the data as well as evaluate the success of the
MT system, which is a rather expensive price to
pay to get a diagnostic evaluation.

Automatic test suites The work by Linzen et al.
(2016) specifically looks at the prediction of the
correct agreement features in increasingly com-
plex contexts generated by augmenting the dis-
tance between the head and its dependent and the
number of intervening distractors. A language
model is deemed correct if it scores the correct
agreement higher than any wrong one. One in-
triguing finding of this study is the very good per-
formance of RNNs, provided that they receive the
right kind of feedback in training. A similar ap-
proach is adapted for MT by Sennrich (2017), who
looks at a wider range of phenomena. Contrastive
pairs as automatically produced as follows: given
a correct (source, target) pair p = (f , e), intro-
duce one error in e yielding an alternative couple
p′ = (f , e′). A system is deemed to perform cor-
rectly wrt. this contrastive pair if it scores p higher
than p′. This approach is fully automatic, looks
at a wide range of contexts and phenomena and
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also enables to focus on specific errors types; a
downside is the fact that the evaluation never con-
siders whether e is the system’s best choice given
source f . Regarding specifically morphology, this
study mostly considers (subject-verb, as well as
modifier-head noun) agreement errors, but only
compares error rates of variants of NMT systems.

A typology of evaluation protocols The variety
of evaluation protocols found in the literature can
be categorized along the following dimensions:

• holistic vs analytic: a holistic metric provides
a global sentence- or document-level score,
of which the morphological ability is only
one part; an analytic metric focuses on spe-
cific difficulties;

• coarse vs fine-grain: a coarse (analytic) met-
ric only provides global appreciation of mor-
phological competence; while a fine-grain
metric distinguishes various types of errors;

• natural vs hand-crafted vs artificial: for the
sake of this study, this distinction relates to
the design of the test sentences – were they
invented for the purpose of the evaluation or
found in a corpus, or even generated using
automatic processing ?

• automatic vs human-judgment: is scoring
fully automatic or is a human judge in-
volved ?

• scores can be distance-based, such as a global
comparison with a reference translation, or a
Boolean value that denotes success or failure
wrt. a local test, or based on a comparison of
model scores;

Based on this analysis, the work reported here
is analytic/fine-grain, uses artificial data, and com-
putes automatic scores based on a local compari-
son with an expected value (mostly). This is the
only one of that kind we are aware of.

5 Conclusion and Outlook

In this paper, we have presented a new proto-
col for evaluating the morphological competence
of a Machine Translation system, with the aim
to measure progresses in handling complex mor-
phological phenomena in the source or the target
language. We have presented preliminary exper-
iments for two language pairs, which show that

NMT systems with BPE outperform in many ways
the phrase-based MT systems. Interestingly, they
also reveal subtle differences among NMT sys-
tems and indicate specific areas where improve-
ments are still needed. This work will be devel-
oped in three main directions:

• improve the generation and scoring algo-
rithms: our procedure for generating sen-
tences relies on automatic morphological
analysis, which can be error prone, and on
crude heuristics. While these two sources of
noise likely have a small impact on the fi-
nal results, which represent an average over a
large number of sentences, we would like to
better evaluate these effects, and, if needed,
apply the necessary fixes;

• refine our analysis of automatic scores: the
numbers reported in § 3 are averages over
multiple sentences, and could be subjected
to more analyses such as looking more pre-
cisely at OOVs, or taking frequency effects
in considerations. This would allow to as-
sess a system’s ability to generate the right
form for frequent vs rare vs unseen lemmas
or morphological features. Frequency is also
often correlated with regularity, and we also
would like to assess morphological compe-
tence along those lines. Likewise, analyz-
ing performance in agreement tests with re-
spect to the distance between two coordi-
nated nouns or verbs might also be revealing.

• increase the set of tests: we have focused
on translating English into two MRLs having
similar properties. Future work includes the
generation of additional inflectional contrasts
(introducing for instance mood or aspect,
which are morphologically marked in many
languages) as well as derivational contrasts
(such as diminutives for nouns, or antonyms
for adjectives). Again, this implies to im-
prove our scoring and generation algorithms,
and to adapt them to new languages.
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