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Abstract

Translation into a morphologically rich
language requires a large output vocabu-
lary to model various morphological phe-
nomena, which is a challenge for neu-
ral machine translation architectures. To
address this issue, the present paper in-
vestigates the impact of having two out-
put factors with a system able to generate
separately two distinct representations of
the target words. Within this framework,
we investigate several word representa-
tions that correspond to different distri-
butions of morpho-syntactic information
across both factors. We report experiments
for translation from English into two mor-
phologically rich languages, Czech and
Latvian, and show the importance of ex-
plicitly modeling target morphology.

1 Introduction

Open vocabularies remain a challenge for Neu-
ral Machine Translation (NMT) (Cho et al., 2014;
Bahdanau et al., 2015), both for linguistic and
computational reasons. From a linguistic stand-
point, morphological variation and lexical produc-
tivity cause word forms unseen in training to oc-
cur in source texts, which may also require to gen-
erate novel target word forms. Using very large
input/output vocabularies partially mitigates these
issues, yet may cause serious instability (when
computing embeddings of rare or unseen words)
and complexity issues (when dealing with large
softmax layers).

Several proposals have been put forward to ad-
dress these problems, which are particularly harm-
ful when one language is a morphologically rich
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language (MRL), exhibiting larger token/type ra-
tio than is observed for English. One strategy is to
improve NMT’s internal procedures: for instance
by using a structured output layer (Mnih and Hin-
ton, 2008) or by altering the training or decoding
criteria (Jean et al., 2015). An alternative approach
is to work with representations designed to remove
some variations via source-side or target-side nor-
malization procedures; or more radically to con-
sider character-based representations (Ling et al.,
2015; Luong and Manning, 2016; Costa-jussà and
Fonollosa, 2016), which are however much more
costly to train, and make long distance dependen-
cies even longer.

None has however been as successful as the re-
cent proposal of Sennrich et al. (2016b) which
seems to achieve a right balance between a lim-
ited vocabulary size and an ability to translate a
fully open vocabulary. In a nutshell, this approach
decomposes source and target tokens into smaller
units of variable length (using what is now termed
as a “Byte Pair Encoding” or BPE in short): this
means that (a) all source tokens can be represented
as a sequence of such units, which crucially are all
seen in training; (b) all possible target words can
also be generated; (c) the size of the output layer
can be set to remain within tractable limits; (d)
most frequent words are kept as BPE units, which
preserves the locality of many dependencies.

In this work, we consider possible ways to ex-
tend this approach by also supplying target-side
linguistic information in order to help the system
generate correct target word forms. Our proposal
relies on two distinct components (a) linguistically
or data-driven normalization procedures manipu-
lating various source and target word segmenta-
tions, as well as eg. multiple factors on the tar-
get side (see § 4), and (b) a neural architecture
equipped with a dual output layer to predict the
target in two simpler tasks generating the lexi-
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cal unit and the morphological information (§ 3).
These components are assessed separately and in
conjunction using translation from English into
two MRLs: Czech and Latvian. Our experiments
show improvement over a strong (Denkowski and
Neubig, 2017) BPE-to-BPE baseline, incorporat-
ing ensemble of models and backtranslated data
(§ 5). Overall, they suggest that BPE repre-
sentations, which loosely simulates concatena-
tive morphological processes, is complementary to
feature-based morphological representations.

2 Related Work

Translating from and into MRLs has recently at-
tracted some attention from the research commu-
nity, as these languages compound a number of
difficulties for automatic translation, such as the
need to analyze or generate word forms unseen in
training, or to handle variation in word order.

To mitigate the unknown word problem, a first
approach consists in translating into target stems
(Minkov et al., 2007; Toutanova et al., 2008); the
right form is then selected from the full paradigms
in a second step using a classifier. Target words
may also be represented as lemmas complemented
with side information. Bojar (2007); Bojar and
Kos (2010); Bojar et al. (2012) use such a rep-
resentation for two statistical MT systems: the
first one translates from English into Czech lem-
mas decorated with source-side information and
the second one performs a monotone translation
into fully inflected Czech.

Fraser et al. (2012) propose a target morphol-
ogy normalization for German words represented
as lemmas followed by a sequence of morpholog-
ical tags and introduce a linguistically motivated
selection of these when translating from English.
The selection step consists in predicting the tags
that have been removed during normalization, us-
ing a specific Conditional Random Field (CRF)
model for each morphological attribute to predict.
Finally, word forms are produced via look-up in
a morphological dictionary. This approach is ex-
tended by Weller et al. (2013), who takes verbal
subcategorization frames into account, thus en-
abling the CRFs to make better predictions. Note
that Burlot et al. (2016) and El Kholy and Habash
(2012b,a) propose related approaches respectively
for translating into Czech and Arabic.

Factored word representations have also been
considered in neural language models (Niehues

et al., 2016; Alexandrescu and Kirchhoff, 2006;
Wu et al., 2012), and more recently in a neural
machine translation architecture as input features
(Sennrich and Haddow, 2016) and in the output
by separating the lemma and morphological fac-
tors (Garcı́a-Martı́nez et al., 2016). One contri-
bution of the current paper is the investigation of
new variants of the latter architecture. There have
been other attempts with dual training objectives
in NMT. In (Chen et al., 2016), a guided alignment
training using topic information of the sentence as
a second objective helps the decoder to improve
the translation. Multi-task and multilingual learn-
ing in NMT have also been considered in several
papers (Luong et al., 2015; Dong et al., 2015; Firat
et al., 2016), where training batches have to care-
fully balance tasks and language pairs. In contrast
to these approaches, our factored NMT (FNMT)
system produces several outputs simultaneously.

3 Model Architectures

The baseline NMT system used in this paper
is an implementation of a standard NMT model
with attention mechanism (Bahdanau et al., 2015).
It consists of a sequence to sequence encoder-
decoder of two recurrent neural networks (RNN),
one used by the encoder and the other by the de-
coder. This architecture integrates a bidirectional
RNN encoder (see bottom left part with green
background of Figure 1). Each input sentence
word xi (i ∈ 1 . . . N with N the source sequence
length) is encoded into an annotation ai by con-
catenating the hidden states of a forward and a
backward RNN. Each annotation a1 . . . aN thus
represents the whole sentence with a focus on the
word(s) being processed. The decoder is based on
a conditional gated recurrent unit (GRU) (Firat and
Cho, 2016) made of two GRUs interleaved with
the attention mechanism. The attention mech-
anism computes a context vector Cj as a con-
vex combination of annotation vectors, where the
weights of each annotation are computed locally
using a feed-forward network. The decoder RNN
takes as input the embedding of the previous out-
put word in the first GRU, the context vector Cj in
the second GRU and its hidden state. The softmax
output layer is connected to the network through a
non-linear layer which takes as input the embed-
ding of the previous output word as well as the
context vector and the output of the decoder from
the second GRU (both adapted with a linear trans-
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formation, respectively, LC and LR). Finally, the
output probabilities for each word in the target vo-
cabulary are computed with a softmax. The word
with the highest probability is the translation out-
put at each time step. The encoder and the de-
coder are trained jointly to maximize the condi-
tional probability of the reference translation.

The Factored NMT system of Garcı́a-Martı́nez
et al. (2016) is an extension of the standard NMT
architecture that allows the system to generate sev-
eral output symbols at the same time, as presented
in Figure 1.
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x1 x2 xN· · ·
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· · ·

AnnotationsBidirectional RNN
GRU1 GRU2

a1 aN

Cj

LCLR

Softmax

h2o
(F2)

Softmax

Predicted
Factor 2

Predicted
Factor 1

FEEDBACK

Previous
Factor 1

embedding

Previous
Factor 2

embedding

Context
vector

+

h2o
(F1)

Figure 1: Factored NMT system.

The encoder and the attention mechanism of the
Factored NMT are the same as the standard NMT
model. However, the decoder has been modified
to produce multiple outputs. The two outputs are
constrained to have the same length. The decoder
feedback is also modified to use information from
the multiple output streams. The concatenation of
the embeddings of the pair of generated symbols is
used to feed the decoder’s cGRU at each timestep.

Two types of FNMT models have been used for
this work. Their architecture differ after the gener-
ation of the decoder state. The first model contains
a single hidden-to-output (h2o) layer which is used
by the two separate softmax. This layer uses the
context vector, the decoder’s hidden state and the
concatenation of the embeddings of the previous
generated tokens. The second model is one contri-
bution of the current work. As shown in Figure 1),
it contains two separated h2o layers. They are sim-
ilar to the h2o layer in the first model except that
instead of using the concatenation of the embed-
dings of the previously generated factors, each h2o
layer receives only the embedding of the factor it
is generating. The two separated h2o layers allow
the system to have more weights specialized for
each output.

4 Word Representations

This paper focuses on the question of word repre-
sentations, which we understand not only in terms
of word segmentation, but also as the quantity of
morpho-syntactic information encoded in a word.
We introduce three representations varying in the
quantity of grammatical information they contain:

• fully inflected words: this is a baseline setup
where all the lexical and grammatical infor-
mation is encoded in a single factor.

• normalized words: only a well chosen sub-
set of morphological features is kept in the
first factor; the second factor corresponds to
the Part of Speech (PoS).

• lemmas: the output splits the lexical con-
tent of the word (first factor: lemma) and its
grammatical content (second factor: PoS).

These differences are illustrated in Table 1.

4.1 Normalizing Word Forms

Translating from English into a MRL is made dif-
ficult by linguistic divergences, as English lacks
many of the morphological contrasts that exist in
the MRL. Normalization is needed to reduce the
morphological variability on the MRL side so as
to limit the number of types in the target, and to
mitigate sparsity issues. This strategy is used for
instance by Burlot et al. (2016) who remove the
case mark from Czech nouns, which is not pre-
dictable from their English counterpart(s).

Normalization is usually performed using hand-
crafted rules and requires expert knowledge for
each language pair. In this paper, normalized
words are obtained with an automatic data-driven
method1 introduced in (Burlot and Yvon, 2017b).

In a nutshell, this method performs a cluster-
ing of the MRL vocabulary by grouping together
words that tend to share the same translation(s) in
English. This translational similarity is based on
the conditional entropy of lexical translation mod-
els estimated, for each MRL word form, using
automatic word alignments. The clustering pro-
cedure merges two words whenever the resulting
cluster does not increase the conditional entropy,
which ensures a minimal loss of information dur-
ing the whole process.

1The source code is available at github.com/
franckbrl/bilingual_morph_normalizer

22



The actual normalization algorithm is delexi-
calized and operates at the level of PoS. Each
word is represented as a lemma, a coarse PoS
and a sequence of morphological tags (e.g.
kočka+Noun+Sing+Accusative). Translational
similarities are computed on such words and are
combined to provide a PoS-level similarity be-
tween two tag sequences. Successive merge op-
erations group into one cluster different such tag
sequences. As a result of this procedure, we rep-
resent words as a lemma and a cluster identifica-
tor (ID) taking the form of a coarse PoS and an
arbitrary integer, such as kočka+Noun+7 in Ta-
ble 1. In this example, the cluster ID Noun+7
stands for a set of fine-grained PoS, such as
{Sing+Nominative, Sing+Accusative, . . .}.

This representation introduces a direct corre-
spondence between the first and the second factor
in our architecture, since the former (the cluster
ID) constraints the set of possible values of the lat-
ter (the fine-grained PoS), which is notably used in
our constrained decoding procedure (§ 5.4).

4.2 Word Representation Setup

The example of Table 1 shows that words are also
varying along a second dimension: in addition to
considering unsegmented lexical units (be it fully
inflected words, normalized words or lemmas), we
also investigate the impact of a segmentation of
these units using BPE (Sennrich et al., 2016b).

In this scenario, BPE segmentation is performed
on fully inflected words and lemmas. For its ap-
plication to normalized words, the cluster ID was
considered as a minimal unit that cannot be seg-
mented (just like any other character), in order to
avoid segmentations like kočka+No- un+7. For
these setups, the PoS information (second factor)
is replicated for all subparts of a word.

We finally use an alternative representation with
normalized words to which BPE segmentation is
applied and cluster IDs are systematically split
from the lemma. Whenever the FNMT system
predicts a lemma in the first factor, it is forced to
predict a null PoS in the second factor. On the
other hand, when a split cluster ID is predicted, the
second factor should output an actual PoS. This
specific treatment of the second factor is expected
to give the system a better ability to map a word
to a compatible PoS, thus avoiding, for instance,
the prediction of a verbal PoS for the Czech noun
kočka (cat).

These different word representations imply a
progressive reduction of the target vocabulary. We
computed the vocabulary size of Czech on the par-
allel data used to train the systems (§ 5.1) over
unsegmented words. We thus have 2.1M fully
inflected words, 1.9M normalized words, 1.5M
normalized words with split clusters (lemmas and
clusters), and 1.4M lemmas.

5 Experiments

We introduce here the experimental setup for all
the reported systems translating from English into
Czech and Latvian.

5.1 Data and Preprocessing

Our experimental setting follows the guidelines
of the WMT’172 news translation task. The pre-
processing of English data relies on in-house tools
(Déchelotte et al., 2008). All the Czech data
were tokenized and truecased the Moses toolkit
(Koehn et al., 2007). PoS-tagging was performed
with Morphodita (Straková et al., 2014). The
pre-processing of Latvian was provided by Tilde.3

Latvian PoS-tags were obtained with the LU MII
Tagger (Paikens et al., 2013).

For English-to-Czech, the parallel data used
consisted in nearly 20M sentences from a subset
of WMT data relevant to the news domain: News-
commentary, Europarl and specific categories of
the Czeng corpus (news, paraweb, EU, fiction).
Newstest-2015 was used for validation and the
systems are tested on Newstest-2016 and 2017.
The normalization of the Czech data was trained
on the parallel data used to train the MT sys-
tems, except Czeng fiction and paraweb subcor-
pora, which amounts to over 10M sentences.

A part of these systems was also trained on syn-
thetic parallel data (Sennrich et al., 2016a) (see
§ 6). The Czech monolingual corpus News-2016
was backtranslated to English using the single best
system provided by the University of Edinburgh
from WMT’16.4 In order to prevent learning from
being too biased towards the synthetic source of
this set, we used initial bitext parallel data as well.
We added five copies5 of News-commentary and

2www.statmt.org/wmt17
3www.tilde.com
4http://data.statmt.org/rsennrich/

wmt16_systems/
5Adding multiple copies of the same corpus into the train-

ing set can be seen as a coarse way to weight different corpora
and favor in-domain bibtext.
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fully infl. norm. words lemmas
Single factor factor 1 factor 2 factor 1 factor 2

plain kočky kočka+N+7 N+Pl+Nom kočka N+Pl+Nom
BPE ko- čky ko- čka+N+7 N+Pl+Nom N+Pl+Nom ko- čka N+Pl+Nom N+Pl+Nom
+ split cls ko- čka- N+7 null null N+Pl+Nom

Table 1: Multiple representations for the Czech word kočky (cats). N stands for noun, Pl for plural and
Nom for nominative case.

the news subcorpus from Czeng, as well as 5M
sentences from the Czeng EU corpus randomly se-
lected after running modified Moore-Lewis filter-
ing with XenC (Rousseau, 2013).

The English-to-Latvian systems used all the
parallel data provided at WMT’17. The DCEP
corpus was filtered with the Microsoft sentence
aligner6 and using modified Moore-Lewis. We
kept the best 1M sentences, which led to a to-
tal of almost 2M parallel sentences. The systems
were validated on 2k sentences held out from the
LETA corpus and we report results on Newsdev-
2017 and newstest-2017. The normalization of
Latvian data was trained on the same parallel sen-
tences used to train the MT systems.

Training was carried out for a part of these sys-
tems on synthetic parallel data. We used a back-
translation of the monolingual corpora news-2015
and 2016 provided by the University of Edinburgh
(Moses system). To these corpora were added 10
copies of the LETA corpus, as well as 2 copies of
Europarl and Rapid.

Bilingual BPE models for each language pair
and system setup were learned on the bitext paral-
lel data. 90k merge operations were performed to
obtain the final vocabularies. For (F)NMT models,
the vocabulary size of the second factors is only
1.5k for Czech and 376 for Latvian. The num-
ber of parameters in (F)NMT systems increases
around 2.5% for Czech and 7% in Latvian.

5.2 System Setup

Only sentences with a maximum length of 50 were
kept in the training data, except for the setup where
cluster IDs were split in normalized words. In this
case, we set the maximum length to 100. For the
training of all models, we used NMTPY, a Python
toolkit based on Theano (Caglayan et al., 2017)
and available as free software7. We used the stan-
dard NMT system on fully inflected words and the

6https://www.microsoft.com/en-us/
download/details.aspx?id=52608

7https://github.com/lium-lst/nmtpy

FNMT architecture described in § 3 on all other
word representations.

All systems (F)NMT systems have an embed-
ding dimension of 512 and hidden states of di-
mension 1024 for both the encoder and the de-
coder. Dropout is enabled on source embeddings,
context vector, as well as output layers. When
training starts, all parameters are initialized with
Xavier (Glorot and Bengio, 2010). In order to
slightly speed up the training on the actual parallel
data, the learning rate was set to 0.0004, patience
to 30 with validation every 20k updates. On the
synthetic data, we finally set the learning rate to
0.0001 and performed validation every 5k updates.
These systems were tuned with Adam optimizer
(Kingma and Ba, 2014) and have been training for
approximately 1 month.

5.3 Reinflection

The factored systems predict at each time step a
lexical unit and a PoS-tag, which requires a non-
trivial additional step producing sentences in a
fully inflected language. We refer to this process
as reinflection.

Given a lexical unit and a PoS-tag, word forms
are retrieved with a dictionary look-up. In the
context of MRL, deterministic mappings from a
lemma and a PoS to a form are very rare. Instead,
the dictionary often contains several word forms
corresponding to the same lexical unit and mor-
phological analysis.

A first way to solve this ambiguity is to simply
compute unigram frequencies of each word form,
which was done over all the monolingual data
available at WMT’17 for both Czech and Latvian.
During a dictionary look-up, ambiguities can then
be solved by taking the most frequent word form.
The downside of this procedure is that it ignores
important information given by the target mono-
lingual context. For instance, the Czech preposi-
tion s (with) will have different forms according
to the right-side context: s tebou (with you), but se
mnou (with me). A solution is to let an inflected-
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word-based system select the correct word form
from the dictionary. To this end, k-best hypotheses
from the dictionary are generated. Given a sen-
tence containing lemmas and PoS, we perform a
beam search going through each word and keep-
ing at each step the k-best reinflection hypotheses
according to the unigram model mentioned above.

For Czech reinflection, we used the Morphodita
generator (Straková et al., 2014). Since we had no
such tool for Latvian, all monolingual data avail-
able at WMT’17 were automatically tagged using
the LU MII Tagger (Paikens et al., 2013) and we
gathered the result in a look-up table. As one could
expect, we obtained a large table (nearly 2.5M
forms) in which we observed a lot of noise.

5.4 Constrained Decoding

The factored system described in § 3 outputs a
lexical unit and a PoS-tag at each time step. A
peculiarity of this system is that the predictions
of both factors are independent. There is only a
weak dependency due to the fact that both share
the same decoder state and context vector. As a
consequence, the best hypothesis for the first fac-
tor can well be incompatible with the best hypoth-
esis for the second factor, and the risks of such
mismatches only get worse when top-n hypothe-
ses are considered, as in beam search.

Our constrained decoding procedure aims at
enforcing a strong consistency between factors.
Each word in the target vocabulary is first associ-
ated with a specific set of PoS-tags. The decoding
procedure is modified as follows: for each can-
didate target word, we only retain the compatible
PoS tags, and select the top-n hypotheses to be
kept in the beam from this filtered list. This con-
straint ensures that the beam search does not eval-
uate incompatible pairs of factors. (e.g. the PoS
Preposition and the word cat).

With a dictionary, creating such a mapping is
trivial for full lemmas, but less obvious in the case
of BPE units. Since the latter can be generated
from different words having different grammati-
cal classes, the size of the set of possible PoS can
grow quickly. For normalized words, things are
much easier and do not even require a dictionary,
as the mapping between cluster IDs and compati-
ble PoS is learnt during the normalization process
(see § 4.1). Thus constrained decoding was only
performed for (a) unsegmented lemmas, and (b)
unsegmented and segmented normalized words.

6 Automatic Evaluation

Results are reported using the following automatic
metrics: BLEU (Papineni et al., 2002), BEER
(Stanojević and Sima’an, 2014) which tunes a
large number of features to maximize the human
ranking correlation at sentence level and Charac-
TER (Wang et al., 2016), a character-level version
of TER which has shown a high correlation with
human rankings (Bojar et al., 2016). Each score on
fully inflected word systems is averaged from two
independent runs (for both single and ensembled
models).

6.1 Experiments with Bitext

The results using the bitext provided at the
WMT’17 the evaluation campaign are presented
in Table 2 for English-to-Czech 8 and in Table 3
for English-to-Latvian.

We can observe that using the constrained de-
coding consistently improves the results, except
when using split clusters. In this last case, the
system is forced to predict a PoS in the second
factor whenever it has generated a cluster ID in
the first factor. Since there is a reduced quantity
of such cluster IDs, the model has no difficulty to
learn the constraints by itself and therefore to map
a cluster ID exclusively to a specific subset of PoS.
In the Latvian lemma setup, we observe that the
improvement using constrained decoding is lower
than for Czech (see Table 3), which is probably
due to the quality of the noisy look-up table we
have created for Latvian (see § 5.1). Note that we
have no such dependency on the lexical resources
at decoding time for the normalized word setups,
where improvements are comparable across both
language pairs.

The systems using BPE tokens significantly
outperform word-level systems, which confirms
the analysis of Sennrich et al. (2016b). The results
show that BPE units are even more efficient when
applied to normalized words, providing significant
improvements over segmented inflected words of
1.79 and 1.85 BLEU points for Czech, and 0.78
and 1.06 for Latvian.

The lemma representation was tested with the
two FNMT models presented in § 3, one model
using a single hidden-to-output layer (single h2o
layer) and the other model using two separated
hidden-to-output layers (separated h2o layers).

8At decoding time, Czech systems performed better with
a beam size of 2, which was used to provide these results.
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Newstest-2016 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

word-to-word
fully inflected w. 15.74 47.29 74.79 12.76 44.81 78.90
factored norm
sep. h2o layers 16.63 49.78 68.02 13.70 47.13 72.81
+ constrained dec. 17.71 50.38 66.94 14.88 47.81 71.44
factored lemmas
single h2o layer 16.73 50.50 65.51 14.09 48.15 69.85
+ constrained dec. 17.42 50.94 64.95 14.93 48.76 69.26
sep. h2o layers 16.54 50.12 66.35 13.89 47.78 70.63
+ constrained dec. 17.56 50.73 65.48 14.66 48.26 69.96

BPE-to-BPE
fully inflected w. 18.24 52.29 60.05 15.08 49.54 65.38
factored norm
sep. h2o layers 18.59 53.01 59.95 15.89 50.49 66.75
+ constrained dec. 20.03 53.96 58.90 16.93 51.14 64.13
split clusters 19.74 53.90 59.95 16.31 50.73 64.49
+ constrained dec. 19.71 53.96 59.85 16.38 50.83 64.35
factored lemmas
single h2o layer 17.30 51.82 61.19 14.19 48.98 66.28
sep. h2o layers 17.34 52.22 60.62 14.73 49.61 65.34

Table 2: Scores for English-to-Czech systems trained on official bitext data

We observe mixed results, here: the system with
the single h2o layer has slightly better results for
the word-to-word systems, but the BPE-to-BPE
factored lemma system obtains better performance
with the separated h2o layers architecture. For
that reason, we decided to only use the separated
h2o layers architecture for the next set of experi-
ments involving synthetic data which is the aim of
the next section.

6.1.1 Experiments with Selected Bitext and
Synthetic Data

Table 4 and 5 show the results of using selected
parts of bitext and synthetic parallel data (see sec-
tion 5.1) for both language pairs. Each model
trained with a selection of bitext and synthetic data
was initialized with the parameters of its counter-
part trained on bitext. The BPE vocabulary used
was the same as in the model used for initializa-
tion, which led the systems to generate unknown
words. In our experiments, we forced the decoder
to avoid unknown token generation.

By using synthetic data, we are able to obtain
a large improvement for all systems, which is in
line with (Sennrich et al., 2016a). We notice that
the contrasts present in the previous section be-
tween the various word representations are less
clear now. The baseline system (first two rows) is
the system which benefits the most from the addi-
tional data with +5.7 and +6.9 BLEU for Czech
and Latvian. The performance of factored sys-
tems has also increased, but to a lesser extent,

leading to slightly worse results compared to the
baseline system. This situation changes when the
reinflected hypotheses are rescored. We are then
able to surpass the baseline system with normal-
ized words.

The two language pairs react differently to k-
best hypotheses rescoring (+k-best rescored in the
tables). For Czech, this has nearly no impact
on translation quality according to the metrics,
whereas it provides an important improvement in
Latvian: +2.03 and +0.84 BLEU in the split clus-
ter setup. Note that this specific setup gives the
best score we could achieve on newsdev-2017,
without n-best rescoring or model ensembling. We
interpret this situation as a result of the differ-
ence in quality observed for the Czech and Latvian
dictionaries used for reinflection. Indeed, since
Morphodita contains exclusively useful Czech re-
inflection candidates, a simple unigram model is
sufficient to select the right word forms, making
the generation of 10-best reinflection hypotheses
useless.9 On the other hand, the hypotheses re-
turned by the look-up table we have used to gen-
erate Latvian word forms were noisy and required
a rescoring from an MT system based on fully in-
flected words.10 We obtained the best results for

9Our experiments with 50-best and 100-best reinflections
did not show any improvement.

10We assume that the word form generation at this step re-
quires information from the monolingual context only, and
could be modeled with a simple target language model, al-
though this needs to be confirmed empirically.
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Newsdev-2017 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

words-to-words
fully inflected w. 15.15 48.18 76.97 10.61 43.44 85.67
factored norm
sep. h2o layers 14.91 50.56 69.49 10.42 45.94 78.83
+ constrained dec. 15.57 50.78 69.65 11.38 46.28 78.93
factored lemmas
single h2o layer 13.96 49.53 68.36 9.68 45.24 77.07
+ constrained dec. 14.02 49.48 69.97 9.94 45.21 78.11
sep. h2o layers 13.92 49.93 68.45 9.71 45.10 77.51
+ constrained dec. 14.38 49.74 70.04 10.07 45.26 78.08

BPEs-to-BPEs
fully inflected w. 16.22 51.63 64.44 11.29 47.02 71.95
factored norm
sep. h2o layers 15.69 52.35 64.14 10.94 47.80 73.51
+ constrained dec. 16.81 52.72 64.02 12.16 48.25 72.93
split clusters 16.99 52.95 64.65 12.35 48.64 72.40
+ constrained dec. 17.00 52.96 64.61 12.35 48.65 72.32
factored lemmas
single h2o layer 14.45 50.86 67.14 10.45 46.36 72.25
sep. h2o layers 14.39 50.72 66.05 10.69 46.44 72.96

Table 3: Scores for English-to-Latvian systems trained on official bitext.

Newstest-2016 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

fully inflected w. 23.94 57.30 52.77 20.00 54.45 58.40
+ ensemble 24.34 57.51 52.48 20.16 54.62 58.22
factored norm
sep. h2o layers 22.26 56.49 53.43 18.74 53.76 59.18
+ constrained dec. 23.02 56.76 53.29 19.34 54.03 58.67
split clusters 23.37 57.44 52.66 19.77 54.58 58.44
+ constrained dec. 23.39 57.43 52.71 19.76 54.59 58.51
+ k-best rescored 23.43 57.45 52.64 19.79 54.60 58.49
+ n-best rescored 24.19 57.88 52.19 20.56 54.99 57.96
+ ensemble 24.55 58.00 51.97 20.68 55.08 57.93
factored lemmas
sep. h2o layers 22.30 56.63 53.46 19.34 54.16 58.76
+ k-best rescored 22.35 56.60 53.49 19.36 54.17 58.71
+ n-best rescored 23.39 57.25 52.73 19.83 54.57 58.35
+ ensemble 24.05 57.59 52.27 20.22 54.80 57.89

Table 4: Scores for English-to-Czech systems (BPE-to-BPE) trained on selected bitext and synthetic
parallel data.

this Latvian setup by generating the 100-best re-
inflection hypotheses, which provides less depen-
dency on the quality of the dictionary and relies
more on the knowledge learned by a word-form-
aware system. Despite the fact that such a rescor-
ing procedure is costly in terms of computational
time, we observe that it can be a helpful solution
when no resources of quality are available.

Czech n-best reinflection, as opposed to k-
best, turned out to be efficient, bringing the
lemma-based systems to the level of the baselines
and even above for the normalized word setups.
Whereas it does not improve with Latvian normal-
ized words, we observe a positive impact on the
lemma-based systems. We assume that rescoring

the n-best list is a way to rely on an inflected-
word-based system to make important decisions
related to translation, as opposed to the much
simpler monolingual process of reinflection men-
tioned above. Latvian split-cluster models seem to
have nothing to learn from such systems.

Factored norm performs best among all the
presented models, showing consistent BLEU im-
provements over the baselines of 0.25 and 0.56
for Czech, and 0.57 and 0.89 for Latvian. We fi-
nally notice that ensembling two models slightly
reduces those contrasts, and lemma-based systems
are the ones that benefit the most from model en-
sembling. Conclusions are not easy to draw, since
across the different setups, the level of indepen-
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Newsdev-2017 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

fully inflected w. 22.05 57.34 53.32 14.84 51.78 63.08
+ ensemble 22.41 57.78 52.67 15.12 52.11 62.64
factored norm
sep. h2o layers 18.81 55.65 56.07 13.57 50.94 64.24
+ constrained dec. 20.05 56.14 56.13 14.44 51.26 63.60
split clusters 20.85 56.77 54.13 14.50 51.84 63.04
+ constrained dec. 20.86 56.80 54.02 14.57 51.87 62.96
+ k-best rescored 22.89 57.88 52.77 15.41 52.39 62.40
+ n-best rescored 22.62 57.43 53.66 15.73 52.77 61.78
+ ensemble 22.69 57.61 52.91 16.04 52.99 61.41
factored lemmas
sep. h2o layers 18.93 56.01 54.36 13.98 51.26 63.9
+ k-best rescored 20.56 56.94 53.42 14.80 51.78 63.19
+ n-best rescored 21.59 57.62 52.83 15.31 52.34 62.64
+ ensemble 21.90 57.83 52.38 15.35 52.31 62.46

Table 5: Scores for English-to-Latvian systems (BPEs-to-BPEs) trained on selected bitext and synthetic
parallel data.

dence of the two ensembled models is suspected
to be quite different. 11

It is important to note that automatic metrics
may not do justice to the lexical and grammatical
choices made by the factored systems. In an at-
tempt to focus on the grammaticality of the FNMT
systems, we conducted a qualitative analysis of the
outputs.

7 Qualitative Evaluation

7.1 Attention in Factored Systems

In a factored NMT setup, the attention mechanism
distributes weights across all positions in the input
sentence in order to make two predictions, one for
each factor, which is an important difference from
single-objective NMT. An illustration of the im-
pact of this difference is shown in Figure 2 for the
ensembles of two English-to-Czech models intro-
duced in § 6.

In this sentence, the system based on fully in-
flected words (translation on the top) erroneously
predicts the verbal present tense in nevyhýbá (does
not avoid). We can see that the target subword unit
nevy@@ is rather strongly linked to the source
didn’t, which allowed the system to correctly pre-
dict negative polarity. On the other hand, the end-
ing of the verb á is not linked by attention to this
same source word, from which the morphological
feature of past should have been conveyed. We ob-
serve in (a) that the lemma-based system attention
aligns the target position to both the source auxil-

11Performing independently two system runs for ensem-
bling would have given results easier to analyze, which we
were not able to provide due to the cost of such practice.

iary didn’t and the lexical verb’s first subword unit
shir@@, which enables the successful prediction
of the right lemma and morphology, i.e. negation
(N) and past (R). The normalized word based sys-
tem in (b) shows an even more explicit modeliza-
tion of this morphological phenomenon. While
the lemma nevyhýbat@@ is strongly related to the
same English segment shir@@, it is only slightly
linked to the English auxiliary. didn’t is instead
clearly associated to the cluster ID V+20 that gath-
ers negative past tense PoS-tags, enabling the right
prediction in the second factor. In this last setup,
the system has to deal, at each time step in the out-
put sentence, with either a lexical phenomenon or
a grammatical one.

Target-side grammatical phenomena being
more explicitly modeled in factored NMT, it is
generally easier for the attention mechanism to
spot an English grammatical word (auxiliary,
preposition, negative particle, etc.), which enables
a better prediction in the second factor output.
We assume that this peculiarity ensures a better
source-to-target grammatical adequacy.

7.2 Measuring Morphological Consistency

We provide here an attempt to understand more
systematically whether an a priori intuition of fac-
tored NMT systems is verified. The intuition is
that dividing the task of translating a sentence into
two easier joint tasks, namely the prediction of a
lexical unit and of a set of morphological features,
should encourage the system to produce a higher
level of grammaticality.

To this end, we have used a part of the test suite
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nouns adjectives verbs mean
target system case gender number case number person tense polarity

Czech
fully inflected w. .208 .295 .272 .310 .125 .070 .086 .061 .178
factored norm. .165 .308 .236 .273 .105 .059 .067 .042 .157

factored lemmas .206 .278 .240 .269 .125 .074 .090 .067 .169

Latvian
fully inflected w. .263 .640 .623 .669 .140 .233 .142 .387
factored norm. .220 .580 .577 .617 .108 .170 .111 .340

factored lemmas .213 .608 .606 .643 .099 .163 .092 .346

Table 6: Morphological prediction consistency (Entropy).

(a) (b)
a nevy@@ hýb@@ á se jim ,

and didn't shir@@ k in getting

and didn't shir@@ k in getting

a vyhýbat se ten , aby
J^---------- VpYS---XR-NA P7-X4------- PDZS3------- Z:---------- J,----------

a nevy@@ hýb@@ á se jim ,

and didn't shir@@ k in getting

and didn't shir@@ k in getting

a@@ +J+3 vyhýbat@@ +V+20 se@@ +P+65 on@@ +P+71 ,@@ +Z+0 aby@@ +J+4
-- J^---------- -- VpMP---XR-NA -- P7-X4------- -- PPXP3--3---- -- Z:---------- -- J,----------

Figure 2: An example of attention weight distribution in FNMT (bottom) and fully inflected words (top)
output systems aligned to the source sentence (middle) for English-to-Czech. (a) corresponds to the
factored lemmas system and (b) factored norm system

provided by Burlot and Yvon (2017a), who pro-
pose an evaluation of the morphological compe-
tence of a machine translation system performed
on an automatically produced test suite. For each
source test sentence from a monolingual corpus
(the base), several variants are generated, contain-
ing exactly one difference with the base, and fo-
cusing on a specific target lexeme of the base. We
took the part of the test labeled as “C-set” that fo-
cuses on a word in the base sentence and produces
variants containing synonyms and antonyms of
this word. Thus the consistency of morphological
choices is tested over lexical variation (eg. syn-
onyms and antonyms all having the same tense)
and the success is measured based on the average
normalized entropy of morphological features in
the set of target sentences. The systems used are
the ensembles of two models introduced in § 6 (the
inflected word system is our best system for each
language pair).

The results of this procedure are shown in Ta-
ble 6. Entropy demonstrates how confident a sys-
tem is wrt. a specific morphological feature across
synonyms and antonyms. While NMT systems on
fully inflected words are well-known to produce
fluent outputs, we always observe a lower entropy
with the factored systems over all features, except
for the lemma-based system on Czech verbs. This
tends to show that the prediction of any morpho-
logical feature is more confident when it is explic-
itly modeled by a separate objective focused on

morphology, disregarding lexical variations.

8 Conclusion

In this paper, we have presented various mod-
els integrating factored word representations for
neural machine translation systems. Addition-
ally to results with automatic metrics reporting
significant improvements over a strong baseline,
we provided a qualitative analysis focusing on
the grammatical competence of FNTM systems
that showed the benefits of explicitly modeling
morpho-syntactic information.

Our experiments have shown that the cluster
ID from the morphological normalization of target
words brings useful information to the system by
enabling a better correspondence of both factors’
predictions. This specificity, as well as the im-
provements given by constrained decoding, brings
us to future work focusing on the modelization of a
stronger dependency of the second factor towards
the first one in the FNMT architecture.
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