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Abstract

We present an analysis of parser perfor-
mance on speech data, comparing word
type and token frequency distributions
with written data, and evaluating parse
accuracy by length of input string. We
find that parser performance tends to de-
teriorate with increasing length of string,
more so for spoken than for written texts.
We train an alternative parsing model with
added speech data and demonstrate im-
provements in accuracy on speech-units,
with no deterioration in performance on
written text.

1 Introduction

Relatively little attention has been paid to pars-
ing spoken language compared to parsing written
language. The majority of parsers are built using
newswire training data and The Wall Street Jour-
nal section 21 of the Penn Treebank is a ubiquitous
test set. However, the parsing of speech is of no
little importance, since it’s the primary mode of
communication worldwide, and human computer
interaction through the spoken modality is increas-
ingly common.

In this paper we first describe the morpho-
syntactic characteristics of spoken language and
point out some key distributional differences with
written language, and the implications for pars-
ing. We then investigate how well a commonly-
used open source parser performs on a corpus of
spoken language and corpora of written language,
showing that performance deteriorates sooner for
speech as the length of input string increases. We
demonstrate that a new parsing model trained on
both written and spoken data brings improved per-
formance, making this model freely available1. Fi-

1https://goo.gl/iQMu9w

nally we consider a modification to deal with long
input strings in spoken language, a preprocessing
step which we plan to implement in future work.

2 Spoken language

As has been well described, speech is very dif-
ferent in nature to written language (Brazil, 1995;
Biber et al., 1999; Leech, 2000; Carter and Mc-
Carthy, 2017). Putting aside the mode of transmis-
sion for now – the phonetics and prosody of pro-
ducing speech versus the graphemics and orthog-
raphy of writing systems – we focus on morphol-
ogy, syntax and vocabulary: that is, the compo-
nents of speech we can straightforwardly analyse
in transcriptions. We also put aside pragmatics and
discourse analysis therefore, even though there is
much that is distinctive in speech, including into-
nation and co-speech gestures to convey meaning,
and turn-taking, overlap and co-construction in di-
alogic interaction.

A fundamental morpho-syntactic characteristic
of speech is the lack of the sentence unit used by
convention in writing, delimited by a capital let-
ter and full stop (period). Indeed it has been said
that, “such a unit does not realistically exist in con-
versation” (Biber et al., 1999). Instead in spoken
language we refer to ‘speech-units’ (SUs)– token
sequences which are usually coherent units from
the point of view of syntax, semantics, prosody,
or some combination of the three (Strassel, 2003).
Thus we are able to model SU boundaries prob-
abilistically, and find that, in dialogue at least,
they often coincide with turn-taking boundaries
(Shriberg et al., 2000; Lee and Glass, 2012; Moore
et al., 2016).

Other well-known characteristics of speech are
disfluencies such as hesitations, repetitions and
false starts (1)-(3).

(1) um he’s a closet yuppie is what he is (Leech,
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2000).

(2) I played, I played against um (Leech, 2000).

(3) You’re happy to – welcome to include it (Lev-
elt, 1989).

Disfluencies are pervasive in speech: of an an-
notated 767k token subset of the Switchboard Cor-
pus of telephone conversations (SWB), 17% are
disfluent tokens of some kind (Meteer et al., 1995).
Furthermore they are known to cause problems in
natural language processing, as they must be in-
corporated in the parse tree or somehow removed
(Nasr et al., 2014). Indeed an ‘edit’ transition has
been proposed specifically to deal with automat-
ically identified disfluencies, by removing them
from the parse tree constructed up to that point
along with any associated grammatical relations
(Honnibal and Johnson, 2014; Moore et al., 2015).

We compared the SWB portion of Penn Tree-
bank 3 (Marcus et al., 1999) with the three English
corpora contained in Universal Dependencies 2.0
(Nivre et al., 2017) as a representation of the writ-
ten language. These are namely:

• The ‘Universal Dependencies English Web
Treebank’ (EWT), the English Web Treebank
in dependency format (Bies et al., 2012; Sil-
veira et al., 2014);

• ‘English LinES’ (LinES), the English section
of a parallel corpus of English novels and
Swedish translations (Ahrenberg, 2015);

• The ‘Treebank of Learner English’ (TLE), a
manually annotated subset of the Cambridge
Learner Corpus First Certificate in English
dataset (Yannakoudakis et al., 2011; Berzak
et al., 2016).

We found several differences between our spo-
ken and written datasets in terms of morpholog-
ical, syntactic and lexical features. Firstly, the
most frequent tokens in writing (ignoring punctu-
ation marks) are, unsurprisingly, function words
– determiners, prepositions, conjunctions, pro-
nouns, auxiliary and copula verbs, and the like
(Table 1). These are normally considered ‘stop-
words’ in large-scale linguistic analyses, but even
if they are semantically uninteresting, their rank-
ing is indicative of differences between speech and
writing.

Speech Freq. Rank Writing Freq.
I 46,382 1 the 41,423
and 33,080 2 to 26,459
the 29,870 3 and 22,977
you 27,142 4 I 20,048
that 27,038 5 a 18,289
it 26,600 6 of 18,112
to 22,666 7 in 14,490
a 22,513 8 is 10,020
uh 20,695 9 you 10,002
’s 20,494 10 that 9952
of 17,112 11 for 8578
yeah 14,805 12 it 8238
know 14,723 13 was 8195
they 13,147 14 have 6604
in 12,548 15 on 5821
do 12,507 16 with 5621
n’t 11,100 17 be 5514
we 10,308 18 are 4815
have 9970 19 not 4716
uh-huh 9325 20 my 4478

Table 1: The most frequently occurring tokens in
selected corpora of English speech (the Switch-
board Corpus in Penn Treebank 3) and writing
(EWT, LinES, TLE), normalised to counts per mil-
lion.

In SWB the most frequent token is I followed
by and, then the albeit much less frequently than
in writing, then you, that, it at much higher rela-
tive frequencies (per million tokens) than in writ-
ing. This ranking reflects the way that (telephone)
conversations revolve around the first and second
person (I and you), and the way that speech makes
use of coordination and hence the conjunction and
much more than writing.

Furthermore clitics indicative of possession,
copula or auxiliary be, or negation (’s, n’t) and
discourse markers uh, yeah, uh-huh are all in the
twenty-five most frequent terms in SWB. The sin-
gle content word in these top-ranked tokens (as-
suming have occurs mainly as an auxiliary) is
know, 13th most frequent in SWB, but as will be-
come clear in Table 3, it’s hugely boosted by its
use in the fixed phrase, you know.

Finally we note that the normalised frequencies
for these most frequent tokens are higher in speech
than in writing, suggesting that there is greater dis-
tributional mass in fewer token types in SWB, a
suggestion borne out by sampling 394,611 tokens
(the sum total of the three written corpora) from
SWB 100 times and finding that not once does the
vocabulary size exceed even half that of the writ-
ten corpora (Table 2).

With the most frequent bigrams we note fur-
ther differences between speech and writing (Ta-
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Medium Tokens Types
speech 394,611* 11,326**
writing 394,611 27,126

Table 2: Vocabulary sizes in selected corpora
of English speech and writing (* sampled from
766,560 tokens in SWB corpus; ** mean of 100
samples, st.dev=45.5).

ble 3). The most frequent bigrams in writing tend
to be combinations of preposition and determiner,
or pronoun and auxiliary verb. In speech on the
other hand, the very frequent bigrams include the
discourse markers you know, I mean, and kind
of, pronoun plus auxiliary or copula it’s, that’s,
I’m, they’re, and I’ve, and disfluent repetition I
I, and hesitation and uh. Again frequency counts
are lower for the written corpus, symptomatic of
a smaller set of bigrams in speech. There are
163,690 unique bigrams in the written data, and
a mean of 89,787 (st.dev=151) unique bigrams in
SWB from 100 samples.

Speech Freq. Rank Writing Freq.
you know 11,165 1 of the 4313
it’s 8531 2 in the 3702
that’s 6708 3 to the 2352
don’t 5680 4 I have 1655
I do 4390 5 on the 1607
I think 4142 6 I am 1500
and I 3790 7 for the 1475
I’m 3716 8 I would 1427
I I 3000 9 and the 1389
in the 2972 10 and I 1361
and uh 2780 11 to be 1318
a lot 2714 12 I was 1140
of the 2655 13 don’t 1125
it was 2616 14 will be 1092
I mean 2518 15 it was 1057
kind of 2448 16 at the 1044
they’re 2349 17 in a 1041
I’ve 2165 18 like to 1036
going to 2135 19 is a 1021
lot of 2053 20 it is 998

Table 3: The most frequently occurring bigrams
in selected corpora of English speech (the Switch-
board Corpus in Penn Treebank 3) and writing
(EWT, LinES, TLE), normalised to counts per mil-
lion.

In Table 4 we present a short list of the most
frequent dependency types, represented as part-of-
speech tag pairs TAG1 TAG2, where TAG1 is the
head and TAG2 is the dependent. In speech we
see that several of the most frequent dependency
pairs involve a verb or root as the head, whereas
the most frequent pairs in writing involve a noun.

We are certain that in future work there are fur-

Speech Freq. Rank Writing Freq.
VBP PRP 51,845 1 NN DT 48,846
NN DT 47,469 2 NN IN 36,274
ROOT UH 39,067 3 NN NN 27,490
IN NN 26,868 4 NN JJ 21,566
VB PRP 24,321 5 VB NN 19,584
ROOT VBP 24,156 6 VB PRP 16,320

Table 4: The most frequently occurring part-of-
speech tag dependency pairs in selected corpora of
English speech (the Switchboard Corpus in Penn
Treebank 3) and writing (EWT, LinES, TLE), nor-
malised to counts per million. The first tag in the
pair is the head of the relation; the second is the
dependent (Penn Treebank tagset).

ther insights to be gleaned from comparisons of
speech and writing at higher-order n-grams and
in terms of dependency relations between tokens.
These may in turn have implications for parsing
algorithms, or at least may suggest some solutions
for more accurate parsing of speech. Other gen-
res and styles of speech and writing would also
be worthy of study – especially more recently col-
lected recordings of speech.

3 Parsing experiments

We used the Stanford CoreNLP toolkit (Manning
et al., 2014) to tokenize, tag and parse input strings
from a range of corpora. This includes the 766k
token section of the Switchboard Corpus of tele-
phone conversations (SWB) distributed as part of
Penn Treebank 3 (Godfrey et al., 1992; Marcus
et al., 1999), and English treebanks from the Uni-
versal Dependencies release 2 (Nivre et al., 2017).
All treebanks are in CoNLL format2 and we mea-
sure performance through unlabelled attachment
scores (UAS) which indicate the proportion of to-
kens with correctly identified heads in the output
of the parser, compared with gold-standard anno-
tations (Kübler et al., 2009).

In Table 5 we report UAS scores overall for each
corpus, along with corpus sizes in terms of tokens
and sentence or speech units. It is apparent that
(a) parser performance for speech units is much
poorer than for written units, and that (b) perfor-
mance across written corpora is broadly similar,
though TLE (surprisingly) has the highest UAS
score – possibly reflective of a tendency for lan-
guage learners to write in syntactically more con-

2We thank Matthew Honnibal for sharing the SWB tree-
bank converted to CoNLL-X format, arising from his TACL
paper with Mark Johnson (Honnibal and Johnson, 2014).

29



servative ways [an issue we won’t explore further
here].

Corpus Medium Units Tokens UAS
SWB speech 102,900 766,560 .540
EWT writing 14,545 218,159 .744
LinES writing 3650 64,188 .758
TLE writing 5124 96,180 .845

Table 5: Corpus sizes and overall unla-
belled attachment scores using Stanford Core
NLP; SWB=Switchboard, EWT=English Web
Treebank, LinES=English section LinES,
TLE=Treebank of Learner English

Closer inspection of UAS scores by speech unit
in SWB shows that parser performance is not uni-
formly worse than it is for written language. If we
sort the input units into bins by unit length, we see
that the parser is as accurate for shorter units of
transcribed speech as it is for written units of sim-
ilar lengths (Table 6)3. Indeed for speech units of
1-10 tokens in SWB, mean UAS is similar to that
for sentence units of 1-10 tokens in EWT. How-
ever, the main difference in UAS scores over in-
creasingly long inputs is the rate of deterioration
in parser performance: for speech units the drop-
off in UAS scores is much steeper.

Even with strings up to 40 tokens in length,
mean UAS remains within 10 points of that for
the 1-10 token bin in the three written corpora.
But for SWB, mean UAS by that point is less than
50%. In fact in the 11-20 token bin we already see
a steep drop-off in parser performance compared
to the shortest class of speech unit.

It is only above 50 tokens that EWT and LinES
UAS means fall by more than 10 percentage points
compared to the 1-10 token score; for TLE this is
true above 60 tokens. By this stage we are deal-
ing with small proportions of the written corpora:
96.9% of the units in EWT and 98.1% in LinES
are of length 50 tokens or fewer, whilst 99.8% of
units in TLE are 60 tokens or shorter (Figure 1).

For SWB the problem is more acute, with
25.5% of units at least 11 tokens long and scor-
ing mean UAS 50% or less. Figure 2 illustrates
the disparity with boxplots showing UAS medi-
ans (thick line), first and third quartiles (‘hinges’ at
bottom and top of box), ±1.5 inter-quartile range
from the hinge (whiskers), and outliers beyond
this range. It is apparent that parser performance

3Units longer than 80 tokens are omitted from the analysis
as there are too few for meaningful comparison.
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Figure 1: Density plot of unit lengths in four En-
glish corpora; SWB=Switchboard, EWT=English
Web Treebank, LinES=English section LinES,
TLE=Treebank of Learner English.

deteriorates as the unit length increases, for all cor-
pora, but especially so for the speech corpus SWB.

What can be done to address this problem? One
approach is to train a new parsing model on more
appropriate training data, since general-purpose
open-source parsers are usually trained on sections
of The Wall Street Journal (WSJ) in Treebank 3
(Marcus et al., 1999). Training NLP tools with
data appropriate to the medium, genre, or domain,
is generally thought to be sensible and helpful to
the task (Caines and Buttery, 2014; Plank, 2016).
We do not claim this to be a groundbreaking pro-
posal therefore, but instead present the results of
such a step here for three reasons:

(i) To demonstrate how much improvement can
be gained with a domain-appropriate parsing
model;

(ii) To make the speech parsing model publicly
available for other researchers;

(iii) To call for greater availability of speech tran-
script treebanks.

With regard to point (iii), to the best of our
knowledge, the Switchboard portion of the Penn
Treebank (PTB) is the only substantial, readily-
available4 treebank for spoken English. We wel-
come feedback to the contrary, and efforts to pro-

4Subject to licence available from the Linguistic Data
Consortium.
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Figure 2: Unlabelled attachment scores by unit length in four English corpora.

Unit length (tokens)
Corpus 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80
SWB .753 (76232) .506 (19281) .489 (4885) .480 (1344) .480 (366) .473 (126) .460 (37) .447 (12)
EWT .759 (6011) .762 (4680) .738 (2453) .731 (944) .736 (312) .718 (96) .655 (30) .684 (12)
LinES .826 (1086) .770 (1433) .761 (720) .731 (251) .710 (89) .713 (37) .674 (24) .671 (5)
TLE .866 (887) .866 (2410) .838 (1302) .817 (380) .816 (101) .799 (34) .770 (5) .733 (4)

Table 6: Unlabelled attachment scores by unit length in four English corpora (number of units in paren-
theses).

duce new treebanks. Furthermore, if this is the sit-
uation for as well-resourced a language as English,
we assume that the need for treebanks of speech
corpora is even greater for other languages.

In point (ii) we don’t imagine we’re making a
definitive statement on the best model for parsing
speech – rather we think of it as a baseline against
which future models can be compared. We wel-
come contributions in this respect.

As for point (i), we trained two new parsing
models using the Stanford Parser (Klein and Man-
ning, 2003). These were based on the WSJ sec-
tions of PTB as is standard, with added train-
ing data from SWB setting the maximum unit
length first at 40 tokens – which appears to be
the standard length for the models distributed
with the parser – and secondly at an increased
maximum of 80 tokens. Both were probabilis-
tic context-free grammars. We refer to them as
PCFG WSJ SWB 40 and PCFG WSJ SWB 80.

In Table 7 we show overall UAS scores for our
four target English corpora, for three parsing mod-
els: the standard model distributed with CoreNLP,
and our two new models, PCFG WSJ SWB 40
and PCFG WSJ SWB 80. It is apparent that the
new models bring a large performance gain in
parsing speech, as expected, plus a small per-
formance gain in parsing writing – presumably

because they can deal better than predominantly
newswire trained models can with the less canon-
ical syntactic structures contained in the written
English obtained from the web and from learn-
ers. There is no apparent difference between
PCFG WSJ SWB 40 and PCFG WSJ SWB 80
(therefore the latter does no harm and we make
both available), presumably because there are
relatively few units greater than 40 tokens and
so any performance gain here has little bear-
ing on the overall scores. Or, CoreNLP and
PCFG WSJ SWB 40 are able to generalise to
long strings as well as the PCFG WSJ SWB 80
model which has been presented with long string
exemplars in training.

Model SWB EWT LinES TLE
CoreNLP .540 .744 .758 .845
PCFG WSJ SWB 40 .624 .748 .760 .847
PCFG WSJ SWB 80 .624 .748 .760 .847

Table 7: Overall unlabelled attachment scores for
four English corpora and three parsing models

In Figures 3 and 4 we show the difference be-
tween the CoreNLP and PCFG models in terms
of UAS delta for each input unit. These are again
binned by string length, and facetted by corpus.
It is apparent that the alteration for the smallest
units is somewhat volatile. This is understandable
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Figure 3: Unlabelled attachment scores by unit length in four English corpora: difference between model
PCFG WSJ SWB 40 and CoreNLP.

given that a 1-token string which was correctly or
incorrectly parsed by CoreNLP might now be in-
correctly or correctly parsed by the PCFG models,
leading to a delta of +1 or -1. Nevertheless the ma-
jority of short tokens are unaffected – shown by
the median and hinges of the 1-10 token boxplot
centring on y=0.

Where the added SWB training data seems to
help is in units longer than 10 tokens, where
the UAS delta median and hinges are consis-
tently above zero, indicating improved perfor-
mance. The boxplots tend to centre around zero
for the written corpora, except for the 71-80 bin in
LinES for which the boxplot is above zero, albeit
for a small sample size of 5 (Table 6). The pattern
for both PCFG models is broadly the same.

4 Related work

This is one among many studies examining the
parsing of non-canonical data (Lease et al., 2006;
Goldberg et al., 2014; Ragheb and Dickinson,
2014). Broadly speaking, there are two ap-
proaches to the problem (Eisenstein, 2013): (1)
train new models specifically for non-canonical
language; (2) normalise the data so that existing
NLP tools work better on it. For example, Fos-
ter and colleagues (2008) deliberately introduced
grammatical errors to copies of WSJ treebank sen-
tences in order to train a parser to deal with noisy
input. Daiber & van der Goot (2016), meanwhile,
adopted the approach of text normalisation pre-
ceding syntactic parsing in dealing with social me-
dia data.

Some have proposed ‘active learning’ or ‘self
learning’ algorithms for parser training, which

learn from sparsely annotated or completely unan-
notated data (Mirroshandel and Nasr, 2011; Rei
and Briscoe, 2013; Cahill et al., 2014). We could
explore such methods for a speech-specific parser
in future work, though they work better with large
datasets to learn from – Rei & Briscoe trained on
the 50 million token BLLIP corpus, for example.
At the time of writing there are no similarly-sized
speech corpora that we are aware of.

Relevant work on speech parsing includes
that on automated disfluency detection and re-
pair in speech transcriptions (Charniak and John-
son, 2001; Rasooli and Tetreault, 2013; Hon-
nibal and Johnson, 2014; Moore et al., 2015;
Yoshikawa et al., 2016), in which the problem
has come to be addressed with a transition-based
parser featuring an ‘edit’-like action that can re-
move incrementally-constructed parse tree sec-
tions upon detection of a disfluency. Other ap-
proaches include prosodic information to detect
disfluencies where the audio file is available along-
side the transcription (Kahn et al., 2005). A com-
bination of prosodic and morpho-syntactic fea-
tures have been used to address another problem
which affects parse quality: that of speech-unit de-
limitation, also known as ‘speech segmentation’
or ‘sentence boundary detection’ (Shriberg et al.,
2000; Moore et al., 2016). SU delimitation and
parsing were considered together as a joint prob-
lem, along with automatic speech recognition er-
ror rates, in a recent article by Kahn & Osterdorf
(2012).

Finally, we should point out that we opted to
work with Stanford CoreNLP for our parsing ex-
periments because it is well-documented and well-
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Figure 4: Unlabelled attachment scores by unit length in four English corpora: difference between model
PCFG WSJ SWB 80 and CoreNLP.

maintained. We do not criticise the software in
any way for deteriorating performance on long
speech-units, as this is a hard problem, and we
suspect that any other parser would suffer in sim-
ilar ways. Indeed another option for future work
is to use other publicly available parsers such as
MSTParser (McDonald et al., 2006), TurboParser
(Martins et al., 2013) and MaltParser (Nivre et al.,
2007) to compare performance and potentially
spot parsing errors through disagreement, per the
method described by Smith & Dickinson (2014).

5 Conclusion and future work

In this paper we have shown that there are many
differences between speech and writing at lexi-
cal and morphological levels. We also report how
parser performance deteriorates as the input unit
lengthens: an outcome which is perhaps unsurpris-
ing but which we showed to be especially acute for
spoken language. Finally, we trained a new pars-
ing model with added speech data and reported
improvements for UAS scores across the board
– more so for speech than writing. We make the
models publicly available for other researchers5

and welcome improved models or training data
from others.

In future work we plan to analyse samples of
speech-units with low UAS scores, to discover
whether there are systematic parsing errors which
could be solved through algorithmic changes to
the parser, extra pre-processing steps, or other-
wise. We also intend to continue comparing lex-
ical and morpho-syntactic distributions in spoken

5https://goo.gl/iQMu9w

and written corpora – dependency relations for ex-
ample – to identify differences which may have
implications for parsing. We suspect there may be
lessons to be learned from parse tree analysis of
learner text, such as the association between omis-
sion of the main verb and parse error (Ott and Ziai,
2010).

With more training data we can produce bet-
ter parsing models, and potentially pursue self-
learning algorithms in training. We might also
introduce a heuristic to deal with long speech-
units, which are particularly troublesome for ex-
isting parsers. One technique we can adopt is that
of ‘clause splitting’, or ‘chunking’, which subdi-
vides long strings for the purpose of higher qual-
ity analysis over small units (Tjong et al., 2001;
Muszyńska, 2016). We hypothesise that such a
step would play to the strength of existing parsers,
namely their robustness over short inputs.
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Gonzáles Saavedra, Matias Grioni, Normunds
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Marinov, and Erwin Marsi. 2007. MaltParser: a
language-independent system for data-driven de-
pendency parsing. Natural Language Engineering
13:95–135.

Niels Ott and Ramon Ziai. 2010. Evaluating depen-
dency parsing performance on german learner lan-
guage. In Proceedings of the Ninth International
Workshop on Treebanks and Linguistic Theories.

Barbara Plank. 2016. What to do about non-standard
(or non-canonical) language in NLP. In Proceed-
ings of the 13th Conference on Natural Language
Processing (KONVENS 2016).

Marwa Ragheb and Markus Dickinson. 2014. The
effect of annotation scheme decisions on parsing
learner data. In Proceedings of the 13th Interna-
tional Workshop on Treebanks and Linguistic The-
ories.

Mohammad S. Rasooli and Joel Tetreault. 2013. Joint
parsing and disfluency detection in linear time.

35



In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Marek Rei and Ted Briscoe. 2013. Parser lexicalisation
through self-learning. In Proceedings of NAACL-
HLT 2013.

Elizabeth Shriberg, Andreas Stolcke, Dilek Hakkani-
Tür, and Gökhan Tür. 2000. Prosody-based au-
tomatic segmentation of speech into sentences and
topics. Speech Communication 32:127–154.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014).

Amber Smith and Markus Dickinson. 2014. Evaluat-
ing parse error detection across varied conditions. In
Proceedings of the 13th International Workshop on
Treebanks and Linguistic Theories.

Stephanie Strassel. 2003. Simple metadata annotation
specification. Version 5.0.

Erik Tjong, Kim Sang, and Herv’e Déjean. 2001. In-
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