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Abstract

This paper presents our novel method to
encode word confusion networks, which
can represent a rich hypothesis space of
automatic speech recognition systems, via
recurrent neural networks. We demon-
strate the utility of our approach for the
task of dialog state tracking in spoken
dialog systems that relies on automatic
speech recognition output. Encoding con-
fusion networks outperforms encoding the
best hypothesis of the automatic speech
recognition in a neural system for dialog
state tracking on the well-known second
Dialog State Tracking Challenge dataset.

1 Introduction

Spoken dialog systems (SDSs) allow users to nat-
urally interact with machines through speech and
are nowadays an important research direction, es-
pecially with the great success of automatic speech
recognition (ASR) systems (Mohamed et al.,
2012; Xiong et al., 2016). SDSs can be designed
for generic purposes, e.g. smalltalk (Weizenbaum,
1966; Vinyals and Le, 2015)) or a specific task
such as finding restaurants or booking flights (Bo-
brow et al., 1977; Wen et al., 2016). Here, we fo-
cus on task-oriented dialog systems, which assist
the users to reach a certain goal.

Task-oriented dialog systems are often imple-
mented in a modular architecture to break up the
complex task of conducting dialogs into more
manageable subtasks. Williams et al. (2016) de-
scribe the following prototypical set-up of such a
modular architecture: First, an ASR system con-
verts the spoken user utterance into text. Then,
a spoken language understanding (SLU) module
extracts the user’s intent and coarse-grained se-
mantic information. Next, a dialog state tracking

(DST) component maintains a distribution over
the state of the dialog, updating it in every turn.
Given this information, the dialog policy manager
decides on the next action of the system. Finally, a
natural language generation (NLG) module forms
the system reply that is converted into an audio
signal via a text-to-speech synthesizer.

Error propagation poses a major problem in
modular architectures as later components depend
on the output of the previous steps. We show
in this paper that DST suffers from ASR errors,
which was also noted by Mrksic et al. (2017). One
solution is to avoid modularity and instead per-
form joint reasoning over several subtasks, e.g.
many DST systems directly operate on ASR out-
put and do not rely on a separate SLU mod-
ule (Henderson et al., 2014c; Mrksic et al., 2017;
Perez, 2017). End-to-end systems that can be di-
rectly trained on dialogs without intermediate an-
notations have been proposed for open-domain di-
alog systems (Vinyals and Le, 2015). This is
more difficult to realize for task-oriented systems
as they often require domain knowledge and exter-
nal databases. First steps into this direction were
taken by Wen et al. (2016) and Zhao and Eskénazi
(2016), yet these approaches do not integrate ASR
into the joint reasoning process.

We take a first step towards integrating ASR
in an end-to-end SDS by passing on a richer hy-
pothesis space to subsequent components. Specif-
ically, we investigate how the richer ASR hypoth-
esis space can improve DST. We focus on these
two components because they are at the begin-
ning of the processing pipeline and provide vital
information for the subsequent SDS components.
Typically, ASR systems output the best hypothe-
sis or an n-best list, which the majority of DST
approaches so far uses (Williams, 2014; Hender-
son et al., 2014c; Mrksic et al., 2017; Zilka and
Jurcı́cek, 2015). However, n-best lists can only
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represent a very limited amount of hypotheses. In-
ternally, the ASR system maintains a rich hypoth-
esis space in the form of speech lattices or confu-
sion networks (cnets)1.

We adapt recently proposed algorithms to
encode lattices with recurrent neural networks
(RNNs) (Ladhak et al., 2016; Su et al., 2017) to en-
code cnets via an RNN based on Gated Recurrent
Units (GRUs) to perform DST in a neural encoder-
classifier system and show that this outperforms
encoding only the best ASR hypothesis. We are
aware of two DST approaches that incorporate
posterior word-probabilities from cnets in addition
to features derived from the n-best lists (Williams,
2014; Vodolán et al., 2017), but to the best of our
knowledge, we develop the first DST system di-
rectly operating on cnets.

2 Proposed Model

Our model depicted in Figure 1 is based on an in-
cremental DST system (Zilka and Jurcı́cek, 2015).
It consists of an embedding layer for the words
in the system and user utterances, followed by a
fully connected layer composed of Rectified Lin-
ear Units (ReLUs) (Glorot et al., 2011), which
yields the input to a recurrent layer to encode the
system and user outputs in each turn with a soft-
max classifier on top. ⊕ denotes a weighted sum
cj of the system dialog act sj and the user utter-
ance uj , where Ws,Wu, and b are learned param-
eters:

cj = Wssj +Wuuj + b (1)

Independent experiments with the 1-best ASR
output showed that a weighted sum of the sys-
tem and user vector outperformed taking only the
user vector uj as in the original model of Zilka
and Jurcı́cek (2015). We chose this architecture
over other successful DST approaches that oper-
ate on the turn-level of the dialogs (Henderson
et al., 2014c; Mrksic et al., 2017) because it pro-
cesses the system and user utterances word-by-
word, which makes it easy to replace the recurrent
layer of the original version with the cnet encoder.

Our cnet encoder is inspired from two recently
proposed algorithms to encode lattices with an
RNN with standard memory (Ladhak et al., 2016)
and a GRU-based RNN (Su et al., 2017). In
contrast to lattices, every cnet state has only

1Mangu et al. (2000) show that every speech lattice can
be converted to a cnet without losing relevant hypotheses.
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Figure 1: The proposed model with GRU-based
cnet encoder for a dialog with three turns. dt are
one-hot word vectors of the system dialog acts;
wti correspond to the word hypotheses in the
timesteps of the cnets of the user utterances;
sj , uj are the cnet GRU outputs at the end of each
system or user utterance.

one predecessor and groups together the alter-
native word hypotheses of a fixed time interval
(timestep). Therefore, our cnet encoder is con-
ceptually simpler and easier to implement than
the lattice encoders: The recurrent memory only
needs to retain the hidden state of the previous
timestep, while in the lattice encoder the hid-
den states of all previously processed lattice states
must be kept in memory throughout the encod-
ing process. Following Su et al. (2017), we use
GRUs as they provide an extended memory com-
pared to plain RNNs2. The cnet encoder reads
in one timestep at a time as depicted in Fig-
ure 2. The key idea is to separately process each
of the k word hypotheses representations xti in
a timestep with the standard GRU to obtain k

2Apart from GRUs, long short-term memory (LSTM)
cells (Hochreiter and Schmidhuber, 1997) are a more tradi-
tional way to extend the recurrent memory. It is still debated
which recurrent memory architecture performs best. GRUs
are conceptually simpler and have been shown to outper-
form GRUs for speech signal sequence processing (Chung
et al., 2014) and for language modeling with recurrent lay-
ers smaller than 200 units (Irie et al., 2016). As our training
data is limited, we train models with smaller recurrent layers
and therefore use GRUs. Yet, we note that the cnet encoding
method can be realized with LSTM cells analogously.
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Figure 2: Encoding k alternative hypotheses at
timestep t of a cnet.

hidden states hti as defined in Equation (2)-(5)3

where Wz, Uz, bz,Wh, Uh, bh,Wr, Ur, and br are
the learned parameters of the GRU update, candi-
date activation and reset gate. To get the hidden
state ht of the timestep, the hypothesis-specific
hidden states hti are combined by a pooling func-
tion (Equation 6).

hti = zti · ht−1 + (1− zti) · h̃ti (2)

zti = σ(Wzxti + Uzht−1 + bz) (3)

h̃ti = tanh(Whxti + Uh(rti · ht−1) + bh) (4)

rti = σ(Wrxti + Urht−1 + br) (5)

ht = fpool(ht0 . . . htk−1
) (6)

We experiment with the two different pooling
functions fpool for the k hidden GRU states hti

of the alternative word hypotheses that were used
by Ladhak et al. (2016):

average pooling faverage =
∑k

i=1 hti
k

weighted pooling fweighted =
∑k

i=1 scorei · hti ,
where scorei is the confidence score of xti .

Instead of the system output in sentence form
we use the dialog act representations in the form
of 〈dialog-act, slot, value〉 triples, e.g. ‘inform
food Thai’, which contain the same informa-
tion in a more compact way. Following Mrk-
sic et al. (2017), we initialize the word embed-
dings with 300-dimensional semantically special-
ized PARAGRAM-SL999 embeddings (Wieting
et al., 2015). The hyper-parameters for our model
are listed in the appendix.

3Throughout the paper · denotes an element-wise product.

The cnet GRU subsumes a standard GRU-based
RNN if each token in the input is represented as a
timestep with a single hypothesis. We adopt this
method for the system dialog acts and the baseline
model that encode only the best ASR hypothesis.

3 Data

In our experiments, we use the dataset provided
for the second Dialog State Tracking Challenge
(DSTC2) (Henderson et al., 2014a) that consists
of user interactions with an SDS in the restaurant
domain. It encompasses 1612, 506, 1117 dialogs
for training, development and testing, respectively.
Every dialog turn is annotated with its dialog state
encompassing the three goals for area (7 values),
food (93 values) and price range (5 values) and
8 requestable slots, e.g. phone and address. We
train on the manual transcripts and the cnets pro-
vided with the dataset and evaluate on the cnets.

Some system dialog acts in the DSTC2 dataset
do not correspond to words and thus were not in-
cluded in the pretrained word embeddings. There-
fore, we manually constructed a mapping of dialog
acts to words contained in the embeddings, where
necessary, e.g. we mapped expl-conf to explicit
confirm.

In order to estimate the potential of improv-
ing DST by cnets, we investigated the coverage
of words from the manual transcripts for different
ASR output types. As shown in Table 1, cnets im-
prove the coverage of words from the transcripts
by more than 15 percentage points over the best
hypothesis and more than five percentage points
over the 10-best hypotheses.

However, the cnets provided with the DSTC2
dataset are quite large. The average cnet consists
of 23 timesteps with 5.5 hypotheses each, amount-
ing to about 125 tokens, while the average best
hypothesis contains four tokens. Manual inspec-
tion of the cnets revealed that they contain a lot of
noise such as interjections (uh, oh, ...) that never
appear in the 10-best lists. The appendix provides
an exemplary cnet for illustration. To reduce the
processing time and amount of noisy hypotheses,
we remove all interjections and additionally exper-
iment with pruning hypotheses with a score be-
low a certain threshold. As shown in Table 1, this
does not discard too many correct hypotheses but
markedly reduces the size of the cnet to an average
of seven timesteps with two hypotheses.
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1-best 10-best cnet pruned cnet

all words 69.3 78.6 85.7 83.1
slots/values 69.8 75.6 82.4 80.6

Table 1: Coverage of words from the manual tran-
scripts in the DSTC2 development set of differ-
ent batch ASR output types (%). In the pruned
cnet interjections and hypotheses with scores be-
low 0.001 were removed.

4 Results and Discussion

We report the joint goals and requests accuracy
(all goals or requests are correct in a turn) ac-
cording to the DSTC2 featured metric (Hender-
son et al., 2014a). We train each configuration
10 times with different random seeds and report
the average, minimum and maximum accuracy.
To study the impact of ASR errors on DST, we
trained and evaluated our model on the differ-
ent user utterance representations provided in the
DSTC2 dataset. Our baseline model uses the best
hypothesis of the batch ASR system, which has
a word error rate (WER) of 34% on the DSTC2
test set. Most DST approaches use the hypotheses
of the live ASR system, which has a lower WER
of 29%. We train our baseline on the batch ASR
outputs as the cnets were also produced by this
system. As can be seen from Table 2, the DST
accuracy slightly increases for the higher-quality
live ASR outputs. More importantly, the DST per-
formance drastically increases, when we evaluate
on the manual transcripts that reflect the true user
utterances nearly perfectly.

test data goals requests

train on transcripts + batch ASR (baseline)

batch ASR 63.6 66.6
58.7 96.8 97.1

96.5

train on transcripts + live ASR

live ASR 63.8 67.0
60.2 97.5 97.7

97.2
transcripts 78.3 82.4

74.3 98.7 99.0
98.0

Table 2: DSTC2 test set accuracy for 1-best ASR
outputs of ten runs with different random seeds in
the format average maximum

minimum .

4.1 Results of the Model with Cnet Encoder

Table 3 displays the results for our model evalu-
ated on cnets for increasingly aggressive pruning

levels (discarding only interjections, additionally
discarding hypotheses with scores below 0.001
and 0.01, respectively). As can be seen, us-
ing the full cnet except for interjections does not
improve over the baseline. We believe that the
share of noisy hypotheses in the DSTC2 cnets
is too high for our model to be able to concen-
trate on the correct hypotheses. However, when
pruning low-probability hypotheses both pooling
strategies improve over the baseline. Yet, aver-
age pooling performs worse for the lower prun-
ing threshold, which shows that the model is still
affected by noise among the hypotheses. Con-
versely, the model can exploit a rich but noisy hy-
pothesis space by weighting the information re-
tained from each hypothesis: Weighted pooling
performs better for the lower pruning threshold
of 0.001 with which we obtain the highest re-
sult overall, improving the joint goals accuracy
by 1.6 percentage points compared to the base-
line. Therefore, we conclude that is beneficial to
use information from all alternatives and not just
the highest scoring one but that it is necessary to
incorporate the scores of the hypotheses and to
prune low-probability hypotheses. Moreover, we
see that an ensemble model that averages the pre-
dictions of ten cnet models trained with different
random seeds also outperforms an ensemble of ten
baseline models.

Although it would be interesting to compare the
performance of cnets to full lattices, this is not
possible with the original DSTC2 data as there
were no lattices provided. This could be inves-
tigated in further experiments by running a new
ASR system on the DSTC2 dataset to obtain both
lattices and cnets. However, these results will not
be comparable to previous results on this dataset
due to the different ASR output.

4.2 Comparison to the State of the Art

The current state of the art on the DSTC2 dataset
in terms of joint goals accuracy is an ensemble
of neural models based on hand-crafted update
rules and RNNs (Vodolán et al., 2017). Besides,
this model uses a delexicalization mechanism that
replaces mentions of slots or values from the
DSTC2 ontology by a placeholder to learn value-
independent patterns (Henderson et al., 2014c,b).
While this approach is suitable for small domains
and languages with a simple morphology such as
English, it becomes increasingly difficult to locate
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method goals requests

1-best baseline 63.6 66.6
58.7 96.8 97.1

96.5

cnet - no pruning

weighted pooling 63.7 65.6
61.6 96.7 97.0

96.3

cnet - score threshold 0.001

average pooling 63.7 66.4
60.0 96.6 96.8

96.0
weighted pooling 65.2 68.5

59.1 97.0 97.4
96.6

cnet - score threshold 0.01

average pooling 64.6 67.9
59.7 96.9 97.2

96.5
weighted pooling 64.7 68.4

62.2 97.1? 97.3
96.9

ensemble models

baseline 69.7 96.7
cnet 71.4 97.2

results from related work

Vodolán et al. (2017) 80.0 -
Williams (2014) 78.4 98.0
Mrksic et al. (2017) 73.4 96.5

Table 3: DSTC2 test set accuracy of ten
runs with different random seeds in the format
average maximum

minimum . ? denotes a statistically signif-
icant higher result than the baseline (p < 0.05,
Wilcoxon signed-rank test with Bonferroni correc-
tion for ten repeated comparisons). The cnet en-
semble corresponds to the best cnet model with
pruning threshold 0.001 and weighted pooling.

words or phrases corresponding to slots or values
in wider domains or languages with a rich mor-
phology (Mrksic et al., 2017) and we therefore ab-
stained from delexicalization.

The best result for the joint requests was ob-
tained by a ranking model based on hand-crafted
features, which relies on separate SLU systems be-
sides ASR (Williams, 2014). SLU is often cast
as sequence labeling problem, where each word in
the utterance is annotated with its role in respect
to the user’s intent (Raymond, 2007; Vu et al.,
2016), requiring training data with fine-grained
word-level annotations in contrast to the turn-level
dialog state annotations. Furthermore, a separate
SLU component introduces an additional set of pa-
rameters to the SDS that has to be learned. There-
fore, it has been argued to jointly perform SLU and
DST in a single system (Henderson et al., 2014c),
which we follow in this work.

As a more comparable reference for our set-
up, we provide the result of the neural DST sys-
tem of Mrksic et al. (2017) that like our approach
does not use outputs of a separate SLU system nor
delexicalized features. Our ensemble models out-
perform Mrksic et al. (2017) for the joint requests
but are a bit worse for the joint goals. We stress
that our goal was not to reach for the state of the
art but show that DST can benefit from encoding
cnets.

5 Conclusion

As we show in this paper, ASR errors pose a ma-
jor obstacle to accurate DST in SDSs. To re-
duce the error propagation, we suggest to exploit
the rich ASR hypothesis space encoded in cnets
that contain more correct hypotheses than conven-
tionally used n-best lists. We develop a novel
method to encode cnets via a GRU-based RNN
and demonstrate that this leads to improved DST
performance compared to encoding the best ASR
hypothesis on the DSTC2 dataset.

In future experiments, we would like to explore
further ways to leverage the scores of the hypothe-
ses, for example by incorporating them as an inde-
pendent feature rather than a direct weight in the
model.
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A. Hyper-Parameters

parameter value
training epochs 20 (requests), 50 (area,

price range), 100 (food)
optimizer Adam
initial learning rate 0.001
training batch size 10 dialogs
λ of l2 regularization 0.001
dropout rate 0.5
embeddings pretrained

300-dimensional
PARAGRAM-SL999
embeddings

# units GRU 100
# units dense layer 300
size of the system
and user vector
combination matrix

50

user utterance type
training

transcript + cnet

user utterance type
testing

cnet
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B. Cnet from the DSTC2 Dataset

start end hypotheses with scores

1 0.0328125 0.0492188 !null (-0.0001) uh (-31.83215) ah (-32.41007) i (-34.84077) oh (-40.73034) a (-41.20651)
2 0.0492188 0.065625 !null (-0.0001) i (-36.65728) uh (-48.94583) ah (-52.79816) oh (-55.63619)
3 0.065625 0.0820312 !null (-0.0001) oh (-47.15494)
4 0.0820312 0.0984375 !null (-0.0001) and (-47.59002)
5 0.0984375 0.13125 !null (-0.0001) ah (-33.03135) uh (-39.74279) i’m (-41.90521) i (-42.4907) ok (-42.98212) and

(-43.31765) can (-45.37124)
6 0.13125 0.1476562 !null (-0.0001) um (-30.17054) i’m (-32.94894) uh (-35.07708) i (-36.82227) can (-36.89635)

and (-36.99255) ah (-43.84253)
7 0.1476562 0.1640625 !null (-0.0001) ah (-41.90521)
8 0.1640625 0.196875 !null (-0.0001) and (-31.41877) ah (-33.03021) i (-34.15576) um (-37.12041) i’m (-37.5037)

uh (-40.89799) can (-42.66815)
9 0.196875 0.2296875 !null (-0.0001) ok (-37.41767) i (-43.27491)
10 0.2296875 0.2625 !null (-0.0001) uh (-28.98055) and (-30.48886) i (-30.50464) ah (-31.02539) can (-31.49024) a

(-31.74998) um (-39.56715) i’m (-39.6478)
11 0.2625 0.2707031 !null (-0.0001) a (-48.38457)
12 0.2707031 0.2789062 !null (-0.0001) i (-45.51492)
13 0.2789062 0.2953125 !null (-0.0001) uh (-37.77175)
14 0.2953125 0.328125 !null (-0.0001) uh (-22.47343) and (-24.25971) i (-25.13368) can (-31.76437) um (-32.11736)

oh (-32.22958) is (-32.77696) ah (-36.18502)
15 0.328125 0.3445312 !null (-0.0001) ah (-25.74752) uh (-29.74647) i (-35.53291) um (-37.89059) oh (-40.87821)
16 0.3445312 0.3609375 !null (-0.0001) uh (-21.97038) oh (-31.83063) ah (-31.96235) i (-42.61901)
17 0.3609375 0.39375 !null (-0.0001) ah (-24.38169) and (-24.39148) ok (-25.08438) i (-29.82585) can (-30.21743)

i’m (-33.53017)
18 0.39375 0.525 !null (-0.0001) uh (-23.14362) i (-24.16806) can (-24.21132) um (-24.52006) it (-29.71162) ok

(-31.79314) ah (-33.52439) and (-36.14101)
19 0.525 0.590625 !null (-0.0001) ah (-52.30994)
20 0.590625 0.65625 !null (-0.0001) uh (-26.81306)
21 0.65625 0.7875 !null (-0.0001) uh (-17.00693) can (-18.18777) i (-21.7525) and (-22.92453) a (-23.86453) in

(-26.00351) ok (-32.25924) ah (-33.28463) it (-37.21361) oh (-45.34864)
22 0.7875 0.8039062 !null (-0.0001) i (-18.35259) and (-18.3801) a (-19.56405) it (-20.65148) is (-20.78921) uh

(-22.80336) ok (-23.32806) can (-24.81112) oh (-28.52324)
23 0.8039062 0.8203125 !null (-0.0001) i (-32.22319)
24 0.8203125 0.853125 !null (-0.0001) uh (-9.748239) i (-12.90367) ah (-15.49612) ok (-15.62111) can (-19.96378)

and (-23.52033)
25 0.853125 0.8859375 !null (-0.0001) and (-10.25172) uh (-10.51098) i (-14.77064) ok (-17.1938) it (-17.42765) ah

(-24.74307)
26 0.8859375 0.91875 !null (-0.0001) ok (-10.7207) and (-14.63778) i (-17.40079)
27 0.91875 0.984375 !null (-0.005078796) and (-5.305283) ok (-9.687913) can (-10.20153) is (-13.44094) uh (-

17.34175) where (-23.62194)
28 0.984375 1.05 !null (-0.009671085) ok (-5.591656) could (-5.726142) can (-5.96063) and (-9.760586) it (-

17.42122)
29 1.05 1.13 i (-0.003736897) !null (-5.591568) i’d (-14.10718) ok (-20.44036) could (-21.03084)
30 1.13 1.21 !null (-0.003736222) i (-5.59171) could (-15.09615) i’d (-15.67228) thank (-16.10791) it (-

16.47987)
31 1.21 1.34 don’t (-0.0001) !null (-14.78975) know (-24.44728) gone (-27.63221) i (-28.97229) a (-

32.95747) go (-41.58155) da (-47.35928)
32 1.34 1.405 !null (-0.0001) don’t (-14.78604) i (-23.63712) a (-24.3221) are (-25.11523) it (-27.08631) uh

(-31.06854) of (-32.07071)
33 1.405 1.4375 !null (-0.0001) of (-17.31417) a (-22.29353) ok (-25.30747) i (-30.73294) are (-31.25772)
34 1.4375 1.47 !null (-0.0001) tv (-24.90913) a (-31.64189)
35 1.47 1.5975 care (-0.0001) t (-13.25217) i (-16.79167) to (-19.88062) !null (-22.45499)
36 1.5975 1.725 !null (-0.0001) care (-15.73215)
37 1.725 1.78875 !null (-0.002474642) for (-6.446757) of (-7.396389) food (-8.225521) care (-12.98698) if (-

13.04223) and (-16.05245) i (-16.57308) kind (-16.92007) uh (-17.26407) a (-18.45659) or
(-18.46813) are (-18.88889) tv (-27.09801)

38 1.78875 1.8525 !null (-0.0001) i (-13.25853) in (-14.35854) of (-17.30617) uh (-20.08914) and (-20.30067) tv
(-21.15766) a (-25.55673)

39 1.8525 1.91625 !null (-0.0004876809) the (-7.78335) food (-9.733769) for (-11.98406) i (-12.23129) i’m (-
14.38366) of (-18.23437) and (-19.87061)

40 1.91625 1.98 !null (-0.0001) of (-11.92066) the (-11.98383) food (-12.77184) for (-14.38366)

Table 4: Cnet from the DSTC2 development set of the session with id voip-db80a9e6df-
20130328 230354. The transcript is i don’t care, which corresponds the best hypothesis of both ASR
systems. Every timestep contains the hypothesis that there is no word (!null).
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