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Abstract

We present a fully unsupervised, extrac-
tive text summarization system that lever-
ages a submodularity framework intro-
duced by past research. The framework
allows summaries to be generated in a
greedy way while preserving near-optimal
performance guarantees. Our main contri-
bution is the novel coverage reward term
of the objective function optimized by
the greedy algorithm. This component
builds on the graph-of-words representa-
tion of text and the k-core decomposition
algorithm to assign meaningful scores to
words. We evaluate our approach on the
AMI and ICSI meeting speech corpora,
and on the DUC2001 news corpus. We
reach state-of-the-art performance on all
datasets. Results indicate that our method
is particularly well-suited to the meeting
domain.

1 Introduction

We present an extractive text summarization sys-
tem and test it on automatic meeting speech tran-
scriptions and news articles. Summarizing spon-
taneous multiparty meeting speech text is a dif-
ficult task fraught with many unique challenges
(McKeown et al., 2005). Rather than the well-
formed grammatical sentences found in traditional
documents, the input data consist of utterances, or
fragments of speech transcripts. Information is di-
luted across utterances due to speakers frequently
hesitating and interrupting each other, and noise
abounds in the form of disfluencies (often ex-
pressed with filler words such as “um”, “uh-huh”,
etc.) and unrelated chit-chat. Since human tran-
scriptions are very costly, the only transcriptions
available in practice are often Automatic Speech
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Recognition (ASR) output. Recognition errors in-
troduce much additional noise, making the task of
summarization even more difficult. In this paper,
we use ASR output as our sole input, and do not
make use of additional data such as prosodic fea-
tures (Murray et al., 2005).

2 Background

2.1 Graph-of-words representation

A graph-of-words represents a piece of text as
a network whose nodes are unique terms in
the document, and whose edges encode some
kind of term-term relationship information. Un-
like the traditional vector space model that as-
sumes term independence, a graph-of-words is an
information-rich structure, and enables many pow-
erful tools from graph theory to be applied to NLP
tasks. The most famous example is probably the
use of PageRank for unsupervised keyword ex-
traction and document summarization (Mihalcea
and Tarau, 2004).

More recent unsupervised NLP studies based
on graphs reached state-of-the-art performance
on a variety of tasks such as multi-sentence
compression, information retrieval, real-time sub-
event detection from text streams, keyword ex-
traction, and real-time topic detection (Filippova,
2010; Rousseau and Vazirgiannis, 2013; Meladi-
anos et al., 2015; Tixier et al., 2016a; Meladianos
etal., 2017).

While several variants of the graph-of-words
representation exist, with different levels of so-
phistication and many graph building and graph
mining parameters (Tixier et al., 2016b), we stick
here to the traditional configuration of (Mihal-
cea and Tarau, 2004), which simply records co-
occurrence statistics. In this setting, as illustrated
in Figure 1, an undirected edge is drawn between
two nodes if the unigrams they represent co-occur
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within a window of fixed size W that is slided
over the full text from start to finish, overspan-
ning sentences. In addition, edges are assigned
integer weights matching co-occurrence counts.
This approach follows the Distributional Hypoth-
esis (Harris, 1954), in that it assumes the exis-
tence and strength of the dependence between tex-
tual units to be solely determined by the frequency
with which they share local contexts of occur-
rence.
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Figure 1: Undirected, weighted graph-of-words example.
W = 8 and overspans sentences. Stemmed words, weighted
k-core decomposition. Numbers inside parentheses are
CoreRank scores. For clarity, non-(nouns and adjectives) in
italic have been removed.

2.2 Graph degeneracy

Within the rest of this subsection, we will consider
G(V, E) to be an undirected, weighted graph with
n = |V| nodes and m = |E| edges. The concept
of graph degeneracy was introduced by (Seidman,
1983) and first applied to the study of cohesion in
social networks. It is inherently related to the k-
core decomposition technique.

k-core. A core of order k (or k-core) of G is
a maximal connected subgraph of G in which ev-
ery vertex v has at least degree k. The degree of
v is the sum of the weights of its incident edges.
Note that here, since edge weights are integers (co-
occurrence counts), node degrees, and thus, the
k’s, are also integers.

The k-core decomposition of G is the set of
all its cores from O or 1 (G itself, respectively
in the disconnected/connected case) to kjqq (its
main core). As shown in Figure 2, it forms a hi-
erarchy of nested subgraphs whose cohesiveness
and size respectively increase and decrease with k.
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The higher-level cores can be viewed as a filtered
version of the graph that excludes noise (actually,
the main core of a graph is a coarse approxima-
tion of its densest subgraph). This property of the
core decomposition is highly valuable when deal-
ing with graphs constructed from noisy text. The
core number of a node is the highest order of a
core that contains this node. As detailed in Algo-
rithm 1, the k-core decomposition is obtained by
implementing a pruning process that iteratively re-
moves the lowest degree nodes from the graph.

Algorithm 1 k-core decomposition

Input: Undirected graph G = (V, E)
Output: Core numbers c(v),Vv € V
10
while |V| > 0 do
while Jv : degree(v) < i do
c(v) — 1
V=V \{v}
E— E\{(w,v)lueV}
end while
i—i+1
end while

1:
2:
3
4:
5:
6
7
8:
9:

Figure 2: k-core decomposition of a graph and illustration of
the value added by CoreRank. While nodes x and % have
the same core number (=2), node x has a greater CoreRank
score (3+2+2=7 vs 2+2+1=5), which better reflects its more

central position in the graph.

Time complexity. While linear algorithms
are available to compute the core decomposi-
tion of unweighted graphs (Batagelj and Zaver-
snik, 2003), it is slightly more expensive to ob-
tain in the weighted case (our setting here), and
requires O(mlog(n)) (Batagelj and Zaversnik,
2002). Finally, building a graph-of-words is
linear: O(nW). Overall though, the whole
pipeline remains very affordable, given that word
co-occurrence networks constructed from single
documents rarely feature more than hundreds of
nodes. In fact, when dealing with single, short



pieces of text, the k-core decomposition is fast
enough to be used in real-time settings (Meladi-
anos et al., 2017).

2.3 Submodularity and extractive
summarization

Just like their convex counterparts in the continu-
ous case, submodular functions share unique prop-
erties that make them conveniently optimizable.
For this reason, they are are popular and have
been applied to a variety of real-world problems,
such as viral marketing (Kempe et al., 2003), sen-
sor placement (Krause et al., 2008), and docu-
ment summarization (Lin and Bilmes, 2011). In
what follows, we briefly introduce the concept of
submodularity and outline how it spontaneously
comes into play when dealing with extractive sum-
marization. For clarity and consistency, we pro-
vide explanations within the context of document
summarization (without loss of generality).
Submodularity. A set function F : 2 — R
where V' = {vl, o vn} is said to be submodular

if it satisfies the property of diminishing returns
(Krause and Golovin, 2012):

VAC BCV\v, F(AUv) — F(A) > F(BUv) — F(B)
6]
If F' measures summary quality, diminishing re-
turns means that the gain of adding a new sentence
to a given summary should be greater than the gain
of adding the same sentence to a larger summary
containing the smaller one.
Monotonocity. Trivially, a set function is
monotone non-decreasing if:

VA C B,F(A) < F(B) )

Which means that the quality of a summary can
only increase or stay the same as it grows in size,
i.e., as we add sentences to it.

Budgeted maximization. The task of extrac-
tive summarization can be viewed as the selection,
under a budget constraint, of the subset of sen-
tences that best represents the entire set (i.e., the
document). This problem translates to a combina-
torial optimization task:

arg max F(S) !;% <B 3)

Where S is a subset of the full set of sentences
V (i.e., a summary), ¢,, > 0 is the cost of sentence
v, and B is the budget. Finally, F' is a summary
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quality scoring set function, mapping 2" (the fi-
nite ensemble of all subsets of V, i.e., of all possi-
ble summaries), to R. In other words, F’ assigns a
single numeric score to a given summary.

While finding an exact solution for Equation 3
is NP-hard, it was proven that under a cardinal-
ity constraint (unit costs), a greedy algorithm can
approach it with factor (e — 1)/e ~ 0.63 in the
worst case (Nemhauser et al., 1978). However, for
this guarantee to hold, F' has to be submodular and
monotone non-decreasing.

More recently, (Lin and Bilmes, 2010) proposed
a modified greedy algorithm whose solution is
guaranteed to be at least 1 — 1/y/e ~ 0.39 as good
as the best one, under a general budget constraint
(not necessarily unit costs). Empirically, the ap-
proximation factor was shown to be close to 90%.
The constraints on F' remain unchanged. More
precisely, the algorithm of (Lin and Bilmes, 2010)
iteratively selects the sentence that maximizes the
ratio of objective function gain to scaled cost:

~
~

F(GUv) — F(G)

r
Cy

“

Where G is the current summary, ¢, is the cost
of sentence v (e.g., number of words, bytes...), and
r > 0, the scaling factor, adjusts for the fact that
the objective function F' and the cost of a sentence
might be expressed in different units and thus not
be directly comparable.

Objective function. The choice of F' is what
matters here. Naturally, /' should capture the de-
sirable properties in a summary, which have tradi-
tionally been formalized in the literature as rele-
vance and non-redundancy.

A well-known function capturing both aspects
is Maximum Marginal Relevance (MMR) (Car-
bonell and Goldstein, 1998). Unfortunately, MMR
penalizes for redundancy, which makes it non-
monotone. Therefore, it cannot benefit from the
near-optimality guarantees. To address this issue,
(Lin and Bilmes, 2011) proposed to positively re-
ward diversity, with objective function:

)

Where C' and D respectively reward coverage
and diversity, and A > 0 is a trade-off parameter.
AD(S) can be viewed as a regularization term. We
used an objective function of the form described
by Equation 5 in our system. In the next subsec-
tion, we present and motivate our choices for C

F(S) = C(S) + AD(S)



and D.

3 Proposed system

Our system can be broken down into the four mod-
ules shown in Figure 3, which we detail in what
follows.

|1.Text preprocessing|—>| 2. Graph building |
y

4. Submodularity-

(_3. Keyword
based summarization

extraction

Figure 3: Overarching system process flow

3.1 Text preprocessing

The fully unsupervised nature of our system gives
it the advantage of being applicable to different
languages (and different types of textual input)
with only minimal changes in the preprocessing
steps. A necessary first step is thus to detect the
language of the input text. So far, our model sup-
ports English and French, although our experi-
ments were ran for the English language only.

e Meeting speech: utterances shorter than 0.85
second are then pruned out, words are lowercased
and stemmed, and specific flags introduced by the
ASR system (e.g., indicating inaudible sounds,
such as “{vocalsound}” in English) are removed.
Punctuation is also discarded. Custom stopwords
and fillerwords for meeting speech, learned from
the development sets of the AMI and ICSI cor-
pora!, are also discarded. French stopwords and
fillerwords were learned from a database of French
speech curated from various sources. The surviv-
ing words are considered as node candidates for
the next phase, without any part-of-speech-based
filtering. Note that the absence of requirement for
a POS tagger makes our system even more flexi-
ble.

o Traditional documents: standard stopwords
are removed (e.g., SMART stopwords® for the
English language), punctuation is removed, and
words are lowercased and stemmed.

In parallel, a copy of the original untouched ut-
terances/sentences is created. It is from this set
that the algorithm will select from to generate the
summary at step 4. In the meeting domain only,
in order to improve readability, the last 3 words

1most frequent words followed by manual inspection
2available at https://github.com/Tixierae/EMNLP2017_
NewSum

3http ://jmlr.org/papers/volume5/lewis04a/
all-smart-stop-list/english.stop

51

of each utterance are eliminated if they are filler
words, and repeated consecutive unigrams (e.g.
“remote remote”), and bigrams (e.g. “remote con-
trol remote control”) are collapsed to single terms
(“remote”, “remote control””). Note that these ex-
tra cleaning steps were performed for our system

as well as all the baselines.

3.2 Graph-building

A word co-occurrence network, as defined in Sub-
section 2.1, is built. The size of the sliding window
was tuned on the development sets of each dataset,
as will be explained in Subsection 4.4.

3.3 Keyword extraction and scoring

We used the Density and CoreRank heuristics in-
troduced by (Tixier et al., 2016a). In brief, these
techniques are based on the assumption, verified
empirically, that spreading influence is a better
“keywordedness” metric than random walk-based
ones, such as PageRank. Influential spreaders are
those nodes in the graph that can reach a large
portion of the other nodes in the network at min-
imum time and cost. Research has shown (Kit-
sak et al., 2010) that the spreading influence of
a node is better captured by its core number, be-
cause unlike the eigenvector centrality or PageR-
ank measures, which only capture individual pres-
tige, graph degeneracy also takes into account the
extent to which a node is part of a dense, cohesive
part of the graph. Such positional information is
highly valuable in determining the ability of the
node to propagate information throughout the net-
work.

More precisely, the “Density” and “CoreRank”
techniques were shown by (Tixier et al., 2016a)
to reach state-of-the-art unsupervised keyword ex-
traction performance on medium and large docu-
ments, respectively. Both methods decompose the
word co-occurrence network of a given piece of
text with the weighted k-core algorithm.

e “Density” then computes the density of each
k-core subgraph and selects the optimal cut-off
kpest in the hierarchy as the elbow in the density
vs. k curve. It finally returns the members of the
kpest-core of the graph as keywords. The assump-
tion is that it is valuable to descend the hierarchy
of cores as long as the desirable density properties
are maintained, but once they are lost (as identified
by the elbow), it is time to stop.

e The second method, “CoreRank”, assigns to
each node a score computed as the sum of the



core numbers of its neighbors (see Figure 1),
and retains the top p% nodes as keywords (we
used p = 0.15). As illustrated in Figure 2, by
decreasing granularity from the subgraph to the
node level, CoreRank generates a ranking of nodes
that better captures their structural position in the
graph. Also, stabilizing scores across node neigh-
borhoods increases even more the inherent noise
robustness property of graph degeneracy, which is
particularly desirable when dealing with noisy text
such as automatic speech transcriptions.

We encourage the reader to refer to the original
paper for more information about the Density and
CoreRank heuristics.

3.4 Extractive summarization

An objective function of the form presented in
Equation 5 and the modified greedy algorithm of
(Lin and Bilmes, 2010) are finally used to com-
pose summaries by selecting from the original ut-
terances with coverage and diversity functions as
detailed next.

e Coverage function. We chose a concept-
based coverage function. Such functions fulfill
the monotonicity and submodularity requirements
(Lin and Bilmes, 2011). More precisely, we com-
pute the coverage of a candidate summary S as
the weighted sum of the scores of the keywords it
contains:

1€S

Where n; is the number of times keyword ¢ ap-
pears in S, and w; is the score of keyword q.
Non-keywords are not taken into account. There-
fore, a summary not containing any keyword gets a
null score. Remember that the keywords and their
scores are given by the “Density” and “CoreRank”
techniques, respectively for the AMI and ICSI cor-
pora.

Note that (Riedhammer et al., 2008a) also used
a concept-based relevance measure. However, the
way we define, and the mechanism by which we
extract and assign scores to concepts radically dif-
fer. Our degeneracy-based methods natively as-
sign weights to all the words in the graph, and then
extract keywords based on those weights, while
(Riedhammer et al., 2008a) consider all n-grams
and then use a basic frequency-based weighting
scheme. Our work is also related to (Lin et al.,
2009), but unlike us, the authors use a sentence
semantic graph and a different objective function.

(6)
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e Diversity reward function. We encourage di-
versity by taking into account the proportion of
keywords covered by a candidate summary, irre-
spective of the scores of the keywords:

D(S) = NkeywordsGS/Nkeywords (N

Where Nieywordses 18 the number of (unique)
keywords contained in the summary, and
Nieywords 18 the total number of keywords
extracted for the meeting.  Promoting non-
redundancy is important as our coverage term
does not inherently penalizes for redundancy,
unlike for instance (Gillick et al., 2009).

4 Experimental setup

4.1 Datasets

We tested our approach on ASR output and regular
text. The lists of meetings/documents IDs we used
for development and testing are available on the
project online repository”.

4.1.1 Meeting speech transcriptions

We used two standard datasets very popular in the
field of meeting speech summarization, the AMI
and ICSI corpora.

e The AMI corpus (McCowan et al., 2005)
comprises ASR transcripts for 137 meetings
where 4 participants play a role within a fictive
company. Average duration is 30 minutes (843 ut-
terances, 6758 words, unprocessed). Each meet-
ing is associated with a human-written abstractive
summary of 300 words on average, and with a
human-composed extractive summary (140 utter-
ances on average). We used the same test set as
in (Riedhammer et al., 2008b), featuring 20 meet-
ings.

e The ICSI corpus (Janin et al., 2003) is a col-
lection of 57 real life meetings involving between
2 and 6 participants. The average duration, 56
minutes, is much longer than for the AMI meet-
ings, which reflects in the average size of the ASR
transcriptions (1454 utterances, 15211 words, un-
processed). For consistency with previous work,
we selected the standard test set of 6 meetings. For
each meeting of this test set, 3 human abstractive
and 3 human extractive summaries are available,
of respective average sizes 390 words and 133 ut-
terances.

4https ://github.com/Tixierae/EMNLP2017_NewSum
(name_lists.txt)



Note that for both the AMI and ICSI corpora,
the ASR word error rate is quite high: it ap-
proaches 37%. For each corpus, we constructed a
development set of 15 meetings randomly selected
from the training set in order to perform parameter
tuning.

4.1.2 Traditional documents

We also tested our approach on the DUC2001
corpus°. This collection comprises 304
newswire/newspaper articles of average size
800 words. Each document is associated with a
human-written abstractive summary of about 100
words. After removing the 13 articles that did
not have an abstract and/or a body, whose bodies
were shorter than 200 words, and whose abstracts
contained less than 10 words, we generated a
small development set of 15 randomly selected
articles for parameter tuning. We then used the
remaining documents as the test set, removing the
ones whose size differed too much from the size
of the articles in the development set (by at least 2
standard deviations, i.e. exceeded 46 sentences in
size, see Fig 4). This left us with a test set of 207
documents.

number of sentences
o

o

100 150 200
1

<|m oo

o

T
test set

50

T
dev set

Figure 4: Size of the DUC2001 documents in development
and test sets.

4.2 Evaluation

To align with previous efforts, the extractive sum-
maries generated by our system and the baselines
(that will be presented subsequently) were com-
pared against the human abstractive summaries.
We used the ROUGE-1 evaluation metric (Lin,
2004). ROUGE, based on n-gram overlap, is
the standard way of evaluating performance in
the field of textual summarization. In particular,
ROUGE-1, which works at the unigram level, was
shown to significantly correlate with human eval-
vations. While it has been suggested than cor-
relation may be weaker in the meeting domain
(Liu and Liu, 2008), we stuck to ROUGE because

5http ://www-nlpir.nist.gov/projects/duc/
guidelines/2001.html
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of the lack of a clear substitute, and for consis-
tency with the literature, as a very large majority
of studies previously published in the domain use
ROUGE.

For each dataset, and for a given summarization
method, ROUGE scores were computed for each
meeting in the test set and then averaged to obtain
an overall score for the method (macro-averaging).
For the ICSI corpus, 3 human abstractive sum-
maries are available for each meeting in the test
set, so an average score was first computed.

4.3 Baseline systems

We benchmarked the performance of our system
against six different baselines, presented below.
The first two baselines were included based on
the best practice recommendation of (Riedhammer
et al., 2008b), in order to ease cross-comparison
with other studies.

Random. This system randomly selects elements
from the full list of utterances/sentences until the
budget is violated. Since this approach is stochas-
tic, ROUGE scores were averaged across 30 runs.
Longest greedy. Here, the longest utter-
ance/sentence is selected at each step until the size
constraint is satisfied.

TextRank (Mihalcea and Tarau, 2004). An undi-
rected complete graph is built where nodes are ut-
terances/sentences and edges are weighted accord-
ing to the normalized content overlap of their end-
points. Finally, weighted PageRank is applied and
the highest ranked nodes are selected for inclu-
sion in the summary. We used a publicly available
Python implementation®.

ClusterRank (Garg et al., 2009). AMI & ICSI
only. ClusterRank is an extension of TextRank tai-
lored to meeting summarization. Utterances are
first clustered based on their position in the tran-
script and their TF-IDF cosine similarity. Then,
a complete graph is built from the clusters, with
normalized cosine similarity edge weights. Fi-
nally, each utterance is assigned a score based on
the weighted PageRank score of the node it be-
longs to and its cosine similarity with the node
centroid. The utterances associated with the high-
est scores are then added to the summary, if they
differ enough from it. Since the authors did not
make their code publicly available, we wrote our
own implementation in Python’. We set the win-

6https ://github.com/summanlp/textrank
7 . . .
available on the project repository.
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Figure 5: ROUGE-1 score comparisons for various budgets, on the 3 datasets used in this study.

dow threshold parameter to 3 like in the original  off between the coverage and the diversity terms C'
paper, but increased the similarity threshold from  and D of our objective function, and r, the scaling
0.4 to 0.6 because 0.4 returned too many clusters.  factor, which makes the gain in objective function
PageRank submodular (PRsub). This baseline is ~ value and utterance cost comparable (see Equa-
exactly the same as our system, the only difference  tion 4). To tune these parameters, we conducted a
being that keyword scores are obtained through  grid search on the development set of each corpus,
weighted PageRank rather than via a degeneracy-  retaining the parameter combination maximizing
based technique (Density or CoreRank). the average ROUGE-1 F1-score, for summaries of
Oracle. AMI & ICSI only. This last baseline ran-  fixed size equal to 300 and 100 words, respectively
domly selects utterances from the human extrac-  for the AMI & ICSI and the DUC2001 corpora.
tive summaries until the budget has been reached. = More precisely, our grid had axes [0, 7] and [0, 2]
Again, we average ROUGE scores over 30 runs to  for A and r respectively, with steps of 0.1 in each
account for the randomness of the procedure. Note  case. The best A and r for each dataset are sum-
that this approach assumes the human extractive = marized in Table 1.

summaries to be the best possible ones, which is o W and heuristic. Still on the development sets
arguable. of each collection, we also experimented with two

. window sizes for building the word co-occurrence
44 Parameter tuning network (6 and 12), and for our model, whether

e )\ and r. Recall that the main tuning parame-  we should use the Density or CoreRank technique.
ters of our method and the PageRank submodular ~ The best window size was 12 on the AMI and ICSI
baseline (PRsub) are A, which controls the trade-  corpora, and 6 on DUC2001. The Density method
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turned out to be best on the AMI corpus, while
CoreRank yielded better results on the ICSI and
DUC2001 corpora.

The reason why is not entirely clear. (Tix-
ier et al., 2016a) initially found that with respect
to keyword extraction, Density was better suited
to medium-size documents (~ 400 words) while
CoreRank was superior on longer documents (~
1,300 words), because the latter is working at
a finer granularity level (node level instead of
subgraph level), and thus enjoys more flexibility.
However, the AMI corpus comprises much bigger
pieces of text (2,200 words on average, after pre-
processing). Therefore, we could have expected
the CoreRank heuristic to give better results on
this dataset also. We hypothesize that the differ-
ence in task might explain why this is not the case.
Indeed, in keyword extraction, we are interested
in selecting keywords for direct comparison with
the gold standard, whereas in summarization, we
are only interested in scoring keywords, as an in-
termediary step towards sentence scoring and se-
lection. Therefore, in summarization, working at
the subgraph level and extracting larger numbers
of keywords is not directly equivalent to sacri-
ficing precision, since the less relevant keywords
will have minimal impact on the sentence selec-
tion process due to their low scores.

System AMI ICSI DUC2001
Our model  (2,0.9) (5,0.3) (0.6,0.1)
PRsub (4.7,0.5) (4,0.6) (1.6,0.2)

Table 1: Optimal parameter values (A,r) for our system and
the submodular baseline.

As shown in Table 1, the A values are all non-
zero (and quite high), indicating that including a
regularization term favoring diversity in our ob-
jective function is necessary. Moreover, the signif-
icantly greater values reached by A on the AMI &
ICSI datasets show that ensuring diversity is even
more important when dealing with meeting tran-
scripts, most probably because there is much more
redundancy in spontaneous, noisy utterances than
in sentences belonging to properly written news
article, and also because more (sub)topics are dis-
cussed during meetings.

5 Results

5.1 Quantitative results

We consider the cost of an utterance/a sentence to
be the number of words it contains, and the budget
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to be the maximum size allowed for a summary,
measured in number of words. For each meet-
ing/document in the test sets, we generated extrac-
tive summaries with budgets ranging from 100 to
500 words (AMI & ICSI corpora) and from 50 to
300 words (DUC2001 collection), with steps of 50
in each case.

Results for all datasets and all budgets are
shown in Figure 5, while Tables 2, 3, and 4 provide
detailed comparisons for the budget correspond-
ing to the best performance achieved by a non-
oracle system, respectively on the AMI, ICSI, and
DUC2001 datasets. We tested for statistical signif-
icance in macro-averaged F1 scores using the non-
parametric version of the t-test, the Mann-Whitney
U test®.

System  Recall Precision F-1 score

Our model ~ 39.98 33.40 35.88”
PRsub  38.73 3241 34.80

Oracle  37.02 30.99 33.27
TextRank  34.33 28.66 30.82
ClusterRank ~ 33.87 28.18 30.35
Longest greedy  32.61 27.47 29.41
Random  31.06 26.05 27.95

Table 2: Macro-averaged ROUGE-1 scores on the AMI test
set (20 meetings) for summaries of 350 words. *Statistically
significant difference (p < 0.03) w.r.t. all baselines except

PRsub.
System  Recall Precision F-1 score
Oracle  36.64 27.59 31.16
Our model ~ 35.60 26.94 30.34*
PRsub  33.97 25.28 28.70
Longest greedy ~ 33.37 25.06 28.33
Random  31.06 22.83 26.02
ClusterRank  31.00 22.48 25.78
TextRank  28.19 20.71 23.57

Table 3: Macro-averaged ROUGE scores on the ICSI test set
(6 meetings) for summaries of 450 words. *Statistically
significant difference (p < 0.05) w.r.t. all baselines except
the oracle and PRsub.

System  Recall Precision F-1 score

PRsub  50.17 41.08 45.13

Our model ~ 49.69 40.71 4471
TextRank  50.00 39.92 44.29
Longest greedy ~ 47.22 38.29 42.25
Random  45.13 36.61 40.39

Table 4: Macro-averaged ROUGE scores on the DUC2001
test set (207 documents) for summaries of 125 words.
*Statistically significant difference (p < 0.03) w.r.t. the
Longest greedy and Random baselines.

e Meeting domain. Our approach significantly
outperforms all baselines on the AMI corpus (in-
cluding the oracle) and all systems on the ICSI
corpus (except the oracle), both in terms of pre-
cision and recall. Also, our system proves con-

8https ://stat.ethz.ch/R-manual/R-devel/library/
stats/html/wilcox.test.html



sistently better throughout the different summary
sizes. Until the peak is reached, the margin in F1
score between our model and the competitors even
tend to widen as the budget increases.

Performance is weaker for all models on the
ICSI corpus because in that case the system sum-
maries have to jointly match 3 human summaries
of different sizes (instead of a single summary),
which is a much more difficult task.

Best performance is attained for a larger budget
on the ICSI corpus (450 vs. 350 words), which can
be explained by the fact that the ICSI human sum-
maries tend to be larger than the AMI ones (390
vs 300 words, on average). Finally, remember that
the extractive summaries generated by the systems
were compared against the abstractive summaries
freely written by human annotators, using their
own words. This makes it impossible for extrac-
tive systems to reach perfect scores, because the
gold standard contains words that were never used
during the meeting, and thus that do not appear in
the ASR transcriptions. Overall, our model is very
competitive to the oracle, which is notable since
the oracle has direct access to the human extrac-
tive summaries.

e Regular documents. The absolute ROUGE
scores and the margins between systems are much
greater (resp. smaller) than on the AMI and
ICSI corpora, confirming without surprise that
summarization is a much easier task when per-
formed on well-written documents than on spon-
taneous meeting speech transcriptions. Although
very close (0.42 difference in Fl-score), our
method does not reach absolute best performance,
which is attained by the submodular baseline
with PageRank-based coverage function, for sum-
maries of 125 words (average size of the gold stan-
dard summaries is about 100 words). The ab-
sence of superiority on this dataset might be ex-
plained by the fact that graph degeneracy really
adds value when dealing with noisy input, such
as automatic speech transcriptions. However, on
regular documents, the recognized superiority of
degeneracy-based techniques over PageRank (Tix-
ier et al., 2016a; Rousseau and Vazirgiannis, 2015)
for keyword extraction does not seem to translate
into a significantly better measure of coverage for
sentence scoring.
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5.2 Qualitative results

Instead of providing a single sample summary at
the end of this paper, we deployed our system as
an interactive web application’. With the inter-
face, the user can generate summaries with our
system for all the meetings/documents in the AMI,
ICSI, and DUC2001 test sets. Custom files are ac-
cepted as well, and links to examples of such files
in French and English are provided.

What can be observed in the meeting domain is
that while the keywords extracted tend to be very
relevant and their scores meaningful, and while
the utterances selected by our system tend to have
good coverage and relatively low redundancy, the
summaries suffer in readability, which can be ex-
plained by the fully extractive nature of our ap-
proach, and the low quality of the input (37% word
error rate). This qualitative aspect of performance
is not captured by ROUGE-1 which simply com-
putes unigram overlap statistics.

6 Conclusion

We presented a fully unsupervised system that
uses a powerful submodularity framework intro-
duced by past research to generate extractive sum-
maries of textual documents in a greedy way with
near-optimal performance guarantees. Our prin-
cipal contribution is in the coverage term of the
objective function that is optimized by the greedy
algorithm. This term leverages graph degeneracy
applied on word co-occurrence networks to rank
words according to their structural position in the
graph. Evaluation shows that our system reaches
state-of-the-art extractive performance, and is es-
pecially well-suited to be used on noisy text, such
as ASR output from meetings. Future work should
focus on improving the readability of the final
summaries. To this purpose, unsupervised graph-
based sentence compression and/or natural lan-
guage generation techniques, like in (Filippova,
2010; Mehdad et al., 2013) seem very promising.

7 Acknowledgments

We are thankful to the three anonymous reviewers
for their helpful comments and suggestions, and
to Prof. Benoit Favre for his kind help in getting
access to the meeting datasets. This research was
supported by the OpenPaaS::NG project.

9http: //bit.ly/2r55eL0 (works better in Chrome).



References

Vladimir Batagelj and Matjaz Zaver$nik. 2002. Gener-
alized cores. arXiv preprint c¢s/0202039 .

Vladimir Batagelj and Matjaz Zaversnik. 2003. An o
(m) algorithm for cores decomposition of networks.
arXiv preprint cs/0310049 .

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval. ACM, pages 335-336.

Katja Filippova. 2010. Multi-sentence compression:
Finding shortest paths in word graphs. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics. Association for Compu-
tational Linguistics, pages 322-330.

Nikhil Garg, Benoit Favre, Korbinian Reidhammer,
and Dilek Hakkani Tiir. 2009. Clusterrank: a graph
based method for meeting summarization. Techni-
cal report, Idiap.

Daniel Gillick, Benoit Favre, Dilek Hakkani-Tiir,
Bernd Bohnet, Yang Liu, and Shasha Xie. 2009. The
icsi/utd summarization system at tac 2009. In TAC.

Zellig S Harris. 1954. Distributional structure. Word
10(2-3):146-162.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis,
David Gelbart, Nelson Morgan, Barbara Peskin,
Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke,
et al. 2003. The icsi meeting corpus. In Acous-
tics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Confer-
ence on. IEEE, volume 1, pages [-364.

David Kempe, Jon Kleinberg, and Eva Tardos. 2003.
Maximizing the Spread of Influence through a So-
cial Network. In Proceedings of the 9th Inter-

national Conference on Knowledge Discovery and
Data Mining. pages 137-146.

Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin,
Fredrik Liljeros, Lev Muchnik, H Eugene Stanley,
and Hernan A Makse. 2010. Identification of in-
fluential spreaders in complex networks. Nature
Physics 6(11):888-893.

Andreas Krause and Daniel Golovin. 2012. Submod-
ular function maximization. Tractability: Practical
Approaches to Hard Problems 3(19):8.

Andreas Krause, Jure Leskovec, Carlos Guestrin,
Jeanne VanBriesen, and Christos Faloutsos. 2008.
Efficient sensor placement optimization for securing
large water distribution networks. Journal of Water
Resources Planning and Management 134(6):516—
526.

57

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop. volume 8.

Hui Lin and Jeff Bilmes. 2010. Multi-document sum-
marization via budgeted maximization of submod-
ular functions. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 912-920.

Hui Lin and Jeff Bilmes. 2011. A Class of Submodu-
lar Functions for Document Summarization. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. pages 510-520.

Hui Lin, Jeff Bilmes, and Shasha Xie. 2009. Graph-
based submodular selection for extractive summa-
rization. In Automatic Speech Recognition & Un-
derstanding, 2009. ASRU 2009. IEEE Workshop on.
IEEE, pages 381-386.

Feifan Liu and Yang Liu. 2008. Correlation between
rouge and human evaluation of extractive meeting
summaries. In Proceedings of the 46th annual meet-
ing of the association for computational linguistics
on human language technologies: Short papers. As-
sociation for Computational Linguistics, pages 201—
204.

lain McCowan, Jean Carletta, W Kraaij, S Ashby,
S Bourban, M Flynn, M Guillemot, T Hain,
J Kadlec, V Karaiskos, et al. 2005. The ami meet-
ing corpus. In Proceedings of the 5th International
Conference on Methods and Techniques in Behav-
ioral Research. volume 88.

Kathleen McKeown, Julia Hirschberg, Michel Galley,
and Sameer Maskey. 2005. From text to speech
summarization. In Acoustics, Speech, and Signal
Processing, 2005. Proceedings.(ICASSP’05). IEEE
International Conference on. IEEE, volume 5, pages
v-997.

Yashar Mehdad, Giuseppe Carenini, Frank W Tompa,
and Raymond T Ng. 2013. Abstractive meeting
summarization with entailment and fusion. In Proc.
of the 14th European Workshop on Natural Lan-
guage Generation. pages 136-146.

Polykarpos Meladianos, Giannis Nikolentzos, Francois
Rousseau, Yannis Stavrakas, and Michalis Vazir-
giannis. 2015. Degeneracy-based real-time sub-
event detection in twitter stream. In Ninth Interna-
tional AAAI Conference on Web and Social Media
(ICWSM).

Polykarpos Meladianos, Antoine J-P Tixier, Giannis
Nikolentzos, and Michalis Vazirgiannis. 2017. Real-
time keyword extraction from conversations. EACL
2017 page 462.



Rada Mihalcea and Paul Tarau. 2004. TextRank:
bringing order into texts. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics.

Gabriel Murray, Steve Renals, and Jean Carletta. 2005.
Extractive summarization of meeting recordings. .

George L Nembhauser, Laurence A Wolsey, and Mar-
shall L Fisher. 1978. An analysis of approximations
for maximizing submodular set functionsi. Mathe-
matical Programming 14(1):265-294.

Korbinian Riedhammer, Benoit Favre, and Dilek
Hakkani-Tur. 2008a. A keyphrase based approach
to interactive meeting summarization. In Spoken
Language Technology Workshop, 2008. SLT 2008.
IEEE. 1IEEE, pages 153-156.

Korbinian Riedhammer, Dan Gillick, Benoit Favre, and
Dilek Hakkani-Tiir. 2008b. Packing the meeting
summarization knapsack. In Ninth Annual Confer-
ence of the International Speech Communication As-
sociation.

Francois Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: new approach to ad hoc
ir. In Proceedings of the 22nd ACM international
conference on Conference on Information & Knowl-
edge Management (CIKM). ACM, pages 59-68.

Francois Rousseau and Michalis Vazirgiannis. 2015.
Main core retention on graph-of-words for single-
document keyword extraction. In European Confer-
ence on Information Retrieval. Springer, pages 382—
393.

Stephen B Seidman. 1983. Network structure and min-
imum degree. Social networks 5(3):269-287.

Antoine J-P Tixier, Fragkiskos D Malliaros, and
Michalis Vazirgiannis. 2016a. A graph degeneracy-
based approach to keyword extraction. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing.

Antoine J-P Tixier, Konstantinos Skianis, and Michalis
Vazirgiannis. 2016b. Gowvis: a web application for
graph-of-words-based text visualization and sum-
marization. ACL 2016 page 151.

58



