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Abstract

Recent neural headline generation models
have shown great results, but are generally
trained on very large datasets. We focus
our efforts on improving headline quality
on smaller datasets by the means of pre-
training. We propose new methods that
enable pre-training all the parameters of
the model and utilize all available text, re-
sulting in improvements by up to 32.4%
relative in perplexity and 2.84 points in
ROUGE.

1 Introduction

Neural headline generation (NHG) is the process
of automatically generating a headline based on
the text of the document using artificial neural net-
works.

Headline generation is a subtask of text sum-
marization. While a summary may cover mul-
tiple documents, generally uses similar style to
the summarized document, and consists of mul-
tiple sentences, headline, in contrast, covers a sin-
gle document, is often written in a different style
(Headlinese (Mårdh, 1980)), and is much shorter
(frequently limited to a single sentence).

Due to shortness and specific style, condensing
the the document into a headline often requires
the ability to paraphrase which makes this task a
good fit for abstractive summarization approaches
where neural networks based attentive encoder-
decoder (Bahdanau et al., 2015) type of models
have recently shown impressive results (e.g., Rush
et al. (2015); Nallapati et al. (2016)).

While state-of-the art results have been obtained
by training NHG models on large datasets like Gi-
gaword, access to such resources is often not pos-
sible, especially when it comes to low-resource

languages. In this work we focus on maximiz-
ing performance on smaller datasets with different
pre-training methods.

One of the reasons to expect pre-training to be
an effective way to improve performance on small
datasets, is that NHG models are generally trained
to generate headlines based on just a few first sen-
tences of the documents (Rush et al., 2015; Shen
et al., 2016; Chopra et al., 2016; Nallapati et al.,
2016). This leaves the rest of the text unutilized,
which can be alleviated by pre-training subsets of
the model on full documents. Additionally, the de-
coder component of NHG models can be regarded
as a language model (LM) whose predictions are
biased by the external information from the en-
coder. As a LM it sees only headlines during train-
ing, which is a small fraction of text compared to
the documents. Supplementing the training data of
the decoder with documents via pre-training might
enable it to learn more about words and language
structure.

Although, some of the previous work has used
pre-training before (Nallapati et al., 2016; Alifi-
moff, 2015), it is not fully explored how much pre-
training helps and what is the optimal way to do it.
Another problem is, that in previous work only a
subset of parameters (usually just embeddings) is
pre-trained leaving the rest of the parameters ran-
domly initialized.

The main contributions of this paper are: LM
pre-training for fully initializing the encoder and
decoder (sections 2.1 and 2.2); combining LM
pre-training with distant supervision (Mintz et al.,
2009) pre-training using filtered sentences of the
documents as noisy targets (i.e. predicting one
sentence given the rest) to maximally utilize
the entire available dataset and pre-train all the
paramters of the NHG model (section 2.3); and
analysis of the effect of pre-training different com-
ponents of the NHG model (section 3.3).
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Figure 1: A high level description of the NHG
model. The model predicts the next headline word
yt given the words in the document x1 . . . xN and
already generated headline words y1 . . . yt−1.

2 Method

The model that we use follows the architecture de-
scribed by Bahdanau et al. (2015). Although orig-
inally created for neural machine translation, this
architecture has been successfully used for NHG
(e.g., by Shen et al. (2016); Nallapati et al. (2016)
and in a simplified form by Chopra et al. (2016)).

The NHG model consists of: a bidirectional
(Schuster and Paliwal, 1997) encoder with gated
recurrent units (GRU) (Cho et al., 2014); a uni-
directional GRU decoder; and an attention mecha-
nism and a decoder initialization layer that connect
the encoder and decoder (Bahdanau et al., 2015).

During headline generation, the encoder reads
and encodes the words of the document. Initial-
ized by the encoder, the decoder then starts gener-
ating the headline one word at a time, attending to
relevant parts in the document using the attention
mechanism (Figure 1). During training the param-
eters are optimized to maximize the probabilities
of reference headlines.

While generally at the start of training either
the parameters of all the components are randomly
initialized or only pre-trained embeddings (with
dashed outline in Figure 1) are used (Nallapati
et al., 2016; Paulus et al., 2017; Gulcehre et al.,
2016), we propose pre-training methods for more
extensive initialization.

2.1 Encoder Pre-Training
When training a NHG model, most approaches
generally use a limited number of first sentences or
tokens of the document. For example Rush et al.
(2015); Shen et al. (2016); Chopra et al. (2016) use
only the first sentence of the document and Nalla-
pati et al. (2016) use up to 2 first sentences. While
efficient (training is faster and takes less memory

as the input sequences are shorter) and effective
(the most informative content tends to be at the be-
ginning of the document (Nallapati et al., 2016)),
this leaves the rest of the sentences in the docu-
ment unused. Better understanding of words and
their context can be learned if all sentences are
used, especially on small training sets.

To utilize the entire training set, we pre-train the
encoder on all the sentences of the training set doc-
uments. Since the encoder consists of two recur-
rent components – a forward and backward GRU
– we pre-train them separately. First we add a soft-
max output layer to the forward GRU and train it
on the sentences to predict the next word given the
previous ones (i.e. we train it as a LM). After
convergence on the validation set sentences, we
take the embedding weights of the forward GRU
and use them as fixed parameters for the backward
GRU. Then we train the backwards GRU follow-
ing the same procedure as with the forward GRU,
with the exception of processing the sentences in a
reverse order. When both models are fully trained,
we remove the softmax output layers and initial-
ize the encoder of the NHG model with the em-
beddings and GRU parameters of the trained LMs
(highlighted with gray background in Figure 1).

2.2 Decoder Pre-Training

Pre-training the decoder as a LM seems natural,
since it is essentially a conditional LM. During
NHG model training the decoder is fed only head-
line words, which is relatively little data compared
to the document contents. To improve the quality
of the headlines it is essential to have high qual-
ity embeddings that are a good semantic repre-
sentation of the input words and to have a well
trained recurrent and output layer to predict sensi-
ble words that make up coherent sentences. When
it comes to statistical models, the simplest way to
improve the quality of the parameters is to train
the model on more data, but it also has to be the
right kind of data (Moore and Lewis, 2010).

To increase the amount of suitable training data
for the decoder we use LM pre-training on filtered
sentences of the training set documents. For filter-
ing we use the XenC tool by Rousseau (2013) with
the cross-entropy difference filtering (Moore and
Lewis, 2010). In our case the in-domain data is
training set headlines, out-domain data is the sen-
tences from training set documents, and the best
cut-off point is evaluated on validation set head-
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lines. The careful selection of sentences is mostly
motivated by preventing the pre-trained decoder
from deviating too much from Headlinese, but it
also reduces training time.

Before pre-training we initialize the input and
output embeddings of the LM for words that are
common in both encoder and decoder vocabulary
with the corresponding pre-trained encoder em-
beddings. We train the LM on the selected sen-
tences until perplexity on the validation set head-
lines stops improving and then use it to initialize
the decoder parameters of the NHG model (high-
lighted with dotted background in Figure 1).

A similar approach, without data selection and
embedding initialization, has also been used by
Alifimoff (2015).

2.3 Distant Supervision Pre-Training

Approaches described in sections 2.1 and 2.2 en-
able full pre-training of the encoder and decoder,
but this still leaves the connecting parameters
(with white background in Figure 1) untrained.

As results in language modelling suggest, sur-
rounding sentences contain useful information to
predict words in the current sentence (Wang and
Cho, 2016). This implies that other sentences con-
tain informative sections that the attention mecha-
nism can learn to attend to and general context that
the initialization component can learn to extract.

To utilize this phenomenon, we propose using
carefully picked sentences from the documents as
pseudo-headlines and pre-train the NHG model to
generate these given the rest of sentences in the
document. Our pseudo-headline picking strategy
consists of choosing sentences that occur within
100 first tokens of the document and were retained
during cross-entropy filtering in section 2.2. Pick-
ing sentences from the beginning of the document
should give us the most informative sentences, and
cross-entropy filtering keeps sentences that most
closely resemble headlines.

The pre-training procedure starts with initializ-
ing the encoder and decoder with LM pre-trained
parameters (sections 2.1 and 2.2). After that, we
continue training the attention and initialization
parameters until perplexity on validation set head-
lines converges. We then use the trained parame-
ters to initialize all parameters of the NHG model.

Distant supervision has been also used for
multi-document summarization by Bravo-
Marquez and Manriquez (2012).
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Figure 2: Validation set (EN) perplexities of the
NHG model with different pre-training methods.

Model PPL (EN) PPL (ET)
No pre-training 65.1 ±1.0 25.9 ±0.4
Embeddings 51.8 ±0.7 20.7 ±0.3
Encoder (2.1) 59.3 ±0.9 23.5 ±0.4
Decoder (2.2) 48.3 ±0.7 18.8 ±0.3
Enc.+dec. 46.2 ±0.7 17.7 ±0.3
Distant all 58.6 ±0.9 21.3 ±0.3
Enc.+dec.+dist. (2.3) 45.8 ±0.7 17.5 ±0.3

Table 1: Perplexities on the test set with a 95%
confidence interval (Klakow and Peters, 2002).
All pre-trained models are significantly better than
the No pre-training baseline.

3 Experiments

We evaluate the proposed pre-training methods in
terms of ROUGE and perplexity on two relatively
small datasets (English and Estonian).

3.1 Training Details

All our models use hidden layer sizes of 256 and
the weights are initialized according to Glorot and
Bengio (2010). The vocabularies consist of up to
50000 most frequent training set words that oc-
cur at least 3 times. The model is implemented
in Theano (Bergstra et al., 2010; Bastien et al.,
2012) and trained on GPUs using mini-batches
of size 128. During training the weights are up-
dated with Adam (Kingma and Ba, 2014) (param-
eters: α=0.001, β1=0.9, β2=0.999, ε=10−8 and
λ=1 − 10−8) and L2-norm of the gradient is kept
within a threshold of 5.0 (Pascanu et al., 2013).
During headline generation we use beam search
with beam size 5.
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EN ET
Model R1R R1P RLR RLP R1R R1P RLR RLP

No pre-training 20.36 33.51 17.68 29.03 26.44 34.23 25.31 32.74
Embeddings 21.09 33.36 18.23 28.72 28.42 35.94 27.02 34.16
Encoder (2.1) 21.25 34.1 18.45 29.5 29.28 37.04 27.88 35.24
Decoder (2.2) 20.11 31.1 17.43 26.87 25.12 32.6 23.89 30.99
Enc.+dec. 20.72 33.93 18.04 29.43 27.18 34.58 25.79 32.78
Distant all 20.32 31.54 17.59 27.25 26.17 34.49 24.96 32.87
Enc.+dec.+dist. (2.3) 21.34 34.81 18.53 30.14 27.74 35.46 26.35 33.67

Table 2: Recall and precision of ROUGE-1 and ROUGE-L on the test sets. Best scores in bold. Results
with statistically significant differences (95% confidence) compared to No pre-training underlined.

3.2 Datasets

We use the CNN/Daily Mail dataset (Her-
mann et al., 2015)1 for experiments on English
(EN). The number of headline-document pairs is
287227, 13368 and 11490 in training, validation
and test set correspondingly. The preprocessing
consists of tokenization, lowercasing, replacing
numeric characters with #, and removing irrele-
vant parts (editor notes, timestamps etc.) from the
beginning of the document with heuristic rules.

For Estonian (ET) experiments we use a sim-
ilarly sized (341607, 18979 and 18977 training,
validation and test split) dataset that also consist
of news from two sources. During preprocess-
ing, compound words are split, words are true-
cased and numbers are written out as words. We
used Estnltk (Orasmaa et al., 2016) stemmer for
ROUGE evaluations.

3.3 Results and Analysis

Models are evaluated in terms of perplexity (PPL)
and full length ROUGE (Lin, 2004). In addi-
tion to pre-training methods described in sections
2.1-2.3, we also test: initializing only the embed-
dings using parameters from the LM pre-trained
encoder and decoder (Embeddings); initializing
the encoder and decoder, but leaving connecting
parameters randomized (Enc.+dec.); pre-training
the whole model from random initialization with
distant supervision only (Distant all); and a base-
line that is not pre-trained at all (No pre-training).

All pre-training methods gave significant im-
provements in PPL (Table 1). The best method
(Enc.+dec.+dist.) improved the test set PPL by
29.6-32.4% relative. Pre-trained NHG models
also converged faster during training (Figure 2)

1http://cs.nyu.edu/˜kcho/DMQA/

and most of them beat the final PPL of the baseline
already after the first epoch. General trend is that
pre-training a larger amount of parameters and the
parameters closer to the outputs of the NHG model
improves the PPL more. Distant all is an excep-
tion to that observation as it used much less train-
ing data (same as baseline) than other methods.

For ROUGE evaluations, we report ROUGE-
1 and ROUGE-L (Table 2). In contrast with
PPL evaluations, some pre-training methods ei-
ther don’t improve significantly or even worsen
ROUGE measures. Another difference com-
pared to PPL evaluations is that for ROUGE, pre-
training parameters that reside further from out-
puts (embeddings and encoder) seems more ben-
eficial. This might imply that a better document
representation is more important to stay on topic
during beam search while it is less important dur-
ing PPL evaluation where predicting next target
headline word with high confidence is rewarded
and the process is aided by previous target head-
line words that are fed to the decoder as inputs.
It is also possible, that a well trained decoder be-
comes too reliant on expecting correct words as in-
puts making it sensitive to errors during generation
which would somewhat explain why Enc.+dec.
performs worse than Encoder alone. This hypoth-
esis can be checked in further work by experiment-
ing with methods like scheduled sampling (Bengio
et al., 2015) that should increase the robustness to
mistakes during generation. Pre-training all pa-
rameters on all available text (Enc.+dec.+dist.)
still gives the best result on English and quite de-
cent results on Estonian. Best models improve
ROUGE by 0.85-2.84 points.

Some examples of the generated headlines on
the CNN/Daily Mail dataset are shown in Table 3.
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Document a democratic congressman is at the head of a group of representatives trying
to help undocumented immigrants avoid deportations with what they have
called the family defender toolkit . the informational pamphlet includes a
bilingual card - that some are calling a get out of deportation free card - that
lists reasons a person should not be deported under expanded .

Reference headline congressman is developing a get out of deportation toolkit to help undocu-
mented immigrants if they are detained

No pre-training congressman calls for undocumented immigrants
Embeddings congressman calls for help from immigrants trying to help immigrants avoid-

ing deportation
Encoder (2.1) republican congressman calls for immigrants trying to avoid deportation
Decoder (2.2) congressman who tried to stop deportations of immigrants
Enc.+Dec. immigration congressman at the head of the head of the group who tries to

avoid deportation
Distant all congressman calls for deportation to immigrants who stay in the country
Enc.+dec.+dist. (2.3) congressman tries to help undocumented immigrants avoid deportation
Document a chihuahua and a bearded dragon showed off their interspecies friendship

when they embarked upon a game of tag together . videoed in their front
room , the dog named foxxy cleopatra and the reptile called ryuu can be seen
chasing after one another around a coffee table . standing perfectly still while
looking in the other direction , the bearded dragon initially appears disinter-
ested as the chihuahua jumps around excitedly .

Reference headline you re it!
No pre-training is this the creepiest crawly?
Embeddings meet the poodle!
Encoder (2.1) it’s a knockout!
Decoder (2.2) the bearded dragon lizard: the bearded dragon lizard spotted in the middle of

the street
Enc.+Dec. oh, this is a lion!
Distant all meet the dragon dragon: meet the dragon dragon
Enc.+dec.+dist. (2.3) is this the world’s youngest lion?

Table 3: Examples of generated headlines on CNN/Daily Mail dataset.

4 Conclusions

We proposed three new NHG model pre-training
methods that in combination enable utilizing the
entire dataset and initializing all parameters of the
NHG model. We also evaluated and analyzed pre-
training methods and their combinations in terms
of perplexity (PPL) and ROUGE. The results re-
vealed that better PPL doesn’t necessarily trans-
late to better ROUGE – PPL tends to benefit from
pre-training parameters that are closer to outputs,
but for ROUGE it is generally the opposite. Also,
PPL benefited from pre-training more parameters
while for ROUGE it was not always the case. Pre-
training in general proved to be useful – our best
results improved PPL by 29.6-32.4% relative and
ROUGE measures by 0.85-2.84 points compared

to a NHG model without pre-training.
Current work focused on maximally utilizing

available headlined corpora. One interesting fu-
ture direction would be to additionally utilize po-
tentially much more abundant corpora of docu-
ments without headlines (also proposed by Shen
et al. (2016)) for pre-training. Another open ques-
tion is the relationship between the dataset size
and the effect of pre-training.
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