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Abstract

We present our system for the WNUT
2017 Named Entity Recognition challenge
on Twitter data. We describe two modi-
fications of a basic neural network archi-
tecture for sequence tagging. First, we
show how we exploit additional labeled
data, where the Named Entity tags differ
from the target task. Then, we propose a
way to incorporate sentence level features.
Our system uses both methods and ranked
second for entity level annotations, achiev-
ing an F1-score of 40.78, and second for
surface form annotations, achieving an F1-
score of 39.33.

1 Introduction

Named Entity Recognition (NER) is an impor-
tant Natural Language Processing task. Its goal
is to tag entities such as names of people and
locations in text. State-of-the-art systems can
achieve F1-scores of up to 92 points on English
news texts (Chiu and Nichols, 2015). Achiev-
ing good performance on more complex domains
such as user generated texts on social media is still
a hard problem. The best system submitted for
the WNUT 2016 shared task achieved an F1-score
of 52.41 on English Twitter data (Strauss et al.,
2016).

In this work, we present our submission for the
WNUT 2017 shared task on “Novel and Emerg-
ing Entity Recognition” (Derczynski et al., 2017).
We extend a basic neural network architecture for
sequence tagging (Chiu and Nichols, 2015; Col-
lobert et al., 2011) by incorporating sentence level
feature vectors and exploiting additional labeled
data for transfer learning. We build on and take
inspiration from recent work from (Falkner et al.,

2017; Sileo et al., 2017) on NER for French Twit-
ter data (Lopez et al., 2017).

Our submitted solution reached an F1-score of
41.76 for entity level annotations and 57.98 on
surface form annotations. This places us second
on entity level annotations, where the best sys-
tem achieved an F1-score of 41.90, and fourth on
surface form annotations, where the best system
achieved an F1-score of 66.59.

2 System Description

Our solution is based on a sequence labeling sys-
tem that uses a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) which extracts features
for training a Conditional Random Field (Sut-
ton and McCallum, 2012). We apply a trans-
fer learning approach, since previous research has
shown that this can improve sequence labeling
systems (Yang et al., 2017). More precisely, we
modify the base system to allow for joint training
on the WNUT 2016 corpus (Strauss et al., 2016),
which uses a different tag set than our target task.
In addition, we extend the system to incorporate
sentence level feature vectors. All these methods
are combined to build the system that we used for
our submission to the WNUT 2017 shared task.
Figure 1 shows an overview of the different archi-
tectures, which are described in detail in the fol-
lowing sections.

2.1 Basic Sequence Labeling System
Figure 1a shows an overview of our base system.
We use a bidirectional Long Short Term Mem-
ory network (LSTM) (Hochreiter and Schmidhu-
ber, 1997) to learn the potential function for a lin-
ear chain Conditional Random Field (CRF) (Sut-
ton and McCallum, 2012) to predict a sequence of
Named Entity tags y1:T from a sequence of feature
vectors x1:T . This is based on an architecture pre-
viously used in (Chiu and Nichols, 2015), which
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(a) Basic
System

(b) Transfer Learning Archi-
tecture

(c) Incorporating Sen-
tence Level Features

(d) Architecture Using Transfer Learning and
Sentence Level Features

Figure 1: Overview Of The Different Network Architectures Used

achieved state-of-the-art performance for Named
Entity Recognition on the English CoNLL 2003
data set (Tjong Kim Sang and De Meulder, 2003).

Bidirectional LSTM: For every word in wt in
a given input sentence w1:T , we first compute
a feature vector xt, which is the concatenation
of all the word level features described in Sec-
tion 2.5. The sequence of feature vectors x1:T is
then fed to a bidirectional LSTM. The output of
both the forward and backward LSTM are con-
catenated to get o1:T , which get passed through
a Rectified Linear Unit, (ReLU ) (Nair and Hin-
ton, 2010). Every ot ∈ o1:T then gets passed
through a fully connected feed-forward network
with one hidden layer and ReLU activation: st =
W2 relu(W1ot + b1) + b2. Let Ntags be the num-
ber of possible NER-tags, do the dimension of ot
and dh the dimension of the hidden layer. The re-
sulting vector st ∈ RNtags represents a score for
every possible tag y at time step t. The values
W1 ∈ Rdh×do , b1 ∈ Rdh , W2 ∈ RNtags×dh and
b2 ∈ RNtags are weights of the feed-forward net-
work.

Conditional Random Field: A linear chain CRF
models the conditional probability of an output se-
quence y1:T given an input sequence x1:T as:

p (y1:T |x1:T ) =
1

Z(x1:T )

T∏
t=1

eφ(yt−1,yt,x1:T ,t,Θ)

(1)

where Z (x1:T ) is a normalization constant:

Z (x1:T ) =
∑
∀y1:T

T∏
t=1

eφ(yt−1,yt,x1:T ,t,Θ) (2)

φ is a potential function parametrized by a set of
parameters Θ. In our case we use:

φ (yt−1, yt, x1:T , t,Θ = {θ,A}) =
sθ,yt,t (x1:T ) +Ayt−1,yt

(3)

Let θ be the parameters of the network described
above. Then sθ,yt,t (x1:T ) is the score that the
network parametrized by θ outputs for tag yt at
time step t given the input sequence x1:T . A ∈
RNtags×Ntags is a matrix such thatAi,j is the score
of transitioning from tag i to tag j.
Training: During training we try to maximize
the likelihood of the true tag sequence y1:T given
the input feature vectors x1:T . We use the
Adam (Kingma and Ba, 2014) algorithm to opti-
mize the parameters Θ = {θ,A}. Additionally we
perform gradient clipping (Pascanu et al., 2012)
and apply dropout (Srivastava et al., 2014) to the
LSTM outputs o1:T . The neural network parame-
ters θ are randomly initialized from a normal dis-
tribution with mean zero and variance according
to (Glorot and Bengio, 2010) (normal Glorot ini-
tialization). The transition scores A are initialized
from a uniform distribution with mean zero and
variance according to (Glorot and Bengio, 2010),
(uniform Glorot initialization).
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2.2 Transfer Learning
In this setting we use the WNUT 2016 cor-
pus (Strauss et al., 2016) as an additional source
of labeled data. The idea is to train the upper
layers of the neural network on both datasets to
improve its generalization ability. It was shown
in (Yang et al., 2017) that this can improve the sys-
tem performance. Figure 1b gives an overview of
our transfer learning architecture.
Modified Architecture: We share all network lay-
ers except for the last linear projection to get sep-
arate tag scores for each data set:

s2016
t = W 2016

2 relu(W1ot + b1) + b2016
2

s2017
t = W 2017

2 relu(W1ot + b1) + b2017
2

(4)

The resulting tag scores get fed to separate CRFs,
which have separate transition matrices A2016 and
A2017.
Training: During training we alternately use a
batch from each dataset and backpropagate the
loss of the corresponding CRF.

2.3 Incorporating Sentence Level Features
Figure 1c shows how we include sentence level
features into our architecture. In this setting
we take an additional feature vector fsent =
F (x1:T ) ∈ Rdsent for each input sentence x1:T .
Modified Architecture: We use an additional
feed-forward network to extract tag scores ssent ∈
RNtags from the sentence feature vector fsent:

ssent = W2,sent relu (W1,sentfsent + b1,sent) + b2,sent

The dimensions used are: W1,sent ∈
Rdh,sent×dsent , b1,sent ∈ Rdh,sent , W2,sent ∈
RNtags×dh,sent and b2,sent ∈ RNtags . The value
dh,sent is the dimension of the hidden layer
of the feed-forward network. Let s1:T,word be
the scores that the basic network described in
Section 2.1 outputs for sequence x1:T . To get the
final scores s1:T fed to the CRF we add ssent to
every st,word ∈ s1:T,word: st = ssent + st,word.

2.4 Combined System
The combined system adds the sentence level fea-
tures to the transfer learning architecture. We
share all layers except the linear projections to
tag scores for both sentence features and word
features in a manner analogous to Sections 2.2
and 2.3. The resulting architecture is shown in
Figure 1d.
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Figure 2: Neural Network used to extract character
level features

2.5 Features
Word Embeddings: We use the FastText (Bo-
janowski et al., 2016) library to compute word
embeddings. We train the model on a corpus of
200 million tweets and all tweets from the WNUT
2016 and WNUT 2017 corpora. The vocabulary
contains all words occurring at least 10 times.
Other parameters use the default values set by the
library 1. In particular, the size of the context win-
dow is set to 5 and the embedding dimension is
100.

This results in an embedding matrix Eword ∈
RNvocab×100, where Nvocab is the number of
unique tokens in the WNUT 2016 and WNUT
2017 corpora. FastText predicts embedding vec-
tors for words that were out-of-vocabulary during
training by considering character n-grams of the
word. The embedding matrixEword is not updated
during training.
Word Capitalization Features: Following (Chiu
and Nichols, 2015) we add explicit capitaliza-
tion features, since capitalization information is
lost during word embedding lookups. The 6 fea-
ture options are: all capitalized, uppercase ini-
tial, all lower cased, mixed capitalization, emoji
and other. An embedding matrix EwordCap ∈
R6×dwordCap is used to feed these features to the
network and updated during training via back-
propagation. EwordCap is initialized using normal
Glorot initialization.
Character Convolution Features: A convolu-
tional neural network is used to extract additional
character level features. Its architecture is shown
in Figure 2. First, we add special padding tokens

1https://github.com/facebookresearch/
fastText
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on both sides of the character sequence w, to ex-
tend it to a target length, lw,max. If there is an
odd number of paddings, the additional padding
is added on the right. For sequences longer than
lw,max, only the first lw,max characters are used.
An embedding matrix Echar ∈ RNc×dc maps
characters to Rdc vectors. Nc is the number of
unique characters in the dataset with the addition
of the padding token.

Using Echar, we embed the padded sequence w
and get Cw ∈ Rlw,max×dc . A set of m convolution
filters ∈ Rdc×h is then applied to Cw. This results
in m feature maps Mi ∈ Rlw,max−h+1, which are
passed through a ReLU activation. The final fea-
ture vector F ∈ Rm is attained by max pooling,
such that Fi = maxMi.

The embedding matrix is initialized using uni-
form Glorot initialization. The m convolution fil-
ters are initialized using normal Glorot initializa-
tion.
Character Capitalization Convolution Fea-
tures: Analogous to the word capitalization fea-
tures, we use additional character capitalization
features. The feature options are: upper, lower,
punctuation, numeric and other. We apply a
neural network with the same architecture as de-
scribed above to extract the final character capital-
ization feature vector.
Sentence Embeddings: In (Pagliardini et al.,
2017) the authors introduce sent2vec, a new
method for computing sentence embeddings.
They show that these embeddings provide im-
proved performance for several downstream tasks.

To train the sent2vec model, we use the same
training set as the one used for word embeddings
and we use default values for all the model param-
eters2. In particular, the resulting sentence feature
vectors are in R100.

3 Experiments

We implemented the system described in Sec-
tion 2.4 using the Tensorflow framework 3.

We monitored the systems performance during
training and aborted experiments that had an F1-
score of less than 40 after two epochs (evaluated
on the development set). We let successful exper-
iments run for the full 6 epochs (cf. Section 3.2).
For the submission to WNUT 2017, we ran 6 suc-
cessful experiments and submitted the one which

2https://github.com/epfml/sent2vec
3https://www.tensorflow.org/

Parameter Value
lw,max 30
Ntags WNUT 2016 21
Ntags WNUT 2017 13
dwordCap 6
dc 15
LSTM hidden units 64
dh,word 128
dh,sent 128
m 10
h 3
Dropout rate 0.3
Learning Rate 0.003
Gradient Clip Norm 2
Batch size 100
Number of epochs 6

Table 1: Model Parameters

had the highest entity level F1-score on the devel-
opment set.

3.1 Preprocessing

Tokenization: Since the WNUT 2016 and WNUT
2017 corpora are in the CoNLL format, they are al-
ready tokenized. To tokenize the additional tweets
used for training word and sentence embeddings
(cf. Section 2.5), we use the Twitter tokenizer pro-
vided by the Python NLTK library 4.
Token Substitution: We perform some simple
pattern-based token substitutions. To normalize
Twitter user handles, we substitute every word
starting with an @ character by a special user to-
ken. Similarly, all words starting with the prefix
http are replaced by a url token. Finally, for words
longer than one character, we remove up to one
initial # character.

3.2 Model Parameters

Table 1 shows the parameters used for training the
model.

3.3 Experiments Performed After The
Submission

Following the submission, we conducted addi-
tional experiments to investigate the influence of
the transfer learning approach and sent2vec fea-
tures on the system performance.

4http://www.nltk.org/api/nltk.
tokenize.html#module-nltk.tokenize.
casual
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Precision (%) Recall (%) F1
Mean Stddev Mean Stddev Mean Stddev

Surface Forms 45.55 0.47 34.94 0.87 39.54 0.55
Entities Overall 47.23 0.55 36.33 0.83 41.06 0.52
Corporation 8.81 0.99 10.86 1.62 9.70 1.14
Creative Work 22.41 2.55 11.03 1.50 14.73 1.73
Group 39.27 7.47 9.49 2.20 15.13 2.86
Location 58.55 2.88 47.11 1.79 52.12 0.66
Person 57.82 1.60 63.60 1.10 60.55 0.84
Product 22.47 2.17 7.87 1.93 11.60 2.38

Table 2: Aggregated performance of all experi-
ments, run before the submission, evaluated on the
test set

Precision (%) Recall (%) F1
Surface Forms 45.47 34.66 39.33
Entities Overall 47.09 35.96 40.78
Corporation 8.24 11.67 9.66
Creative Work 21.92 11.76 15.31
Group 31.71 9.22 14.29
Location 58.95 44.80 50.91
Person 57.67 61.97 59.74
Product 20.00 5.13 8.16

Table 3: Performance of the submitted annotations
evaluated on the test set

For each of the 4 systems described in Section 2,
we ran 6 experiments. We use the same parameters
as shown in Section 3.2.

4 Results

Table 2 shows precision, recall and F1-score of
our system. We compute the mean and standard
deviations over the 6 successful experiments we
considered for submission (cf. Section 3). Ta-
ble 3 shows the breakdown of the performance of
the annotations we submitted for the WNUT 2017
shared task.

Table 4 shows the performance of the different
subsystems proposed in Section 2. We report the
mean and standard deviation over the 6 experi-
ments we performed after submission, for every
system.

All reported scores were computed using the
evaluation script provided by the task organizers.

5 Discussion

From table 4 we can see that using sent2vec
features increases precision and decreases recall
slightly, leading to an overall lower performance
compared to the basic system. The transfer learn-
ing system shows a more substantial decrease in
precision and increase in recall and overall per-

forms best out of the 4 systems. Combination of
the two approaches is counterproductive and out-
performs the basic system only slightly.

During training we observed that restarting ex-
periments as described in Section 3 was only nec-
essary when using sent2vec features.

One weakness of our transfer learning setting is
that the two datasets we used have almost identical
samples and only differ in their annotations. The
WNUT 2016 corpus uses 10 entity classes: com-
pany, facility, Geo location, movie, music artist,
other, person, product, sports team, and TV show.
Further work is needed to study the effect of using
an unrelated data set for transfer learning.

6 Conclusion

We described a deep learning approach for Named
Entity Recognition on Twitter data, which extends
a basic neural network for sequence tagging by us-
ing sentence level features and transfer learning.
Our approach achieved 2nd place at the WNUT
2017 shared task for Named Entity Recognition,
obtaining an F1-score of 40.78.

For future work, we plan to explore the power
of transfer learning for NER in more depth. For
instance, it would be interesting to see how anno-
tated NER data for other languages or other text
types affects the system performance.
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