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Abstract

In this research we investigate the im-
pact of mismatches in the density and type
of error between training and test data
on a neural system correcting preposition
and determiner errors. We use syntheti-
cally produced training data to control er-
ror density and type, and ”real” error data
for testing. Our results show it is possible
to combine error types, although preposi-
tions and determiners behave differently in
terms of how much error should be artifi-
cially introduced into the training data in
order to get the best results.

1 Introduction

The field of Grammatical Error Correction (GEC)
is currently dominated by neural translation mod-
els, specifically sequence-to-sequence translation.
However, despite offering substantial improve-
ments on the well-established statistical machine
translation approach to GEC, neural networks
come with their own challenges.

Firstly, neural models require a large amount
of training data, however the amount of annotated
learner English consisting of source (original text)
and target (corrected text) is low. Models are at
risk of overfitting, simply because the volume of
data is not high enough. Secondly, the data that
has been used up until now does not generalise
very well across different test sets. This means
that there has been some success in correcting er-
rors, but only from test sets that are in some sense
similar to the training data. Thirdly, it is generally
unknown how erroneous the test data is, and if the
training data has a different distribution of errors,
it is likely that unwanted corrections will be made,
or required corrections will be missed.

Currently, there is research into generating arti-
ficial data for training neural models, specifically
data that resembles learner English (Cahill et al.,
2013; Rozovskaya and Roth, 2010; Felice, 2016;
Liu and Liu, 2016). The artificial data is gener-
ated from monolingual sentences of grammatical
English by systematically introducing noise into
it. This way, training data consisting of sentences
with both “incorrect” and “correct” versions can
be generated from monolingual data, which is eas-
ily accessible. There is also evidence that artifi-
cially generated data can generalise a GEC system
better than simply using manually procured cor-
rection data (Cahill et al., 2013).

A third advantage of synthetically introducing
noise into a corpus is the ability to control how
much noise, and which noise, is introduced. The
first main question of our research is how the
amount of noise introduced into the corpus af-
fects a neural model’s behaviour at test time with
respect to mismatches in error density and error
type between training and test data. Artificial data
lends itself to this kind of research, thanks to the
control over the corpus.

Up until now, the effect of the amount of errors
in the training corpus has only been explored with
prepositions specifically (Cahill et al., 2013). We
begin by extending this line of research to deter-
miners. The second research question is then: how
do two different types of error interact? It is quite
possible that introducing many types of frequent
grammatical errors one after the other would not
create convincing artificial learner data, because
several types of error can affect the same word,
and a neural model may not be able to learn to
combine them in this way.
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2 Related Work

Currently the best results in GEC have used neu-
ral machine translation. Yuan and Briscoe (2016)
achieved the best scores using a 2-layer encoder-
decoder system with attention, trained on the
Cambridge Learner Corpus (CLC), a large data
set of two million correction Learner English sen-
tences. The CLC is not publicly available, which
has inspired the use of automatically generated
data with neural models. Liu and Liu (2016) have
done exactly this with 16 different types of errors.
Their success, although small compared to using
manually annotated supervised revision data, has
inspired our investigation into the particular ef-
fects of combining error types in an artificial cor-
pus.

One particularly interesting approach to gener-
ating artificial data is from Cahill et al. (2013),
who, focusing on preposition errors, creates con-
fusion sets for each preposition using supervised
revision data, and selects replacements at ran-
dom from these probability distributions. This ap-
proach was developed from Rozovskaya and Roth
(2010), who first suggested the idea of probabilis-
tically selecting likely error candidates. Interest-
ingly, the artificial data proved to make manually
annotated data more robust, meaning that it gen-
eralised better across different types of test sets,
despite the fact that the overall quality of correc-
tions was lowered. This was confirmed by Felice
(2016), who also found that this kind of probabilis-
tic error generation increases precision, and lowers
recall.

One main focus of our research is the effect
of the amount of errors in the training corpus on
the amount of corrections made at test time. Ro-
zovskaya et al. (2012) identify a useful technique
known as error inflation, where more errors are in-
troduced into the training data in order to improve
recall. This is further explored in our work.

3 Experimental Setup

3.1 Data

In our research, errors are systemically intro-
duced into “correct” English data. The correct
data comes from the NewsCrawl corpus in WMT-
2016.1 It is open domain, featuring a wide variety
of topics and writing styles, taken from recent ar-

1http://www.statmt.org/wmt16/
translation-task.html

ticles. We used 21,789,157 sentences for training,
and 5,447,288 held-out sentences from the same
source for a development set.

We follow the same methodology of Cahill et al.
(2013) to generate noise. Specifically, supervised
revision data is used to see how often particular
words are corrected into specific prepositions or
determiners. The revision data which is used for
our research is the Lang-8 corpus, which is avail-
able for academic purposes upon request.2 The
corpus is scraped from the Lang-8 website, where
crowd-sourced grammar corrections are posted for
non-native speakers of English. It is arguably
more reliable than Wikipedia, which contains van-
dalism, however, it is noticeably smaller than
Wikipedia.

The process of introducing errors into the WMT
data using the Lang-8 corpus is as follows:

1. Extract plain text versions of the Lang-8 cor-
pus, consisting solely of sentences with cor-
rections

2. Compare source sentence with corrections
using an efficient diff algorithm.3 Note that
this often included several steps of revisions.

3. Prepare a list of all prepositions/determiners.
This is taken from the tags of the WMT data
retrieved from the Stanford tagger.4

4. Remove all sentences that do not contain
a single revision involving a preposition or
a determiner. Using a hand-crafted set of
possible prepositions/determiners, it is deter-
mined for each sentence whether it involves
a deletion (eg. “for”→ “NULL”), an addition
(eg. “NULL”→ “the”), or a replacement (eg.
“on”→ “in”).

5. Generate confusion sets for each preposi-
tion/determiner by listing all the deletions
which are replaced by that word, and count-
ing the frequency of each specific revision.

2http://cl.naist.jp/nldata/lang-8
3http://code.google.com/p/

google-diff-match-patch
4Using word lists has the advantage of not relying on un-

supervised POS-tagging methods. However, there are cer-
tain ambiguities which are not addressed. In this research,
the preposition “to” is not included, due to confusion with
the infinitive particle. There are however other less frequent
ambiguous cases which are included, such as ”that” and ”be-
fore”, which can both appear as conjunctions. Future exper-
iments would benefit from a comparison of the performance
of POS tags against word lists.

69



From there, generate a probability distribu-
tion for each preposition/determiner.

6. Insert the target word itself into the distribu-
tion with a frequency relative to the error rate.
An 80% error rate for example means that
20% of the time, the same word is selected,
effectively leaving it in its “correct” form.

7. Prepositions/determiners in the WMT corpus
are systemically replaced by one of the op-
tions in their respective probability distribu-
tions, selected at random by a sampler.

3.2 Experiments
Cahill et al. (2013) have made their revision data
extracted from Wikipedia available for download,
which is why it is appropriate to compare it to
the revision data which is extracted from Lang-
8. Both sets of revision data are used to create
two separate confusion sets for prepositions. They
are then used to create two sets of error corpora in
which 20%, 40%, 60% and 80% of prepositions
are altered according to the error introduction pro-
cedure detailed above.

To compare, revision data extracted from Lang-
8 is also used to create error corpora containing the
same amounts of prepositional error. It is worth
noting that Cahill et al.’s research does not include
the empty “NULL” preposition, meaning that er-
rors in which a preposition is missing are not ac-
counted for. By contrast, in our work we include
every case in which a preposition is inserted, as
well as replaced, although we do not deal with
deletions. Deleting prepositions which were in-
serted in the revision data simply follows the same
procedure as replacements, where a preposition
is replaced with the null preposition. Inserting
prepositions which were deleted in the revision
data is much more difficult, as it is not clear where
in a sentence each preposition should be. The use
of context words before and after a deletion is be-
ing explored in more current research, but does
not feature in these experiments. This is neverthe-
less a major contribution, because insertions and
deletions make up a significant part of the errors.
In Lang-8, for example, there were 10054 correc-
tions of prepositions, of which 4274 were inser-
tions, and 2657 were deletions. This means that
replacements only consist of 31% percent of the
errors.

We also use determiner revision data extracted
from Lang-8 to create determiner errors in a sim-

ilar fashion, with 20%, 40%, 60% and 80% of er-
rors.

A final set of synthetic error data is then gener-
ated where both prepositions and determiners are
introduced into the same corpus, containing 20%,
40%, 60% and 80% of both kinds of error. This is
to investigate whether the GEC system is capable
of dealing with two types of error at once.

3.3 Evaluation

In order to test the effects of mismatching error
density and type between training and test data,
each model is tested on specially created test sets
with varying amounts of error in them. Cahill et al.
(2013) found that the highest scores came from
models both trained and tested on similar error
rates. Our research aims to build on this finding.

The first test set is made from Lang-8, which
is also used to create the confusion sets for the
training data. Specifically, only the sentences with
prepositions, determiners, and a mix of both in the
revisions are used. No other types of error are in-
cluded. These sentences are mixed with corrected
sentences (where the revised sentence is used as
both source and target) to varying degrees. In each
case, 1000 sentences of erroneous data are mixed
with either 4000, 1500, 666, or 250 sentences of
“correct” English, also taken from Lang-8. This
is in order to create test sets in which 20%, 40%,
60%, and 80% of sentences are erroneous, simi-
lar to the training data. Table 1 shows the test sets
created out of the Lang-8 corpus.

The NUCLE corpus (Ng et al., 2014) was used
as training and test sets for the CoNLL-2014
Shared Task (Ng et al., 2014) on GEC, and since
then has been commonly used in the field for com-
parison with previous work. The NUCLE corpus
is used in our research in order to generate test
sets from a different domain, despite those test
sets being smaller. Again, prepositions, determin-
ers and a combination of both are extracted and
mixed with corrected sentences from the same cor-
pus. Due to the smaller amount of relevant errors,
as many sentences containing each error as possi-
ble are taken. For prepositions, this amounts 332
sentences, for determiners, 595 sentences, and for
both, 169 sentences. Table 2 shows the test sets
created out of the NUCLE corpus.

For our experiments we use OpenNMT, an
open-source implementation of a bidirectional
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Test sets Error type Error Rate Size
test-l8p20 Preposition 20% 5000
test-l8p40 Preposition 40% 2500
test-l8p60 Preposition 60% 1666
test-l8p80 Preposition 80% 1250
test-l8d20 Determiner 20% 5000
test-l8d40 Determiner 40% 2500
test-l8d60 Determiner 60% 1666
test-l8d80 Determiner 80% 1250
test-l8b20 Both 20% 5000
test-l8b40 Both 40% 2500
test-l8b60 Both 60% 1666
test-l8b80 Both 80% 1250

Table 1: Lang-8 Corpus test sets

RNN encoder–decoder network with attention5.
OpenNMT was chosen because of its ease of use,
and similarity to the architecture used by the cur-
rent state of the art results reported by Yuan and
Briscoe (2016). The selected evaluation metric is
the GLEU score, which has been shown to be the
most appropriate metric for GEC (Napoles et al.,
2015).

4 Results and Discussion

The first objective of our research is to see the dif-
ference between testing on Lang-8 and NUCLE
test sets when trained on data containing vary-
ing error densities created using data from Lang-
8. For prepositional errors, the GLEU scores of
the four different models are in Table 3, and the
results are plotted in Figure 4. When tested on
corpora with only 20% error, the GLEU score re-
mains the same on both test sets. However, the
higher the error rate in the test set, the better the
models perform on the NUCLE set in comparison
with the Lang-8 set. This is surprising, seeing as
the Lang-8 corpus was used to inform the process
of error generation in the training set.

In the tables cited in this paper, it is expected
that the highest scores will occur along the di-
agonal. A test set containing 20% error would
be best handled by training data which also con-
tains 20% error. Likewise with 40%, 60% and 80
%. Conversely, training data containing 80% er-
ror would not perform as well on test data con-
taining 40% as the training data which also has
40% error. This data shows, however that this is
not always the case. When testing on 80% er-

5http://opennmt.net/

Test sets Error type Error Rate Size
test-np20 Preposition 20% 1660
test-np40 Preposition 40% 830
test-np60 Preposition 60% 553
test-np80 Preposition 80% 415
test-nd20 Determiner 20% 2975
test-nd40 Determiner 40% 1487
test-nd60 Determiner 60% 992
test-nd80 Determiner 80% 744
test-nb20 Both 20% 845
test-nb40 Both 40% 423
test-nb60 Both 60% 282
test-nb80 Both 80% 211

Table 2: NUCLE Corpus test sets

ror, the models trained on 80% error density them-
selves obtain – as expected – the highest score, al-
though only slightly. Interestingly, however, the
80% models also perform better on the 40% and
60% test sets, which seems to confirm Rozovskaya
et al. (2012)’s “Error Inflation” idea. This is the
idea that putting more errors than needed into the
training data helps the model generalise more.

One interesting observation from the data is the
fact that all the models perform better on the 20%
test sets. This is likely because the models are ca-
pable of recognising that a sentence need not be
corrected, and doing so is simpler than finding a
correction of incorrect sentences.

Testing on determiner errors revealed similar re-
sults. The results are provided in Table 4, and
plotted in Figure 4. In this case, error inflation
does not seem to work, as the highest scoring re-
sults for each test set is more or less the training
set with the matching error density. This indicates
that systems that correct determiners have differ-
ent properties to those which correct prepositions.
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Figure 1: Plot of the data in Table 3

Figure 2: Plot of the data in Table 4

Figure 3: Plot of the data in Table 5

The results of training models on data con-
taining a combination of both kinds of error on
combined preposition and determiner test data is
shown in Table 5 and Figure 4. The data is con-
sists of slightly lower scores in general, suggest-
ing that mixing error types does not have as high
a quality of correction as single errors. Also, the
NUCLE test scores in particular suffer in compari-
son with the singular error models, showing a fail-
ure to generalise across domains. Finally, “Error
Inflation” also does not appear to work here.

These results shed doubt on the “Error Infla-
tion” present in the preposition experiment. If it
were dependent on the type of error, and preposi-
tions were the kind which encouraged the use of
“Error Inflation”, then it follows that it should at
least be present in the combined models. Instead
of different error types subtly influencing the be-
haviour of the combined model in a cumulative
way, the behaviour seems more random. In one
case, the 20% combined model performs better on
the 40% NUCLE test set than the 40% one, which
suggests that reducing the amount of introduced
error would make an improvement.

Table 6 and Figure 4 show how well the com-
bined model performs on test sets with individ-
ual error types only. First of all, the scores are
lower than the respective values attained by mod-
els trained on individual errors on the same test
sets, but only slightly. Also, as seen in Tables 3,
4 and 5, the combined model testing on the com-
bined test set returns lower scores than the individ-
ual models testing on their respective test sets with
just one of the error types. However, the combined
models’ scores are better than those achieved by
the individual models on the combined test sets,
as shown in Table 7 and Figure 4. This indicates
that the combined model is better suited for tack-
ling both errors at once, and only a little worse at
tackling individual errors than the individual error
models. This is a predictable outcome, but the re-
duction in GLEU score suggests that combining
errors in an attempt to correct all errors will gen-
erate noise, and the more error types that are cov-
ered, the less likely that they will be correctly re-
vised at test time, which makes the idea of making
an generalised corrector for all errors less feasible.

It is also worth mentioning that correcting de-
terminers seems to result in higher scores than
correcting prepositions. This could be due to
the amount of possible prepositions that need to
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be considered compared to the determiners. Al-
though many determiners are considered, the vast
majority of the cases involve the three articles “a”,
“an” and “the”, as well as the null determiner. This
is evidence for the need to consider the variation
between different errors types when generating er-
rors.

The final research question is whether the con-
fusion set generated from Wikipedia revisions by
Cahill et al. (2013) is much different from the one
generated from Lang-8. Table 8 and Figure 4
show the results of preposition models informed
by Wikipedia and Lang-8 tested on Lang-8 test
sets. Table 9 and Figure 4 show the results of
the same models on the NUCLE test sets. As ex-
pected, the errors generated from the confusion set
informed by Lang-8 performs better on the Lang-8
test sets than on the NUCLE test sets. What is in-
teresting, however, is that the Wikipedia revisions
performed significantly better not only on the NU-
CLE test sets, but also on the Lang-8 test sets. This
is surprising, because the Wikipedia revisions are
not necessarily in the same domain, whereas the
Lang-8 revisions are from the same dataset. Fur-
thermore, the Wikipedia revisions do not take in-
sertions or deletions into account. It is clear that
the amount of revisions considered makes a dif-
ference: there were 10054 Lang-8 revisions, and
303847 Wikipedia revisions, 30 times more. The
small amount of Lang-8 revisions could also ac-
count for the noise identified in the Lang-8 mod-
els, but this noise is also present in the Wikipedia
revisions, where “error inflation” appears to only
appear sometimes and not always.

Figure 4: Plot of the data in Table 6

Figure 5: Plot of the data in Table 7

Figure 6: Plot of the data in Table 8

Figure 7: Plot of the data in Table 9
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5 Conclusion

Our research aims to shed light on the issue of
choosing how many errors to include in artificially
generated erroneous data by tackling two specific
error types. Results reveal some predictable out-
comes, such as that it is easier to deal with test cor-
pora which have smaller error rates, because leav-
ing correct sentences alone is easier for the model
to learn than making a good correction. Also, in
most cases, there is a correlation between the er-
ror rate of the training data and the test data. How-
ever, some of the results revealed unexpected out-
comes. Although it is possible that the data is
noisy, the results, particularly for the prepositions,
support a concept called “Error Inflation”, which
suggests that including more errors into the train-
ing data will lead to a higher GLEU score. This ef-
fect was not observed in the determiner and com-
bined models, suggesting that there might be vari-
ation between different error types depending on
the distribution of revisions made for that error
type. It is possible to combine two error types to-
gether into one training set, and tackle two error
types at once at test time, although the scores are
not as high as when solving only individual errors.
Also, the confusion set generated from Wikipedia
revisions proved to yield better results than that
generated from Lang-8, due to the significantly
larger number of revisions. Finally, this research
supports generating erroneous data as a valid ap-
proach to improving neural models for GEC, and
informs future researchers about the effects of er-
ror rate mismatches in training and test data.
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A Appendix - Tables of results
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Test Sets 20% 40% 60% 80%
test-l8p20 87.29 87.63 86.85 86.77
test-l8p40 80.35 80.63 80.68 81.07
test-l8p60 72.17 72.82 73.54 74.68
test-l8p80 61.51 62.60 64.21 66.39
test-np20 86.60 87.64 86.42 86.28
test-np40 84.69 84.76 84.59 84.60
test-np60 79.49 80.04 79.99 80.91
test-np80 73.48 74.43 74.75 76.34

Table 3: GLEU score according to how much
preposition error in training data informed by
Lang-8, tested on test sets with varying amounts
of error from Lang-8 and NUCLE.

Test Sets 20% 40% 60% 80%
test-l8d20 88.16 86.76 86.39 84.38
test-l8d40 81.94 82.18 82.20 80.53
test-l8d60 74.83 75.92 76.45 74.99
test-l8d80 65.36 67.54 68.61 69.49
test-nd20 87.64 86.40 85.82 83.63
test-nd40 84.74 84.53 84.22 83.53
test-nd60 81.95 81.96 81.98 81.13
test-nd80 77.08 77.36 77.79 78.20

Table 4: GLEU score according to how much de-
terminer error in training data informed by Lang-
8, tested on test sets with varying amounts of error
from Lang-8 and NUCLE.

Test Sets 20% 40% 60% 80%
test-l8b20 87.53 86.70 84.96 83.40
test-l8b40 81.32 81.11 80.28 78.86
test-l8b60 73.74 73.99 73.99 73.37
test-l8b80 63.16 63.98 64.77 65.38
test-nb20 87.86 86.91 86.35 84.36
test-nb40 84.30 83.92 83.38 82.09
test-nb60 77.78 77.87 77.96 77.22
test-nb80 69.39 70.35 71.68 71.05

Table 5: GLEU score according to how much
combined preposition and determiner error in
training data informed by Lang-8, tested on test
sets with varying amounts of error from Lang-8
and NUCLE.

Test Sets 20% 40% 60% 80%
test-nd20 87.40 86.02 84.40 82.95
test-nd40 84.53 83.80 82.51 81.47
test-nd60 81.63 81.52 80.04 79.45
test-nd80 76.73 77.01 75.53 75.82
test-np20 86.91 85.63 84.03 83.36
test-np40 84.02 83.55 83.22 82.35
test-np60 78.75 78.64 78.88 78.99
test-np80 72.82 73.36 73.88 74.74

Table 6: GLEU score according to how much
combined preposition and determiner error in
training data informed by Lang-8, tested sepa-
rately on NUCLE test sets with varying amounts
of determiner error, and then preposition error.

Test Sets 20% 40% 60% 80%
test-nb20 88.01 87.55 86.85 85.36
test-nb40 84.48 84.12 83.51 83.36
test-nb60 77.58 77.51 77.26 77.45
test-nb80 69.05 69.64 69.57 70.58
test-nb20 87.74 87.39 86.71 85.72
test-nb40 83.43 83.04 82.41 81.90
test-nb60 74.98 74.79 74.32 73.83
test-nb80 64.66 64.66 64.45 64.49

Table 7: GLEU score according to how much
preposition error (first 4 rows) or determiner er-
ror (last 4 rows) in training data informed by Lang-
8, tested on test sets with varying amounts of com-
bined determiner/preposition error from NUCLE.

Test Sets 20% 40% 60% 80%
test-l8p20 87.27 87.00 86.72 85.66
test-l8p40 79.52 79.78 79.67 79.03
test-l8p60 70.87 71.63 72.03 71.99
test-l8p80 59.66 61.18 62.09 62.85
test-l8p20 87.29 87.63 86.85 86.77
test-l8p40 80.35 80.63 80.68 81.07
test-l8p60 72.17 72.82 73.54 74.68
test-l8p80 61.51 62.60 64.21 66.39

Table 8: GLEU score according to how much
preposition error in training data informed by
Wikipedia (first 4 rows) and Lang-8 (last 4 rows),
tested on test sets with varying amounts of prepo-
sition error from Lang-8.
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Test Sets 20% 40% 60% 80%
test-np20 88.01 87.68 88.12 86.72
test-np40 86.52 87.02 87.29 86.84
test-np60 82.49 83.68 84.67 85.02
test-np80 77.89 79.74 81.43 82.56
test-np20 86.60 87.64 86.42 86.28
test-np40 84.69 84.76 84.59 84.60
test-np60 79.49 80.04 79.99 80.91
test-np80 73.48 74.43 74.75 76.34

Table 9: GLEU score according to how much
preposition error in training data informed by
Wikipedia (first 4 rows) and Lang-8 (last 4 rows),
tested on test sets with varying amounts of prepo-
sition error from NUCLE.
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