Incorporating Metadata into Content-Based User Embeddings

Linzi Xing and Michael J. Paul
University of Colorado, Boulder, CO 80309
{Linzi.Xing,Michael.J.Paul}@colorado.edu

Abstract

Low-dimensional vector representations
of social media users can benefit appli-
cations like recommendation systems and
user attribute inference. Recent work has
shown that user embeddings can be im-
proved by combining different types of in-
formation, such as text and network data.
We propose a data augmentation method
that allows novel feature types to be used
within off-the-shelf embedding models.
Experimenting with the task of friend rec-
ommendation on a dataset of 5,019 Twitter
users, we show that our approach can lead
to substantial performance gains with the
simple addition of network and geographic
features.

1 Introduction

A variety of social media tasks benefit from hav-
ing dense vector representations of users. For ex-
ample, “who to follow” recommendations can be
done by calculating cosine similarity between user
vectors. Recent work has experimented with neu-
ral embeddings of social media users, most com-
monly based on text content (Amir et al., 2016;
Wan et al., 2016), with some work combining in-
put features from other metadata, including social
network information (Li et al., 2015; Benton et al.,
2016; Yang et al., 2016).

Since social media like Twitter provide different
types of data (e.g., text, network, location), con-
structing user embeddings with appropriate fea-
tures can improve the performance based on the
target task’s requirements. For instance, for rec-
ommending tweets a user may be interested in, the
user’s text content will be a crucial feature. For
recommending users to follow, information about

the user’s current follow graph is likely to be im-
portant.

How to efficiently integrate diverse types of fea-
tures into user representations is a challenge we
address in this work. While “multiview” models
that combine different feature types have been pro-
posed for user embeddings, there is cost in adapt-
ing any particular model to a multiview setting. As
an alternative, we propose a simple solution that
treats all discrete features as “words,” but prepro-
cesses the data in a way that removes word order
effects from non-textual features. This approach
can be applied to most models of text content,
such as the popular paragraph2vec model (Le and
Mikolov, 2014), allowing diverse features without
constructing specialized models.

Our primary contributions are as follows:

e We describe a preprocessing step that allows
the inclusion of non-textual discrete features
(e.g., followers, locations) into off-the-shelf
text embedding methods. Our method is easy
to use, requiring no special implementation.

e We introduce a novel type of feature for
user embeddings—the geographic locations
of users’ friends—and show that this im-
proves performance over standard text and
network features on a new Twitter dataset.

e We find that jointly modeling all types of fea-
tures improves performance over combining
independent models of different feature sets,
offering evidence that there are informative
interactions between text content and meta-
data, and demonstrating that simply combin-
ing independent models is insufficient.

2 Previous Work

A number of recent studies have proposed mod-
els for constructing social media user embeddings.

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 45—49
Copenhagen, Denmark, September 7, 2017. (©2017 Association for Computational Linguistics

Amir et al. (2016) generated user embeddings cap-
ture users’ individual word usage patterns with a
model similar to paragraph2vec. In this method,
only users’ tweets are taken into account. Wan
et al. (2016) proposed two neural network mod-
els, also based on paragraph2vec, to obtain users’
vector representations from word representations
obtained previously. Since their task was recom-
mending tweets to users, only text was considered
to construct user embeddings.

Other work has considered multiple types of
features, or “views.” Benton et al. (2016) pro-
posed an approach based on Weighted General-
ized Canonical Correlation Analysis (WGCCA)
to turn several aspects of user information into
low-dimensional vectors, including tweets and so-
cial network information. Before applying the
WGCCA model, each type of information is first
converted into an appropriate vector representa-
tion. Yang et al. (2016) considered text, social re-
lationships and mentioned entities as features for
user embeddings. This work used different mod-
els for learning each feature type. While trained
separately, once a representation was learned for
each feature type, a final user representation was
learned with a composition model that included
additional parameters to learn interactions be-
tween feature types. Li et al. (2015) proposed a
similar approach, which uses different models for
different types of user information, which are then
linearly combined into a full model. During train-
ing, the parameters are learned jointly.

The multiview models above all used different
view-specific models to capture the feature types.
In contrast, we use a simple input representation
that can be plugged into a single model.

3 Social Media Dataset

To motivate our methods, we will first describe
our dataset of over 5,000 Twitter users. We ran-
domly sampled users who follow American uni-
versities. Specifically, we collected the usernames
of up to 5,000 followers of 25 universities (the top
25 undergraduate programs ranked by US News).
Among the 5,000 followers of each university, we
randomly sampled 400 users, for a total of 10,000
users. After removing accounts that were private
or non-English (according to the tweet 1ang at-
tribute), we were left with 5,019 users.

From each user, we collected their 200 most re-
cent tweets (collected January 2017), as well as the

46

usernames and locations of up to 100 followees
by collecting the profiles of 100 randomly sam-
pled accounts that are followed by the user. Our
dataset contained an average of 155.4 tweets per
user (with an average of 6.7 tokens per tweet, after
pre-processing), and an average of 91.9 followees
per user (with an average of 32.0 followees for
whom we resolved a location).

3.1 Types of Metadata

In this work, we will train embeddings using two
types of features in addition to the tweet content
of each user: the users they follow, and the geo-
graphic locations of the users they follow. These
features were selected to support our experimental
task of friend recommendation (Section 5).

The motivation for the first type of feature is that
if two users’ followee lists have substantial over-
lap, then it indicates they are more likely to have
a connection. We implement this by including the
usernames of the accounts that each user follows.

The motivation for the second type of feature,
with which we opted to use the locations of each
user’s followees rather than the the user’s own
location, is perhaps less obvious. First, this at-
tribute is sparse (fewer than half of the users had a
valid location), so including their followees’ loca-
tions provides more information. Second, in many
cases, friends’ locations may be a more informa-
tive predictor of relationships. For example, sup-
pose Users A, B, and C live in Kansas. Many of A
and B’s friends are located in California, but most
C’s friends are from New York. In this scenario,
A and B may be more likely to have a relationship
than C, while if we only used the users’ own loca-
tions, then location would not differentiate them.

To extract high-precision locations, we ex-
tracted only locations from user profiles of the
form “City, State”, where the state had to match
a dictionary of US states. We used the dictionary
to rewrite state names in a canonical form (e.g.,
“California” — “CA”).

4 User Embedding Model

This work uses paragraph2vec (Le and Mikolov,
2014) as our content embedding model. This is an
unsupervised model that encodes text sequences
(canonically, paragraphs) as low-dimensional vec-
tors. The model is related to word2vec (Mikolov
et al., 2013), with a modification that each para-
graph is given a unique paragraph token at the be-

—
USRUSR|@Larry|USR

word_1 word_2 -~ word_M

USRFDeborahUSR - ustoc

LOC|Denver,CO|LOCLOC |Boston,MA -

Figure 1: We augment text features by concatenating each user’s input string with username and location
features, padded with “dummy” tokens to prevent word order effects for non-textual features. Since each
token’s probability in paragraph2vec depends on the k tokens before and k tokens after it, we separate the
username and location tokens with £ dummy ‘USR’ and ‘LOC’ tokens so that no usernames or locations

will appear in the same window.

ginning, which is treated like other tokens in the
paragraph to help predict words. The result is a
vector for each paragraph, in addition to the word
vectors for each word. In our setting, we treat each
user’s concatenated stream of tweets as a single
“paragraph” and apply the model as is. The train-
ing objective for each user u under this model is:

M
1
i > log P(wi|u, wi—p, -+ wirk) (1)
i—1

where M is the number of tokens in the user
stream and k is the window size. wu is the vec-
tor representation of the “paragraph” token that
uniquely corresponds to the user, and w are the
word tokens in the tweet stream.

4.1 Incorporating Metadata

We propose to add additional metadata features
by simply appending the text sequences (the user
tweet streams) with additional tokens for each
username and each location string, representing
the features described in Section 3.1. However,
doing this naively will not work as intended, be-
cause the order of the word tokens within each
window affects the probabilities, which is not ap-
propriate for features that have no ordering.

To address this, we format the text such that
two metadata features never appear within the
same window. We pad the features with “dummy”
tokens that appear before and after each user-
name (‘USR’) or location (‘LOC’). There are 2x k
dummy tokens in between each feature, where &
is the window size, as illustrated in Figure 1.

A side effect of this approach is that there
will be redundant metadata features from differ-
ent window positions that will always co-occur
(e.g., “LOC Seattle LOC” and “LOC LOC Seat-
tle”). This creates colinearity in the model, but this
does not diminish the predictive performance, nor
is this unusual when applying machine learning to
text (e.g., including different length n-grams).

47

S Experiments

To evaluate our proposed approach, we experi-
ment with different vector representations of our
dataset for the task of friend recommendation
(Liben-Nowell and Kleinberg, 2007; Lo and Lin,
2006; Backstrom and Leskovec, 2011).

5.1 Implementation Details

We preprocessed the text to remove punctuation,
stop words, hyperlinks, and usernames. All tweets
were concatenated into one string. Additional fea-
tures were concatenated to the same string using
the padding procedure described in Section 4.1.
We used the paragraph2vec implementation
from the Python package, Gensim (Rehtifek and
Sojka, 2010), called doc2vec. The window size
and vector dimensionality were set to 3 and 100.

5.2 Experimental Design

For friend recommendation, we calculate the co-
sine similarity between all pairs of users based
on their vector representation. For each user, we
select the top k users with the highest similarity.
Using the user’s followee list as ground truth, we
measure the precision, recall, and mean reciprocal
rank for k in {10, 20, 30,40, 50}.

Similar to the design of (Benton et al., 2016),
we used the most popular accounts as our test set.
Specifically, we selected 58 users who were fol-
lowed by more than 50 users in our dataset for
evaluation. These users were excluded when gen-
erating the username features described in 3.1.

We experimented with our paragraph2vec-
based embedding models with different feature
sets. We consider the model with only text fea-
tures to be our primary baseline, which we com-
pare against models that add username features as
well as both username and location features.

For our full model with all three feature types,
we compared three different approaches for com-
bining the features. In addition to training a single
paragraph2vec model on all features jointly, as we

k=10 k=20 k=30 k=40 k=50
P R [MRR| P R [MRR| P R [MRR P R MRR P R MRR
Random | .022 | .003 | .056 | .030 | .010 | .070 | .046 | .014 | .083 | .029 | .019 | .052 | .021 018 | .053
TF-IDF | .174 | 0.019 | .192 | .160 | .033 | .152 | .137 | .039 | 0.131 | .120 | .046 | 0.118 | .110 051 104
Textonly (T) | .133 | .013 | 205 | .121 | .027 | .159 | .116 | .033 | .127 | .111 042 | 116 | .108 051 104
Text+Users (T+U) | .168 | .016 | 210 | .158 | .031 | .166 | .148 | .042 | .129 | .140 | .053 | .108 | .135 065 | .108
T+U+L (Addition) | .131 | .013 | .135 | .121 | .027 | .123 | .131 | .038 | .092 | .115 | .042 | .087 | .120 057 | 077
T+U+L (Concat.) | .150 | .014 | .160 | .146 | .031 | .112 | .132 | .038 | .110 | .128 | .050 | .088 | .121 061 078
T+U+L (Joint) | 1931 | 0197 | .227¢ | 1711 | L0331 | .174F | 1627 | 046" | .120F | .153F% | 059 | .114fF | 1507 | .0711F | .1107%
T+U+L (No padding) | .165 | .015 | 203 | .159 | 029 | .160 | .150 | .042 | .115 | .146 | .052 | .105 138 064 | 102

Table 1: Overview of results with precision (P), recall (R), and mean reciprocal rank (MRR) at k. This
compares our non-embedding baselines with our embedding model using various feature sets: text only
(T), text and usernames (T+U), and text with usernames and locations (T+U+L), either jointly modeled
or independently combined by addition or concatenation. Markers indicate if the results of our joint
T+U+L model are significantly different (p<<0.05) from the text only (), concatenated T+U+L (}), or

TF-IDF (*) models.

proposed in Section 4.1, we also trained three sep-
arate paragraph2vec models on the three feature
types and then combined them, by adding the vec-
tors in one version and by concatenating the three
vectors in another. Since some prior work trained
independent models for different views (Section
2), it is important to understand how joint versus
independent training affects performance.

To understand the importance of padding the
metadata features with dummy tokens, we also
measured the performance of the full joint model
without using extra tokens, labeled as “No
padding” in the table.

Finally, we add two other baselines to put
our results in context. First is a random base-
line that randomly chooses & users in the rank-
ing, which gives an approximate lower bound on
performance. Second, we compare to a high-
dimensional bag-of-words representation of text
with TF-IDF weighting.

We measured the statistical significance of the
results using a paired t-test to compare our full
model to the baselines with close performance.

5.3 Results and Discussion

Results are shown in Table 1. The full joint model
outperforms all others at precision and recall in all
cases, and at MRR in a majority of cases.

There is a substantial improvement in the em-
bedding model using all three feature types com-
pared to the model using only text. The differences
in precision and recall are highly significant, with
p-values <0.001 in all cases. This demonstrates
that our proposed features are useful for friend rec-
ommendation, and that our simple method for en-
coding them is effective. We also find that train-

48

ing a representation using all three feature types
jointly gives significantly better performance than
combining independently trained representations.
Finally, we find that metadata features do improve
performance even without padding, but not as well
as when using padding.

While our full model outperformed the TF-IDF
baseline in most cases, most differences were not
significant, and the TF-IDF baseline outperformed
the paragraph2vec model using only text. We be-
lieve the strong performance of TF-IDF relative to
the paragraph2vec representations may be due to
the fairly small size of our dataset. Since our goal
was to investigate how to improve the quality of
embeddings, we primarily focus on the compari-
son other embedding models rather than TF-IDF,
but we present these results to show how the differ-
ent representation types compare on this dataset.

6 Conclusion

We have described and evaluated a simple method
for adding non-textual discrete features into a
text embedding model for constructing embed-
dings of social media users. We constructed a
novel geographic feature—the locations of a user’s
friends—and showed that the addition of network
and geographic features significantly improves
precision and recall over a text-only baseline up
to 0.06 and 0.02, respectively. We also showed
that including all feature types in one model leads
to significantly better performance than combin-
ing independently trained models of different fea-
tures. Our approach is based on modifying the in-
put rather than the model, therefore requiring no
special implementation and can be easily adapted
to other embedding models or feature types.

References

Silvio Amir, Byron C. Wallace, Hao Lyu, Paula Car-
valho, and Mario J. Silva. 2016. Modelling context
with user embeddings for sarcasm detection in social
media. arXiv preprint arXiv:1607.00976.

Lars Backstrom and Jure Leskovec. 2011. Super-
vised random walks: Predicting and recommending
links in social networks. In Fourth ACM Interna-
tional Conference on Web Search and Data Mining
(WSDM).

Adrian Benton, Raman Arora, and Mark Dredze. 2016.
Learning multiview embeddings of twitter users.
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, pages 14—
19.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. Proceed-
ings of The 31st International Conference on Ma-
chine Learning, pages 1188—1196.

Jiwei Li, Alan Ritter, and Dan Jurafsky. 2015.
Learning multi-faceted representations of individu-
als from heterogeneous evidence using neural net-
works. arXiv preprint arXiv: 1510.05198.

David Liben-Nowell and Jon Kleinberg. 2007. The
link-prediction problem for social networks. Jour-
nal of the American Society for Information Science
and Technology 58(7):1019-1031.

Shuchuan Lo and Chingching Lin. 2006. WMR-—
a graph-based algorithm for friend recommenda-
tion. In IEEE/WIC/ACM International Conference
on Web Intelligence.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. Advances in neural information processing sys-
tems, pages 3111-3119.

Radim Rehtifek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. pages 45-50.

Xiaojun Wan, Yang Yu, and Xinjie Zhou. 2016. User
embedding for scholarly microblog recommenda-
tion. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, pages
449-453.

Yi Yang, Ming-Wei Chang, and Jacob Eisenstein.
2016. Toward socially-infused information extrac-
tion: Embedding authors, mentions, and entities.
Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1452-1461.

49

