Constructing an Alias List for Named Entities during an Event

Anietie Andy
aandy @seas.upenn.edu
University of Pennsylvania

Mark Dredze
mdredze @cs.jhu.edu
Johns Hopkins University

Mugizi Rwebangira
rweba@scs.howard.edu
Howard University

Chris Callison-Burch
ccb@cis.upenn.edu
University of Pennsylvania

Abstract

In certain fields, real-time knowledge from
events can help in making informed de-
cisions. In order to extract pertinent real-
time knowledge related to an event, it
is important to identify the named enti-
ties and their corresponding aliases related
to the event. The problem of identifying
aliases of named entities that spike has
remained unexplored. In this paper, we
introduce an algorithm, EntitySpike, that
identifies entities that spike in popularity
in tweets from a given time period, and
constructs an alias list for these spiked en-
tities. EntitySpike uses a temporal heuris-
tic to identify named entities with similar
context that occur in the same time period
(within minutes) during an event. Each en-
tity is encoded as a vector using this tem-
poral heuristic. We show how these entity-
vectors can be used to create a named en-
tity alias list. We evaluated our algorithm
on a dataset of temporally ordered tweets
from a single event, the 2013 Grammy
Awards show. We carried out various ex-
periments on tweets that were published in
the same time period and show that our al-
gorithm identifies most entity name aliases
and outperforms a competitive baseline.

1 Introduction

Twitter captures a large volume of discussions and
messages related to events and topics, in real-
time. Knowledge has been extracted from these
data streams in different domains to gain various
insights, for example, election results (Tumasjan
et al., 2010), democratic movements (Starbird and
Palen, 2012), tracking illnesses over time (Paul

40

and Dredze, 2011; Guo et al., 2013) and making
crucial real-time decisions such as earthquake de-
tection (Sakaki et al., 2010).

Twitter is an informal forum that imposes a limit
on the number of characters per tweet, hence, the
vocabulary used to express tweets are diverse. This
results in the prevalence of abbreviated or mis-
spelled words in tweets and aliases used to rep-
resent named entities. Entity name variation poses
a challenge to determining what or who a name
refers to (Andrews et al., 2014); identifying name
variations has been shown to help in different do-
mains such as community question answering sys-
tems (Andy et al., 2016b,a) and automatic para-
phrase acquisition (Shinyama et al., 2002). For
example, given the following tweets that occurred
in a 5-minute time period during an event:

e #Veep’s Julia Louis-Dreyfus wins for Lead
Actress in a Comedy Series #Emmys

o At least Selina Meyer is amazing at winning
#Emmys. #Veep

e How does Elaine keep winning these
awards?! #Emmys

e Is JLD ever NOT going to win for
Veep™Emmys

where the actress Julia Louis-Dreyfus is referred
to as Selina Meyers — from her character in the
show, Veep, Elaine — from her character in the
show, Seinfield, and JLD — the abbreviation of
her name. Identifying these entity name variations
can be challenging; however, the context in which
the entities occurred and temporal information can
be used to determine the aliases of named entities.
The goal of our research is to construct an alias list
for entities that spike in popularity in a given time
period during a single event, by using a tempo-
ral heuristic to cluster entities with similar context.
This paper makes the following contributions:

e We formulate a temporal heuristic to identify

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 40-44
Copenhagen, Denmark, September 7, 2017. (©2017 Association for Computational Linguistics

entities with similar context that occur in the
same time period during an event.
e We develop a novel algorithm, EntitySpike,
that uses this temporal heuristic to encode en-
tities as vectors and creates an alias list, if one
exists, for entities that spike in popularity in
a given time period.
We present detailed experiments demonstrat-
ing that using temporal information identifies
most named entity aliases.

2 Background and Preliminaries

In tweets collected during an on going event, there
is a small window in time in which entities spike
in popularity, though they have occurrences during
the whole event (Dredze et al., 2016).

=)
S

— The People vs Q)
- ThePeopleVsOJSimpson |4
Julia Louis-Dreyfus

JLD

-
S

o
S

%]
S

w
S

Numper of entity mentions
IS
S

]
S

,_.
o

o

15 20 25

Time in minutes

10 30

Figure 1: Name variations of entities that spike
in popularity at the same time in 10 minute bins
during the 2016 Emmy awards show

To investigate the validity of creating an alias
list for entities that spike, we use the Twitter
streaming API to collect 50,000 timestamped
and temporally ordered tweets and re-tweets
containing #emmys, while the 2016 Emmy
Awards show was going on (we intend to make
this dataset available to the research community).
We selected tweets that occurred in a randomly
selected 30 minutes time period and split these
tweets into bins of 10 minute time periods i.e.
each bin contained tweets that occurred in a 10
minute time interval. Figure 1 shows the entities
that spiked the most in this time period and their
name variations. We observed that when an entity
spikes in popularity in a given time period, some

41

of its aliases spike in popularity as well. Based
on these observations, we propose an algorithm,
EntitySpike, that creates an alias list for entities
that spike in a given time period.

Task Definition: Given a sequence of
tweets and entity mentions, denoted by X
=({e1,S1}.{e2, Sz} {ensSn}), where ¢

represents a named entity that spikes in popularity
in a given time period e.g. Julia Louis-Dreyfus,
and S; represents the set of tweets that make
reference to this named entity, e;, during this
specified time period; the task is to create an alias
list for each e¢;, if one exists.

Candidate Entity Identification: Following pre-
vious work in entity linking (Liu et al., 2013; Guo
et al., 2013), we define an entity as a Wikipedia
title page. An entity mention is a sequence of to-
kens in a tweet that can potentially link to an en-
tity. The Grammy Awards show is mostly about
famous people and so we focus only on entities
belonging to the Person category. In order to con-
struct a Wikipedia lexicon, we collect 1.5 million
English Wikipedia title pages referring to Person
named entities and extracted the backlinks (in-
coming links to the Wikipedia title page) from
each of these Wikipedia title pages (we intend to
make this dataset available to the research commu-
nity).

Given a set of tweets {t;, t., ., tnt
that occur in a given time period (within minutes)
during the Grammy awards show, we extract all
k-grams of size < k, from each tweet; we se-
lected k = 3. We select a k-gram as a candidate
entity mention if it is either an exact match of a
Wikipedia title page or backlink or if it is con-
tained in a Wikipedia title page or backlink, for
example “Carrie” is contained in “Carrie Under-
wood”.

3 Ouwr Algorithm: EntitySpike

During an event, such as an award show, a large
volume of tweets related to the event are generated
by users, per minute. Most of these tweets contain
named entities and their aliases. Our algorithm,
EntitySpike identifies named entities that spike at
a certain time period and constructs an alias list
for these entities by using a temporal heuristic.

Exploiting Temporal Information about enti-
ties: While the award show is going on, artists
and celebrities - some of which have nicknames,
are showcased walking on the red carpet, per-
forming on stage, presenting awards, or sitting
in the audience. On social media platforms, such
as twitter, people publish tweets related to these
events, in real-time. Most of the generated tweets
refer to people or entities in the same context e.g.
their outfit, performance, actions etc. Some tweets
make reference to named entities by their aliases,
some of which look similar to their corresponding
named entity e.g. “Jay Z” and “Jay-Z” and some
look different e.g. ”Taylor Swift” and "Tswizzle”.
Given tweets that occur at a certain time period
(within minutes), the context of most of the tweets
will be similar. For example, one may see a burst
of tweets published in the same 5-minute time pe-
riod that say: "X just won a Grammy” or Y won
her first Grammy”. This suggests that X and Y re-
fer to the same person, regardless of how different
the names are. Based on this intuition, we propose
the Temporal Entity Similarity heuristic:

Temporal Entity Similarity: In tweets (related
to an event), collected sequentially, named entities
that occur at the same time period and have a sim-
ilar context are referring to the same named entity.

This temporal entity similarity heuristic helps
capture the temporal context in which entities are
mentioned and clusters entities that occur in a
similar context. In figure 2, we present an out-
line of EntitySpike which uses the temporal en-
tity similarity to create an alias list for named en-
tities that spike in popularity in a given time pe-
riod during an event. To measure the similarity be-
tween the named entities, we represent each entity
as a vector. To create the vector for each entity,
we select all the unique words in the EntitySpike,
({e1,81}.{e2,S2}s..{en, Sn}) and count the
frequency of occurrence of each word in tweets,
S; related to a named entity e;. Two named entities
refer to the same entity if the cosine similarity of
their vectors is greater than a threshold.

4 Experiments

4.1 Data

For our experiments, we evaluated EntitySpike on
the 2013 Grammy Awards Show dataset described

42

Algorithm 1 EntitySpike

Given Xz({el, Sl},{e2, Sz},....,{en, Sn}),
were X satisfies the temporal entity similarity
heuristic

Output Alias list for e;

1: procedure ENTITYSPIKE(X)

2: for each entity e in X do

3 create temporal vector, V,

4 for eachvin Ve n do

5: Cosine Similarity(v, Ve, n)

6 if Cosine Similarity > threshold then
7 Insert into Aliaslist(V,)

8 Return Aliaslist(V,)

Figure 2: Temporal Entity Similarity Algorithm

in Dredze et al. (2016). The show lasted for ap-
proximately three and a half hours generating a lot
of tweets, most of which made reference to artists,
celebrities, and famous people - with entries in
Wikipedia, by their names and nicknames (Dredze
et al., 2016). To create this dataset, Dredze et al.
(2016) used the Twitter streaming API to collect
10,736 temporally ordered and unique tweets writ-
ten in English containing grammy (case insensi-
tive, and including #grammy) during the event.
Although these tweets were temporally ordered,
their timestamps were not saved, hence, we split
the dataset into equal size temporal bins (11 bins),
with each bin containing 976 temporally ordered
tweets. We represented each entity as a vector by
collecting the frequency of occurrence of each en-
tity in each bin i.e. each entity was represented as
a vector of size 11.

4.2 Baseline

Before carrying out experiments for EntitySpike,
we conducted preliminary experiments to show
that entities that frequently co-occur together
should have a high cosine similarity. The intuition
here is that entities with a cosine similarity above
a threshold could be referring to the same entity.
Based on this intuition, we represented each entity
as a vector by collecting the frequency of its occur-
rence in each bin. We calculated the cosine simi-
larity between all of the named entities and ranked
them. For each entity, we select the 10 highest
ranked similar entities. For evaluation of this algo-
rithm, we selected and labelled 40 named entities

and their known aliases in our dataset. On these
named entities and their aliases, this algorithm had
a precision of 68.25% and a recall of 43.1%.

This algorithm shows that some entities that fre-

quently occur in the same context at different time
periods are referring to the same entity. We use this
algorithm as our baseline.
Word2Vec Experiments: Given a named entity,
we used word2vec as implemented by Mikolov
et al. (2013) to find the top 10 most similar enti-
ties to the given entity. We observed that word2vec
found related words and entities to a given en-
tity, however, it found few entity aliases, some
of which are misspelled words and abbreviations.
Table 1 shows the top 2 related entities found by
word2vec for some named entities.

Named Entity Related Entities

Justin Timberlake
Adam Levine
Taylor Swift
JayZ

Timberlake, Beyonce
Maroon 5, Rob Thomas
Miley Cyrus, Justin Bieber
Music Beats, Young Joc

Table 1: Some named entities and related entities
identified by word2vec

4.3 EntitySpike Experiments

As stated in section 4.1, we split our dataset into
11 equal size bins. In each bin, we calculated the
frequency of occurrence of each entity and se-
lected the top u most frequently occuring entities.
We chose u = 15 because we wanted to compare
a relatively small set of entities. We represented
each of these entities using the method described
in section 3 and calculated the cosine similarity
between these entities. We selected an entity as an
alias to another entity if they had a cosine sim-
ilarity greater than a threshold (0.95). We evalu-
ated EntitySpike on the named entities that spiked
in each of the 11 bins. We labelled the aliases
of these spiked entities - that were found in the
dataset. We used the algorithm described in sec-
tion 4.2 as a baseline. Table 2 shows the precision
and recall (with respect to the spiked entities and
their aliases) of EntitySpike and the baseline.

Algorithm Precision Recall
EntitySpike 73% 65%
Baseline 65% 69%

Table 2: Precision and recall of EntitySpike and
baseline

43

Table 3 shows aliases of the named entities from
table 1, that EntitySpike identified. It can be seen
that EntitySpike found more aliases.

Alias

Justin T, Timberlake
Adam Levin, Adam
Taylor S,Taylor

Jay Z, Jay-Z

Named Entity
Justin Timberlake
Adam Levine
Taylor Swift
JayZ

Table 3: Some named entities and their aliases
identified by our method

EntitySpike identified entities that spiked in a
given time period and created an alias list for these
entities. We conducted experiments that varied this
time period i.e. we combined bins, and we ob-
served that some spiked entities persisted across
bins and combining two adjoining bins gave opti-
mal results.

EntitySpike also identified related words. For
each entity that spiked, we used EntitySpike to cal-
culate the cosine similarity between them. Two en-
tities were related if they had a cosine similarity
above a threshold (0.89). For each spiked entity,
we compared the results from this experiment with
word2vec and Entity Spike found some of the re-
lated entities in Word2vec. For example, it identi-
fied that during the show, Jayz and Beyonce were
related and also, Chris Brown and Rihanna. Dur-
ing the event, some entities were more related than
usual; for example, Jay Z and Justin Timberlake
preformed together during the show and a lot of
tweets - referring to both of them were generated
at this time period. EntitySpike was able to identify
that these two entities were related at this particu-
lar time period. EntitySpike also identified some
named entities that did not occur in Wikipedia e.g.
”Kelly C” for ”Kelly Clarkson” and ”Rih” for "Ri-
hanna”.

5 Conclusion and future work

In conclusion, we proposed an algorithm that cre-
ates an alias list for entities that spike. We con-
ducted experiments to show that our algorithm
finds most entity aliases by using a temporal
heuristic. In the future, we will research using tem-
poral information to detect how relationships be-
tween entities change over a period of time.

References

Nicholas Andrews, Jason Eisner, and Mark Dredze.
2014. Robust entity clustering via phylogenetic in-
ference. In ACL (1). pages 775-785.

Anietie Andy, Mugizi Rwebangira, and Satoshi Sekine.
2016a. An entity-based approach to answering re-
current and non-recurrent questions with past an-
swers. OKBQA 2016 page 39.

Anietie Andy, Satoshi Sekine, Mugizi Rwebangira, and
Mark Dredze. 2016b. Name variation in community
question answering systems. WNUT 2016 page 51.

Mark Dredze, Nicholas Andrews, and Jay DeYoung.
2016. Twitter at the grammys: A social media cor-
pus for entity linking and disambiguation. In Pro-
ceedings of the 4th Workshop on Natural Language
Processing and Social Media. pages 20-25.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman.
2013. To link or not to link? a study on end-to-end
tweet entity linking. In HLT-NAACL. pages 1020—
1030.

Xiaohua Liu, Yitong Li, Haocheng Wu, Ming Zhou,
Furu Wei, and Yi Lu. 2013. Entity linking for
tweets. In ACL (). pages 1304-1311.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Michael J Paul and Mark Dredze. 2011. You are
what you tweet: Analyzing twitter for public health.
Iewsm 20:265-272.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes twitter users: real-time
event detection by social sensors. In Proceedings

of the 19th international conference on World wide
web. ACM, pages 851-860.

Yusuke Shinyama, Satoshi Sekine, and Kiyoshi Sudo.
2002. Automatic paraphrase acquisition from news
articles. In Proceedings of the second interna-
tional conference on Human Language Technology
Research. Morgan Kaufmann Publishers Inc., pages
313-318.

Kate Starbird and Leysia Palen. 2012. (how) will the
revolution be retweeted?: information diffusion and
the 2011 egyptian uprising. In Proceedings of the
acm 2012 conference on computer supported coop-
erative work. ACM, pages 7-16.

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G
Sandner, and Isabell M Welpe. 2010. Predicting
elections with twitter: What 140 characters reveal
about political sentiment. ICWSM 10(1):178-185.

44

