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Abstract

For brands, gaining new customer is more
expensive than keeping an existing one.
Therefore, the ability to keep customers
in a brand is becoming more challenging
these days. Churn happens when a cus-
tomer leaves a brand to another competi-
tor. Most of the previous work consid-
ers the problem of churn prediction using
CDRs. In this paper, we use micro-posts
to classify customers into churny or non-
churny. We explore the power of CNNs
since they achieved state-of-the-art in var-
ious computer vision and NLP applica-
tions. However, the robustness of end-to-
end models has some limitations such as
the availability of a large amount of la-
beled data and uninterpretability of these
models. We investigate the use of CNNs
augmented with structured logic rules to
overcome or reduce this issue. We devel-
oped our system called C'hurn_teacher
by using an iterative distillation method
that transfers the knowledge, extracted us-
ing just the combination of three logic
rules, directly into the weight of Deep
Neural Networks (DNNs). Furthermore,
we used weight normalization to speed
up training our convolutional neural net-
works. Experimental results showed that
with just these three rules, we were able
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to get state-of-the-art on publicly avail-
able Twitter dataset about three Telecom
brands.

1 Introduction

Customer churn may be defined as the process of
losing a customer that recently switches from a
brand to another competitor. The churn problem
can be tackled from different angles: most of the
previous work used Call Detail Records (CDRs)
to identify churners from non-churners (Zaratiegui
et al,, 2015). More recently, with more data
became available on the web, brands can use
customers opinionated comments via social net-
works, forums and especially Twitter to detect
churny from non-churny customers. We used the
churn dataset developed by (Amiri and Daumé III,
2015). This dataset was collected from Twitter
for three telecommunication brands: Verizon, T-
Mobile, and AT&T.

In recent years, deep learning models have
achieved great success in various domains
and difficult problems such as computer vi-
sion (Krizhevsky et al., 2012) and speech recogni-
tion (Dahl et al., 2012; Hinton et al., 2012). In nat-
ural language processing, much of the work with
deep learning models has involved language mod-
eling (Bengio et al., 2003; Mikolov et al., 2013),
sentiment analysis (Socher et al., 2013), and more
recently, neural machine translation (Cho et al.,
2014; Sutskever et al., 2014). Furthermore, these
models can use backpropagation algorithm for
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training (Rumelhart et al., 1988).

Regardless of the success of deep neural net-
works, these models still have a gap compared to
human learning process. While the success came
from the high expressiveness, it leads them to pre-
dict results in uninterpretable ways, which could
have a negative side effects on the whole learn-
ing process (Szegedy et al., 2013; Nguyen et al.,
2015). In addition, these models require a huge
amount of labeled data, which is considered as
time consuming for the community since it re-
quires human experts in most applications (natu-
ral language and computer vision). Recent works
tackled this issue by trying to bridge this gap in
different applications: in supervised learning such
as machine translation (Wu et al., 2016) and unsu-
pervised learning (Bengio et al., 2015).

In the Natural Language Processing (NLP)
community, there has been much work to aug-
ment the training process with additional and use-
ful features (Collobert et al., 2011) which proved
its success in various NLP applications such as
Named Entity Recognition (NER) and Sentiment
Analysis. The majority of these works used pre-
trained word embeddings obtained from unlabeled
data to initialize their word vectors, which allow
them to improve the performance. Another solu-
tion came from integrating logical rules extracted
from the data directly into the weights of neu-
ral networks. (Hu et al., 2016) explored a distil-
lation framework that transfers structured knowl-
edge coded as logic rules into the weights of neural
networks. (Garcez et al., 2012) developed a neural
network from a given rule to do reasoning.

In this paper, we combine the two ideas: firstly,
we used unsupervised word representations to ini-
tialize our word vectors. We explored three differ-
ent pretraiend word embeddings and compared the
results with a randomly sampled one. Secondly,
we used three main logic rules, which were proven
to be useful and crucial. The “but” rule was ex-
plored by (Hu et al., 2016) in sentiment analysis
and we add two new rules: “switch to” and “switch
from”. (Amiri and Daumé III, 2016) showed that
the last two rules have a remarkable influence into
the churn classification problem.

Moreover, in order to accelerate training our
model on churn training dataset, we conduct an
investigation of using weight normalization (Sali-
mans and Kingma, 2016), which is a new recently
developed method to accelerate training deep neu-

22

ral networks.

Experiments on Twitter dataset built from a
large number of tweets about three Telecommu-
nication brands show that we were able to obtain
state-of-the-art results for churn classification in
microblogs. Our system, called Churn_teacher,
is constructed by using a structured logical knowl-
edge expressed into three logic rules transferred
into the weights of convolutional neural networks.
We outperform the previous models based on hand
engineering features or also using recurrent neural
networks combined with minimal features. Our
system is philosophical close to (Hu et al., 2016),
which showed that combining deep neural net-
works with logic rules performed well on two NLP
tasks: NER and Sentiment Analysis.

The rest of this paper is structured as follows:
in section 2, we discuss the related work done
in churn prediction application. In section 3, we
present our churn prediction approach which is
based on structured logical knowledge transferred
into the weights of Convolutional Neural Net-
works (CNNs). In section 4, we discuss the impact
of pretrained word embeddings on the churn clas-
sification. The experimental results are presented
in section 5. Finally, we present the conclusion
with the future work in section 6.

2 Related Work

Churn prediction is an important area of focus
for sentiment analysis and opinion mining. In
the 2009, ACM Conference on Knowledge Dis-
covery and Datamining (KDD) hosted a compe-
tition on predicting mobile network churn using
a large dataset posted by Orange Labs, which
makes churn prediction, a promising application
in the next few years. We can divide the previ-
ous work on Customer churn prediction in two
research groups: the first group uses data from
companies such as Telecom providers, banks, or
other organizations. More recently, with the ex-
plosion of social networks, researchers are inter-
ested to use social networks such as Twitter to pre-
dict churners.

Using data from banks, (Keramati et al., 2016)
developed a system for a customer churn in elec-
tronic banking services. They used a decision tree
algorithm to build their classification model. The
main goal of this paper is studying the most rele-
vant features of churners in banking services such
as demographic variables (age, gender, career,



etc.), transaction data through electronic banking
portals (ATM, mobile bank, telephone bank, etc.),
and others. They used a method called CRISP-
DM which contains six phases: Business under-
standing, Data understanding, Data preprocessing,
Modeling, Evaluation and Deployment. At the
final stage, they used a decision tree method to
model the previous phases.

(Backiel et al., 2016) studied the impact of in-
corporating social network information into churn
prediction models. The authors used three dif-
ferent machine learning (ML) techniques: logistic
regression, neural networks and Cox proportional
hazards. To extract features to use with these ML
techniques, they built a call graph, which allowed
them to extract the relevant features.

(Li et al., 2016) developed a model based on
stacked auto-encoder as a feature extractor to de-
tect the most influential features in Telecom churn
prediction. In addition, they proposed a second
model where they augmented the previous model
with a Fishers ration analysis called Hybrid Stack
Auto-Encoder (HSAE). The models were evalu-
ated on Orange datasets. Experimental results
showed that the HSAE model outperformed all
the other models including Principal Component
Analysis (PCA).

More recently, researchers tackle the churn pre-
diction problem using data collected from mi-
croblogs. (Amiri and Daumé II1I, 2015) developed
a system for churn prediction in microblogs. They
investigated the machine learning models such as
support vector machines, and logistic regression
with the combination of extracted features. Fur-
thermore, they investigated the use of three differ-
ent churn indicators: demographic, content, and
context indicators. Experimental results showed
that the combination of the three indicators lead to
the best performance.

(Amiri and Daumé III, 2016) used the power
of Recurrent Neural Networks (RNN) as a repre-
sentation learning models in order to learn micro-
post and churn indicator representations. The ex-
periments on publicly available Twitter dataset
showed the efficiency of the proposed method
in classifying customers in churners and non-
churners. Moreover, authors showed that the
churn classification problem is different from clas-
sical sentiment analysis problem since the pre-
vious state-of-the-art sentiment analysis systems
failed to classify churny/non-churny customers.
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In this work, we focus on churn prediction
in microblogs where we use a publicly available
Twitter dataset provided by (Amiri and Daumé III,
2015) to evaluate our system.

3 The Proposed System

In this section, we introduce our system that en-
ables a convolutional neural network to learn si-
multaneously from logic rules and labeled data in
order to classify customers as churners and non-
churners. The general architecture of our sys-
tem can be seen as the combination of the knowl-
edge distillation (Hinton et al., 2015) and the
posterior regularization method (Ganchev et al.,
2010). (Hu et al., 2016) explored this combination
to build two systems for English sentiment analy-
sis and named entity recognition. We show that
this framework can also be applied to customer
churn prediction by deriving more logic rules and
transfer the structured logical knowledge into the
weights of a convolutional neural network.

3.1 Problem Formulation

For the purpose of this paper, let us assume we
have z € X is the input variable and y € ) is the
target variable. Let us consider the training data
D = {(#n, yn)}2_, which is a set of instantiations
of (x,y) and N is the number of training exam-
ples in our dataset. For the purpose and the clar-
ity of this paper, we focus on classification prob-
lem where the target y is a one-hot encoding of
the class labels. We consider a subset of the train-
ing data (X,Y) C (X,)) as a set of instances
of (z,y). A neural network defines a conditional
probability pg(y|z) parameterized by 6.

3.2 Neural Network with Structured Logical
Knowledge

In this section, we describe the distillation method
that allowed our system to transfer the structured
logical knowledge into the weights of convolu-
tional neural networks to classify customers as
churners and non-churners.

Let us define the set of constraint functions f;
such that: f; € X x Y — R, where [ is the index
of a specific constraint function. In our problem,
the set of functions will be represented as logical
rules where the overall truth values are in the inter-
val [0, 1]. These functions will allow us to encode
the structured logical knowledge where the goal is



to satisfy (i.e., maximize by optimizing the predic-
tions y) with confidence weights \; € R.

The construction of a structure-enriched teacher
network ¢ at each iteration from the neural net-
work parameters is obtained by solving the fol-
lowing optimization problem:

min K L(g(Y)|lpe (Y| X)) CZ)\Z

miy A(X,V)

)

where P denotes the appropriate distribution
space; and C' is the regularization parameter. In
this paper, the teacher is called C'hurn_teacher
where its main goal is to teach the model to clas-
sify customers from churners and non-churners.
The closeness between our C'hurn_teacher and
pg, which represents the conditional probability
obtained by the softmax output layer of the con-
volutional neural network, is measured using the
Kullback-Leibler (KL) divergence where the aim
is minimizing it. We note that problem (1) is con-
vex and has a closed-form solution given by the
following:

¢ (V) ocpp(Y[X) exp{C Y Nfi(X,Y)} )
l

It should be noted that the normalization term
can be computed efficiently through direct enu-
meration of the chosen rule constraints. At each
iteration, the probability distribution of the neu-
ral network py is updated using the distillation ob-
jective (Hinton et al., 2015) that balances between
imitating soft predictions of our C'hurn_teacher
q and predicting true hard labels:

S (= Mg ool

= arg min—
(zn))

=E)
3)

9(t+1)

+7Tl(3p£f)> g9

where [ denotes the cross entropy loss function
that we used in this paper; NV is the training size;
og(x) is the softmax output of py on x; sp,, is the
soft prediction vector of the C'hurn_teacher q on
training point x,, at iteration ¢ and  is the imita-
tion parameter calibrating the relative importance
of the two objectives. In addition to their teacher
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q, (Huetal., 2016) tested their results using a stu-
dent network p. Related to their experimental re-
sults, the teacher ¢ always gives better results than
the student p. We decide to only use the teacher
network ¢ called in our work the Churn _teacher.

3.3 Neural Network Architecture

In this section, we give an overview of the con-
volutional neural network used in our work. The
main architecture of our CNN is depicted in Figure
1. We followed the convolutional neural network
architecture as proposed by (Kim, 2014).

In the first step, we initialize each word in a
sentence 1" with length n with pretrained word
representations learned from unannotated corpora.
Then, we add padding whenever it is necessary for
the model. T is represented as the following:

“

where v; represents the word vector of the i —th
word in the sentence 1" and & represents the con-
catenation operator. We use successive filters w to
obtain multiples feature map. Each filter is applied
to a window of m words to get a single feature
map: F; = ¢(w.vi™™ ! 4+ b) where b is the bias
and ¢ denotes an elementwise nonlinearity where
we used ReLLU (Rectified Linear Unit). In the next
step, we applied a max-over-time pooling opera-
tion (Collobert et al., 2011) to the feature map and
take the maximum value. The results are fed to a
fully connected softmax layer to get probabilities
over the sentences. Figure 1 illustrates the archi-
tecture of our system where we consider the sys-
tem is classifying the input sentence: “Damn thats
crud. You should switch to Verizon”.

V=01 Qv P ... By,

3.4 Logic Rules

In the early stages of the expansion of artificial in-
telligence, (Minsky, 1983) argued that the cogni-
tive process of human beings learn from two dif-
ferent sources: examples as deep neural networks
are doing these days and also from rich experi-
ences and general knowledge. For this reason,
we will use both of the sources for churn predic-
tion in microblogs where the convolutional neural
network learns from examples and logic rules add
structured knowledge into the weights of CNN by
playing a role of a regularizer in the learning pro-
cess.

In this section, we present the three logic rules
that we used in our churn prediction system. We
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Figure 1: The system architecture. The word vectors are initialized with pretrained word representa-
tions from one of the three models: GloVe, Skip-Gram or CBOW. We feed these word vectors to the
convolutional neural network as input sentences followed by a max-pooling overtime followed by a
fully-connected layer and softmax to get probabilities (FC with Softmax)

borrow the first logic rule from sentiment analy-
sis literature by using the conjunction word “but”.
It has been shown that “but” played a vital role
in determining the sentiment of a sentence where
the overall sentiment is dominated by the clauses
following the word “but” (Jia et al., 2009; Dadvar
et al., 2011; Hogenboom et al., 2011; Hu et al.,
2016). For a given sentence with “C'1 but C2”, we
assume that the sentiment of the whole sentiment
will take the polarity of clause C'2.

The second logic rule that we used is “switch
from” considered as a target-dependent churn
classification rule. (Amiri and Daumé III, 2016)
showed that “switch from” can have an important
role to classify if the customer will be churner or
non-churner. The last logic rule that we explored
in our work is similar to the second rule for be-
ing target dependent churn classification where we
substitute the preposition “from” to be the prepo-
sition “to” to obtain “switch to”. For a given
sentence with the form “C'1 switch to C2”, it is
clear that the customer will choose to switch to the
brand present in clause C'2.

Consider the two examples from the training
data:

e Damn thats crud. You should switch to Veri-
zon.
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e Gonna switch from bad @verizon internet to
@comcast. @ VerizonFiOS will never be in
my area and i bet @googlefiber will get here
first.

In the first example, the customer will switch to
the brand “Verizon” while for the second exam-
ple, the customer will leave the brand “Verizon”
to another competitor. Consequently, with respect
to the brand “Verizon”, the first tweet is classified
as “Non-churny” and the second tweet is classified
as “Churny”.

To encode these rules, we used soft logic (Bach
et al., 2015) where we can represent truth values
from the interval [0, 1]. The main Boolean opera-
tors are formulated as the following (Foulds et al.,
2015):

X&Y =maz{X +Y — 1,0}
XVY =min{X +Y,1}

X
Xl/\---/\XN:Zﬁ )

~X =1-X



This logic rule “but” is written as follows:

has “C1-but-C2” structure(S) =
[1(y = +) = 0'0(02)4,_ A\ 09(02)+ = (6)
Ly = +)]

In the equation above, 1(.) represents an indica-
tor function that can take two values: 1 if the argu-
ment is true, and 0 otherwise. Class “+” represents
“positive”’; and oy (C2) is the element of oy (C2)
for class “+”. Following the Equation 5, when S
has the “C1- but-C2” structure, the truth value of
the above logic rule equals to (1 + 04(C2)4)/2
when y =“+”, and (2 — 0(C2)4)/2 otherwise.

For the two other logic rules “switch to” and
“switch from”, we followed the same structure of
the “but” rule with a slightly different settings:

has “Cl-switch to/from-C2” structure(S) =
Ly =+) = 09(C2)1 ANop(C2)y =

1y =+)]
(7)

For the logic rule “switch to”, if we are classi-
fying the sentence .S with respect to a brand in the
clause C2, then the argument will be true which
gives the formula: (1 + (0¢(C2)+)/2. The logic
rule “switch from” plays an opposite role where if
a brand is in clause C'2, the overall sentiment will
be negative with respect to this brand, so we use
this formula: (2 — 0¢(C2)4)/2.

3.5 Training Details

Training is done using stochastic gradient de-
scent over mini-batches with the Adadelta up-
date rule (Zeiler, 2012). Word vectors are initial-
ized using pretrained word embeddings and fine-
tuned throughout training. At each iteration of
the training process, we enumerate the rule con-
straints (or a set of rules if we use them all at
once) in order to compute the soft predictions of
our Churn_teacher g by using the equation 2.
During the experiments, we choose the imitation
parameter to be 7(t) = 1 — 0.85¢ and the regu-
larization parameter to be C' = 100. We set the
confidence levels of rules to be \; = 1. It should
be noted that we used the model results on devel-
opment set in order to select the best hyperparam-
eters. The training procedure is summarized in al-
gorithm 1.
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Algorithm 1: Churn prediction using CNN with logic rules

Input: The training data D = {(zn, yn)}._,

The rule set R = {(Ri, M)},
Parameters: 7 - imitation parameter
C regularization strength
Initialize neural network parameters
Choose the rule Rl or a set of rules
do
Sample a minibatch (X, Y ) C D
Build the Churn_teacher network using Equation 2
Update pg using Equation 3
while not converged

Output: Churn_teacher q

3.6 The Effect of Weight Normalization

It should be noted that we use weight normaliza-
tion which is a new method introduced by (Sal-
imans and Kingma, 2016) to reparameterize the
weight vectors in a deep neural network in or-
der to decouple the length of those weight vec-
tors from their direction. Using this method, the
authors showed that they were able to improve
the conditioning of the optimization problem and
speed up convergence of stochastic gradient de-
scent. This method followed earlier work by (Ioffe
and Szegedy, 2015) where they introduced batch
normalization trying to normalize each neuron
output by the mean and standard deviation of the
outputs computed over a minibatch of examples.
More recently, this method was widely used in
deep learning architectures such as deep convolu-
tional neural networks, deep reinforcement learn-
ing, generative adversarial networks (GANs) and
others (Smith and Topin, 2016; Gehring et al.,
2017). Using weight normalization in training our
convolutional neural network allowed us to accel-
erate convergence of stochastic gradient descent.

4 Input Word Embeddings

The research in representations of words as contin-
uous vectors has a long history where many ideas
were proposed (Hinton et al., 1985). More re-
cently, (Bengio et al., 2003) proposed a model ar-
chitecture based on feedforward neural networks
for estimating neural network language model.
The most popular model for word representations
was developed by (Mikolov et al., 2013) called
word2vec where they used either of two model
architectures to produce a distributed representa-
tion of words: continuous bag-of-words (CBOW)
model or Skip-Gram (SG) model. Another pop-
ular model for word representations developed
by (Pennington et al., 2014) called “GloVe”
(Global Vectors). The main difference between



Base NN | Word Embeddings Model | F1 score Models Precision | Recall F1
CNN Random embeddings 77.13 CNN 75.36 79 77.13
CNN Continuous bag-of-words 79.89 CNN + pretrained 79.28 82.11 | 80.67
CNN Skip-Gram 79.55 CNN-pre + but 80.84 83.09 | 81.95
CNN GloVe 80.67 CNN-pre + switch from 79.74 82.14 | 80.92
CNN-pre + switch to 80.89 84.39 | 82.60
Table 1: Results with different choices of pre- CNN-pre + all the 3 rules 82.56 85.18 | 83.85

trained word embeddings with a comparison with
randomly initialized ones on churn predicition in
microblogs

Brand Churny | Non-Churny
Verizon 447 1543
T-Mobile | 95 978

AT&T 402 1389

Table 2: Statistics and details about the churn mi-
croblog dataset.

this model and word2vec models is the represen-
tations of a word in vector space: word2vec mod-
els use a window approach while GloVe uses the
global statistics of word-word co-occurrence in the
corpus to be captured by the model.

(Hisamoto et al., 2013) used word embeddings
features for English dependency parsing where
they employed flat (non-hierarchical) cluster IDs
and binary strings obtained via sign quantization
of the vectors. For chunking, (Turian et al., 2010)
showed that adding word embeddings allows the
English chunker to increase its F1-score. (Huang
et al., 2014) showed that adding word embeddings
as features for English part-of-speech (POS) tag-
ging task helped the model to increase its per-
formance. (Bansal et al., 2014) argued that us-
ing word embeddings in parsing English text im-
proved the system performance. For English sen-
timent analysis, (Kim, 2014) showed that using
pretrained word embeddings helped their system
to improve its accuracy.

As in (Collobert et al., 2011), in order to test
the importance of pretrained word embeddings in
churn prediction for microblogs, we performed ex-
periments with different sets of publicly published
word embeddings, as well as a random sampling
method, to initialize word vectors in our model.
We investigate three different pretrained word em-
beddings: Skip-Gram, continuous bag-of-words
and Stanford’s GloVe model. Table 1 gives the
performance of three different word embeddings,
as well as the randomly sampled one. It should be

noted that the random embeddings are uniformly
3 4./ 3
dim’ dim
dim is the dimension of embeddings. According

sampled from range [— ], where
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Table 3: Results with the three logic rules com-
pared to the without and with word embeddings.
We test the model by using each rule indepen-
dently and after that we combine them in one ex-
periment.

to the results in Table 1, we see that using pre-
trained word embeddings obtain a significant im-
provement, about 3.54% in F1 score as opposed
to the ones using random embeddings. This is
consistent with results reported by previous work
done in other NLP tasks (Collobert et al., 2011;
Huang et al., 2015; Chiu and Nichols, 2015).

For different pretrained embeddings, Stanford’s
GloVe 300 dimensional embeddings achieves best
results, about 1.12% better than Skip-gram model
and 0.78% better than continuous bag-of-words
model. One possible reason that Word2Vec is not
as good as the Stanford’s GloVe model is because
of vocabulary mismatch, since Word2Vec embed-
dings were trained in case-sensitive manner, ex-
cluding many common symbols such as punctua-
tions and digits. Because we do not use any kind
of data pre-processing to deal with such common
symbols or rare words, it might be an issue for us-
ing Word2Vec.

5 Experimental Results

For the evaluation of our model, we use the dataset
provided by (Amiri and Daumé 111, 2015). The au-
thors collected the data from twitter for three tele-
com brands: Verizon, T- Mobile, and AT&T. Ta-
ble 2 presents the details about the entries of this
dataset. We divide the experimental process into
two stages: the first stage concerns running the
experiments using the convolutional neural net-
work without and with different logic rules in or-
der to select the best achieved results. In the sec-
ond stage, we compare our best settings with the
previous state-of-art system in churn prediction in
microblogs.

Table 3 shows the churn classification results.
The first row represents the baseline where we
use only the convolutional neural network. In the
second row, we initialize our word vectors using



Rule Number of rules | Number of rules
in the training set in the test set

But 358 83

Switch to 321 71

Switch from 62 11

Total 741 165

Table 4: Statistics about the three rules (but,
switch to and switch from) in the training and test
set.

pretrained word vectors using GloVe model since
it gives us the best results among the other pre-
trained word vectors. We get an improvement
around 2.5% in Fl-score. We refer to this model
by “CNN-pre”. This results is consistent with the
fact that these pretrained word vectors are univer-
sal feature extractors that shown an important re-
sults in different NLP applications such as senti-
ment analysis, named entity recognition and Part-
of-speech tagging.

By transferring the knowledge extracted using
the “but” logic rule into the weights of the con-
volutional neural network, we were able to im-
prove the Fl-score over the CNN-pre model by
1.28 points in Fl-score. For the “switch from”
logic rule, we get a slight improvement over the
CNN-pre model by 0.25 points in F1-score. The
biggest improvement among the three logic rules
was obtained by the “switch to” rule where we
were able to improve the performance over the
CNN-pre model by 1.93 points in F1-score. The
last row in Table 3 concerns the results that we ob-
tained by using all the three logic rules where log-
ically we achieved best results and outperformed
the CNN-pre model by 3.18 points in F1-score.

While we do not have a complete explanation
why we got better results with “switch to” rule,
we believe that it is caused by the fact that there
321 sentences in the training data containing this
rule which represents around 8% sentences con-
tains the word “switch to”. Moreover, it will be
clear that customer will leave a specific brand to
another new brand. For the “switch from” rule, we
get slight improvement over the CNN-pre model
because few sentences containing this rule (around
2% sentences contains the word “switch from™).

Table 4 shows the statistics about the presence
of the three rules in the training data. For “but”
rule, we also get an important improvement over
the CNN-pre model which confirms the results ob-
tained by (Hu et al., 2016) using the same rule in
sentiment analysis. We note that around 9% sen-
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Models F1 score
Unigram + Nb (Amiri and Daumé 111, 2015) 73.42
(Amiri and Daumé 111, 2016) 78.30
Churn_teacher 83.85

Table 5: Comparison of our system with two pre-
vious systems.

tences contains the word “but”. In the last row, we
combine all the three rules and we were able to ob-
tain the best performance. We refer to this model
as “Churn_teacher”. This is consistent with the
argument by (Hu et al., 2016) where they argued
that more rules will allow the system to improve
its performance over the base convolutional neural
network.

We test our model using this dataset and com-
pare the obtained results with two other sys-
tems. The state-of-the-art results were produced
by (Amiri and Daumé III, 2016) where they
achieved 78.30% in F1 score. They used a com-
bination of Bag of Words features and Recurrent
Neural Networks. The second system referenced
here as “Unigram + Nb” developed by (Amiri and
Daumé III, 2015) used different N-grams (n
1,2, 3) and their combination on both of the word
and character levels.

By adding three rules to the convolutional neu-
ral networks, we outperformed the “Unigram +
Nb” system by a large margin (10.43 points in F1-
score). Furthermore, our model also outperformed
the system developed by (Amiri and Daumé III,
2016) by a good margin (5.55 points in F1-score).
Table 5 shows a brief presentation of the exper-
imental results and the comparison with the two
other systems.

6 Conclusion

In this paper, we explored the problem of target-
dependent churn classification in microblogs. We
combine the power of convolutional neural net-
works with structured logic knowledge by con-
structing a churn teacher capable of classifying
customers into churners and non-churners. In
addition, we confirm that initializing word vec-
tors with pretrained word embeddings trained on
unannotated corpora improved the system perfor-
mance.

A key aspect of our system is that it explores
the transfer of the structured knowledge of logic
rules into the weights of convolutional neural net-
works for churn classification problem. By com-



bining three logic rules, our model largely outper-
formed all the previous models on publicly avail-
able Twitter dataset. We showed that “but” rule
is also useful for churn prediction to confirm the
results obtained for sentiment classification prob-
lem. We consider the two other rules (“switch
to” and “switch from”) as target-specific rules for
churn classification problem which helped the sys-
tem to improve its performance.

In the future work, we will explore the use of
character-level embeddings where we will repre-
sent word in a sentence by a word vector rep-
resenting the concatenation of two embeddings:
its equivalent word embeddings obtained from the
lookup table and the embeddings obtained from its
characters. Furthermore, we will explore the use
of named entity recognition to recognize differ-
ent organizations where we will focus on brands
which we believe could help us to a better churn
classification.
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