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Abstract

We present an architecture to boost the
precision of existing information extrac-
tion systems. This is achieved by aug-
menting the existing parser, which may
be constraint-based or hybrid statistical,
with a character-level neural network.
Our architecture combines the ability of
constraint-based or hybrid extraction sys-
tems to easily incorporate domain knowl-
edge with the ability of deep neural net-
works to leverage large amounts of data
to learn complex features. The network
is trained using a measure of consis-
tency between extracted data and existing
databases as a form of cheap, noisy super-
vision. Our architecture does not require
large scale manual annotation or a system
rewrite. It has led to large precision im-
provements over an existing, highly-tuned
production information extraction system
used at Bloomberg LP for financial lan-
guage text.

1 Introduction

1.1 Information extraction in finance
Unstructured textual data is abundant in the finan-
cial domain (see Figure 1). This type of text is
usually not in a format that lends itself to imme-
diate processing. Hence, information extraction
is an essential step in many business applications
that wish to use the financial text data. Examples
of such business applications include creating time
series databases for macroeconomic forecasting,
or real-time extraction of time series data to in-
form algorithmic trading strategies. For example,
consider extracting data from Figure 1 into numer-
ical relations of the form
ts tick abs (TS symbol, numerical value),

Figure 1: Tweet containing financial data.

e.g. ts tick abs (US Unemployment, 4.9%), or
ts tick rel (TS symbol, change in num. value),

e.g. ts tick abs (US Hourly Earnings, 2.8%).
For these business applications, the extraction
needs to be fast, accurate, and low-cost.

There are several challenges to extracting infor-
mation from financial language text.

• Financial text can be very ambiguous. Lan-
guage in the financial domain often trades
grammatical correctness for brevity. A mul-
titude of numeric tokens need to be disam-
biguated into entities such as prices, rates,
percentage changes, quantities, dates, times,
and others. Finally, many words could be
company names, stock symbols, domain-
specific terms, or have entirely different
meanings.

• Large-scale annotated data with ground
truths is typically not available. Domain ex-
pert manual annotations are expensive and
limited in scale. This is especially a prob-
lem because the size of the problem domain
is large, with many types of financial instru-
ments, language conventions, and text for-
mats.

These two challenges lead to a high risk of extract-
ing false positives.

Bloomberg has mature information extraction
systems for financial language text, that are the re-
sult of nearly a decade of efforts. When improving
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upon such large industrial extraction systems, it is
invaluable if the proposed improvement does not
require a complete system rewrite.

The existing extraction systems leverage
both constraint-based and statistical methods.
Constraint-based methods can effectively incor-
porate domain knowledge (e.g. unemployment
numbers cannot be negative numbers, while
changes in unemployment numbers can be neg-
ative). These constraints can be complex, and
may involve multiple entities within an extraction
candidate. Adding a single constraint can in many
cases vastly improve the system’s accuracy. In a
purely statistical system, achieving the equivalent
behavior would require large amounts of labeled
training data.

This existing systems generate extractions with
high recall, and in this work, we propose to boost
the precision of the existing systems using a deep
neural network.

1.2 Our contribution

We present an information extraction architecture
that boosts the precision of an existing parser using
a deep neural network. The architecture gains the
neural network’s ability to leverage large amounts
of data to learn complex features specific to the
application at hand. At the same time, the existing
parser may leverage constraints to easily incorpo-
rate domain knowledge. Our method uses poten-
tially noisy but cheaply available source of super-
vision, e.g. via consistency checks of extracted
data against existing databases (e.g. an extrac-
tion ts tick abs (US Unemployment, 49%) would
be implausible given recent US employment his-
tory), or via human interaction (e.g., clicks on on-
line advertisements).

Our extraction system has two main advantages

• We improve the existing extraction systems
cheaply using large amounts of free noisy
labels, without the need for manual annota-
tion. This is particularly valuable in large
application domains, where manual annota-
tions covering the entire domain would be
prohibitively expensive.

• Our method leverages existing codebases
fully, and requires no system rewrite. This
is critical in large industrial extraction sys-
tems, where a rewrite would take many man-
years. Even for new systems, the decou-

pling of candidate-generation and the neu-
ral network offers advantages: the candidate-
generating parser can easily enforce con-
straints that would be difficult to incorporate
in a system relying entirely on neural net-
works.

We are not aware of alternative approaches that
achieve the above: purely neural network or purely
statistical approaches require substantial amounts
of human annotation, while our method does not.
Constraint-based or hybrid statistical approaches
are competitors to the existing extraction systems
rather than our work; our work could also be used
to boost the precision of other state-of-the-art con-
straint or hybrid methods. We believe that our ap-
proach, with small modifications, can be applied
to extraction systems in many other applications.

Compared to the existing, client-serving extrac-
tion engine, our system reduced the number of
false positive extractions by > 90%. Our system
constituted a substantial improvement and is being
deployed to production.

We review some related work in Section 1.3.
Section 2 details the design, training, and method
supervision of our system. We present results in
Section 3 and conclude with some discussions in
Section 4.

1.3 Related Work

Deep neural networks have been applied to several
problems in natural language processing recently.
Mikolov introduced the recurrent network lan-
guage model (Kombrink et al., 2011), which can
for instance consume the beginning of a sentence
word by word, encoding the sentence in its state
vector, and predict a likely continuation of the sen-
tence. Long Short Term Memory (LSTM) archi-
tectures (Gehrs, 2001; Hochreiter and Schmidhu-
ber, 1997) have resulted in large improvements in
machine translation (Sutskever et al., 2014). There
is a growing literature of LSTMs and deep convo-
lutional architectures being used for text classifi-
cation (e.g. (Zhang et al., 2015; Kim, 2014; dos
Santos and Gatti, 2014)) and language modeling
problems (Kim et al., 2016; Karpathy, 2015).

Several studies have considered using deep neu-
ral networks for information extraction problems.
Socher et al introduce compositional vector gram-
mars, which combine probabilistic context free
grammars with a recursive neural network (2013).
Nguyen et al use convolutional neural networks
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(CNN) and recurrent neural networks with word-
and entity-position-embeddings for relation ex-
traction and event detection (Nguyen et al., 2016;
Nguyen and Grishman, 2015). Zhou and Xu use
a bidirectional (Schuster and Paliwal, 1997) word-
level LSTM combined with a conditional random
field (CRF) (Lafferty et al., 2001) for semantic
role labeling (2015). In some cases, providing a
neural network character-level rather than word-
level input can be beneficial. Chiu and Nichols
use a bidirectional LSTM-CNN with character
embeddings for named entity recognition (2015),
and Ballesteros et al found that character-level
LSTM improve dependency parsing accuracy in
many languages, relative to word-level approaches
(2015). Recently, Miwa and Bansal presented
an end-to-end LSTM-based architecture for rela-
tion extraction, achieving state-of-the-art results
on SemEval-2010 Task 8 (2016).

While much of the recent work on informa-
tion extraction focuses on statistical methods and
neural networks, constraint-based information ex-
traction systems are still commonly used in in-
dustry applications. Chiticariu et al suggest that
this might be because constraint-based systems
can easily incorporate domain knowledge (2013).
The need to incorporate constraints into informa-
tion extraction systems, as well as the difficulty
of doing this efficiently, have been recognized for
some time.

Several hybrid approaches combine constraint-
based and statistical methods. Toutanova et al
model dependencies between semantic frame ar-
guments with a CRF (2008). Chang et al in-
corporate declarative constraints into statistical
sequence-based models to obtain constrained con-
ditional models (2012). When making a predic-
tion (inference step), their model solves an inte-
ger linear program. This typically involves maxi-
mizing a scoring function, based e.g. on a CRF,
over all outputs that satisfy the constraints, re-
sulting in high computational costs. Täckström
et al recently proposed a more computationally
efficient approach to semantic role labeling with
constraints, introducing a dynamic programming
approach for inference for log-linear models with
constraints (2015).

There are several purely statistical approaches,
such as those using hidden Markov models (Baum
and Petrie, 1966), CRFs (Lafferty et al., 2001)
or structured support vector machines (Tsochan-

taridis et al., 2004).
Our approach is fundamentally different from

all of the above. We propose to boost the precision
of an existing information extraction system using
a neural network trained with free noisy supervi-
sion. Our method does not require large amounts
of human annotations as purely statistical or neu-
ral network-based approaches would. Our work
could also be used to boost the precision of other
state-of-the-art constraint or hybrid methods.

2 Design

2.1 Overview
The information extraction pipeline we developed
consists of four stages (see right pane “execution”
in Figure 2).

1. Generate candidate extractions: The docu-
ment is parsed using a potentially constraint-
based or hybrid statistical parser, which out-
puts a set of candidate extractions. Each can-
didate extraction consists of the character off-
sets of all extracted constituent entities, and
a representation of the extracted relation. It
may additionally contain auxiliary informa-
tion that the parser may have generated, such
as part-of-speech tags.

2. Score extractions using trained neural net-
work: Each candidate extraction generated,
together with the section of the document it
was found in, is encoded into feature data X .
A deep neural network is used to compute a
neural network correctness score s̃ for each
extraction candidate. We detail the input and
architecture of the neural network in Section
2.2 and its training in Section 2.3.

3. Score extractions based on cheap, noisy su-
pervision: We compute a consistency score s
for the candidate extraction, measuring if the
extracted relation is consistent with cheaply
available, but potentially noisy supervision
from e.g. an existing database. We discuss
how s is computed in Section 2.4.

4. Classify extractions as correct or incor-
rect: A linear classifier classifies extraction
candidates as correct and incorrect extrac-
tions, based on neural network correctness
score s̃, database consistency score s, and po-
tentially other features. Candidates classified
as incorrect are discarded.
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Figure 2: Training (left) and execution (right) set-up. Blocks marked “L” are neural network LSTM cells,
while blocks marked “F” are fully-connected layers.
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Figure 3: We use a neural network comprised of (i) an LSTM processing encoded parser output and
document text character-by-character (labeled LSTM, green), (ii) a fully-connected layer (FC, blue) that
takes document-level features as input, and (iii) a fully-connected layer (FC, grey) that takes the output
vectors of the layers (i) and (ii) as input to generate a correctness estimate for the extraction candidate.
Layer (iii) uses a sigmoid activation function to generate a correctness estimate ỹ ∈ (0, 1), from which
we compute the network correctness score as s̃ := σ−1(ỹ).

2.2 Neural network input and architecture

The neural network processes each candidate ex-
traction independently. To estimate the correct-

ness of an extracted candidate, the network is pro-
vided with two pieces of input (see Figure 3 for
the full structure of the neural network). First, the
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network is provided with a vector g (right box in
Figure 3) containing document- or extraction-level
features, such as attributes of the document’s au-
thor, or word-level n-gram features. The second
piece of input consists of a sequence of vectors
fi (left box in Figure 3), encoding the document
text and the parser’s output at the character level.
There is one vector fi for each character ci of the
document section where the extraction candidate
is found.

The vectors fi are a concatenation of (i) a one-
hot encoding of the character, and (ii) information
about entities the parser identified at the position
of ci. For (i) we use a restricted character set
of size 94, including [a-zA-Z0-9] and several
whitespace, special characters, and an indicator to
represent characters not present in our character
set. For (ii), we include in fi a vector of indica-
tors specifying whether or not any of the entities
appearing in the relations supported by the parser
were found in the position of character ci.

The input vectors fi feed into an LSTM, which
accumulates state until the input sequence has
been exhausted. The global feature vector g feeds
into a fully-connected layer, which is then con-
catenated with the output of the LSTM, and passed
through another fully-connected layer with sig-
moid activation σ to produce a network correct-
ness estimate ỹ. We subsequently compute the
network correctness score s̃ for the candidate ex-
traction via s̃ = σ−1(ỹ).

We regularize the LSTM weight matrices and
state vector using dropout (see (Srivastava et al.,
2014) and (Zaremba et al., 2015)). Similar to
(Sutskever et al., 2014), we found that reversing
the LSTM’s input resulted in a substantial increase
in accuracy.

2.3 Neural network training

We train the neural network by referencing can-
didates extracted by the high-recall candidate-
generating parser against a potentially noisy ref-
erence source (see Figure 2, left panel on “train-
ing”). In our application, this reference is
Bloomberg’s proprietary database of historical
time series data, which enables us to check how
well the extracted numerical data fits into time se-
ries in the database. Concretely, we compute a
consistency score s ∈ (−∞,∞) that measures the
degree of consistency with the database. Depend-
ing on the application, the score may for instance

be a squared relative error, an absolute error, or
a more complex error function. In many applica-
tions, the score s will be noisy (see Section 2.4
for further discussion). We threshold s to obtain
binary correctness labels y ∈ {0, 1}. We then
use the binary correctness labels y for supervised
neural network training, with binary cross-entropy
loss as the loss function. This allows us to train
a network that can compute a pseudo-likelihood
ỹ ∈ (0, 1) of a given extraction candidate to agree
with the database. Thus, ỹ estimates how likely
the extraction candidate is correct.

The neural network’s training data consists of
candidates generated by the candidate-generating
parser, and noisy binary consistency labels y.

In our application, the database labeled a large
majority of candidates as correct. To obtain bal-
anced training data, we generated 6 sets of training
data, each containing the same set of around 1 mil-
lion negative cases and disjoint sets of 1 million
positive cases each. Correspondingly, we trained
an ensemble of 6 networks, and averaged their net-
work scores s̃. We found this to work much better
than oversampling the smaller class.

2.4 Noisy supervision

We assume that the noise in the source of super-
vision is limited in magnitude, e.g. < 5%. We
moreover assume that there are no strong patterns
in the distribution of the noise: if the noise cor-
relates with certain attributes of the candidate ex-
traction, the pseudo-likelihoods ỹ might no longer
be a good estimate of the candidate extraction’s
probability of being a correct extraction.

There are two sources of noise in our applica-
tion’s database supervision. First, there is a high
rate of false positives. It is not rare for the parser
to generate an extraction candidate ts tick abs (TS
symbol, numerical value) in which the numerical
value fits into the time series of the time series
symbol, but the extraction is nonetheless incor-
rect. False negatives are also a problem: many
financial time series are sparse and are rarely ob-
served. As a result, it is common for differences
between reference numerical values and extracted
numerical values to be large even for correct ex-
tractions. Limits for acceptable differences be-
tween extracted data and reference data are incor-
porated into the computation of the database con-
sistency score s. The formula for computing s is
application dependent, and may involve auxiliary
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data related to the extracted entities.

3 Results

Compared to using the existing, highly-tuned,
client-facing extraction systems, this work re-
duced the number of false positive extractions
by more than 90%, while the drop in recall was
smaller than 1%. Our character-level neural net-
work considerably boosted the precision of the ex-
isting information extraction systems, and is being
deployed to production.

We are not aware of alternative approaches that
can improve an existing extraction engine in a way
that is directly comparable to ours. Purely neural
network-based or purely statistical approaches re-
quire large amounts of human annotation, while
our method does not. Constraint-based or hybrid
statistical approaches are competitors to the exist-
ing extraction system rather than our work; in-
deed, our work could also be used to boost the
precision of state-of-the-art constraint or hybrid
methods.

When trained with 256 LSTM hidden units, and
2 million samples for 150 epochs, the neural net-
work alone achieved a training accuracy of 95.8%
and a test accuracy of 94.9%, relative to the noisy
database supervision. Note that since the supervi-
sion provided by the databases is imperfect, it is
not unexpected that the network’s accuracy is sub-
stantially below 100%. We examined the errors
in the training set, and found that they are primar-
ily due to the network generalizing correctly, with
the network being correct almost always when
strongly disagreeing with the database’s label.

We include in Figure 4 how data size and net-
work size affect network accuracy. Note that the
network’s accuracy decreases substantially if the
network size (number of LSTM units) is reduced.
Accuracy also decreases if smaller quantities of
training data are available. To achieve accept-
ably small latencies in client-serving scenarios, we
limit the network size to 256 LSTM hidden units,
even though larger networks could achieve slightly
greater accuracies. We moreover limited the docu-
ment input text provided to the LSTM neural net-
work to the lines on which the extraction candidate
was found.

Besides the neural network architecture de-
scribed in this paper, we also considered an ap-
proach based on character-level n-grams (see Fig-
ure 5). In this approach, we replaced the LSTM
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Figure 4: Neural network accuracies for different
network and training data sizes.

unit of the neural network with a single fully-
connected layer. At the same time, we replaced
the character-level input sequence f0, . . . , fk with
a single binary vector representing a bag-of-
words of n-grams. More precisely, we computed
character-level feature vectors f ′0, . . . , f ′k analo-
gously to the fi, except that the f ′i contain en-
codings of character classes (upper case letter,
lower case letter, digit, and the same list of special
characters used in the fi) rather than of charac-
ters themselves. Each binary vector f ′i was then
mapped to a string f̃ ′i containing the same se-
quence of 0s and 1s as f ′i . Finally, we computed
n-grams over the sequence of strings f̃ ′i. All n-
gram features were tf-idf normalized. We cross-
validated on a validation set to tune various hy-
perparameters, and found that using 2-grams up
to 12-grams worked best. The resulting classi-
fier achieve an accuracy of 96.9% on the training
set, and 90.4% on the test set. This constitutes
a big gap to the 94.9% test accuracy achieved by
the neural network, especially since we estimate
the accuracy of the database supervision to be
around 95%. This suggests that the recurrent neu-
ral network was able to internally compute higher-
quality features than the bag-of-words n-gram fea-
tures.

4 Discussion

In this work, we presented an architecture for in-
formation extraction from text using a combina-
tion of an existing parser and a deep neural net-
work. The deep neural network can boost the pre-
cision of an existing high-recall parser. To train the
neural network, we use measures of consistency
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between extracted data and existing databases as
a form of noisy supervision. The architecture re-
sulted in substantial improvements over mature
and highly-tuned information extraction systems
for financial language text at Bloomberg. While
we used time series databases to derive measures
of consistency for candidate extractions, our set-
up can easily be applied to a variety of other infor-
mation extraction tasks for which potentially noisy
reference data is cheaply available.

We believe our encoding of document text
and parser output makes learning particularly
easy for the neural network. We encode the
candidate-generating parser’s document annota-
tions character-by-character into vectors fi that
also include a one-hot encoding of the charac-
ter itself. We believe that this encoding makes
it easier for the network to learn character-level
characteristics of the entities that are part of the
semantic frame. As an additional benefit, our
encoding lends itself well to processing both by
recurrent architectures (processing character-by-
character input vectors fi) and convolutional ar-
chitectures (performing 1D convolutions over an
input matrix whose columns are vectors fi).

Our architecture can easily incorporate global
attributes of the document. In our application, we
found it useful to add one-hot encoded n-gram and
word shape features of the document, allowing the
neural network to consider information that might

be located far from where the extraction candidate
was found. Other potentially useful features could
be based on document length, document embed-
dings, document creator features, and more.

We experimented with other neural network ar-
chitectures. A slight variation would be to use a
bidirectional LSTM instead of a simple LSTM.
In addition to LSTM architectures, we experi-
mented with character-level convolutional neural
networks. In this setting, we concatenated the vec-
tors fi into a single matrix for all character indices,
and performed 1D convolutions and pooling oper-
ations 3 times, and pass the result through a fully-
connected layer. We found the performance of this
approach to be very similar to that of the LSTM
we used. Finally, a hybrid approach, stacking an
LSTM on a single convolutional layer, gave very
similar results as the LSTM and convolutional ar-
chitectures.

One could use a variety of sources of informa-
tion as distant and cheap supervision. While we
used existing databases, other applications may
use supervision e.g. from user interactions with
the extracted data, say if the extracted data is pre-
sented to a user who can accept, modify, or reject
the extraction. In such a system, the linear clas-
sifier classifying candidate extractions would have
only a single feature, i.e. the neural network score.
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