Syntax Aware LSTM model for Semantic Role Labeling
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Abstract

In Semantic Role Labeling (SRL) task, the
tree structured dependency relation is rich
in syntax information, but it is not well
handled by existing models. In this pa-
per, we propose Syntax Aware Long Short
Time Memory (SA-LSTM). The structure
of SA-LSTM changes according to de-
pendency structure of each sentence, so
that SA-LSTM can model the whole tree
structure of dependency relation in an ar-
chitecture engineering way. Experiments
demonstrate that on Chinese Proposition
Bank (CPB) 1.0, SA-LSTM improves F}
by 2.06% than ordinary bi-LSTM with
feature engineered dependency relation in-
formation, and gives state-of-the-art F of
79.92%. On English CoNLL 2005 dataset,
SA-LSTM brings improvement (2.1%) to
bi-LSTM model and also brings slight im-
provement (0.3%) when added to the state-
of-the-art model.

1 Introduction

The task of Semantic Role Labeling (SRL) is to
recognize arguments of a given predicate in a sen-
tence and assign semantic role labels. Many NLP
works such as machine translation (Xiong et al.,
2012; Aziz et al., 2011) benefit from SRL because
of the semantic structure it provides. Figure 1
shows a sentence with semantic role label.

Dependency relation is considered important
for SRL task (Xue, 2008; Punyakanok et al., 2008;
Pradhan et al., 2005), since it can provide rich
structure and syntax information for SRL. At the
bottom of Figure 1 shows dependency of the sen-
tence.
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Figure 1: A sentence from Chinese Proposition
Bank 1.0 (CPB 1.0) (Xue and Palmer, 2003) with
semantic role labels and dependency.

Traditional methods (Sun and Jurafsky, 2004;
Xue, 2008; Ding and Chang, 2008, 2009; Sun,
2010) do classification according to manually de-
signed features. Feature engineering requires ex-
pertise and is labor intensive. Recent works based
on Recurrent Neural Network (RNN) (Zhou and
Xu, 2015; Wang et al., 2015; He et al., 2017) ex-
tract features automatically, and significantly out-
perform traditional methods. However, because
RNN methods treat language as sequential data,
they fail to integrate the tree structured depen-
dency into RNN.

We propose Syntax Aware Long Short Time
Memory (SA-LSTM) to directly model complex
tree structure of dependency relation in an ar-
chitecture engineering way. Architecture of SA-
LSTM is shown in Figure 2. SA-LSTM is based
on bidirectional LSTM (bi-LSTM). In order to
model the whole dependency tree, we add addi-
tional directed connections between dependency
related words in bi-LSTM. SA-LSTM integrates
the whole dependency tree directly into the model
in an architecture engineering way. Also, to take
dependency relation type into account, we intro-
duce trainable weights for different types of de-
pendency relation. The weights can be trained to
indicate importance of a dependency type.

SA-LSTM is able to directly model the whole

tree structure of dependency relation in an archi-
tecture engineering way. Experiments show that
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SA-LSTM can model dependency relation bet-
ter than traditional feature engineering way. SA-
LSTM gives state of the art F; on CPB 1.0 and
also shows improvement on English CoNLL 2005
dataset.

2 Syntax Aware LSTM

In this section, we first introduce ordinary bi-
LSTM. Based on bi-LSTM, we then introduce the
proposed SA-LSTM. Finally, we introduce how to
do optimization for SA-LSTM.

2.1 Conventional bi-LSTM Model for SRL

In a corpus sentence, each word w; has a feature
representation x; which is generated automatically
as (Wang et al., 2015) did. z; is feature embedding
for wy, calculated as followed:

= f(Wlxt) (1)

where W7 € R™*"0_ ny is the dimension of word
feature representation.

In a corpus sentence, each word w; has six in-
ternal vectors, C, g;, gf, go. Ct, and hy, shown in
Equation 2:

C = f(Wez + Uchy—1 + b)

gj = U(ijt + Ujht—1 +b;) j € {i, f, 0} 2
Ci=090CH+gr©Ci1

ht = go © f(Ct)

where C is the candidate value of the current cell
state. g are gates used to control the flow of infor-
mation. C} is the current cell state. h; is hidden
state of wy. W, and U, are matrixes used in linear
transformation:

W,z € {c,i, f,0} € R™*™

3
Ug,z € {c,i, f,0} € R"*™h )

As convention, f stands for tanh and o stands for
stgmoid. © means the element-wise multiplica-
tion.

In order to make use of bidirectional informa-
tion, the forward E and backward E are con-
catenated together, as shown in Equation 4:

—T T

at = [ht y hy ] “4)

Finally, oy is the result vector with each dimension
corresponding to the score of each semantic role
tag, and are calculated as shown in Equation 5:

Oy = ng(Wgat) (5)
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Figure 2: Structure of Syntax Aware LSTM. The
purple square is the current cell that is calculating.
The green square is a dependency related cell.

where Wy € R™X"2 ngis 2 x hy, W3 €
R™*"3 and ny is the number of tags in IOBES
tagging schema.

2.2 Syntax Aware LSTM Model for SRL

This section introduces the proposed SA-LSTM
model. Figure 2 shows the structure of SA-LSTM.
SA-LSTM is based on bidirectional LSTM. By ar-
chitecture engineering, SA-LSTM can model the
whole tree structure of dependency relation.

Sy is the key component of SA-LSTM. It stands
for information from other dependency related
words, and is calculated as shown in Equation 6:

t—1
Se=fO_axh) (6)
=0

1 If there exists dependency
a= relation from w; to wy (7)

0 Otherwise

St is the weighted sum of all hidden state vectors
h; which come from previous words w; . Note



that, « € {0, 1} indicates whether there is a de-
pendency relation pointed from w; to wy.

We add a gate g5 to constrain information from
St, as shown in Equation 8:

gs = O'<Wszt +Ushi—1 + bs) (8)

To protect the original word information from be-
ing diluted (Wu et al., 2016) by .S;, we add S; to
hidden layer vector h; instead of adding to cell
state Ct. So h; in SA-LSTM cell is calculated as:

)

For example, in Figure 2, there is a dependency
relation “advmod” from green square to purple
square. By Equation 7, only the hidden state of
green square is selected, then transformed by gg
in Equation 8, finally added to hidden layer of the
purple cell.

SA-LSTM changes structure by adding differ-
ent connections according to dependency relation.
In this way, SA-LSTM integrates the whole tree
structure of dependency.

However, by using « in Equation 7, we do not
take dependency type into account, so we further
improve the way « is calculated from Equation 7
to Equation 10. Each type,, of dependency rela-
tion is assigned a trainable weight «,,. In this way,
SA-LSTM can model differences between types of
dependency relation.

hi = go © f(Ct) + 95 © Sy

Qan,  exists type,, dependency
o= relation from w; to w; (10)
0 Otherwise

2.3 Optimization

This section introduces optimization methods for
SA-LSTM. We use maximum likelihood criterion
to train SA-LSTM. We choose stochastic gradient
descent algorithm to optimize parameters.

Given a training pair T = (x,y) where T is
the current training pair, = denotes current train-
ing sentence, and y is the corresponding correct
answer path. y; = k means that the ¢-th word has
the k-th semantic role label.

The score of o, is calculated as:

N;
s(,y,0) = oty (11)
t=1

where N; is the word number of the current sen-
tence and # stands for all parameters. So the log
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Method F1%
Xue(2008) 71.90
Sun et al.(2009) 74.12
Yand and Zong(2014) 75.31
Wang et al.(Bi-LSTM)(2015) 77.09
Sha et al.(2016) 77.69
Path LSTM, Roth et al. (2016)° 79.01
BiLSTM-+feature engineering depen- | 77.75
dency

SA-LSTM(Random Initialized) 79.81
SA-LSTM(Pre-trained Embedding) | 79.92

Table 1: Results comparison on CPB 1.0

likelihood of a single sentence is:

exp(s(z,y,0))
y exp(s(z,y,0)) (12

= S(.T, Y, 9) - lOg Zy’ exp(s(:c, y/7 9))

where 3/ ranges from all valid paths of answers.
We use Viterbi algorithm to calculate the global
normalization. Besides, we collected those impos-
sible transitions from corpus beforehand. When
calculating global normalization, we prevent cal-
culating impossible paths which contains impossi-
ble transitions.

log p(y|x,0) = log 5

3 Experiment

3.1 Experiment setting

In order to compare with previous Chinese SRL
works, we choose to do experiment on CPB 1.0.
We also follow the same data setting as previous
Chinese SRL work (Xue, 2008; Sun et al., 2009)
did. Pre-trained' word embeddings are tested on
SA-LSTM and shows improvement.

For English SRL, we test on CoNLL 2005
dataset.

We use Stanford Parser (Chen and Manning,
2014) to get dependency relation. The training
set of Chinese parser overlaps a part of CPB 1.0
test set, so we retrained the parser. Dimension
of hyper parameters are tuned according to devel-
opment set. n; = 200, ny, 100, no = 200,
ng = 100, learning rate = 0.001.

3.2 Syntax Aware LSTM Performance

To prove that SA-LSTM models dependency
relation better than simple feature engineering

'"Trained by word2vec on Chinese Gigaword Corpus

2All experiment code and related files are available on re-
quest

*We test the model on CPB 1.0
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Figure 3: Visualization of trained weight «,,,. X axis is Universal Dependency type, Y axis is the weight.

Method F1 %
Bi-LSTM(2 layers) 74.52
Bi-LSTM + SA-LSTM(2 layers) 76.63
He(2017)(Single Model, state of the art) | 81.62
He(Single Model, 8 layers) + SA-LSTM | 81.90

Table 2: Results on English CoNLL 2005

method, we design an experiment in which depen-
dency relation is added to bi-LSTM in a traditional
feature engineering way.

Given a word wy, F} is the average of all depen-
dency related x; of previous words w;, as shown
in Equation 13:

=
Ft:Tz;axxi
7=

where 7' is the number of dependency related
words and « is a 0,1 variable calculated as in
Equation 7.

Then F; is concatenated to x; to form a new fea-
ture representation. Then these representations are
fed into bi-LSTM.

As shown in Table 1, on CPB 1.0, SA-LSTM
reaches 79.81%F] score with random initializa-
tion and 79.92%F} score with pre-trained word
embedding. Both of them are the best Fj score
ever published on CPB 1.0 dataset.

In contrast to the “bi-LSTM+feature engi-
neering dependency” model, it is clear that
architecture method of SA-LSTM gains more
improvement(77.09% to 79.81%) than simple
feature engineering method(77.09% to 77.75%).
Path-LSTM (Roth and Lapata, 2016) embeds de-
pendency path between predicate and argument
for each word using LSTM, then does classifica-
tion according to such path embedding and some
other features. SA-LSTM (79.81%F}) outper-
forms Path-LSTM (79.01%F}) on CPB 1.0.

Both “bi-LSTM + feature engineering depen-
dency” and Path-LSTM only model dependency
parsing information for each single word, which
can not model the whole dependency tree struc-

(13)
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ture. However, by building the dependency rela-
tion directly into the structure of SA-LSTM and
changing the way information flows, SA-LSTM is
able to model the whole tree structure of depen-
dency relation.

We also test our SA-LSTM on English CoNLL
2005 dataset. Replacing conventional bi-LSTM
by SA-LSTM brings 1.7%F) improvement. Re-
placing bi-LSTM layers of the state of the art
model (He et al., 2017) by SA-LSTM 1 brings
0.3%F) improvement.

3.3 Visualization of Trained Weights

According to Equation 10, influence from a sin-
gle type of dependency relation will be multiplied
with type weight a,,,. When ay,, is 0, the influence
from this type of dependency relation will be ig-
nored totally. When the weight is bigger, the type
of dependency relation will have more influence
on the whole system.

As shown in Figure 3, dependency relation type
dobj receives the highest weight after training,
as shown by the red bar. According to grammar
knowledge, dobj should be an informative rela-
tion for SRL task, and SA-LSTM gives dobj the
most influence automatically. This further demon-
strate that the result of SA-LSTM is highly in ac-
cordance with grammar knowledge.

4 Related works

Semantic role labeling (SRL) was first de-
fined by (Gildea and Jurafsky, 2002). Early
works (Gildea and Jurafsky, 2002; Sun and Ju-
rafsky, 2004) on SRL got promising result with-
out large annotated SRL corpus. Xue and Palmer
(2003) built the Chinese Proposition Bank to stan-
dardize Chinese SRL research.

Traditional works such as (Xue and Palmer,
2005; Xue, 2008; Ding and Chang, 2009; Sun
et al., 2009; Chen et al., 2006; Yang et al., 2014)

'"We add syntax-aware connections to every bi-LSTM
layer in the 8-layer model of (He et al., 2017)



use feature engineering methods. Their methods
can take dependency relation into account in fea-
ture engineering way, such as syntactic path fea-
ture. It is obvious that feature engineering method
can not fully capture the tree structure of depen-
dency relation.

More recent SRL works often use neural net-
work based methods. Collobert and Weston
(2008) proposed a Convolutional Neural Network
(CNN) method for SRL. Zhou and Xu (2015) pro-
posed bidirectional RNN-LSTM method for En-
glish SRL, and Wang et al. (2015) proposed a bi-
RNN-LSTM method for Chinese SRL on which
SA-LSTM is based. He et al. (2017) further ex-
tends the work of Zhou and Xu (2015). NN based
methods extract features automatically and sig-
nificantly outperforms traditional methods. How-
ever, most NN based methods can not utilize de-
pendency relation which is considered important
for semantic related NLP tasks (Xue, 2008; Pun-
yakanok et al., 2008; Pradhan et al., 2005).

The work of Roth and Lapata (2016) and Sha
et al. (2016) have the same motivation as SA-
LSTM, but in different ways. Sha et al. (2016)
uses dependency relation as feature to do argu-
ment relations classification. Roth and Lapata
(2016) embeds dependency path into feature rep-
resentation for each word using LSTM. In con-
trast, SA-LSTM utilizes dependency relation in an
architecture engineering way, by integrating the
whole dependency tree structure directly into SA-
LSTM structure.

5 Conclusion

We propose Syntax Aware LSTM model for Se-
mantic Role Labeling (SRL). SA-LSTM is able
to directly model the whole tree structure of de-
pendency relation in an architecture engineering
way. Experiments show that SA-LSTM can model
dependency relation better than traditional feature
engineering way. SA-LSTM gives state of the art
F1 on CPB 1.0 and also shows improvement on
English CoNLL 2005 dataset.
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